
NebulaGraph Database

Manual

v3.6.0

NebulaGraph

2023 Vesoft Inc.

Table of contents

61. Welcome to NebulaGraph 3.6.0 Documentation

61.1 Getting started

61.2 Release notes

61.3 Other Sources

61.4 Symbols used in this manual

71.5 Modify errors

82. Introduction

82.1 What is NebulaGraph

122.2 Data modeling

142.3 Path types

162.4 VID

182.5 NebulaGraph architecture

373. Quick start

383.1 Quickly deploy NebulaGraph using Docker

413.2 Deploy NebulaGraph on-premise

593.3 nGQL cheatsheet

814. nGQL guide

814.1 nGQL overview

984.2 Data types

1174.3 Operators

1314.4 Functions and expressions

1744.5 General queries statements

2274.6 Clauses and options

2594.7 Variables and composite queries

2664.8 Space statements

2764.9 Tag statements

2864.10 Edge type statements

2924.11 Vertex statements

3004.12 Edge statements

3074.13 Native index statements

3194.14 Full-text index statements

3294.15 Query tuning and terminating statements

3354.16 Job manager and the JOB statements

3395. Deploy and install

3395.1 Prepare resources for compiling, installing, and running NebulaGraph

Table of contents

- 2/804 - 2023 Vesoft Inc.

3455.2 Compile and install

3515.3 Local single-node installation

3585.4 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

3645.5 Deploy NebulaGraph with Docker Compose

3695.6 Deploy NebulaGraph with NebulaGraph Lite

3705.7 Install NebulaGraph with ecosystem tools

3715.8 Manage NebulaGraph Service

3735.9 Connect to NebulaGraph

3755.10 Manage Storage hosts

3775.11 Upgrade NebulaGraph to 3.6.0

3825.12 Uninstall NebulaGraph

3846. Configure and log

3846.1 Configurations

4156.2 Log management

4217. Monitor

4217.1 Query NebulaGraph metrics

4297.2 RocksDB statistics

4318. Data security

4318.1 Authentication and authorization

4378.2 SSL encryption

4399. Backup and restore

4399.1 NebulaGraph BR Community

4519.2 Backup and restore data with snapshots

45410. Synchronize and migrate

45410.1 BALANCE syntax

45511. Import and export

45511.1 Import tools

45711.2 NebulaGraph Importer

46711.3 NebulaGraph Exchange

57312. Connectors

57312.1 NebulaGraph Spark Connector

58012.2 NebulaGraph Flink Connector

58613. Best practices

58613.1 Compaction

58813.2 Storage load balance

58913.3 Graph data modeling suggestions

59313.4 System design suggestions

59413.5 Execution plan

Table of contents

- 3/804 - 2023 Vesoft Inc.

59513.6 Processing super vertices

59713.7 Enable AutoFDO for NebulaGraph

60313.8 Best practices

60414. Clients

60414.1 Clients overview

60514.2 NebulaGraph Console

61014.3 NebulaGraph CPP

61214.4 NebulaGraph Java

61414.5 NebulaGraph Python

61614.6 NebulaGraph Go

61714.7 Community contributed clients

61815. Studio

61815.1 About NebulaGraph Studio

62115.2 Deploy and connect

63215.3 Quick start

65715.4 Troubleshooting

66116. Dashboard (Community)

66116.1 What is NebulaGraph Dashboard Community Edition

66316.2 Deploy Dashboard Community Edition

66616.3 Connect Dashboard

66716.4 Dashboard

67316.5 Metrics

68117. NebulaGraph Operator

68117.1 What is NebulaGraph Operator

68317.2 Getting started

69917.3 NebulaGraph Operator management

70817.4 Cluster administration

75517.5 FAQ

75718. Graph computing

75718.1 NebulaGraph Algorithm

76419. NebulaGraph Bench

76419.1 Scenario

76419.2 Release note

76419.3 Test process

76520. FAQ

76520.1 About manual updates

76520.2 About legacy version compatibility

76520.3 About execution errors

Table of contents

- 4/804 - 2023 Vesoft Inc.

76820.4 About design and functions

77120.5 About operation and maintenance

77520.6 About connections

77721. Appendix

77721.1 Release Note

78021.2 Ecosystem tools overview

78421.3 Port guide for company products

78721.4 How to Contribute

79121.5 History timeline for NebulaGraph

79721.6 Error code

Table of contents

- 5/804 - 2023 Vesoft Inc.

1. Welcome to NebulaGraph 3.6.0 Documentation

This manual is revised on 2024-4-19, with GitHub commit de22105730.

NebulaGraph is a distributed, scalable, and lightning-fast graph database. It is the optimal solution in the world capable of

hosting graphs with dozens of billions of vertices (nodes) and trillions of edges (relationships) with millisecond latency.

1.1 Getting started

Quick start

Preparations before deployment

nGQL cheatsheet

FAQ

Ecosystem Tools

Live Demo

1.2 Release notes

NebulaGraph Community Edition 3.6.0

NebulaGraph Dashboard Community

NebulaGraph Studio

1.3 Other Sources

To cite NebulaGraph

Forum

NebulaGraph Homepage

Blogs

Videos

Chinese Docs

1.4 Symbols used in this manual

Additional information or operation-related notes.

May have adverse effects, such as causing performance degradation or triggering known minor problems.

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Note

Caution

1. Welcome to NebulaGraph 3.6.0 Documentation

- 6/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-docs/commits/v3.6.0
https://www.nebula-graph.io/demo
https://arxiv.org/abs/2206.07278
https://github.com/vesoft-inc/nebula/discussions
https://nebula-graph.io/
https://nebula-graph.io/posts/
https://www.youtube.com/channel/UC73V8q795eSEMxDX4Pvdwmw
https://docs.nebula-graph.com.cn/

May lead to serious issues, such as data loss or system crash.

May lead to extremely serious issues, such as system damage or information leakage.

The compatibility notes between nGQL and openCypher, or between the current version of nGQL and its prior ones.

Differences between the NebulaGraph Community and Enterprise editions.

1.5 Modify errors

This NebulaGraph manual is written in the Markdown language. Users can click the pencil sign on the upper right side of each

document title and modify errors.

Warning

Danger

Compatibility

Enterpriseonly

Last update: November 29, 2023

1.5 Modify errors

- 7/804 - 2023 Vesoft Inc.

2. Introduction

2.1 What is NebulaGraph

NebulaGraph is an open-source, distributed, easily scalable, and native graph database. It is capable of hosting graphs with

hundreds of billions of vertices and trillions of edges, and serving queries with millisecond-latency.

2.1.1 What is a graph database

A graph database, such as NebulaGraph, is a database that specializes in storing vast graph networks and retrieving information

from them. It efficiently stores data as vertices (nodes) and edges (relationships) in labeled property graphs. Properties can be

attached to both vertices and edges. Each vertex can have one or multiple tags (labels).

2. Introduction

- 8/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/architecture_map_2022-08-08_17-37-15.png
https://docs-cdn.nebula-graph.com.cn/figures/architecture_map_2022-08-08_17-37-15.png

Graph databases are well suited for storing most kinds of data models abstracted from reality. Things are connected in almost all

fields in the world. Modeling systems like relational databases extract the relationships between entities and squeeze them into

table columns alone, with their types and properties stored in other columns or even other tables. This makes data management

time-consuming and cost-ineffective.

NebulaGraph, as a typical native graph database, allows you to store the rich relationships as edges with edge types and

properties directly attached to them.

2.1.2 Advantages of NebulaGraph

Open source

NebulaGraph is open under the Apache 2.0 License. More and more people such as database developers, data scientists, security

experts, and algorithm engineers are participating in the designing and development of NebulaGraph. To join the opening of

source code and ideas, surf the NebulaGraph GitHub page.

Outstanding performance

Written in C++ and born for graphs, NebulaGraph handles graph queries in milliseconds. Among most databases, NebulaGraph

shows superior performance in providing graph data services. The larger the data size, the greater the superiority of

NebulaGraph.For more information, see NebulaGraph benchmarking.

2.1.2 Advantages of NebulaGraph

- 9/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/what-is-a-graph-database.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/what-is-a-graph-database.png
https://github.com/vesoft-inc/nebula-graph
https://github.com/vesoft-inc/nebula/discussions/5173

High scalability

NebulaGraph is designed in a shared-nothing architecture and supports scaling in and out without interrupting the database

service.

Developer friendly

NebulaGraph supports clients in popular programming languages like Java, Python, C++, and Go, and more are under

development. For more information, see NebulaGraph clients.

Reliable access control

NebulaGraph supports strict role-based access control and external authentication servers such as LDAP (Lightweight Directory

Access Protocol) servers to enhance data security. For more information, see Authentication and authorization.

Diversified ecosystem

More and more native tools of NebulaGraph have been released, such as NebulaGraph Studio, NebulaGraph Console, and

NebulaGraph Exchange. For more ecosystem tools, see Ecosystem tools overview.

Besides, NebulaGraph has the ability to be integrated with many cutting-edge technologies, such as Spark, Flink, and HBase, for

the purpose of mutual strengthening in a world of increasing challenges and chances.

OpenCypher-compatible query language

The native NebulaGraph Query Language, also known as nGQL, is a declarative, openCypher-compatible textual query language.

It is easy to understand and easy to use. For more information, see nGQL guide.

Future-oriented hardware with balanced reading and writing

Solid-state drives have extremely high performance and they are getting cheaper. NebulaGraph is a product based on SSD.

Compared with products based on HDD and large memory, it is more suitable for future hardware trends and easier to achieve

balanced reading and writing.

Easy data modeling and high flexibility

You can easily model the connected data into NebulaGraph for your business without forcing them into a structure such as a

relational table, and properties can be added, updated, and deleted freely. For more information, see Data modeling.

High popularity

NebulaGraph is being used by tech leaders such as Tencent, Vivo, Meituan, and JD Digits. For more information, visit the

NebulaGraph official website.

2.1.3 Use cases

NebulaGraph can be used to support various graph-based scenarios. To spare the time spent on pushing the kinds of data

mentioned in this section into relational databases and on bothering with join queries, use NebulaGraph.

Fraud detection

Financial institutions have to traverse countless transactions to piece together potential crimes and understand how

combinations of transactions and devices might be related to a single fraud scheme. This kind of scenario can be modeled in

graphs, and with the help of NebulaGraph, fraud rings and other sophisticated scams can be easily detected.

2.1.3 Use cases

- 10/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-web-docker
https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-exchange
https://blocksandfiles.com/wp-content/uploads/2021/01/Wikibon-SSD-less-than-HDD-in-2026.jpg
https://nebula-graph.io/

Real-time recommendation

NebulaGraph offers the ability to instantly process the real-time information produced by a visitor and make accurate

recommendations on articles, videos, products, and services.

Intelligent question-answer system

Natural languages can be transformed into knowledge graphs and stored in NebulaGraph. A question organized in a natural

language can be resolved by a semantic parser in an intelligent question-answer system and re-organized. Then, possible

answers to the question can be retrieved from the knowledge graph and provided to the one who asked the question.

Social networking

Information on people and their relationships is typical graph data. NebulaGraph can easily handle the social networking

information of billions of people and trillions of relationships, and provide lightning-fast queries for friend recommendations and

job promotions in the case of massive concurrency.

2.1.4 Related links

Official website

Docs

Blogs

Forum

GitHub

•

•

•

•

•

Last update: October 25, 2023

2.1.4 Related links

- 11/804 - 2023 Vesoft Inc.

https://www.vesoft.com/en/
https://docs.nebula-graph.io/master/
https://nebula-graph.io/posts/
https://discuss.nebula-graph.io
https://github.com/vesoft-inc

2.2 Data modeling

A data model is a model that organizes data and specifies how they are related to one another. This topic describes the

Nebula Graph data model and provides suggestions for data modeling with NebulaGraph.

2.2.1 Data structures

NebulaGraph data model uses six data structures to store data. They are graph spaces, vertices, edges, tags, edge types and

properties.

Graph spaces: Graph spaces are used to isolate data from different teams or programs. Data stored in different graph spaces

are securely isolated. Storage replications, privileges, and partitions can be assigned.

Vertices: Vertices are used to store entities.

In NebulaGraph, vertices are identified with vertex identifiers (i.e. VID). The VID must be unique in the same graph space. VID

should be int64, or fixed_string(N).

A vertex has zero to multiple tags.

In NebulaGraph 2.x a vertex must have at least one tag. And in NebulaGraph 3.6.0, a tag is not required for a vertex.

Edges: Edges are used to connect vertices. An edge is a connection or behavior between two vertices.

There can be multiple edges between two vertices.

Edges are directed. -> identifies the directions of edges. Edges can be traversed in either direction.

An edge is identified uniquely with <a source vertex, an edge type, a rank value, and a destination vertex> . Edges have no EID.

An edge must have one and only one edge type.

The rank value is an immutable user-assigned 64-bit signed integer. It identifies the edges with the same edge type between

two vertices. Edges are sorted by their rank values. The edge with the greatest rank value is listed first. The default rank value

is zero.

Tags: Tags are used to categorize vertices. Vertices that have the same tag share the same definition of properties.

Edge types: Edge types are used to categorize edges. Edges that have the same edge type share the same definition of

properties.

Properties: Properties are key-value pairs. Both vertices and edges are containers for properties.

Tags and Edge types are similar to "vertex tables" and "edge tables" in the relational databases.

2.2.2 Directed property graph

NebulaGraph stores data in directed property graphs. A directed property graph has a set of vertices connected by directed

edges. Both vertices and edges can have properties. A directed property graph is represented as:

•

•

•

•

Compatibility

•

•

•

•

•

•

•

•

•

Note

2.2 Data modeling

- 12/804 - 2023 Vesoft Inc.

G = < V, E, P
V

, P
E

 >

V is a set of vertices.

E is a set of directed edges.

P
V

 is the property of vertices.

P
E

 is the property of edges.

The following table is an example of the structure of the basketball player dataset. We have two types of vertices, that is player

and team, and two types of edges, that is serve and follow.

NebulaGraph supports only directed edges.

NebulaGraph 3.6.0 allows dangling edges. Therefore, when adding or deleting, you need to ensure the corresponding source vertex

and destination vertex of an edge exist. For details, see INSERT VERTEX, DELETE VERTEX, INSERT EDGE, and DELETE EDGE.

The MERGE statement in openCypher is not supported.

•

•

•

•

Element Name Property name

(Data type)

Description

Tag player name (string)

age (int)

Represents players in the team.

Tag team name (string) Represents the teams.

Edge type serve start_year (int)

end_year (int)

Represents actions taken by players in the team.

An action links a player with a team, and the direction is from

a player to a team.

Edge type follow degree (int) Represents actions taken by players in the team.

An action links a player with another player, and the direction

is from one player to the other player.

Note

Compatibility

Last update: November 3, 2023

2.2.2 Directed property graph

- 13/804 - 2023 Vesoft Inc.

2.3 Path types

In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. Paths are

fundamental concepts of graph theory.

Paths can be categorized into 3 types: walk , trail , and path . For more information, see Wikipedia.

The following figure is an example for a brief introduction.

2.3.1 Walk

A walk is a finite or infinite sequence of edges. Both vertices and edges can be repeatedly visited in graph traversal.

In the above figure C, D, and E form a cycle. So, this figure contains infinite paths, such as A->B->C->D->E , A->B->C->D->E->C , and A->B-

>C->D->E->C->D .

GO statements use walk .

2.3.2 Trail

A trail is a finite sequence of edges. Only vertices can be repeatedly visited in graph traversal. The Seven Bridges of Königsberg

is a typical trail .

In the above figure, edges cannot be repeatedly visited. So, this figure contains finite paths. The longest path in this figure

consists of 5 edges: A->B->C->D->E->C .

MATCH , FIND PATH , and GET SUBGRAPH statements use trail .

There are two special cases of trail, cycle and circuit . The following figure is an example for a brief introduction.

Note

Note

2.3 Path types

- 14/804 - 2023 Vesoft Inc.

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path
https://docs-cdn.nebula-graph.com.cn/figures/path1.png
https://docs-cdn.nebula-graph.com.cn/figures/path1.png

cycle

A cycle refers to a closed trail . Only the terminal vertices can be repeatedly visited. The longest path in this figure consists of

3 edges: A->B->C->A or C->D->E->C .

circuit

A circuit refers to a closed trail . Edges cannot be repeatedly visited in graph traversal. Apart from the terminal vertices,

other vertices can also be repeatedly visited. The longest path in this figure: A->B->C->D->E->C->A .

2.3.3 Path

A path is a finite sequence of edges. Neither vertices nor edges can be repeatedly visited in graph traversal.

So, the above figure contains finite paths. The longest path in this figure consists of 4 edges: A->B->C->D->E .

•

•

Last update: October 25, 2023

2.3.3 Path

- 15/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/Circuits1.png
https://docs-cdn.nebula-graph.com.cn/figures/Circuits1.png

2.4 VID

In a graph space, a vertex is uniquely identified by its ID, which is called a VID or a Vertex ID.

2.4.1 Features

The data types of VIDs are restricted to FIXED_STRING(<N>) or INT64 . One graph space can only select one VID type.

A VID in a graph space is unique. It functions just as a primary key in a relational database. VIDs in different graph spaces are

independent.

The VID generation method must be set by users, because NebulaGraph does not provide auto increasing ID, or UUID.

Vertices with the same VID will be identified as the same one. For example:

A VID is the unique identifier of an entity, like a person's ID card number. A tag means the type of an entity, such as driver, and

boss. Different tags define two groups of different properties, such as driving license number, driving age, order amount, order

taking alt, and job number, payroll, debt ceiling, business phone number.

When two INSERT statements (neither uses a parameter of IF NOT EXISTS) with the same VID and tag are operated at the same

time, the latter INSERT will overwrite the former.

When two INSERT statements with the same VID but different tags, like TAG A and TAG B , are operated at the same time, the

operation of Tag A will not affect Tag B .

