Import data from Pulsar¶
This topic provides an example of how to use Exchange to import NebulaGraph data stored in Pulsar.
Environment¶
This example is done on MacOS. Here is the environment configuration information:
- Hardware specifications:
- CPU: 1.7 GHz Quad-Core Intel Core i7
- Memory: 16 GB
- Spark: 2.4.7, stand-alone
- NebulaGraph: 3.0.2. Deploy NebulaGraph with Docker Compose.
Prerequisites¶
Before importing data, you need to confirm the following information:
-
NebulaGraph has been installed and deployed with the following information:
- IP addresses and ports of Graph and Meta services.
- The user name and password with write permission to NebulaGraph.
- Spark has been installed.
- Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.
- The Pulsar service has been installed and started.
Steps¶
Step 1: Create the Schema in NebulaGraph¶
Analyze the data to create a Schema in NebulaGraph by following these steps:
-
Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.
Element Name Property Tag player
name string, age int
Tag team
name string
Edge Type follow
degree int
Edge Type serve
start_year int, end_year int
-
Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.
## Create a graph space nebula> CREATE SPACE basketballplayer \ (partition_num = 10, \ replica_factor = 1, \ vid_type = FIXED_STRING(30)); ## Use the graph space basketballplayer nebula> USE basketballplayer; ## Create the Tag player nebula> CREATE TAG player(name string, age int); ## Create the Tag team nebula> CREATE TAG team(name string); ## Create the Edge type follow nebula> CREATE EDGE follow(degree int); ## Create the Edge type serve nebula> CREATE EDGE serve(start_year int, end_year int);
For more information, see Quick start workflow.
Step 2: Modify configuration files¶
After Exchange is compiled, copy the conf file target/classes/application.conf
to set Pulsar data source configuration. In this example, the copied file is called pulsar_application.conf
. For details on each configuration item, see Parameters in the configuration file.
{
# Spark configuration
spark: {
app: {
name: Nebula Exchange 3.0.0
}
driver: {
cores: 1
maxResultSize: 1G
}
cores: {
max: 16
}
}
# NebulaGraph configuration
nebula: {
address:{
# Specify the IP addresses and ports for Graph and all Meta services.
# If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".
# Addresses are separated by commas.
graph:["127.0.0.1:9669"]
meta:["127.0.0.1:9559"]
}
# The account entered must have write permission for the NebulaGraph space.
user: root
pswd: nebula
# Fill in the name of the graph space you want to write data to in the NebulaGraph.
space: basketballplayer
connection: {
timeout: 3000
retry: 3
}
execution: {
retry: 3
}
error: {
max: 32
output: /tmp/errors
}
rate: {
limit: 1024
timeout: 1000
}
}
# Processing vertices
tags: [
# Set the information about the Tag player.
{
# The corresponding Tag name in NebulaGraph.
name: player
type: {
# Specify the data source file format to Pulsar.
source: pulsar
# Specify how to import the data into NebulaGraph: Client or SST.
sink: client
}
# The address of the Pulsar server.
service: "pulsar://127.0.0.1:6650"
# admin.url of pulsar.
admin: "http://127.0.0.1:8081"
# The Pulsar option can be configured from topic, topics or topicsPattern.
options: {
topics: "topic1,topic2"
}
# Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.
# The sequence of fields and nebula.fields must correspond to each other.
# If multiple column names need to be specified, separate them by commas.
fields: [age,name]
nebula.fields: [age,name]
# Specify a column of data in the table as the source of VIDs in the NebulaGraph.
vertex:{
field:playerid
}
# The number of data written to NebulaGraph in a single batch.
batch: 10
# The number of Spark partitions.
partition: 10
# The interval for message reading. Unit: second.
interval.seconds: 10
}
# Set the information about the Tag Team.
{
name: team
type: {
source: pulsar
sink: client
}
service: "pulsar://127.0.0.1:6650"
admin: "http://127.0.0.1:8081"
options: {
topics: "topic1,topic2"
}
fields: [name]
nebula.fields: [name]
vertex:{
field:teamid
}
batch: 10
partition: 10
interval.seconds: 10
}
]
# Processing edges
edges: [
# Set the information about Edge Type follow
{
# The corresponding Edge Type name in NebulaGraph.
name: follow
type: {
# Specify the data source file format to Pulsar.
source: pulsar
# Specify how to import the Edge type data into NebulaGraph.
# Specify how to import the data into NebulaGraph: Client or SST.
sink: client
}
# The address of the Pulsar server.
service: "pulsar://127.0.0.1:6650"
# admin.url of pulsar.
admin: "http://127.0.0.1:8081"
# The Pulsar option can be configured from topic, topics or topicsPattern.
options: {
topics: "topic1,topic2"
}
# Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.
# The sequence of fields and nebula.fields must correspond to each other.
# If multiple column names need to be specified, separate them by commas.
fields: [degree]
nebula.fields: [degree]
# In source, use a column in the follow table as the source of the edge's source vertex.
# In target, use a column in the follow table as the source of the edge's destination vertex.
source:{
field:src_player
}
target:{
field:dst_player
}
# (Optional) Specify a column as the source of the rank.
#ranking: rank
# The number of data written to NebulaGraph in a single batch.
batch: 10
# The number of Spark partitions.
partition: 10
# The interval for message reading. Unit: second.
interval.seconds: 10
}
# Set the information about the Edge Type serve
{
name: serve
type: {
source: Pulsar
sink: client
}
service: "pulsar://127.0.0.1:6650"
admin: "http://127.0.0.1:8081"
options: {
topics: "topic1,topic2"
}
fields: [start_year,end_year]
nebula.fields: [start_year,end_year]
source:{
field:playerid
}
target:{
field:teamid
}
# (Optional) Specify a column as the source of the rank.
#ranking: rank
batch: 10
partition: 10
interval.seconds: 10
}
]
}
Step 3: Import data into NebulaGraph¶
Run the following command to import Pulsar data into NebulaGraph. For a description of the parameters, see Options for import.
${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <pulsar_application.conf_path>
Note
JAR packages are available in two ways: compiled them yourself, or download the compiled .jar
file directly.
For example:
${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-exchange/nebula-exchange/target/classes/pulsar_application.conf
You can search for batchSuccess.<tag_name/edge_name>
in the command output to check the number of successes. For example, batchSuccess.follow: 300
.
Step 4: (optional) Validate data¶
Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio). For example:
GO FROM "player100" OVER follow;
Users can also run the SHOW STATS
command to view statistics.
Step 5: (optional) Rebuild indexes in NebulaGraph¶
With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.