VIDs will usually be indexed and stored into memory (in the way of LSM-tree). Thus, direct access to VIDs enjoys peak

performance.

2.4.2 VID Operation

NebulaGraph 1.x only supports INT64 while NebulaGraph 2.x supports INT64 and FIXED_STRING(<N>) . In CREATE SPACE , VID types can

be set via vid_type .

id() function can be used to specify or locate a VID.

LOOKUP or MATCH statements can be used to find a VID via property index.

Direct access to vertices statements via VIDs enjoys peak performance, such as DELETE xxx WHERE id(xxx) == "player100" or GO FROM

"player100" . Finding VIDs via properties and then operating the graph will cause poor performance, such as

LOOKUP | GO FROM $-.ids , which will run both LOOKUP and | one more time.

2.4.3 VID Generation

VIDs can be generated via applications. Here are some tips:

(Optimal) Directly take a unique primary key or property as a VID. Property access depends on the VID.

Generate a VID via a unique combination of properties. Property access depends on property index.

Generate a VID via algorithms like snowflake. Property access depends on property index.

If short primary keys greatly outnumber long primary keys, do not enlarge the N of FIXED_STRING(<N>) too much. Otherwise, it will

occupy a lot of memory and hard disks, and slow down performance. Generate VIDs via BASE64, MD5, hash by encoding and

splicing.

If you generate int64 VID via hash, the probability of collision is about 1/10 when there are 1 billion vertices. The number of

edges has no concern with the probability of collision.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.4 VID

- 16/804 - 2023 Vesoft Inc.

2.4.4 Define and modify a VID and its data type

The data type of a VID must be defined when you create the graph space. Once defined, it cannot be modified.

A VID is set when you insert a vertex and cannot be modified.

2.4.5 Query start vid and global scan

In most cases, the execution plan of query statements in NebulaGraph (MATCH , GO , and LOOKUP) must query the start vid in a

certain way.

There are only two ways to locate start vid :

For example, GO FROM "player100" OVER explicitly indicates in the statement that start vid is "player100".

For example, LOOKUP ON player WHERE player.name == "Tony Parker" or MATCH (v:player {name:"Tony Parker"}) locates start vid by the index of the

property player.name .

1.

2.

Last update: October 25, 2023

2.4.4 Define and modify a VID and its data type

- 17/804 - 2023 Vesoft Inc.

2.5 NebulaGraph architecture

2.5.1 Architecture overview

NebulaGraph consists of three services: the Graph Service, the Storage Service, and the Meta Service. It applies the separation

of storage and computing architecture.

Each service has its executable binaries and processes launched from the binaries. Users can deploy a NebulaGraph cluster on a

single machine or multiple machines using these binaries.

The following figure shows the architecture of a typical NebulaGraph cluster.

2.5 NebulaGraph architecture

- 18/804 - 2023 Vesoft Inc.

The Meta Service

The Meta Service in the NebulaGraph architecture is run by the nebula-metad processes. It is responsible for metadata

management, such as schema operations, cluster administration, and user privilege management.

For details on the Meta Service, see Meta Service.

2.5.1 Architecture overview

- 19/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/nebula-graph-architecture_3.png
https://docs-cdn.nebula-graph.com.cn/figures/nebula-graph-architecture_3.png

The Graph Service and the Storage Service

NebulaGraph applies the separation of storage and computing architecture. The Graph Service is responsible for querying. The

Storage Service is responsible for storage. They are run by different processes, i.e., nebula-graphd and nebula-storaged. The

benefits of the separation of storage and computing architecture are as follows:

Great scalability

The separated structure makes both the Graph Service and the Storage Service flexible and easy to scale in or out.

High availability

If part of the Graph Service fails, the data stored by the Storage Service suffers no loss. And if the rest part of the Graph

Service is still able to serve the clients, service recovery can be performed quickly, even unfelt by the users.

Cost-effective

The separation of storage and computing architecture provides a higher resource utilization rate, and it enables clients to

manage the cost flexibly according to business demands.

Open to more possibilities

With the ability to run separately, the Graph Service may work with multiple types of storage engines, and the Storage Service

may also serve more types of computing engines.

For details on the Graph Service and the Storage Service, see Graph Service and Storage Service.

•

•

•

•

Last update: October 25, 2023

2.5.1 Architecture overview

- 20/804 - 2023 Vesoft Inc.

2.5.2 Meta Service

This topic introduces the architecture and functions of the Meta Service.

The architecture of the Meta Service

The architecture of the Meta Service is as follows:

The Meta Service is run by nebula-metad processes. Users can deploy nebula-metad processes according to the scenario:

In a test environment, users can deploy one or three nebula-metad processes on different machines or a single machine.

In a production environment, we recommend that users deploy three nebula-metad processes on different machines for high

availability.

All the nebula-metad processes form a Raft-based cluster, with one process as the leader and the others as the followers.

The leader is elected by the majorities and only the leader can provide service to the clients or other components of

NebulaGraph. The followers will be run in a standby way and each has a data replication of the leader. Once the leader fails, one

of the followers will be elected as the new leader.

The data of the leader and the followers will keep consistent through Raft. Thus the breakdown and election of the leader will not

cause data inconsistency. For more information on Raft, see Storage service architecture.

•

•

Note

2.5.2 Meta Service

- 21/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/meta-architecture1.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/meta-architecture1.png

Functions of the Meta Service

MANAGES USER ACCOUNTS

The Meta Service stores the information of user accounts and the privileges granted to the accounts. When the clients send

queries to the Meta Service through an account, the Meta Service checks the account information and whether the account has

the right privileges to execute the queries or not.

For more information on NebulaGraph access control, see Authentication.

MANAGES PARTITIONS

The Meta Service stores and manages the locations of the storage partitions and helps balance the partitions.

MANAGES GRAPH SPACES

NebulaGraph supports multiple graph spaces. Data stored in different graph spaces are securely isolated. The Meta Service

stores the metadata of all graph spaces and tracks the changes of them, such as adding or dropping a graph space.

MANAGES SCHEMA INFORMATION

NebulaGraph is a strong-typed graph database. Its schema contains tags (i.e., the vertex types), edge types, tag properties, and

edge type properties.

The Meta Service stores the schema information. Besides, it performs the addition, modification, and deletion of the schema, and

logs the versions of them.

For more information on NebulaGraph schema, see Data model.

MANAGES TTL INFORMATION

The Meta Service stores the definition of TTL (Time to Live) options which are used to control data expiration. The Storage

Service takes care of the expiring and evicting processes. For more information, see TTL.

MANAGES JOBS

The Job Management module in the Meta Service is responsible for the creation, queuing, querying, and deletion of jobs.

Last update: November 3, 2023

2.5.2 Meta Service

- 22/804 - 2023 Vesoft Inc.

2.5.3 Graph Service

The Graph Service is used to process the query. It has four submodules: Parser, Validator, Planner, and Executor. This topic will

describe the Graph Service accordingly.

The architecture of the Graph Service

After a query is sent to the Graph Service, it will be processed by the following four submodules:

Parser: Performs lexical analysis and syntax analysis.

Validator: Validates the statements.

Planner: Generates and optimizes the execution plans.

Executor: Executes the plans with operators.

Parser

After receiving a request, the statements will be parsed by Parser composed of Flex (lexical analysis tool) and Bison (syntax

analysis tool), and its corresponding AST will be generated. Statements will be directly intercepted in this stage because of their

invalid syntax.

For example, the structure of the AST of GO FROM "Tim" OVER like WHERE properties(edge).likeness > 8.0 YIELD dst(edge) is shown in the

following figure.

1.

2.

3.

4.

2.5.3 Graph Service

- 23/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/query-engine-architecture.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/query-engine-architecture.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/parser-ast-tree.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/parser-ast-tree.png

Validator

Validator performs a series of validations on the AST. It mainly works on these tasks:

Validating metadata

Validator will validate whether the metadata is correct or not.

When parsing the OVER , WHERE , and YIELD clauses, Validator looks up the Schema and verifies whether the edge type and tag

data exist or not. For an INSERT statement, Validator verifies whether the types of the inserted data are the same as the ones

defined in the Schema.

Validating contextual reference

Validator will verify whether the cited variable exists or not, or whether the cited property is variable or not.

For composite statements, like $var = GO FROM "Tim" OVER like YIELD dst(edge) AS ID; GO FROM $var.ID OVER serve YIELD dst(edge) , Validator

verifies first to see if var is defined, and then to check if the ID property is attached to the var variable.

Validating type inference

Validator infers what type the result of an expression is and verifies the type against the specified clause.

For example, the WHERE clause requires the result to be a bool value, a NULL value, or empty .

Validating the information of *

Validator needs to verify all the Schema that involves * when verifying the clause if there is a * in the statement.

Take a statement like GO FROM "Tim" OVER * YIELD dst(edge), properties(edge).likeness, dst(edge) as an example. When verifying the OVER

clause, Validator needs to verify all the edge types. If the edge type includes like and serve , the statement would be

GO FROM "Tim" OVER like,serve YIELD dst(edge), properties(edge).likeness, dst(edge) .

Validating input and output

Validator will check the consistency of the clauses before and after the | .

In the statement GO FROM "Tim" OVER like YIELD dst(edge) AS ID | GO FROM $-.ID OVER serve YIELD dst(edge) , Validator will verify whether $-.ID

is defined in the clause before the | .

When the validation succeeds, an execution plan will be generated. Its data structure will be stored in the src/planner directory.

Planner

In the nebula-graphd.conf file, when enable_optimizer is set to be false , Planner will not optimize the execution plans generated by

Validator. It will be executed by Executor directly.

In the nebula-graphd.conf file, when enable_optimizer is set to be true , Planner will optimize the execution plans generated by

Validator. The structure is as follows.

•

•

•

•

•

2.5.3 Graph Service

- 24/804 - 2023 Vesoft Inc.

Before optimization

In the execution plan on the right side of the preceding figure, each node directly depends on other nodes. For example, the

root node Project depends on the Filter node, the Filter node depends on the GetNeighbor node, and so on, up to the leaf node

Start . Then the execution plan is (not truly) executed.

During this stage, every node has its input and output variables, which are stored in a hash table. The execution plan is not

truly executed, so the value of each key in the associated hash table is empty (except for the Start node, where the input

variables hold the starting data), and the hash table is defined in src/context/ExecutionContext.cpp under the nebula-graph repository.

For example, if the hash table is named as ResultMap when creating the Filter node, users can determine that the node takes

data from ResultMap["GN1"] , then puts the result into ResultMap["Filter2"] , and so on. All these work as the input and output of each

node.

Process of optimization

The optimization rules that Planner has implemented so far are considered RBO (Rule-Based Optimization), namely the pre-

defined optimization rules. The CBO (Cost-Based Optimization) feature is under development. The optimized code is in the src/

optimizer/ directory under the nebula-graph repository.

RBO is a “bottom-up” exploration process. For each rule, the root node of the execution plan (in this case, the Project node) is

the entry point, and step by step along with the node dependencies, it reaches the node at the bottom to see if it matches the

rule.

As shown in the preceding figure, when the Filter node is explored, it is found that its children node is GetNeighbors , which

matches successfully with the pre-defined rules, so a transformation is initiated to integrate the Filter node into the

GetNeighbors node, the Filter node is removed, and then the process continues to the next rule. Therefore, when the GetNeighbor

operator calls interfaces of the Storage layer to get the neighboring edges of a vertex during the execution stage, the Storage

layer will directly filter out the unqualified edges internally. Such optimization greatly reduces the amount of data transfer,

which is commonly known as filter pushdown.

Executor

The Executor module consists of Scheduler and Executor. The Scheduler generates the corresponding execution operators

against the execution plan, starting from the leaf nodes and ending at the root node. The structure is as follows.

•

•

2.5.3 Graph Service

- 25/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/optimizer.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/optimizer.png

Each node of the execution plan has one execution operator node, whose input and output have been determined in the execution

plan. Each operator only needs to get the values for the input variables, compute them, and finally put the results into the

corresponding output variables. Therefore, it is only necessary to execute step by step from Start , and the result of the last

operator is returned to the user as the final result.

Source code hierarchy

The source code hierarchy under the nebula-graph repository is as follows.

|--src

 |--graph

 |--context //contexts for validation and execution

 |--executor //execution operators

 |--gc //garbage collector

 |--optimizer //optimization rules

 |--planner //structure of the execution plans

 |--scheduler //scheduler

 |--service //external service management

 |--session //session management

 |--stats //monitoring metrics

 |--util //basic components

 |--validator //validation of the statements

 |--visitor //visitor expression

Last update: October 25, 2023

2.5.3 Graph Service

- 26/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/executor.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/1.introduction/2.nebula-graph-architecture/executor.png

2.5.4 Storage Service

The persistent data of NebulaGraph have two parts. One is the Meta Service that stores the meta-related data.

The other is the Storage Service that stores the data, which is run by the nebula-storaged process. This topic will describe the

architecture of the Storage Service.

Advantages

High performance (Customized built-in KVStore)

Great scalability (Shared-nothing architecture, not rely on NAS/SAN-like devices)

Strong consistency (Raft)

High availability (Raft)

Supports synchronizing with the third party systems, such as Elasticsearch.

The architecture of the Storage Service

The Storage Service is run by the nebula-storaged process. Users can deploy nebula-storaged processes on different occasions.

For example, users can deploy 1 nebula-storaged process in a test environment and deploy 3 nebula-storaged processes in a

production environment.

•

•

•

•

•

2.5.4 Storage Service

- 27/804 - 2023 Vesoft Inc.

https://www-cdn.nebula-graph.com.cn/nebula-blog/nebula-reading-storage-architecture.png
https://www-cdn.nebula-graph.com.cn/nebula-blog/nebula-reading-storage-architecture.png

All the nebula-storaged processes consist of a Raft-based cluster. There are three layers in the Storage Service:

Storage interface

The top layer is the storage interface. It defines a set of APIs that are related to the graph concepts. These API requests will be

translated into a set of KV operations targeting the corresponding Partition. For example:

getNeighbors : queries the in-edge or out-edge of a set of vertices, returns the edges and the corresponding properties, and

supports conditional filtering.

insert vertex/edge : inserts a vertex or edge and its properties.

getProps : gets the properties of a vertex or an edge.

It is this layer that makes the Storage Service a real graph storage. Otherwise, it is just a KV storage.

Consensus

Below the storage interface is the consensus layer that implements Multi Group Raft, which ensures the strong consistency

and high availability of the Storage Service.

Store engine

The bottom layer is the local storage engine library, providing operations like get , put , and scan on local disks. The related

interfaces are stored in KVStore.h and KVEngine.h files. You can develop your own local store plugins based on your needs.

The following will describe some features of the Storage Service based on the above architecture.

Storage writing process

•

•

•

•

•

•

2.5.4 Storage Service

- 28/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/storage_write_process.png
https://docs-cdn.nebula-graph.com.cn/figures/storage_write_process.png

KVStore

NebulaGraph develops and customizes its built-in KVStore for the following reasons.

It is a high-performance KVStore.

It is provided as a (kv) library and can be easily developed for the filter pushdown purpose. As a strong-typed database, how to

provide Schema during pushdown is the key to efficiency for NebulaGraph.

It has strong data consistency.

Therefore, NebulaGraph develops its own KVStore with RocksDB as the local storage engine. The advantages are as follows.

For multiple local hard disks, NebulaGraph can make full use of its concurrent capacities through deploying multiple data

directories.

The Meta Service manages all the Storage servers. All the partition distribution data and current machine status can be found

in the meta service. Accordingly, users can execute a manual load balancing plan in meta service.

NebulaGraph does not support auto load balancing because auto data transfer will affect online business.

NebulaGraph provides its own WAL mode so one can customize the WAL. Each partition owns its WAL.

One NebulaGraph KVStore cluster supports multiple graph spaces, and each graph space has its own partition number and

replica copies. Different graph spaces are isolated physically from each other in the same cluster.

•

•

•

•

•

Note

•

•

2.5.4 Storage Service

- 29/804 - 2023 Vesoft Inc.

Data storage structure

Graphs consist of vertices and edges. NebulaGraph uses key-value pairs to store vertices, edges, and their properties. Vertices

and edges are stored in keys and their properties are stored in values. Such structure enables efficient property filtering.

The storage structure of vertices

Different from NebulaGraph version 2.x, version 3.x added a new key for each vertex. Compared to the old key that still exists,

the new key has no TagID field and no value. Vertices in NebulaGraph can now live without tags owing to the new key.

•

Field Description

Type One byte, used to indicate the key type.

PartID Three bytes, used to indicate the sharding partition and to scan the partition data based on the prefix

when re-balancing the partition.

VertexID The vertex ID. For an integer VertexID, it occupies eight bytes. However, for a string VertexID, it is

changed to fixed_string of a fixed length which needs to be specified by users when they create the space.

TagID Four bytes, used to indicate the tags that vertex relate with.

SerializedValue The serialized value of the key. It stores the property information of the vertex.

2.5.4 Storage Service

- 30/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/3.0-vertex-key.png
https://docs-cdn.nebula-graph.com.cn/figures/3.0-vertex-key.png

The storage structure of edges

PROPERTY DESCRIPTIONS

NebulaGraph uses strong-typed Schema.

NebulaGraph will store the properties of vertex and edges in order after encoding them. Since the length of fixed-length

properties is fixed, queries can be made in no time according to offset. Before decoding, NebulaGraph needs to get (and cache)

the schema information in the Meta Service. In addition, when encoding properties, NebulaGraph will add the corresponding

schema version to support online schema change.

Data partitioning

Since in an ultra-large-scale relational network, vertices can be as many as tens to hundreds of billions, and edges are even more

than trillions. Even if only vertices and edges are stored, the storage capacity of both exceeds that of ordinary servers. Therefore,

NebulaGraph uses hash to shard the graph elements and store them in different partitions.

•

Field Description

Type One byte, used to indicate the key type.

PartID Three bytes, used to indicate the partition ID. This field can be used to scan the partition data based on

the prefix when re-balancing the partition.

VertexID Used to indicate vertex ID. The former VID refers to the source VID in the outgoing edge and the dest

VID in the incoming edge, while the latter VID refers to the dest VID in the outgoing edge and the source

VID in the incoming edge.

Edge Type Four bytes, used to indicate the edge type. Greater than zero indicates out-edge, less than zero means in-

edge.

Rank Eight bytes, used to indicate multiple edges in one edge type. Users can set the field based on needs and

store weight, such as transaction time and transaction number.

PlaceHolder One byte. Reserved.

SerializedValue The serialized value of the key. It stores the property information of the edge.

2.5.4 Storage Service

- 31/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/3.0-edge-key.png
https://docs-cdn.nebula-graph.com.cn/figures/3.0-edge-key.png

EDGE PARTITIONING AND STORAGE AMPLIFICATION

In NebulaGraph, an edge corresponds to two key-value pairs on the hard disk. When there are lots of edges and each has many

properties, storage amplification will be obvious. The storage format of edges is shown in the figure below.

2.5.4 Storage Service

- 32/804 - 2023 Vesoft Inc.

https://www-cdn.nebula-graph.com.cn/nebula-blog/DataModel02.png
https://www-cdn.nebula-graph.com.cn/nebula-blog/DataModel02.png
https://docs-cdn.nebula-graph.com.cn/figures/edge-division.png
https://docs-cdn.nebula-graph.com.cn/figures/edge-division.png

In this example, SrcVertex connects DstVertex via EdgeA, forming the path of (SrcVertex)-[EdgeA]->(DstVertex) . SrcVertex, DstVertex,

and EdgeA will all be stored in Partition x and Partition y as four key-value pairs in the storage layer. Details are as follows:

The key value of SrcVertex is stored in Partition x. Key fields include Type, PartID(x), VID(Src), and TagID. SerializedValue,

namely Value, refers to serialized vertex properties.

The first key value of EdgeA, namely EdgeA_Out, is stored in the same partition as the SrcVertex. Key fields include Type,

PartID(x), VID(Src), EdgeType(+ means out-edge), Rank(0), VID(Dst), and PlaceHolder. SerializedValue, namely Value, refers

to serialized edge properties.

The key value of DstVertex is stored in Partition y. Key fields include Type, PartID(y), VID(Dst), and TagID. SerializedValue,

namely Value, refers to serialized vertex properties.

The second key value of EdgeA, namely EdgeA_In, is stored in the same partition as the DstVertex. Key fields include Type,

PartID(y), VID(Dst), EdgeType(- means in-edge), Rank(0), VID(Src), and PlaceHolder. SerializedValue, namely Value, refers to

serialized edge properties, which is exactly the same as that in EdgeA_Out.

EdgeA_Out and EdgeA_In are stored in storage layer with opposite directions, constituting EdgeA logically. EdgeA_Out is used

for traversal requests starting from SrcVertex, such as (a)-[]->() ; EdgeA_In is used for traversal requests starting from

DstVertex, such as ()-[]->(a) .

Like EdgeA_Out and EdgeA_In, NebulaGraph redundantly stores the information of each edge, which doubles the actual

capacities needed for edge storage. The key corresponding to the edge occupies a small hard disk space, but the space occupied

by Value is proportional to the length and amount of the property value. Therefore, it will occupy a relatively large hard disk

space if the property value of the edge is large or there are many edge property values.

PARTITION ALGORITHM

NebulaGraph uses a static Hash strategy to shard data through a modulo operation on vertex ID. All the out-keys, in-keys, and

tag data will be placed in the same partition. In this way, query efficiency is increased dramatically.

The number of partitions needs to be determined when users are creating a graph space since it cannot be changed afterward. Users

are supposed to take into consideration the demands of future business when setting it.

When inserting into NebulaGraph, vertices and edges are distributed across different partitions. And the partitions are located

on different machines. The number of partitions is set in the CREATE SPACE statement and cannot be changed afterward.

If certain vertices need to be placed on the same partition (i.e., on the same machine), see Formula/code.

The following code will briefly describe the relationship between VID and partition.

Roughly speaking, after hashing a fixed string to int64, (the hashing of int64 is the number itself), do modulo, and then plus one,

namely:

•

•

•

•

Note

// If VertexID occupies 8 bytes, it will be stored in int64 to be compatible with the version 1.0.

uint64_t vid = 0;

if (id.size() == 8) {

 memcpy(static_cast<void*>(&vid), id.data(), 8);

} else {

 MurmurHash2 hash;

 vid = hash(id.data());

}

PartitionID pId = vid % numParts + 1;

pId = vid % numParts + 1;

2.5.4 Storage Service

- 33/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/clients/meta/MetaClient.cpp

Parameters and descriptions of the preceding formula are as follows:

Suppose there are 100 partitions, the vertices with VID 1, 101, and 1001 will be stored on the same partition. But, the mapping

between the partition ID and the machine address is random. Therefore, we cannot assume that any two partitions are located on

the same machine.

Raft

RAFT IMPLEMENTATION

In a distributed system, one data usually has multiple replicas so that the system can still run normally even if a few copies fail. It

requires certain technical means to ensure consistency between replicas.

Basic principle: Raft is designed to ensure consistency between replicas. Raft uses election between replicas, and the (candidate)

replica that wins more than half of the votes will become the Leader, providing external services on behalf of all replicas. The

rest Followers will play backups. When the Leader fails (due to communication failure, operation and maintenance commands,

etc.), the rest Followers will conduct a new round of elections and vote for a new Leader. The Leader and Followers will detect

each other's survival through heartbeats and write them to the hard disk in Raft-wal mode. Replicas that do not respond to more

than multiple heartbeats will be considered faulty.

Raft-wal needs to be written into the hard disk periodically. If hard disk bottlenecks to write, Raft will fail to send a heartbeat and

conduct a new round of elections. If the hard disk IO is severely blocked, there will be no Leader for a long time.

Read and write: For every writing request of the clients, the Leader will initiate a Raft-wal and synchronize it with the Followers.

Only after over half replicas have received the Raft-wal will it return to the clients successfully. For every reading request of the

clients, it will get to the Leader directly, while Followers will not be involved.

Failure: Scenario 1: Take a (space) cluster of a single replica as an example. If the system has only one replica, the Leader will be

itself. If failure happens, the system will be completely unavailable. Scenario 2: Take a (space) cluster of three replicas as an

example. If the system has three replicas, one of them will be the Leader and the rest will be the Followers. If the Leader fails,

the rest two can still vote for a new Leader (and a Follower), and the system is still available. But if any of the two Followers fails

again, the system will be completely unavailable due to inadequate voters.

Raft and HDFS have different modes of duplication. Raft is based on a quorum vote, so the number of replicas cannot be even.

MULTI GROUP RAFT

The Storage Service supports a distributed cluster architecture, so NebulaGraph implements Multi Group Raft according to Raft

protocol. Each Raft group stores all the replicas of each partition. One replica is the leader, while others are followers. In this

way, NebulaGraph achieves strong consistency and high availability. The functions of Raft are as follows.

NebulaGraph uses Multi Group Raft to improve performance when there are many partitions because Raft-wal cannot be NULL.

When there are too many partitions, costs will increase, such as storing information in Raft group, WAL files, or batch operation

in low load.

Parameter Description

% The modulo operation.

numParts The number of partitions for the graph space where the VID is located, namely the value of partition_num in

the CREATE SPACE statement.

pId The ID for the partition where the VID is located.

Note

Note

2.5.4 Storage Service

- 34/804 - 2023 Vesoft Inc.

There are two key points to implement the Multi Raft Group:

To share transport layer

Each Raft Group sends messages to its corresponding peers. So if the transport layer cannot be shared, the connection costs

will be very high.

To share thread pool

Raft Groups share the same thread pool to prevent starting too many threads and a high context switch cost.

BATCH

For each partition, it is necessary to do a batch to improve throughput when writing the WAL serially. As NebulaGraph uses WAL

to implement some special functions, batches need to be grouped, which is a feature of NebulaGraph.

For example, lock-free CAS operations will execute after all the previous WALs are committed. So for a batch, if there are several

WALs in CAS type, we need to divide this batch into several smaller groups and make sure they are committed serially.

TRANSFER LEADERSHIP

Transfer leadership is extremely important for balance. When moving a partition from one machine to another, NebulaGraph first

checks if the source is a leader. If so, it should be moved to another peer. After data migration is completed, it is important to

balance leader distribution again.

When a transfer leadership command is committed, the leader will abandon its leadership and the followers will start a leader

election.

PEER CHANGES

To avoid split-brain, when members in a Raft Group change, an intermediate state is required. In such a state, the quorum of the

old group and new group always have an overlap. Thus it prevents the old or new group from making decisions unilaterally. To

make it even simpler, in his doctoral thesis Diego Ongaro suggests adding or removing a peer once to ensure the overlap

between the quorum of the new group and the old group. NebulaGraph also uses this approach, except that the way to add or

remove a member is different. For details, please refer to addPeer/removePeer in the Raft Part class.

Differences with HDFS

The Storage Service is a Raft-based distributed architecture, which has certain differences with that of HDFS. For example:

The Storage Service ensures consistency through Raft. Usually, the number of its replicas is odd to elect a leader. However,

DataNode used by HDFS ensures consistency through NameNode, which has no limit on the number of replicas.

In the Storage Service, only the replicas of the leader can read and write, while in HDFS all the replicas can do so.

In the Storage Service, the number of replicas needs to be determined when creating a space, since it cannot be changed

afterward. But in HDFS, the number of replicas can be changed freely.

The Storage Service can access the file system directly. While the applications of HDFS (such as HBase) have to access HDFS

before the file system, which requires more RPC times.

In a word, the Storage Service is more lightweight with some functions simplified and its architecture is simpler than HDFS,

which can effectively improve the read and write performance of a smaller block of data.

•

•

•

•

•

•

Last update: November 3, 2023

2.5.4 Storage Service

- 35/804 - 2023 Vesoft Inc.

2.5.4 Storage Service

- 36/804 - 2023 Vesoft Inc.

3. Quick start

3. Quick start

- 37/804 - 2023 Vesoft Inc.

3.1 Quickly deploy NebulaGraph using Docker

You can quickly get started with NebulaGraph by deploying NebulaGraph with Docker Desktop or Docker Compose.

3.1 Quickly deploy NebulaGraph using Docker

- 38/804 - 2023 Vesoft Inc.

NebulaGraph is available as a Docker Extension that you can easily install and run on your Docker Desktop. You can quickly

deploy NebulaGraph using Docker Desktop with just one click.

Install Docker Desktop.

We do not recommend you deploy NebulaGraph on Docker Desktop for Windows due to its subpar performance. For details, see

#12401. If you must use Docker Desktop for Windows, install WSL 2 first.

In the left sidebar of Docker Desktop, click Extensions or Add Extensions.

On the Extensions Marketplace, search for NebulaGraph and click Install.

Click Update to update NebulaGraph to the latest version when a new version is available.

Click Open to navigate to the NebulaGraph extension page.

At the top of the page, click Studio in Browser to use NebulaGraph.

For more information about how to use NebulaGraph with Docker Desktop, see the following video:

Using Docker Compose can quickly deploy NebulaGraph services based on the prepared configuration file. It is only

recommended to use this method when testing the functions of NebulaGraph.

3.1.1 Prerequisites

You have installed the following applications on your host.

If you are deploying NebulaGraph as a non-root user, grant the user with Docker-related privileges. For detailed instructions, see

Manage Docker as a non-root user.

You have started the Docker service on your host.

If you have already deployed another version of NebulaGraph with Docker Compose on your host, to avoid compatibility issues,

you need to delete the nebula-docker-compose/data directory.

3.1.2 Deploy NebulaGraph

Clone the 3.6.0 branch of the nebula-docker-compose repository to your host with Git.

The master branch contains the untested code for the latest NebulaGraph development release. DO NOT use this release in a

production environment.

The x.y version of Docker Compose aligns to the x.y version of NebulaGraph. For the NebulaGraph z version, Docker Compose does

not publish the corresponding z version, but pulls the z version of the NebulaGraph image.

Go to the nebula-docker-compose directory.

Run the following command to start all the NebulaGraph services.

Update the NebulaGraph images and NebulaGraph Console images first if they are out of date.

The return result after executing the command varies depending on the installation directory.

Starting from NebulaGraph version 3.1.0, nebula-docker-compose automatically starts a NebulaGraph Console docker container and

adds the storage host to the cluster (i.e. ADD HOSTS command).

For more information of the preceding services, see NebulaGraph architecture.

3.1.3 Connect to NebulaGraph

There are two ways to connect to NebulaGraph:

Connected with Nebula Console outside the container. Because the external mapping port for the Graph service is also fixed as

9669 in the container's configuration file, you can connect directly through the default port. For details, see Connect to

NebulaGraph.

Log into the container installed NebulaGraph Console, then connect to the Graph service. This section describes this approach.

Run the following command to view the name of NebulaGraph Console docker container.

Run the following command to enter the NebulaGraph Console docker container.

Connect to NebulaGraph with NebulaGraph Console.

By default, the authentication is off, you can only log in with an existing username (the default is root) and any password. To turn it

on, see Enable authentication.

Run the following commands to view the cluster state.

Run exit twice to switch back to your terminal (shell).

3.1.4 Check the NebulaGraph service status and ports

Run docker-compose ps to list all the services of NebulaGraph and their status and ports.

NebulaGraph provides services to the clients through port 9669 by default. To use other ports, modify the docker-compose.yaml file in the

nebula-docker-compose directory and restart the NebulaGraph services.

If the service is abnormal, you can first confirm the abnormal container name (such as nebula-docker-compose_graphd2_1).

Then you can execute docker ps to view the corresponding CONTAINER ID (such as 2a6c56c405f5).

Use the CONTAINER ID to log in the container and troubleshoot.

3.1.5 Check the service data and logs

All the data and logs of NebulaGraph are stored persistently in the nebula-docker-compose/data and nebula-docker-compose/logs directories.

The structure of the directories is as follows:

3.1.6 Stop the NebulaGraph services

You can run the following command to stop the NebulaGraph services:

The following information indicates you have successfully stopped the NebulaGraph services:

The parameter -v in the command docker-compose down -v will delete all your local NebulaGraph storage data. Try this command if you

are using the nightly release and having some compatibility issues.

3.1.7 Modify configurations

The configuration file of NebulaGraph deployed by Docker Compose is nebula-docker-compose/docker-compose.yaml . To make the new

configuration take effect, modify the configuration in this file and restart the service.

For more instructions, see Configurations.

3.1.8 FAQ

How to fix the docker mapping to external ports?

To set the ports of corresponding services as fixed mapping, modify the docker-compose.yaml in the nebula-docker-compose directory. For

example:

9669:9669 indicates the internal port 9669 is uniformly mapped to external ports, while 19669 indicates the internal port 19669 is

randomly mapped to external ports.

How to upgrade or update the docker images of NebulaGraph services

In the nebula-docker-compose/docker-compose.yaml file, change all the image values to the required image version.

In the nebula-docker-compose directory, run docker-compose pull to update the images of the Graph Service, Storage Service, Meta

Service, and NebulaGraph Console.

Run docker-compose up -d to start the NebulaGraph services again.

After connecting to NebulaGraph with NebulaGraph Console, run SHOW HOSTS GRAPH , SHOW HOSTS STORAGE , or SHOW HOSTS META to check the

version of the responding service respectively.

ERROR: toomanyrequests when docker-compose pull

You may meet the following error.

ERROR: toomanyrequests: You have reached your pull rate limit. You may increase the limit by authenticating and upgrading: https://www.docker.com/increase-

rate-limit .

You have met the rate limit of Docker Hub. Learn more on Understanding Docker Hub Rate Limiting.

How to update the NebulaGraph Console client

The command docker-compose pull updates both the NebulaGraph services and the NebulaGraph Console.

Using Docker Desktop Using Docker Compose

1.

Caution

2.

3.

4.

5.

•

Application Recommended version Official installation reference

Docker Latest Install Docker Engine

Docker Compose Latest Install Docker Compose

Git Latest Download Git

•

•

•

1.

Danger

$ git clone -b release-3.6 https://github.com/vesoft-inc/nebula-docker-compose.git

Note

2.

$ cd nebula-docker-compose/

3.

Note

•

•

[nebula-docker-compose]$ docker-compose up -d

Creating nebula-docker-compose_metad0_1 ... done

Creating nebula-docker-compose_metad2_1 ... done

Creating nebula-docker-compose_metad1_1 ... done

Creating nebula-docker-compose_graphd2_1 ... done

Creating nebula-docker-compose_graphd_1 ... done

Creating nebula-docker-compose_graphd1_1 ... done

Creating nebula-docker-compose_storaged0_1 ... done

Creating nebula-docker-compose_storaged2_1 ... done

Creating nebula-docker-compose_storaged1_1 ... done

Compatibility

Note

•

•

1.

$ docker-compose ps

 Name Command State Ports

--

nebula-docker-compose_console_1 sh -c sleep 3 && Up

 nebula-co ...

......

2.

docker exec -it nebula-docker-compose_console_1 /bin/sh

/ #

3.

/ # ./usr/local/bin/nebula-console -u <user_name> -p <password> --address=graphd --port=9669

Note

4.

nebula> SHOW HOSTS;

+-------------+------+----------+--------------+----------------------+------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+----------+--------------+----------------------+------------------------+---------+

| "storaged0" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

+-------------+------+----------+--------------+----------------------+------------------------+---------+

Note

$ docker-compose ps

nebula-docker-compose_console_1 sh -c sleep 3 && Up

 nebula-co ...

nebula-docker-compose_graphd1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49174->19669/tcp,:::49174->19669/tcp, 0.0.0.0:49171->19670/tcp,:::49171->19670/tcp, 0.0.0.0:49177->9669/

tcp,:::49177->9669/tcp

nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49175->19669/tcp,:::49175->19669/tcp, 0.0.0.0:49172->19670/tcp,:::49172->19670/tcp, 0.0.0.0:49178->9669/

tcp,:::49178->9669/tcp

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49180->19669/tcp,:::49180->19669/tcp, 0.0.0.0:49179->19670/tcp,:::49179->19670/tcp, 0.0.0.0:9669->9669/

tcp,:::9669->9669/tcp

nebula-docker-compose_metad0_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49157->19559/tcp,:::49157->19559/tcp, 0.0.0.0:49154->19560/tcp,:::49154->19560/tcp, 0.0.0.0:49160->9559/

tcp,:::49160->9559/tcp, 9560/tcp

nebula-docker-compose_metad1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49156->19559/tcp,:::49156->19559/tcp, 0.0.0.0:49153->19560/tcp,:::49153->19560/tcp, 0.0.0.0:49159->9559/

tcp,:::49159->9559/tcp, 9560/tcp

nebula-docker-compose_metad2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49158->19559/tcp,:::49158->19559/tcp, 0.0.0.0:49155->19560/tcp,:::49155->19560/tcp, 0.0.0.0:49161->9559/

tcp,:::49161->9559/tcp, 9560/tcp

nebula-docker-compose_storaged0_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49166->19779/tcp,:::49166->19779/tcp, 0.0.0.0:49163->19780/tcp,:::49163->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49169->9779/tcp,:::49169->9779/tcp, 9780/tcp

nebula-docker-compose_storaged1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49165->19779/tcp,:::49165->19779/tcp, 0.0.0.0:49162->19780/tcp,:::49162->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49168->9779/tcp,:::49168->9779/tcp, 9780/tcp

nebula-docker-compose_storaged2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49167->19779/tcp,:::49167->19779/tcp, 0.0.0.0:49164->19780/tcp,:::49164->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49170->9779/tcp,:::49170->9779/tcp, 9780/tcp

[nebula-docker-compose]$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

2a6c56c405f5 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49230->9669/tcp, 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/

tcp nebula-docker-compose_graphd2_1

7042e0a8e83d vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49227->9779/tcp, 0.0.0.0:49226->19779/

tcp, 0.0.0.0:49225->19780/tcp nebula-docker-compose_storaged2_1

18e3ea63ad65 vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49219->9779/tcp, 0.0.0.0:49218->19779/

tcp, 0.0.0.0:49217->19780/tcp nebula-docker-compose_storaged0_1

4dcabfe8677a vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49224->9669/tcp, 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/

tcp nebula-docker-compose_graphd1_1

a74054c6ae25 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:9669->9669/tcp, 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/

tcp nebula-docker-compose_graphd_1

880025a3858c vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49216->9779/tcp, 0.0.0.0:49215->19779/

tcp, 0.0.0.0:49214->19780/tcp nebula-docker-compose_storaged1_1

45736a32a23a vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49213->9559/tcp, 0.0.0.0:49212->19559/tcp, 0.

0.0.0:49211->19560/tcp nebula-docker-compose_metad0_1

3b2c90eb073e vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49207->9559/tcp, 0.0.0.0:49206->19559/tcp, 0.

0.0.0:49205->19560/tcp nebula-docker-compose_metad2_1

7bb31b7a5b3f vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49210->9559/tcp, 0.0.0.0:49209->19559/tcp, 0.

0.0.0:49208->19560/tcp nebula-docker-compose_metad1_1

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash

[root@2a6c56c405f5 nebula]#

nebula-docker-compose/

 |-- docker-compose.yaml

 ├── data

 │ ├── meta0

 │ ├── meta1

 │ ├── meta2

 │ ├── storage0

 │ ├── storage1

 │ └── storage2

 └── logs

 ├── graph

 ├── graph1

 ├── graph2

 ├── meta0

 ├── meta1

 ├── meta2

 ├── storage0

 ├── storage1

 └── storage2

$ docker-compose down

Stopping nebula-docker-compose_console_1 ... done

Stopping nebula-docker-compose_graphd1_1 ... done

Stopping nebula-docker-compose_graphd_1 ... done

Stopping nebula-docker-compose_graphd2_1 ... done

Stopping nebula-docker-compose_storaged1_1 ... done

Stopping nebula-docker-compose_storaged0_1 ... done

Stopping nebula-docker-compose_storaged2_1 ... done

Stopping nebula-docker-compose_metad2_1 ... done

Stopping nebula-docker-compose_metad0_1 ... done

Stopping nebula-docker-compose_metad1_1 ... done

Removing nebula-docker-compose_console_1 ... done

Removing nebula-docker-compose_graphd1_1 ... done

Removing nebula-docker-compose_graphd_1 ... done

Removing nebula-docker-compose_graphd2_1 ... done

Removing nebula-docker-compose_storaged1_1 ... done

Removing nebula-docker-compose_storaged0_1 ... done

Removing nebula-docker-compose_storaged2_1 ... done

Removing nebula-docker-compose_metad2_1 ... done

Removing nebula-docker-compose_metad0_1 ... done

Removing nebula-docker-compose_metad1_1 ... done

Removing network nebula-docker-compose_nebula-net

Danger

graphd:

 image: vesoft/nebula-graphd:release-3.6

 ...

 ports:

 - 9669:9669

 - 19669

 - 19670

1.

2.

3.

4.

3.1.1 Prerequisites

- 39/804 - 2023 Vesoft Inc.

https://hub.docker.com/extensions/weygu/nebulagraph-dd-ext
https://www.docker.com/products/docker-desktop/
https://github.com/docker/for-win/issues/12401
https://docs.docker.com/desktop/install/windows-install/#system-requirements
https://docs-cdn.nebula-graph.com.cn/figures/docker.png
https://docs-cdn.nebula-graph.com.cn/figures/docker.png
https://docs-cdn.nebula-graph.com.cn/figures/docker-update.png
https://docs-cdn.nebula-graph.com.cn/figures/docker-update.png
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://git-scm.com/download/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://www.docker.com/increase-rate-limit

Last update: March 26, 2024

3.1.8 FAQ

- 40/804 - 2023 Vesoft Inc.

3.2 Deploy NebulaGraph on-premise

3.2.1 Step 1: Install NebulaGraph

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install NebulaGraph with the

RPM or DEB package.

The console is not complied or packaged with NebulaGraph server binaries. You can install nebula-console by yourself.

Prerequisites

The tool wget is installed.

Note

•

3.2 Deploy NebulaGraph on-premise

- 41/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console

Step 1: Download the package from cloud service

NebulaGraph is currently only supported for installation on Linux systems, and only CentOS 7.x, CentOS 8.x, Ubuntu 16.04, Ubuntu

18.04, and Ubuntu 20.04 operating systems are supported.

Download the released version.

URL:

For example, download the release package 3.6.0 for Centos 7.5 :

Download the release package 3.6.0 for Ubuntu 1804 :

Download the nightly version.

Nightly versions are usually used to test new features. Do not use it in a production environment.

Nightly versions may not be built successfully every night. And the names may change from day to day.

URL:

For example, download the Centos 7.5 package developed and built in 2021.11.28 :

For example, download the Ubuntu 1804 package developed and built in 2021.11.28 :

Note

•

//Centos 7

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.ubuntu1804.amd64.deb.sha256sum.txt

•

Danger

•

•

//Centos 7

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

3.2.1 Step 1: Install NebulaGraph

- 42/804 - 2023 Vesoft Inc.

Step 2: Install NebulaGraph

Use the following syntax to install with an RPM package.

The option --prefix indicates the installation path. The default path is /usr/local/nebula/ .

For example, to install an RPM package in the default path for the 3.6.0 version, run the following command.

Use the following syntax to install with a DEB package.

Customizing the installation path is not supported when installing NebulaGraph with a DEB package. The default installation path

is /usr/local/nebula/ .

For example, to install a DEB package for the 3.6.0 version, run the following command.

The default installation path is /usr/local/nebula/ .

Next to do

Start NebulaGraph

Connect to NebulaGraph

•

$ sudo rpm -ivh --prefix=<installation_path> <package_name>

sudo rpm -ivh nebula-graph-3.6.0.el7.x86_64.rpm

•

$ sudo dpkg -i <package_name>

Note

sudo dpkg -i nebula-graph-3.6.0.ubuntu1804.amd64.deb

Note

•

•

Last update: October 25, 2023

3.2.1 Step 1: Install NebulaGraph

- 43/804 - 2023 Vesoft Inc.

https://docs.nebula-graph.io/3.6.0/2.quick-start/5.start-stop-service/
https://docs.nebula-graph.io/3.6.0/2.quick-start/3.connect-to-nebula-graph/

3.2.2 Step 2: Manage NebulaGraph Service

NebulaGraph supports managing services with scripts.

Manage services with script

You can use the nebula.service script to start, stop, restart, terminate, and check the NebulaGraph services.

nebula.service is stored in the /usr/local/nebula/scripts directory by default. If you have customized the path, use the actual path in your

environment.

SYNTAX

Start NebulaGraph

Run the following command to start NebulaGraph.

Stop NebulaGraph

Do not run kill -9 to forcibly terminate the processes. Otherwise, there is a low probability of data loss.

Note

$ sudo /usr/local/nebula/scripts/nebula.service

[-v] [-c <config_file_path>]

<start | stop | restart | kill | status>

<metad | graphd | storaged | all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the NebulaGraph services as the target services.

$ sudo /usr/local/nebula/scripts/nebula.service start all

[INFO] Starting nebula-metad...

[INFO] Done

[INFO] Starting nebula-graphd...

[INFO] Done

[INFO] Starting nebula-storaged...

[INFO] Done

Danger

3.2.2 Step 2: Manage NebulaGraph Service

- 44/804 - 2023 Vesoft Inc.

Run the following command to stop NebulaGraph.

Check the service status

Run the following command to check the service status of NebulaGraph.

NebulaGraph is running normally if the following information is returned.

After starting NebulaGraph, the port of the nebula-storaged process is shown in red. Because the nebula-storaged process waits for the

nebula-metad to add the current Storage service during the startup process. The Storage works after it receives the ready signal.

Starting from NebulaGraph 3.0.0, the Meta service cannot directly read or write data in the Storage service that you add in the

configuration file. The configuration file only registers the Storage service to the Meta service. You must run the ADD HOSTS

command to enable the Meta to read and write data in the Storage service. For more information, see Manage Storage hosts.

If the returned result is similar to the following one, there is a problem. You may also go to the NebulaGraph community for

help.

The NebulaGraph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the

returned result to troubleshoot problems.

Next to do

Connect to NebulaGraph

$ sudo /usr/local/nebula/scripts/nebula.service stop all

[INFO] Stopping nebula-metad...

[INFO] Done

[INFO] Stopping nebula-graphd...

[INFO] Done

[INFO] Stopping nebula-storaged...

[INFO] Done

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

INFO] nebula-metad(33fd35e): Running as 29020, Listening on 9559

[INFO] nebula-graphd(33fd35e): Running as 29095, Listening on 9669

[WARN] nebula-storaged after v3.0.0 will not start service until it is added to cluster.

[WARN] See Manage Storage hosts:ADD HOSTS in https://docs.nebula-graph.io/

[INFO] nebula-storaged(33fd35e): Running as 29147, Listening on 9779

Note

•

[INFO] nebula-metad: Running as 25600, Listening on 9559

[INFO] nebula-graphd: Exited

[INFO] nebula-storaged: Running as 25646, Listening on 9779

Last update: October 25, 2023

3.2.2 Step 2: Manage NebulaGraph Service

- 45/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions
https://docs.nebula-graph.io/3.6.0/2.quick-start/3.connect-to-nebula-graph/

3.2.3 Step 3: Connect to NebulaGraph

This topic provides basic instruction on how to use the native CLI client NebulaGraph Console to connect to NebulaGraph.

When connecting to NebulaGraph for the first time, you must register the Storage Service before querying data.

NebulaGraph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. For more information, see the client list.

Prerequisites

You have started NebulaGraph services.

The machine on which you plan to run NebulaGraph Console has network access to the Graph Service of NebulaGraph.

The NebulaGraph Console version is compatible with the NebulaGraph version.

NebulaGraph Console and NebulaGraph of the same version number are the most compatible. There may be compatibility issues

when connecting to NebulaGraph with a different version of NebulaGraph Console. The error message incompatible version between

client and server is displayed when there is such an issue.

STEPS

On the NebulaGraph Console releases page, select a NebulaGraph Console version and click Assets.

It is recommended to select the latest version.

In the Assets area, find the correct binary file for the machine where you want to run NebulaGraph Console and download the file

to the machine.

(Optional) Rename the binary file to nebula-console for convenience.

For Windows, rename the file to nebula-console.exe .

On the machine to run NebulaGraph Console, grant the execute permission of the nebula-console binary file to the user.

For Windows, skip this step.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Caution

•

•

•

Note

1.

Note

2.

3.

Note

4.

Note

$ chmod 111 nebula-console

5.

3.2.3 Step 3: Connect to NebulaGraph

- 46/804 - 2023 Vesoft Inc.

https://docs.nebula-graph.io/3.6.0/4.deployment-and-installation/manage-service/
https://github.com/vesoft-inc/nebula-console/releases

Run the following command to connect to NebulaGraph.

For Linux or macOS:

For Windows:

Parameter descriptions are as follows:

For information on more parameters, see the project repository.

6.

•

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

•

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

Parameter Description

-h/-help Shows the help menu.

-addr/-address Sets the IP (or hostname) of the Graph service. The default address is 127.0.0.1.

-P/-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your NebulaGraph account. Before enabling authentication, you can use any existing

username. The default username is root .

-p/-password Sets the password of your NebulaGraph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is millisecond. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

The result will be returned and the connection stops then.

-enable_ssl Enables SSL encryption when connecting to NebulaGraph.

-ssl_root_ca_path Sets the storage path of the certification authority file.

-ssl_cert_path Sets the storage path of the certificate file.

-

ssl_private_key_path

Sets the storage path of the private key file.

Last update: October 25, 2023

3.2.3 Step 3: Connect to NebulaGraph

- 47/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/release-3.6

3.2.4 Register the Storage Service

When connecting to NebulaGraph for the first time, you have to add the Storage hosts, and confirm that all the hosts are online.

Starting from NebulaGraph 3.0.0, you have to run ADD HOSTS before reading or writing data into the Storage Service.

For NebulaGraph of versions earlier than 3.0.0 and NebulaGraph Cloud clusters, ADD HOSTS is not needed.

Prerequisites

You have connected to NebulaGraph.

Steps

Add the Storage hosts.

Run the following command to add hosts:

Example：

Make sure that the IP you added is the same as the IP configured for local_ip in the nebula-storaged.conf file. Otherwise, the Storage

service will fail to start. For information about configurations, see Configurations.

Check the status of the hosts to make sure that they are all online.

The Status column of the result above shows that all Storage hosts are online.

Compatibility

•

•

1.

ADD HOSTS <ip>:<port> [,<ip>:<port> ...];

nebula> ADD HOSTS 192.168.10.100:9779, 192.168.10.101:9779, 192.168.10.102:9779;

Caution

2.

nebula> SHOW HOSTS;

+------------------+------+----------+--------------+---------------------- +------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+------------------+------+----------+--------------+---------------------- +------------------------+---------+

| "192.168.10.100" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "192.168.10.101" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0"|

| "192.168.10.102" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0"|

+------------------+------+----------+--------------+---------------------- +------------------------+---------+

Last update: October 25, 2023

3.2.4 Register the Storage Service

- 48/804 - 2023 Vesoft Inc.

3.2.5 Step 4: Use nGQL (CRUD)

This topic will describe the basic CRUD operations in NebulaGraph.

For more information, see nGQL guide.

Graph space and NebulaGraph schema

A NebulaGraph instance consists of one or more graph spaces. Graph spaces are physically isolated from each other. You can use

different graph spaces in the same instance to store different datasets.

To insert data into a graph space, define a schema for the graph database. NebulaGraph schema is based on the following

components.

For more information, see Data modeling.

In this topic, we will use the following dataset to demonstrate basic CRUD operations.

Schema

component

Description

Vertex Represents an entity in the real world. A vertex can have zero to multiple tags.

Tag The type of the same group of vertices. It defines a set of properties that describes the types of

vertices.

Edge Represents a directed relationship between two vertices.

Edge type The type of an edge. It defines a group of properties that describes the types of edges.

3.2.5 Step 4: Use nGQL (CRUD)

- 49/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/2.quick-start/nebula-graph-instance-and-graph-spaces.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/2.quick-start/nebula-graph-instance-and-graph-spaces.png

3.2.5 Step 4: Use nGQL (CRUD)

- 50/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/dataset-for-crud.png
https://docs-cdn.nebula-graph.com.cn/figures/dataset-for-crud.png

ASYNC IMPLEMENTATION OF CREATE AND ALTER

In NebulaGraph, the following CREATE or ALTER commands are implemented in an async way and take effect in the next heartbeat

cycle. Otherwise, an error will be returned. To make sure the follow-up operations work as expected, Wait for two heartbeat cycles,

i.e., 20 seconds.

CREATE SPACE

CREATE TAG

CREATE EDGE

ALTER TAG

ALTER EDGE

CREATE TAG INDEX

CREATE EDGE INDEX

The default heartbeat interval is 10 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the

configuration files for all services.

Create and use a graph space

NGQL SYNTAX

Create a graph space:

For more information on parameters, see CREATE SPACE.

List graph spaces and check if the creation is successful:

Use a graph space:

EXAMPLES

Use the following statement to create a graph space named basketballplayer .

If the system returns the error [ERROR (-1005)]: Host not enough! , check whether registered the Storage Service.

Check the partition distribution with SHOW HOSTS to make sure that the partitions are distributed in a balanced way.

Caution

•

•

•

•

•

•

•

Note

•

CREATE SPACE [IF NOT EXISTS] <graph_space_name> (

[partition_num = <partition_number>,]

[replica_factor = <replica_number>,]

vid_type = {FIXED_STRING(<N>) | INT64}

)

[COMMENT = '<comment>'];

•

nebula> SHOW SPACES;

•

USE <graph_space_name>;

1.

nebula> CREATE SPACE basketballplayer(partition_num=15, replica_factor=1, vid_type=fixed_string(30));

Note

2.

3.2.5 Step 4: Use nGQL (CRUD)

- 51/804 - 2023 Vesoft Inc.

If the Leader distribution is uneven, use BALANCE LEADER to redistribute the partitions. For more information, see BALANCE.

Use the basketballplayer graph space.

You can use SHOW SPACES to check the graph space you created.

Create tags and edge types

NGQL SYNTAX

For more information on parameters, see CREATE TAG and CREATE EDGE.

EXAMPLES

Create tags player and team , and edge types follow and serve . Descriptions are as follows.

Insert vertices and edges

You can use the INSERT statement to insert vertices or edges based on existing tags or edge types.

NGQL SYNTAX

Insert vertices:

nebula> SHOW HOSTS;

+-------------+-----------+-----------+--------------+----------------------------------+------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+-----------+-----------+--------------+----------------------------------+------------------------+---------+

| "storaged0" | 9779 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" | "3.6.0"|

| "storaged1" | 9779 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" | "3.6.0"|

| "storaged2" | 9779 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" | "3.6.0"|

+-------------+-----------+-----------+-----------+--------------+----------------------------------+------------------------+---------+

3.

nebula[(none)]> USE basketballplayer;

nebula> SHOW SPACES;

+--------------------+

| Name |

+--------------------+

| "basketballplayer" |

+--------------------+

CREATE {TAG | EDGE} [IF NOT EXISTS] {<tag_name> | <edge_type_name>}

 (

 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']

 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]

)

 [TTL_DURATION = <ttl_duration>]

 [TTL_COL = <prop_name>]

 [COMMENT = '<comment>'];

Component name Type Property

player Tag name (string), age (int)

team Tag name (string)

follow Edge type degree (int)

serve Edge type start_year (int), end_year (int)

nebula> CREATE TAG player(name string, age int);

nebula> CREATE TAG team(name string);

nebula> CREATE EDGE follow(degree int);

nebula> CREATE EDGE serve(start_year int, end_year int);

•

INSERT VERTEX [IF NOT EXISTS] [tag_props, [tag_props] ...]

VALUES <vid>: ([prop_value_list])

tag_props:

 tag_name ([prop_name_list])

3.2.5 Step 4: Use nGQL (CRUD)

- 52/804 - 2023 Vesoft Inc.

vid is short for Vertex ID. A vid must be a unique string value in a graph space. For details, see INSERT VERTEX.

Insert edges:

For more information on parameters, see INSERT EDGE.

EXAMPLES

Insert vertices representing basketball players and teams:

Insert edges representing the relations between basketball players and teams:

Read data

The GO statement can traverse the database based on specific conditions. A GO traversal starts from one or more vertices,

along one or more edges, and returns information in a form specified in the YIELD clause.

The FETCH statement is used to get properties from vertices or edges.

The LOOKUP statement is based on indexes. It is used together with the WHERE clause to search for the data that meet the

specific conditions.

The MATCH statement is the most commonly used statement for graph data querying. It can describe all kinds of graph

patterns, but it relies on indexes to match data patterns in NebulaGraph. Therefore, its performance still needs optimization.

NGQL SYNTAX

GO

prop_name_list:

 [prop_name [, prop_name] ...]

prop_value_list:

 [prop_value [, prop_value] ...]

•

INSERT EDGE [IF NOT EXISTS] <edge_type> (<prop_name_list>) VALUES

<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)

[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>), ...];

<prop_name_list> ::=

[<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=

[<prop_value> [, <prop_value>] ...]

•

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

nebula> INSERT VERTEX team(name) VALUES "team203":("Trail Blazers"), "team204":("Spurs");

•

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player102":(90);

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player100":(75);

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player101" -> "team204":(1999, 2018),"player102" -> "team203":(2006, 2015);

•

•

•

•

•

GO [[<M> TO] <N> {STEP|STEPS}] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

YIELD [DISTINCT] <return_list>

[{ SAMPLE <sample_list> | <limit_by_list_clause> }]

[| GROUP BY {<col_name> | expression> | <position>} YIELD <col_name>]

3.2.5 Step 4: Use nGQL (CRUD)

- 53/804 - 2023 Vesoft Inc.

FETCH

Fetch properties on tags:

Fetch properties on edges:

LOOKUP

MATCH

EXAMPLES OF GO STATEMENT

Search for the players that the player with VID player101 follows.

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset>,] <number_rows>];

•

•

FETCH PROP ON {<tag_name>[, tag_name ...] | *}

<vid> [, vid ...]

YIELD <return_list> [AS <alias>];

•

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]

YIELD <output>;

•

LOOKUP ON {<vertex_tag> | <edge_type>}

[WHERE <expression> [AND <expression> ...]]

YIELD <return_list> [AS <alias>];

<return_list>

 <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...];

•

MATCH <pattern> [<clause_1>] RETURN <output> [<clause_2>];

•

nebula> GO FROM "player101" OVER follow YIELD id($$);

+-------------+

| id($$) |

+-------------+

| "player100" |

| "player102" |

3.2.5 Step 4: Use nGQL (CRUD)

- 54/804 - 2023 Vesoft Inc.

Filter the players that the player with VID player101 follows whose age is equal to or greater than 35. Rename the

corresponding columns in the results with Teammate and Age .

| Clause/Sign | Description | |-------------+---| | YIELD | Specifies what values or results

you want to return from the query. | | $$ | Represents the target vertices. | | \ | A line-breaker. |

Search for the players that the player with VID player101 follows. Then retrieve the teams of the players that the player with

VID player100 follows. To combine the two queries, use a pipe or a temporary variable.

With a pipe:

With a temporary variable:

Once a composite statement is submitted to the server as a whole, the life cycle of the temporary variables in the statement ends.

EXAMPLE OF FETCH STATEMENT

Use FETCH : Fetch the properties of the player with VID player100 .

| "player125" |

+-------------+

•

nebula> GO FROM "player101" OVER follow WHERE properties($$).age >= 35 \

 YIELD properties($$).name AS Teammate, properties($$).age AS Age;

+-----------------+-----+

| Teammate | Age |

+-----------------+-----+

| "Tim Duncan" | 42 |

| "Manu Ginobili" | 41 |

+-----------------+-----+

•

•

nebula> GO FROM "player101" OVER follow YIELD dst(edge) AS id | \

 GO FROM $-.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------------+---------------------+

| Team | Player |

+-----------------+---------------------+

| "Spurs" | "Tim Duncan" |

| "Trail Blazers" | "LaMarcus Aldridge" |

| "Spurs" | "LaMarcus Aldridge" |

| "Spurs" | "Manu Ginobili" |

+-----------------+---------------------+

Clause/Sign Description

$^ Represents the source vertex of the edge.

| A pipe symbol can combine multiple queries.

$- Represents the outputs of the query before the pipe symbol.

•

Note

nebula> $var = GO FROM "player101" OVER follow YIELD dst(edge) AS id; \

 GO FROM $var.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------------+---------------------+

| Team | Player |

+-----------------+---------------------+

| "Spurs" | "Tim Duncan" |

| "Trail Blazers" | "LaMarcus Aldridge" |

| "Spurs" | "LaMarcus Aldridge" |

| "Spurs" | "Manu Ginobili" |

+-----------------+---------------------+

nebula> FETCH PROP ON player "player100" YIELD properties(vertex);

+-------------------------------+

| properties(VERTEX) |

+-------------------------------+

| {age: 42, name: "Tim Duncan"} |

+-------------------------------+

3.2.5 Step 4: Use nGQL (CRUD)

- 55/804 - 2023 Vesoft Inc.

The examples of LOOKUP and MATCH statements are in indexes.

Update vertices and edges

Users can use the UPDATE or the UPSERT statements to update existing data.

UPSERT is the combination of UPDATE and INSERT . If you update a vertex or an edge with UPSERT , the database will insert a new vertex

or edge if it does not exist.

UPSERT operates serially in a partition-based order. Therefore, it is slower than INSERT OR UPDATE . And UPSERT has concurrency only

between multiple partitions.

NGQL SYNTAX

UPDATE vertices:

UPDATE edges:

UPSERT vertices or edges:

EXAMPLES

UPDATE the name property of the vertex with VID player100 and check the result with the FETCH statement.

Note

Note

•

UPDATE VERTEX <vid> SET <properties to be updated>

[WHEN <condition>] [YIELD <columns>];

•

UPDATE EDGE ON <edge_type> <source vid> -> <destination vid> [@rank]

SET <properties to be updated> [WHEN <condition>] [YIELD <columns to be output>];

•

UPSERT {VERTEX <vid> | EDGE <edge_type>} SET <update_columns>

[WHEN <condition>] [YIELD <columns>];

•

nebula> UPDATE VERTEX "player100" SET player.name = "Tim";

nebula> FETCH PROP ON player "player100" YIELD properties(vertex);

+------------------------+

| properties(VERTEX) |

+------------------------+

3.2.5 Step 4: Use nGQL (CRUD)

- 56/804 - 2023 Vesoft Inc.

UPDATE the degree property of an edge and check the result with the FETCH statement.

Insert a vertex with VID player111 and UPSERT it.

Delete vertices and edges

NGQL SYNTAX

Delete vertices:

Delete edges:

EXAMPLES

Delete vertices:

Delete edges:

About indexes

Users can add indexes to tags and edge types with the CREATE INDEX statement.

Both MATCH and LOOKUP statements depend on the indexes. But indexes can dramatically reduce the write performance. DO NOT use

indexes in production environments unless you are fully aware of their influences on your service.

Users MUST rebuild indexes for pre-existing data. Otherwise, the pre-existing data cannot be indexed and therefore cannot be

returned in MATCH or LOOKUP statements. For more information, see REBUILD INDEX.

| {age: 42, name: "Tim"} |

+------------------------+

•

nebula> UPDATE EDGE ON follow "player101" -> "player100" SET degree = 96;

nebula> FETCH PROP ON follow "player101" -> "player100" YIELD properties(edge);

+------------------+

| properties(EDGE) |

+------------------+

| {degree: 96} |

+------------------+

•

nebula> INSERT VERTEX player(name,age) VALUES "player111":("David West", 38);

nebula> UPSERT VERTEX "player111" SET player.name = "David", player.age = $^.player.age + 11 \

 WHEN $^.player.name == "David West" AND $^.player.age > 20 \

 YIELD $^.player.name AS Name, $^.player.age AS Age;

+---------+-----+

| Name | Age |

+---------+-----+

| "David" | 49 |

+---------+-----+

•

DELETE VERTEX <vid1>[, <vid2>...]

•

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>]

[, <src_vid> -> <dst_vid>...]

•

nebula> DELETE VERTEX "player111", "team203";

•

nebula> DELETE EDGE follow "player101" -> "team204";

Must-read for using indexes

3.2.5 Step 4: Use nGQL (CRUD)

- 57/804 - 2023 Vesoft Inc.

NGQL SYNTAX

Create an index:

Rebuild an index:

Define the index length when creating an index for a variable-length property. In UTF-8 encoding, a non-ascii character occupies 3

bytes. You should set an appropriate index length according to the variable-length property. For example, the index should be 30

bytes for 10 non-ascii characters. For more information, see CREATE INDEX

EXAMPLES OF LOOKUP AND MATCH (INDEX-BASED)

Make sure there is an index for LOOKUP or MATCH to use. If there is not, create an index first.

Find the information of the vertex with the tag player and its value of the name property is Tony Parker .

This example creates the index player_index_1 on the name property.

This example rebuilds the index to make sure it takes effect on pre-existing data.

This example uses the LOOKUP statement to retrieve the vertex property.

This example uses the MATCH statement to retrieve the vertex property.

•

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name>

ON {<tag_name> | <edge_name>} ([<prop_name_list>]) [COMMENT = '<comment>'];

•

REBUILD {TAG | EDGE} INDEX <index_name>;

Note

nebula> CREATE TAG INDEX IF NOT EXISTS player_index_1 ON player(name(20));

nebula> REBUILD TAG INDEX player_index_1

+------------+

| New Job Id |

+------------+

| 31 |

+------------+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \

 YIELD properties(vertex).name AS name, properties(vertex).age AS age;

+---------------+-----+

| name | age |

+---------------+-----+

| "Tony Parker" | 36 |

+---------------+-----+

nebula> MATCH (v:player{name:"Tony Parker"}) RETURN v;

+---+

| v |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

+---+

Last update: November 3, 2023

3.2.5 Step 4: Use nGQL (CRUD)

- 58/804 - 2023 Vesoft Inc.

3.3 nGQL cheatsheet

3.3.1 Functions

3.3 nGQL cheatsheet

- 59/804 - 2023 Vesoft Inc.

Math functions
•

3.3.1 Functions

- 60/804 - 2023 Vesoft Inc.

Function Description

double abs(double x) Returns the absolute value of the argument.

double floor(double x) Returns the largest integer value smaller than or equal to the argument. (Rounds down)

double ceil(double x) Returns the smallest integer greater than or equal to the argument. (Rounds up)

double round(double x) Returns the integer value nearest to the argument. Returns a number farther away from 0

if the argument is in the middle.

double sqrt(double x) Returns the square root of the argument.

double cbrt(double x) Returns the cubic root of the argument.

double hypot(double x,

double y)

Returns the hypotenuse of a right-angled triangle.

double pow(double x,

double y)

Returns the result of x
y
.

double exp(double x) Returns the result of e
x
.

double exp2(double x) Returns the result of 2
x
.

double log(double x) Returns the base-e logarithm of the argument.

double log2(double x) Returns the base-2 logarithm of the argument.

double log10(double x) Returns the base-10 logarithm of the argument.

double sin(double x) Returns the sine of the argument.

double asin(double x) Returns the inverse sine of the argument.

double cos(double x) Returns the cosine of the argument.

double acos(double x) Returns the inverse cosine of the argument.

double tan(double x) Returns the tangent of the argument.

double atan(double x) Returns the inverse tangent of the argument.

double rand() Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.

[0,1).

int rand32(int min, int max) Returns a random 32-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 32-bit integer.

int rand64(int min, int max) Returns a random 64-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 64-bit integer.

bit_and() Bitwise AND.

bit_or() Bitwise OR.

bit_xor() Bitwise XOR.

int size() Returns the number of elements in a list or a map or the length of a string.

int range(int start, int end,

int step)

Returns a list of integers from [start,end] in the specified steps. step is 1 by default.

int sign(double x) Returns the signum of the given number.

If the number is 0 , the system returns 0 .

If the number is negative, the system returns -1 .

If the number is positive, the system returns 1 .

3.3.1 Functions

- 61/804 - 2023 Vesoft Inc.

Aggregating functions

Function Description

double e() Returns the base of the natural logarithm, e (2.718281828459045).

double pi() Returns the mathematical constant pi (3.141592653589793).

double radians() Converts degrees to radians. radians(180) returns 3.141592653589793 .

•

Function Description

avg() Returns the average value of the argument.

count() Syntax: count({expr | *}) .

count() returns the number of rows (including NULL).

count(expr) returns the number of non-NULL values that meet the expression.

count() and size() are different.

max() Returns the maximum value.

min() Returns the minimum value.

collect() The collect() function returns a list containing the values returned by an expression. Using this function

aggregates data by merging multiple records or values into a single list.

std() Returns the population standard deviation.

sum() Returns the sum value.

3.3.1 Functions

- 62/804 - 2023 Vesoft Inc.

String functions

Data and time functions

•

Function Description

int strcasecmp(string a, string b) Compares string a and b without case sensitivity. When a = b, the return

string lower(string a) Returns the argument in lowercase.

string toLower(string a) The same as lower() .

string upper(string a) Returns the argument in uppercase.

string toUpper(string a) The same as upper() .

int length(a) Returns the length of the given string in bytes or the length of a path in hops.

string trim(string a) Removes leading and trailing spaces.

string ltrim(string a) Removes leading spaces.

string rtrim(string a) Removes trailing spaces.

string left(string a, int count) Returns a substring consisting of count characters from the left side of

string right(string a, int count) Returns a substring consisting of count characters from the right side of

string lpad(string a, int size, string

letters)

Left-pads string a with string letters and returns a

string rpad(string a, int size,

string letters)

Right-pads string a with string letters and returns a

string substr(string a, int pos, int

count)

Returns a substring extracting count characters starting from

string substring(string a, int pos,

int count)

The same as substr() .

string reverse(string) Returns a string in reverse order.

string replace(string a, string b,

string c)

Replaces string b in string a with string c.

list split(string a, string b) Splits string a at string b and returns a list of strings.

concat() The concat() function requires at least two or more strings. All the parameters are

concatenated into one string.

Syntax: concat(string1,string2,...)

concat_ws() The concat_ws() function connects two or more strings with a predefined separator.

extract() extract() uses regular expression matching to retrieve a single substring or all

substrings from a string.

json_extract() The json_extract() function converts the specified JSON string to map.

•

Function Description

int now() Returns the current timestamp of the system.

timestamp timestamp() Returns the current timestamp of the system.

date date() Returns the current UTC date based on the current system.

time time() Returns the current UTC time based on the current system.

datetime datetime() Returns the current UTC date and time based on the current system.

3.3.1 Functions

- 63/804 - 2023 Vesoft Inc.

Schema-related functions

For nGQL statements

For statements compatible with openCypher

•

•

Function Description

id(vertex) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

map

properties(vertex)

Returns the properties of a vertex.

map properties(edge) Returns the properties of an edge.

string type(edge) Returns the edge type of an edge.

src(edge) Returns the source vertex ID of an edge. The data type of the result is the same as the vertex ID.

dst(edge) Returns the destination vertex ID of an edge. The data type of the result is the same as the vertex

ID.

int rank(edge) Returns the rank value of an edge.

vertex Returns the information of vertices, including VIDs, tags, properties, and values.

edge Returns the information of edges, including edge types, source vertices, destination vertices,

ranks, properties, and values.

vertices Returns the information of vertices in a subgraph. For more information, see GET SUBGRAPH.

edges Returns the information of edges in a subgraph. For more information, see GET SUBGRAPH.

path Returns the information of a path. For more information, see FIND PATH.

•

Function Description

id(<vertex>) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

list tags(<vertex>) Returns the Tag of a vertex, which serves the same purpose as labels().

list labels(<vertex>) Returns the Tag of a vertex, which serves the same purpose as tags(). This function is

used for compatibility with openCypher syntax.

map

properties(<vertex_or_edge>)

Returns the properties of a vertex or an edge.

string type(<edge>) Returns the edge type of an edge.

src(<edge>) Returns the source vertex ID of an edge. The data type of the result is the same as the

vertex ID.

dst(<edge>) Returns the destination vertex ID of an edge. The data type of the result is the same

as the vertex ID.

vertex startNode(<path>) Visits an edge or a path and returns its source vertex ID.

string endNode(<path>) Visits an edge or a path and returns its destination vertex ID.

int rank(<edge>) Returns the rank value of an edge.

3.3.1 Functions

- 64/804 - 2023 Vesoft Inc.

List functions

Type conversion functions

Predicate functions

Predicate functions return true or false . They are most commonly used in WHERE clauses.

•

Function Description

keys(expr) Returns a list containing the string representations for all the property names of vertices, edges,

or maps.

labels(vertex) Returns the list containing all the tags of a vertex.

nodes(path) Returns the list containing all the vertices in a path.

range(start, end [,

step])

Returns the list containing all the fixed-length steps in [start,end] . step is 1 by default.

relationships(path) Returns the list containing all the relationships in a path.

reverse(list) Returns the list reversing the order of all elements in the original list.

tail(list) Returns all the elements of the original list, excluding the first one.

head(list) Returns the first element of a list.

last(list) Returns the last element of a list.

reduce() The reduce() function applies an expression to each element in a list one by one, chains the result

to the next iteration by taking it as the initial value, and returns the final result.

•

Function Description

bool

toBoolean()

Converts a string value to a boolean value.

float toFloat() Converts an integer or string value to a floating point number.

string

toString()

Converts non-compound types of data, such as numbers, booleans, and so on, to strings.

int

toInteger()

Converts a floating point or string value to an integer value.

set toSet() Converts a list or set value to a set value.

int hash() The hash() function returns the hash value of the argument. The argument can be a number, a string, a

list, a boolean, null, or an expression that evaluates to a value of the preceding data types.

•

<predicate>(<variable> IN <list> WHERE <condition>)

Function Description

exists() Returns true if the specified property exists in the vertex, edge or map. Otherwise, returns false .

any() Returns true if the specified predicate holds for at least one element in the given list. Otherwise, returns

false .

all() Returns true if the specified predicate holds for all elements in the given list. Otherwise, returns false .

none() Returns true if the specified predicate holds for no element in the given list. Otherwise, returns false .

single() Returns true if the specified predicate holds for exactly one of the elements in the given list. Otherwise,

returns false .

3.3.1 Functions

- 65/804 - 2023 Vesoft Inc.

Conditional expressions functions

3.3.2 General queries statements

MATCH

•

Function Description

CASE The CASE expression uses conditions to filter the result of an nGQL query statement. It is usually used in the

YIELD and RETURN clauses. The CASE expression will traverse all the conditions. When the first condition is

met, the CASE expression stops reading the conditions and returns the result. If no conditions are met, it

returns the result in the ELSE clause. If there is no ELSE clause and no conditions are met, it returns NULL .

coalesce() Returns the first not null value in all expressions.

•

3.3.2 General queries statements

- 66/804 - 2023 Vesoft Inc.

MATCH <pattern> [<clause_1>] RETURN <output> [<clause_2>];

3.3.2 General queries statements

- 67/804 - 2023 Vesoft Inc.

Pattern Example Description

Match vertices (v) You can use a user-defined variable in a pair of parentheses

to represent a vertex in a pattern. For example: (v) .

Match tags MATCH (v:player) RETURN v You can specify a tag with :<tag_name> after the vertex in a

pattern.

Match multiple

tags

MATCH (v:player:team) RETURN v To match vertices with multiple tags, use colons (:).

Match vertex

properties

MATCH (v:player{name:"Tim Duncan"})

RETURN v

MATCH (v) WITH v, properties(v) as

props, keys(properties(v)) as kk WHERE

[i in kk where props[i] == "Tim

Duncan"] RETURN v

You can specify a vertex property with {<prop_name>:

<prop_value>} after the tag in a pattern; or use a vertex

property value to get vertices directly.

Match a VID. MATCH (v) WHERE id(v) == 'player101'

RETURN v

You can use the VID to match a vertex. The id() function can

retrieve the VID of a vertex.

Match multiple

VIDs.

MATCH (v:player { name: 'Tim

Duncan' })--(v2) WHERE id(v2) IN

["player101", "player102"] RETURN v2

To match multiple VIDs, use WHERE id(v) IN [vid_list] .

Match connected

vertices

MATCH (v:player{name:"Tim Duncan"})--

(v2) RETURN v2.player.name AS Name

You can use the -- symbol to represent edges of both

directions and match vertices connected by these edges. You

can add a > or < to the -- symbol to specify the direction of

an edge.

Match paths MATCH p=(v:player{name:"Tim

Duncan"})-->(v2) RETURN p

Connected vertices and edges form a path. You can use a

user-defined variable to name a path as follows.

Match edges MATCH (v:player{name:"Tim Duncan"})-

[e]-(v2) RETURN e

MATCH ()<-[e]-() RETURN e

Besides using -- , --> , or <-- to indicate a nameless edge,

you can use a user-defined variable in a pair of square

brackets to represent a named edge. For example: -[e]- .

Match an edge

type

MATCH ()-[e:follow]-() RETURN e Just like vertices, you can specify an edge type with

:<edge_type> in a pattern. For example: -[e:follow]- .

Match edge type

properties

MATCH (v:player{name:"Tim Duncan"})-

[e:follow{degree:95}]->(v2) RETURN e

MATCH ()-[e]->() WITH e, properties(e)

as props, keys(properties(e)) as kk

WHERE [i in kk where props[i] == 90]

RETURN e

You can specify edge type properties with {<prop_name>:

<prop_value>} in a pattern. For example: [e:follow{likeness:95}] ;

or use an edge type property value to get edges directly.

Match multiple

edge types

MATCH (v:player{name:"Tim Duncan"})-

[e:follow | :serve]->(v2) RETURN e

The | symbol can help matching multiple edge types. For

example: [e:follow|:serve] . The English colon (:) before the

first edge type cannot be omitted, but the English colon

before the subsequent edge type can be omitted, such as

[e:follow|serve] .

Match multiple

edges

MATCH (v:player{name:"Tim Duncan"})-

[]->(v2)<-[e:serve]-(v3) RETURN v2, v3

You can extend a pattern to match multiple edges in a path.

Match fixed-

length paths

MATCH p=(v:player{name:"Tim Duncan"})-

[e:follow*2]->(v2) RETURN DISTINCT v2

AS Friends

You can use the :<edge_type>*<hop> pattern to match a fixed-

length path. hop must be a non-negative integer. The data

type of e is the list.

Match variable-

length paths

MATCH p=(v:player{name:"Tim Duncan"})-

[e:follow*1..3]->(v2) RETURN v2 AS

Friends

minHop : Optional. It represents the minimum length of the

path. minHop : must be a non-negative integer. The default

value is 1.

3.3.2 General queries statements

- 68/804 - 2023 Vesoft Inc.

OPTIONAL MATCH

Pattern Example Description

minHop and maxHop are optional and the default value is 1 and

infinity respectively. The data type of e is the list.

Match variable-

length paths with

multiple edge

types

MATCH p=(v:player{name:"Tim Duncan"})-

[e:follow | serve*2]->(v2) RETURN

DISTINCT v2

You can specify multiple edge types in a fixed-length or

variable-length pattern. In this case, hop , minHop , and maxHop

take effect on all edge types. The data type of e is the list.

Retrieve vertex or

edge information

MATCH (v:player{name:"Tim Duncan"})

RETURN v

MATCH (v:player{name:"Tim Duncan"})-

[e]->(v2) RETURN e

Use RETURN {<vertex_name> | <edge_name>} to retrieve all the

information of a vertex or an edge.

Retrieve VIDs MATCH (v:player{name:"Tim Duncan"})

RETURN id(v)

Use the id() function to retrieve VIDs.

Retrieve tags MATCH (v:player{name:"Tim Duncan"})

RETURN labels(v)

Use the labels() function to retrieve the list of tags on a

vertex.

To retrieve the nth element in the labels(v) list, use labels(v)

[n-1] .

Retrieve a single

property on a

vertex or an edge

MATCH (v:player{name:"Tim Duncan"})

RETURN v.player.age

Use RETURN {<vertex_name> | <edge_name>}.<property> to retrieve a

single property.

Use AS to specify an alias for a property.

Retrieve all

properties on a

vertex or an edge

MATCH p=(v:player{name:"Tim Duncan"})-

[]->(v2) RETURN properties(v2)

Use the properties() function to retrieve all properties on a

vertex or an edge.

Retrieve edge

types

MATCH p=(v:player{name:"Tim Duncan"})-

[e]->() RETURN DISTINCT type(e)

Use the type() function to retrieve the matched edge types.

Retrieve paths MATCH p=(v:player{name:"Tim Duncan"})-

[*3]->() RETURN p

Use RETURN <path_name> to retrieve all the information of the

matched paths.

Retrieve vertices

in a path

MATCH p=(v:player{name:"Tim Duncan"})-

[]->(v2) RETURN nodes(p)

Use the nodes() function to retrieve all vertices in a path.

Retrieve edges in

a path

MATCH p=(v:player{name:"Tim Duncan"})-

[]->(v2) RETURN relationships(p)

Use the relationships() function to retrieve all edges in a path.

Retrieve path

length

MATCH p=(v:player{name:"Tim Duncan"})-

[*..2]->(v2) RETURN p AS Paths,

length(p) AS Length

Use the length() function to retrieve the length of a path.

•

Pattern Example Description

Matches patterns against your

graph database, just like MATCH

does.

MATCH (m)-[]->(n) WHERE id(m)=="player100"

OPTIONAL MATCH (n)-[]->(l) RETURN

id(m),id(n),id(l)

If no matches are found, OPTIONAL MATCH

will use a null for missing parts of the

pattern.

3.3.2 General queries statements

- 69/804 - 2023 Vesoft Inc.

LOOKUP

GO

•

LOOKUP ON {<vertex_tag> | <edge_type>}

[WHERE <expression> [AND <expression> ...]]

YIELD <return_list> [AS <alias>]

Pattern Example Description

Retrieve vertices LOOKUP ON player WHERE player.name == "Tony Parker"

YIELD player.name AS name, player.age AS age

The following example returns vertices whose

name is Tony Parker and the tag is player .

Retrieve edges LOOKUP ON follow WHERE follow.degree == 90 YIELD

follow.degree

Returns edges whose degree is 90 and the edge

type is follow .

List vertices with a

tag

LOOKUP ON player YIELD properties(vertex),id(vertex) Shows how to retrieve the VID of all vertices

tagged with player .

List edges with an

edge types

LOOKUP ON follow YIELD edge AS e Shows how to retrieve the source Vertex IDs,

destination vertex IDs, and ranks of all edges of

the follow edge type.

Count the numbers

of vertices or

edges

LOOKUP ON player YIELD id(vertex)| YIELD COUNT(*) AS

Player_Count

Shows how to count the number of vertices

tagged with player .

Count the numbers

of edges

LOOKUP ON follow YIELD edge as e| YIELD COUNT(*) AS

Like_Count

Shows how to count the number of edges of the

follow edge type.

•

GO [[<M> TO] <N> {STEP|STEPS}] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

YIELD [DISTINCT] <return_list>

[{SAMPLE <sample_list> | LIMIT <limit_list>}]

[| GROUP BY {col_name | expr | position} YIELD <col_name>]

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset_value>,] <number_rows>]

Example Description

GO FROM "player102" OVER serve YIELD dst(edge) Returns the teams that player 102 serves.

GO 2 STEPS FROM "player102" OVER follow YIELD dst(edge) Returns the friends of player 102 with 2 hops.

GO FROM "player100", "player102" OVER serve WHERE properties(edge).start_year > 1995

YIELD DISTINCT properties($$).name AS team_name, properties(edge).start_year AS

start_year, properties($^).name AS player_name

Adds a filter for the traversal.

GO FROM "player100" OVER follow, serve YIELD properties(edge).degree,

properties(edge).start_year

The following example traverses along with

multiple edge types. If there is no value for a

property, the output is NULL .

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS destination The following example returns the neighbor

vertices in the incoming direction of player

100.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id | GO FROM $-.id OVER

serve WHERE properties($^).age > 20 YIELD properties($^).name AS FriendOf, properties($

$).name AS Team

The following example retrieves the friends of

player 100 and the teams that they serve.

GO FROM "player102" OVER follow YIELD dst(edge) AS both The following example returns all the

neighbor vertices of player 102.

GO 2 STEPS FROM "player100" OVER follow YIELD src(edge) AS src, dst(edge) AS dst,

properties($$).age AS age | GROUP BY $-.dst YIELD $-.dst AS dst, collect_set($-.src) AS

src, collect($-.age) AS age

The following example the outputs according

to age.

3.3.2 General queries statements

- 70/804 - 2023 Vesoft Inc.

FETCH

Fetch vertex properties

Fetch edge properties

•

•

FETCH PROP ON {<tag_name>[, tag_name ...] | *}

<vid> [, vid ...]

YIELD <return_list> [AS <alias>]

Example Description

FETCH PROP ON player "player100" YIELD

properties(vertex)

Specify a tag in the FETCH statement to fetch the vertex properties by that

tag.

FETCH PROP ON player "player100" YIELD player.name AS

name

Use a YIELD clause to specify the properties to be returned.

FETCH PROP ON player "player101", "player102",

"player103" YIELD properties(vertex)

Specify multiple VIDs (vertex IDs) to fetch properties of multiple

vertices. Separate the VIDs with commas.

FETCH PROP ON player, t1 "player100", "player103" YIELD

properties(vertex)

Specify multiple tags in the FETCH statement to fetch the vertex

properties by the tags. Separate the tags with commas.

FETCH PROP ON * "player100", "player106", "team200"

YIELD properties(vertex)

Set an asterisk symbol * to fetch properties by all tags in the current

graph space.

•

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]

YIELD <output>;

Example Description

FETCH PROP ON serve "player100" -> "team204" YIELD

properties(edge)

The following statement fetches all the properties of the serve

edge that connects vertex "player100" and vertex "team204" .

FETCH PROP ON serve "player100" -> "team204" YIELD

serve.start_year

Use a YIELD clause to fetch specific properties of an edge.

FETCH PROP ON serve "player100" -> "team204", "player133" ->

"team202" YIELD properties(edge)

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to

fetch properties of multiple edges. Separate the edge patterns

with commas.

FETCH PROP ON serve "player100" -> "team204"@1 YIELD

properties(edge)

To fetch on an edge whose rank is not 0, set its rank in the

FETCH statement.

GO FROM "player101" OVER follow YIELD follow._src AS s,

follow._dst AS d | FETCH PROP ON follow $-.s -> $-.d YIELD

follow.degree

The following statement returns the degree values of the follow

edges that start from vertex "player101" .

$var = GO FROM "player101" OVER follow YIELD follow._src AS s,

follow._dst AS d; FETCH PROP ON follow $var.s -> $var.d YIELD

follow.degree

You can use user-defined variables to construct similar queries.

3.3.2 General queries statements

- 71/804 - 2023 Vesoft Inc.

SHOW
•

Statement Syntax Example Description

SHOW CHARSET SHOW CHARSET SHOW CHARSET Shows the available character sets.

SHOW

COLLATION

SHOW COLLATION SHOW COLLATION Shows the collations supported by

NebulaGraph.

SHOW CREATE

SPACE

SHOW CREATE SPACE

<space_name>

SHOW CREATE SPACE

basketballplayer

Shows the creating statement of the specified

graph space.

SHOW CREATE

TAG/EDGE

SHOW CREATE {TAG

<tag_name> | EDGE

<edge_name>}

SHOW CREATE TAG

player

Shows the basic information of the specified

tag.

SHOW HOSTS SHOW HOSTS [GRAPH |

STORAGE | META]

SHOW HOSTS

SHOW HOSTS GRAPH

Shows the host and version information of

Graph Service, Storage Service, and Meta

Service.

SHOW INDEX

STATUS

SHOW {TAG | EDGE} INDEX

STATUS

SHOW TAG INDEX STATUS Shows the status of jobs that rebuild native

indexes, which helps check whether a native

index is successfully rebuilt or not.

SHOW INDEXES SHOW {TAG | EDGE}

INDEXES

SHOW TAG INDEXES Shows the names of existing native indexes.

SHOW PARTS SHOW PARTS [<part_id>] SHOW PARTS Shows the information of a specified partition or

all partitions in a graph space.

SHOW ROLES SHOW ROLES IN

<space_name>

SHOW ROLES in

basketballplayer

Shows the roles that are assigned to a user

account.

SHOW

SNAPSHOTS

SHOW SNAPSHOTS SHOW SNAPSHOTS Shows the information of all the snapshots.

SHOW SPACES SHOW SPACES SHOW SPACES Shows existing graph spaces in NebulaGraph.

SHOW STATS SHOW STATS SHOW STATS Shows the statistics of the graph space

collected by the latest STATS job.

SHOW TAGS/

EDGES

SHOW TAGS | EDGES SHOW TAGS , SHOW EDGES Shows all the tags in the current graph space.

SHOW USERS SHOW USERS SHOW USERS Shows the user information.

SHOW

SESSIONS

SHOW SESSIONS SHOW SESSIONS Shows the information of all the sessions.

SHOW

SESSIONS

SHOW SESSION

<Session_Id>

SHOW SESSION

1623304491050858

Shows a specified session with its ID.

SHOW QUERIES SHOW [ALL] QUERIES SHOW QUERIES Shows the information of working queries in the

current session.

SHOW META

LEADER

SHOW META LEADER SHOW META LEADER Shows the information of the leader in the

current Meta cluster.

3.3.2 General queries statements

- 72/804 - 2023 Vesoft Inc.

3.3.3 Clauses and options

Clause Syntax Example Description

GROUP

BY

GROUP BY <var> YIELD <var>,

<aggregation_function(var)>

GO FROM "player100" OVER follow

BIDIRECT YIELD $$.player.name as Name |

GROUP BY $-.Name YIELD $-.Name as

Player, count(*) AS Name_Count

Finds all the vertices

connected directly to vertex

"player100" , groups the result

set by player names, and

counts how many times the

name shows up in the result

set.

LIMIT YIELD <var> [| LIMIT [<offset_value>,]

<number_rows>]

GO FROM "player100" OVER follow

REVERSELY YIELD $$.player.name AS

Friend, $$.player.age AS Age | ORDER BY

$-.Age, $-.Friend | LIMIT 1, 3

Returns the 3 rows of data

starting from the second row

of the sorted output.

SKIP RETURN <var> [SKIP <offset>] [LIMIT

<number_rows>]

MATCH (v:player{name:"Tim Duncan"}) -->

(v2) RETURN v2.player.name AS Name,

v2.player.age AS Age ORDER BY Age DESC

SKIP 1

SKIP can be used alone to set

the offset and return the data

after the specified position.

SAMPLE <go_statement> SAMPLE <sample_list>; GO 3 STEPS FROM "player100" OVER *

YIELD properties($$).name AS NAME,

properties($$).age AS Age SAMPLE

[1,2,3];

Takes samples evenly in the

result set and returns the

specified amount of data.

ORDER

BY

<YIELD clause> ORDER BY <expression>

[ASC | DESC] [, <expression> [ASC |

DESC] ...]

FETCH PROP ON player "player100",

"player101", "player102", "player103"

YIELD player.age AS age, player.name AS

name | ORDER BY $-.age ASC, $-.name

DESC

The ORDER BY clause specifies

the order of the rows in the

output.

RETURN RETURN {<vertex_name>|<edge_name>|

<vertex_name>.<property>|

<edge_name>.<property>|...}

MATCH (v:player) RETURN v.player.name,

v.player.age LIMIT 3

Returns the first three rows

with values of the vertex

properties name and age .

TTL CREATE TAG <tag_name>(<property_name_1>

<property_value_1>, <property_name_2>

<property_value_2>, ...) ttl_duration=

<value_int>, ttl_col = <property_name>

CREATE TAG t2(a int, b int, c string)

ttl_duration= 100, ttl_col = "a"

Create a tag and set the TTL

options.

WHERE WHERE {<vertex|

edge_alias>.<property_name> {>|==|<|...}

<value>...}

MATCH (v:player) WHERE v.player.name ==

"Tim Duncan" XOR (v.player.age < 30 AND

v.player.name == "Yao Ming") OR NOT

(v.player.name == "Yao Ming" OR

v.player.name == "Tim Duncan") RETURN

v.player.name, v.player.age

The WHERE clause filters the

output by conditions. The

WHERE clause usually works in

Native nGQL GO and LOOKUP

statements, and OpenCypher

MATCH and WITH statements.

YIELD YIELD [DISTINCT] <col> [AS <alias>] [,

<col> [AS <alias>] ...] [WHERE

<conditions>];

GO FROM "player100" OVER follow YIELD

dst(edge) AS ID | FETCH PROP ON player

$-.ID YIELD player.age AS Age | YIELD

AVG($-.Age) as Avg_age, count(*)as

Num_friends

Finds the players that

"player100" follows and

calculates their average age.

WITH MATCH $expressions WITH {nodes()|

labels()|...}

MATCH p=(v:player{name:"Tim Duncan"})--

() WITH nodes(p) AS n UNWIND n AS n1

RETURN DISTINCT n1

The WITH clause can retrieve

the output from a query part,

process it, and pass it to the

next query part as the input.

UNWIND UNWIND <list> AS <alias> <RETURN

clause>

UNWIND [1,2,3] AS n RETURN n Splits a list into rows.

3.3.3 Clauses and options

- 73/804 - 2023 Vesoft Inc.

3.3.4 Space statements

Statement Syntax Example Description

CREATE

SPACE

CREATE SPACE [IF NOT EXISTS]

<graph_space_name> ([partition_num =

<partition_number>,] [replica_factor =

<replica_number>,] vid_type =

{FIXED_STRING(<N>) | INT[64]}) [COMMENT =

'<comment>']

CREATE SPACE my_space_1

(vid_type=FIXED_STRING(30))

Creates a graph space

with

CREATE

SPACE

CREATE SPACE <new_graph_space_name> AS

<old_graph_space_name>

CREATE SPACE my_space_4 as my_space_3 Clone a graph. space.

USE USE <graph_space_name> USE space1 Specifies a graph

space as the current

working graph space

for subsequent

queries.

SHOW

SPACES

SHOW SPACES SHOW SPACES Lists all the graph

spaces in the

NebulaGraph

examples.

DESCRIBE

SPACE

DESC[RIBE] SPACE <graph_space_name> DESCRIBE SPACE basketballplayer Returns the

information about the

specified graph space.

CLEAR

SPACE

CLEAR SPACE [IF EXISTS] <graph_space_name> Deletes the vertices and edges in a

graph space, but does not delete

the graph space itself and the

schema information.

DROP

SPACE

DROP SPACE [IF EXISTS] <graph_space_name> DROP SPACE basketballplayer Deletes everything in

the specified graph

space.

3.3.4 Space statements

- 74/804 - 2023 Vesoft Inc.

3.3.5 TAG statements

Statement Syntax Example Description

CREATE

TAG

CREATE TAG [IF NOT EXISTS] <tag_name> (<prop_name>

<data_type> [NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT '<comment>'] [{,

<prop_name> <data_type> [NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT '<comment>']} ...])

[TTL_DURATION = <ttl_duration>] [TTL_COL =

<prop_name>] [COMMENT = '<comment>']

CREATE TAG woman(name

string, age int, married

bool, salary double,

create_time timestamp)

TTL_DURATION = 100,

TTL_COL = "create_time"

Creates a tag with the given

name in a graph space.

DROP TAG DROP TAG [IF EXISTS] <tag_name> DROP TAG test; Drops a tag with the given

name in the current working

graph space.

ALTER TAG ALTER TAG <tag_name> <alter_definition> [,

alter_definition] ...] [ttl_definition [,

ttl_definition] ...] [COMMENT = '<comment>']

ALTER TAG t1 ADD (p3

int, p4 string)

Alters the structure of a tag

with the given name in a graph

space. You can add or drop

properties, and change the data

type of an existing property.

You can also set a TTL (Time-

To-Live) on a property, or

change its TTL duration.

SHOW

TAGS

SHOW TAGS SHOW TAGS Shows the name of all tags in

the current graph space.

DESCRIBE

TAG

DESC[RIBE] TAG <tag_name> DESCRIBE TAG player Returns the information about

a tag with the given name in a

graph space, such as field

names, data type, and so on.

DELETE

TAG

DELETE TAG <tag_name_list> FROM <VID> DELETE TAG test1 FROM

"test"

Deletes a tag with the given

name on a specified vertex.

3.3.5 TAG statements

- 75/804 - 2023 Vesoft Inc.

3.3.6 Edge type statements

3.3.7 Vertex statements

Statement Syntax Example Description

CREATE

EDGE

CREATE EDGE [IF NOT EXISTS] <edge_type_name> (<prop_name>

<data_type> [NULL | NOT NULL] [DEFAULT <default_value>]

[COMMENT '<comment>'] [{, <prop_name> <data_type> [NULL | NOT

NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...])

[TTL_DURATION = <ttl_duration>] [TTL_COL = <prop_name>]

[COMMENT = '<comment>']

CREATE EDGE e1(p1

string, p2 int, p3

timestamp)

TTL_DURATION = 100,

TTL_COL = "p2"

Creates an edge type

with the given name in a

graph space.

DROP

EDGE

DROP EDGE [IF EXISTS] <edge_type_name> DROP EDGE e1 Drops an edge type with

the given name in a

graph space.

ALTER

EDGE

ALTER EDGE <edge_type_name> <alter_definition> [,

alter_definition] ...] [ttl_definition [,

ttl_definition] ...] [COMMENT = '<comment>']

ALTER EDGE e1 ADD (p3

int, p4 string)

Alters the structure of an

edge type with the given

name in a graph space.

SHOW

EDGES

SHOW EDGES SHOW EDGES Shows all edge types in

the current graph space.

DESCRIBE

EDGE

DESC[RIBE] EDGE <edge_type_name> DESCRIBE EDGE follow Returns the information

about an edge type with

the given name in a

graph space, such as field

names, data type, and so

on.

Statement Syntax Example Description

INSERT

VERTEX

INSERT VERTEX [IF NOT EXISTS]

[tag_props, [tag_props] ...]

VALUES <vid>: ([prop_value_list])

INSERT VERTEX t2 (name,

age) VALUES "13":("n3",

12), "14":("n4", 8)

Inserts one or more vertices into a graph

space in NebulaGraph.

DELETE

VERTEX

DELETE VERTEX <vid> [, <vid> ...] DELETE VERTEX "team1" Deletes vertices and the related incoming and

outgoing edges of the vertices.

UPDATE

VERTEX

UPDATE VERTEX ON <tag_name> <vid>

SET <update_prop> [WHEN

<condition>] [YIELD <output>]

UPDATE VERTEX ON player

"player101" SET age =

age + 2

Updates properties on tags of a vertex.

UPSERT

VERTEX

UPSERT VERTEX ON <tag> <vid> SET

<update_prop> [WHEN <condition>]

[YIELD <output>]

UPSERT VERTEX ON player

"player667" SET age =

31

The UPSERT statement is a combination of

UPDATE and INSERT . You can use UPSERT VERTEX to

update the properties of a vertex if it exists or

insert a new vertex if it does not exist.

3.3.6 Edge type statements

- 76/804 - 2023 Vesoft Inc.

3.3.8 Edge statements

Statement Syntax Example Description

INSERT

EDGE

INSERT EDGE [IF NOT EXISTS] <edge_type>

(<prop_name_list>) VALUES <src_vid> ->

<dst_vid>[@<rank>] : (<prop_value_list>) [,

<src_vid> -> <dst_vid>[@<rank>] :

(<prop_value_list>), ...]

INSERT EDGE e2 (name,

age) VALUES "11"-

>"13":("n1", 1)

Inserts an edge or multiple edges

into a graph space from a source

vertex (given by src_vid) to a

destination vertex (given by

dst_vid) with a specific rank in

NebulaGraph.

DELETE

EDGE

DELETE EDGE <edge_type> <src_vid> ->

<dst_vid>[@<rank>] [, <src_vid> ->

<dst_vid>[@<rank>] ...]

DELETE EDGE serve

"player100" ->

"team204"@0

Deletes one edge or multiple edges

at a time.

UPDATE

EDGE

UPDATE EDGE ON <edge_type> <src_vid> -> <dst_vid>

[@<rank>] SET <update_prop> [WHEN <condition>]

[YIELD <output>]

UPDATE EDGE ON serve

"player100" ->

"team204"@0 SET

start_year =

start_year + 1

Updates properties on an edge.

UPSERT

EDGE

UPSERT EDGE ON <edge_type> <src_vid> -> <dst_vid>

[@rank] SET <update_prop> [WHEN <condition>]

[YIELD <properties>]

UPSERT EDGE on serve

"player666" ->

"team200"@0 SET

end_year = 2021

The UPSERT statement is a

combination of UPDATE and INSERT .

You can use UPSERT EDGE to update

the properties of an edge if it exists

or insert a new edge if it does not

exist.

3.3.8 Edge statements

- 77/804 - 2023 Vesoft Inc.

3.3.9 Index

Native index

You can use native indexes together with LOOKUP and MATCH statements.

•

Statement Syntax Example Description

CREATE

INDEX

CREATE {TAG | EDGE} INDEX [IF NOT

EXISTS] <index_name> ON {<tag_name>

| <edge_name>} ([<prop_name_list>])

[COMMENT = '<comment>']

CREATE TAG INDEX

player_index on

player()

Add native indexes for the existing tags,

edge types, or properties.

SHOW

CREATE

INDEX

SHOW CREATE {TAG | EDGE} INDEX

<index_name>

show create tag index

index_2

Shows the statement used when creating a

tag or an edge type. It contains detailed

information about the index, such as its

associated properties.

SHOW

INDEXES

SHOW {TAG | EDGE} INDEXES SHOW TAG INDEXES Shows the defined tag or edge type

indexes names in the current graph space.

DESCRIBE

INDEX

DESCRIBE {TAG | EDGE} INDEX

<index_name>

DESCRIBE TAG INDEX

player_index_0

Gets the information about the index with

a given name, including the property name

(Field) and the property type (Type) of the

index.

REBUILD

INDEX

REBUILD {TAG | EDGE} INDEX

[<index_name_list>]

REBUILD TAG INDEX

single_person_index

Rebuilds the created tag or edge type

index. If data is updated or inserted before

the creation of the index, you must rebuild

the indexes manually to make sure that

the indexes contain the previously added

data.

SHOW

INDEX

STATUS

SHOW {TAG | EDGE} INDEX STATUS SHOW TAG INDEX STATUS Returns the name of the created tag or

edge type index and its status.

DROP

INDEX

DROP {TAG | EDGE} INDEX [IF EXISTS]

<index_name>

DROP TAG INDEX

player_index_0

Removes an existing index from the

current graph space.

3.3.9 Index

- 78/804 - 2023 Vesoft Inc.

Full-text index

3.3.10 Subgraph and path statements

3.3.11 Query tuning statements

•

Syntax Example Description

SIGN IN TEXT SERVICE [(<elastic_ip:port>

[,<username>, <password>]),

(<elastic_ip:port>), ...]

SIGN IN TEXT SERVICE (127.0.0.1:9200) The full-text indexes is implemented

based on Elasticsearch. After deploying

an Elasticsearch cluster, you can use

the SIGN IN statement to log in to the

Elasticsearch client.

SHOW TEXT SEARCH CLIENTS SHOW TEXT SEARCH CLIENTS Shows text search clients.

SIGN OUT TEXT SERVICE SIGN OUT TEXT SERVICE Signs out to the text search clients.

CREATE FULLTEXT {TAG | EDGE} INDEX

<index_name> ON {<tag_name> | <edge_name>}

(<prop_name> [,<prop_name>]...)

[ANALYZER="<analyzer_name>"]

CREATE FULLTEXT TAG INDEX nebula_index_1

ON player(name)

Creates full-text indexes.

SHOW FULLTEXT INDEXES SHOW FULLTEXT INDEXES Show full-text indexes.

REBUILD FULLTEXT INDEX REBUILD FULLTEXT INDEX Rebuild full-text indexes.

DROP FULLTEXT INDEX <index_name> DROP FULLTEXT INDEX nebula_index_1 Drop full-text indexes.

LOOKUP ON {<tag> | <edge_type>} WHERE

ES_QUERY(<index_name>, "<text>") YIELD

<return_list> [| LIMIT [<offset>,]

<number_rows>]

LOOKUP ON player WHERE

ES_QUERY(fulltext_index_1,"Chris") YIELD

id(vertex)

Use query options.

Type Syntax Example Description

GET

SUBGRAPH

GET SUBGRAPH [WITH PROP] [<step_count>

{STEP|STEPS}] FROM {<vid>, <vid>...} [{IN |

OUT | BOTH} <edge_type>, <edge_type>...]

YIELD [VERTICES AS <vertex_alias>] [,EDGES

AS <edge_alias>]

GET SUBGRAPH 1 STEPS

FROM "player100" YIELD

VERTICES AS nodes,

EDGES AS relationships

Retrieves information of vertices and

edges reachable from the source

vertices of the specified edge types

and returns information of the

subgraph.

FIND PATH FIND { SHORTEST | ALL | NOLOOP } PATH [WITH

PROP] FROM <vertex_id_list> TO

<vertex_id_list> OVER <edge_type_list>

[REVERSELY | BIDIRECT] [<WHERE clause>]

[UPTO <N> {STEP|STEPS}] YIELD path as

<alias> [| ORDER BY $-.path] [| LIMIT <M>]

FIND SHORTEST PATH

FROM "player102" TO

"team204" OVER * YIELD

path as p

Finds the paths between the selected

source vertices and destination

vertices. A returned path is like

(<vertex_id>)-[:<edge_type_name>@<rank>]-

>(<vertex_id) .

Type Syntax Example Description

EXPLAIN EXPLAIN [format="row" | "dot"]

<your_nGQL_statement>

EXPLAIN format="row"

SHOW TAGS

EXPLAIN format="dot"

SHOW TAGS

Helps output the execution plan of an nGQL

statement without executing the statement.

PROFILE PROFILE [format="row" | "dot"]

<your_nGQL_statement>

PROFILE format="row"

SHOW TAGS

EXPLAIN format="dot"

SHOW TAGS

Executes the statement, then outputs the

execution plan as well as the execution profile.

3.3.10 Subgraph and path statements

- 79/804 - 2023 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch

3.3.12 Operation and maintenance statements

SUBMIT JOB BALANCE

Job statements

Kill queries

Kill sessions

•

Syntax Description

BALANCE LEADER Starts a job to balance the distribution of all the storage leaders in graph spaces. It returns the job ID.

•

Syntax Description

SUBMIT JOB

COMPACT

Triggers the long-term RocksDB compact operation.

SUBMIT JOB

FLUSH

Writes the RocksDB memfile in the memory to the hard disk.

SUBMIT JOB

STATS

Starts a job that makes the statistics of the current graph space. Once this job succeeds, you can use the

SHOW STATS statement to list the statistics.

SHOW JOB

<job_id>

Shows the information about a specific job and all its tasks in the current graph space. The Meta Service

parses a SUBMIT JOB request into multiple tasks and assigns them to the nebula-storaged processes.

SHOW JOBS Lists all the unexpired jobs in the current graph space.

STOP JOB Stops jobs that are not finished in the current graph space.

RECOVER JOB Re-executes the failed jobs in the current graph space and returns the number of recovered jobs.

•

Syntax Example Description

KILL QUERY (session=<session_id>,

plan=<plan_id>)

KILL

QUERY(SESSION=1625553545984255,PLAN=163)

Terminates the query being executed, and is

often used to terminate slow queries.

•

Syntax Example Description

KILL {SESSION|SESSIONS} <SessionId> KILL SESSION 1672887983842984 Terminates a single

session.

SHOW SESSIONS | YIELD $-.SessionId AS sid

[WHERE <filter_clause>] | KILL {SESSION|

SESSIONS} $-.sid

SHOW SESSIONS | YIELD $-.SessionId AS sid, $-.CreateTime

as CreateTime | ORDER BY $-.CreateTime ASC | LIMIT 2 |

KILL SESSIONS $-.sid

Terminates multiple

sessions based on specified

criteria.

SHOW SESSIONS | KILL SESSIONS $-.SessionId SHOW SESSIONS | KILL SESSIONS $-.SessionId Terminates all sessions.

Last update: December 29, 2023

3.3.12 Operation and maintenance statements

- 80/804 - 2023 Vesoft Inc.

4. nGQL guide

4.1 nGQL overview

4.1.1 NebulaGraph Query Language (nGQL)

This topic gives an introduction to the query language of NebulaGraph, nGQL.

What is nGQL

nGQL is a declarative graph query language for NebulaGraph. It allows expressive and efficient graph patterns. nGQL is

designed for both developers and operations professionals. nGQL is an SQL-like query language, so it's easy to learn.

nGQL is a project in progress. New features and optimizations are done steadily. There can be differences between syntax and

implementation. Submit an issue to inform the NebulaGraph team if you find a new issue of this type. NebulaGraph 3.0 or later

releases will support openCypher 9.

What can nGQL do

Supports graph traversals

Supports pattern match

Supports aggregation

Supports graph mutation

Supports access control

Supports composite queries

Supports index

Supports most openCypher 9 graph query syntax (but mutations and controls syntax are not supported)

Example data Basketballplayer

Users can download the example data Basketballplayer in NebulaGraph. After downloading the example data, you can import it

to NebulaGraph by using the -f option in NebulaGraph Console.

Ensure that you have executed the ADD HOSTS command to add the Storage service to your NebulaGraph cluster before importing the

example data. For more information, see Manage Storage hosts.

Placeholder identifiers and values

Refer to the following standards in nGQL:

(Draft) ISO/IEC JTC1 N14279 SC 32 - Database_Languages - GQL

(Draft) ISO/IEC JTC1 SC32 N3228 - SQL_Property_Graph_Queries - SQLPGQ

OpenCypher 9

In template code, any token that is not a keyword, a literal value, or punctuation is a placeholder identifier or a placeholder

value.

•

•

•

•

•

•

•

•

Note

•

•

•

4. nGQL guide

- 81/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/issues
https://www.opencypher.org/resources
https://docs.nebula-graph.io/2.0/basketballplayer-2.X.ngql

For details of the symbols in nGQL syntax, see the following table:

For example, create vertices in nGQL syntax:

Example statement:

About openCypher compatibility

NATIVE NGQL AND OPENCYPHER

Native nGQL is the part of a graph query language designed and implemented by NebulaGraph. OpenCypher is a graph query

language maintained by openCypher Implementers Group.

The latest release is openCypher 9. The compatible parts of openCypher in nGQL are called openCypher compatible sentences

(short as openCypher).

nGQL = native nGQL + openCypher compatible sentences

IS NGQL COMPATIBLE WITH OPENCYPHER 9 COMPLETELY?

NO.

nGQL is designed to be compatible with part of DQL (match, optional match, with, etc.).

It is not planned to be compatible with any DDL, DML, or DCL.

It is not planned to be compatible with the Bolt Protocol.

It is not planned to be compatible with APOC and GDS.

Users can search in this manual with the keyword compatibility to find major compatibility issues.

Multiple known incompatible items are listed in NebulaGraph Issues. Submit an issue with the incompatible tag if you find a new issue

of this type.

Token Meaning

< > name of a syntactic element

: formula that defines an element

[] optional elements

{ } explicitly specified elements

| complete alternative elements

... may be repeated any number of times

INSERT VERTEX [IF NOT EXISTS] [tag_props, [tag_props] ...]

VALUES <vid>: ([prop_value_list])

tag_props:

 tag_name ([prop_name_list])

prop_name_list:

 [prop_name [, prop_name] ...]

prop_value_list:

 [prop_value [, prop_value] ...]

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

Note

Compatibility with openCypher

•

•

•

4.1.1 NebulaGraph Query Language (nGQL)

- 82/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/issues?q=is-3Aissue+is-3Aopen+label-3Aincompatible

WHAT ARE THE MAJOR DIFFERENCES BETWEEN NGQL AND OPENCYPHER 9?

The following are some major differences (by design incompatible) between nGQL and openCypher.

OpenCypher 9 and Cypher have some differences in grammar and licence. For example,

Cypher requires that All Cypher statements are explicitly run within a transaction. While openCypher has no such

requirement. And nGQL does not support transactions.

Cypher has a variety of constraints, including Unique node property constraints, Node property existence constraints, Relationship

property existence constraints, and Node key constraints. While OpenCypher has no such constraints. As a strong schema system,

most of the constraints mentioned above can be solved through schema definitions (including NOT NULL) in nGQL. The only function

that cannot be supported is the UNIQUE constraint.

Cypher has APoC, while openCypher 9 does not have APoC. Cypher has Blot protocol support requirements, while openCypher 9 does

not.

WHERE CAN I FIND MORE NGQL EXAMPLES?

Users can find more than 2500 nGQL examples in the features directory on the NebulaGraph GitHub page.

The features directory consists of .feature files. Each file records scenarios that you can use as nGQL examples. Here is an

example:

Category openCypher 9 nGQL

Schema Optional Schema Strong Schema

Equality operator = ==

Math exponentiation ^ ^ is not supported. Use pow(x, y) instead.

Edge rank No such concept. edge rank (reference by @)

Statement - All DMLs (CREATE , MERGE , etc) of openCypher 9.

Label and tag A label is used for searching a

vertex, namely an index of vertex.

A tag defines the type of a vertex and its

corresponding properties. It cannot be used as an

index.

Pre-compiling and

parameterized queries

Support Parameterized queries are supported, but

precompiling is not.

Compatibility

1.

2.

3.

Feature: Basic match

 Background:

 Given a graph with space named "basketballplayer"

 Scenario: Single node

 When executing query:

 """

 MATCH (v:player {name: "Yao Ming"}) RETURN v;

 """

 Then the result should be, in any order, with relax comparison:

 | v |

 | ("player133" :player{age: 38, name: "Yao Ming"}) |

 Scenario: One step

 When executing query:

 """

 MATCH (v1:player{name: "LeBron James"}) -[r]-> (v2)

 RETURN type(r) AS Type, v2.player.name AS Name

 """

 Then the result should be, in any order:

 | Type | Name |

 | "follow" | "Ray Allen" |

 | "serve" | "Lakers" |

 | "serve" | "Heat" |

 | "serve" | "Cavaliers" |

4.1.1 NebulaGraph Query Language (nGQL)

- 83/804 - 2023 Vesoft Inc.

http://www.opencypher.org/
https://neo4j.com/developer/cypher/
https://github.com/vesoft-inc/nebula/tree/master/tests/tck/features

The keywords in the preceding example are described as follows.

Welcome to add more tck case and return automatically to the using statements in CI/CD.

DOES IT SUPPORT TINKERPOP GREMLIN?

No. And no plan to support that.

DOES NEBULAGRAPH SUPPORT W3C RDF (SPARQL) OR GRAPHQL?

No. And no plan to support that.

The data model of NebulaGraph is the property graph. And as a strong schema system, NebulaGraph does not support RDF.

NebulaGraph Query Language does not support SPARQL nor GraphQL .

Feature: Comparison of where clause

 Background:

 Given a graph with space named "basketballplayer"

 Scenario: push edge props filter down

 When profiling query:

 """

 GO FROM "player100" OVER follow

 WHERE properties(edge).degree IN [v IN [95,99] WHERE v > 0]

 YIELD dst(edge), properties(edge).degree

 """

 Then the result should be, in any order:

 | follow._dst | follow.degree |

 | "player101" | 95 |

 | "player125" | 95 |

 And the execution plan should be:

 | id | name | dependencies | operator info |

 | 0 | Project | 1 | |

 | 1 | GetNeighbors | 2 | {"filter": "(properties(edge).degree IN [v IN [95,99] WHERE (v>0)])"} |

 | 2 | Start | | |

Keyword Description

Feature Describes the topic of the current .feature file.

Background Describes the background information of the current .feature file.

Given Describes the prerequisites of running the test statements in the current .feature file.

Scenario Describes the scenarios. If there is the @skip before one Scenario , this scenario may not work and do not use it

as a working example in a production environment.

When Describes the nGQL statement to be executed. It can be a executing query or profiling query .

Then Describes the expected return results of running the statement in the When clause. If the return results in your

environment do not match the results described in the .feature file, submit an issue to inform the

NebulaGraph team.

And Describes the side effects of running the statement in the When clause.

@skip This test case will be skipped. Commonly, the to-be-tested code is not ready.

Last update: November 3, 2023

4.1.1 NebulaGraph Query Language (nGQL)

- 84/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc/nebula-graph/tree/master/tests

4.1.2 Patterns

Patterns and graph pattern matching are the very heart of a graph query language. This topic will describe the patterns in

NebulaGraph, some of which have not yet been implemented.

Patterns for vertices

A vertex is described using a pair of parentheses and is typically given a name. For example:

This simple pattern describes a single vertex and names that vertex using the variable a .

Patterns for related vertices

A more powerful construct is a pattern that describes multiple vertices and edges between them. Patterns describe an edge by

employing an arrow between two vertices. For example:

This pattern describes a very simple data structure: two vertices and a single edge from one to the other. In this example, the

two vertices are named as a and b respectively and the edge is directed : it goes from a to b .

This manner of describing vertices and edges can be extended to cover an arbitrary number of vertices and the edges between

them, for example:

Such a series of connected vertices and edges is called a path .

Note that the naming of the vertices in these patterns is only necessary when one needs to refer to the same vertex again, either

later in the pattern or elsewhere in the query. If not, the name may be omitted as follows:

Patterns for tags

The concept of tag in nGQL has a few differences from that of label in openCypher. For example, users must create a tag before

using it. And a tag also defines the type of properties.

In addition to simply describing the vertices in the graphs, patterns can also describe the tags of the vertices. For example:

Patterns can also describe a vertex that has multiple tags. For example:

Patterns for properties

Vertices and edges are the fundamental elements in a graph. In nGQL, properties are added to them for richer models.

In the patterns, the properties can be expressed as follows: some key-value pairs are enclosed in curly brackets and separated by

commas, and the tag or edge type to which a property belongs must be specified.

(a)

(a)-[]->(b)

(a)-[]->(b)<-[]-(c)

(a)-[]->()<-[]-(c)

Note

(a:User)-[]->(b)

(a:User:Admin)-[]->(b)

4.1.2 Patterns

- 85/804 - 2023 Vesoft Inc.

For example, a vertex with two properties will be like:

One of the edges that connect to this vertex can be like:

Patterns for edges

The simplest way to describe an edge is by using the arrow between two vertices, as in the previous examples.

Users can describe an edge and its direction using the following statement. If users do not care about its direction, the

arrowhead can be omitted. For example:

Like vertices, edges can also be named. A pair of square brackets will be used to separate the arrow and the variable will be

placed between them. For example:

Like the tags on vertices, edges can also have types. To describe an edge with a specific type, use the pattern as follows:

An edge can only have one edge type. But if we'd like to describe some data such that the edge could have a set of types, then

they can all be listed in the pattern, separating them with the pipe symbol | like this:

Like vertices, the name of an edge can be omitted. For example:

Variable-length pattern

Rather than describing a long path using a sequence of many vertex and edge descriptions in a pattern, many edges (and the

intermediate vertices) can be described by specifying a length in the edge description of a pattern. For example:

The following pattern describes a graph of three vertices and two edges, all in one path (a path of length 2). It is equivalent to:

The range of lengths can also be specified. Such edge patterns are called variable-length edges . For example:

The preceding example defines a path with a minimum length of 3 and a maximum length of 5.

It describes a graph of either 4 vertices and 3 edges, 5 vertices and 4 edges, or 6 vertices and 5 edges, all connected in a single

path.

You may specify either the upper limit or lower limit of the length range, or neither of them, for example:

(a:player{name: "Tim Duncan", age: 42})

(a)-[e:follow{degree: 95}]->(b)

(a)-[]-(b)

(a)-[r]->(b)

(a)-[r:REL_TYPE]->(b)

(a)-[r:TYPE1|TYPE2]->(b)

(a)-[:REL_TYPE]->(b)

(a)-[*2]->(b)

(a)-[]->()-[]->(b)

(a)-[*3..5]->(b)

(a)-[*..5]->(b) // The minimum length is 1 and the maximum length is 5.

(a)-[*3..]->(b) // The minimum length is 3 and the maximum length is infinity.

(a)-[*]->(b) // The minimum length is 1 and the maximum length is infinity.

4.1.2 Patterns

- 86/804 - 2023 Vesoft Inc.

Assigning to path variables

As described above, a series of connected vertices and edges is called a path . nGQL allows paths to be named using variables.

For example:

Users can do this in the MATCH statement.

p = (a)-[*3..5]->(b)

Last update: December 5, 2023

4.1.2 Patterns

- 87/804 - 2023 Vesoft Inc.

4.1.3 Comments

This topic will describe the comments in nGQL.

In NebulaGraph 1.x, there are four comment styles: # , -- , // , /* */ .

Since NebulaGraph 2.x, -- cannot be used as comments.

Examples

In nGQL statements, the backslash \ in a line indicates a line break.

If a statement starts with # or // , the statement is not executed and the error StatementEmpty is returned.

OpenCypher compatibility

In nGQL, you must add a \ at the end of every line, even in multi-line comments /* */ .

In openCypher, there is no need to use a \ as a line break.

Legacy version compatibility

•

•

nebula> RETURN 1+1; # This comment continues to the end of this line.

nebula> RETURN 1+1; // This comment continues to the end of this line.

nebula> RETURN 1 /* This is an in-line comment. */ + 1 == 2;

nebula> RETURN 11 + \

/* Multi-line comment. \

Use a backslash as a line break. \

*/ 12;

Note

•

•

•

•

/* openCypher style:

The following comment

spans more than

one line */

MATCH (n:label)

RETURN n;

/* nGQL style: \

The following comment \

spans more than \

one line */ \

MATCH (n:tag) \

RETURN n;

Last update: November 14, 2023

4.1.3 Comments

- 88/804 - 2023 Vesoft Inc.

4.1.4 Identifier case sensitivity

Identifiers are Case-Sensitive

The following statements will not work because they refer to two different spaces, i.e. my_space and MY_SPACE .

Keywords and Reserved Words are Case-Insensitive

The following statements are equivalent since show and spaces are keywords.

Functions are Case-Insensitive

Functions are case-insensitive. For example, count() , COUNT() , and couNT() are equivalent.

nebula> CREATE SPACE IF NOT EXISTS my_space (vid_type=FIXED_STRING(30));

nebula> use MY_SPACE;

[ERROR (-1005)]: SpaceNotFound:

nebula> show spaces;

nebula> SHOW SPACES;

nebula> SHOW spaces;

nebula> show SPACES;

nebula> WITH [NULL, 1, 1, 2, 2] As a \

 UNWIND a AS b \

 RETURN count(b), COUNT(*), couNT(DISTINCT b);

+----------+----------+-------------------+

| count(b) | COUNT(*) | couNT(distinct b) |

+----------+----------+-------------------+

| 4 | 5 | 2 |

+----------+----------+-------------------+

Last update: October 25, 2023

4.1.4 Identifier case sensitivity

- 89/804 - 2023 Vesoft Inc.

4.1.5 Keywords

Keywords in nGQL are words with particular meanings, such as CREATE and TAG in the CREATE TAG statement. Keywords that require

special processing to be used as identifiers are referred to as reserved keywords , while the part of keywords that can be used

directly as identifiers are called non-reserved keywords .

It is not recommended to use keywords to identify schemas. If you must use keywords as identifiers, pay attention to the

following restrictions:

To use reserved keywords or special characters as identifiers, you must enclose them with backticks (`), such as `AND`.

Otherwise, a syntax error is thrown.

To use non-reserved keywords as identifiers:

If the identifier contains any uppercase letter, you must enclose them with backticks (`), such as `Comment`. Otherwise, the

execution succeeds but the system automatically converts the identifier to all lowercase.

If the identifier contains all lowercase letters, you do not need to enclose them with backticks (`).

Keywords are case-insensitive.

Reserved keywords

•

•

•

•

Note

nebula> CREATE TAG TAG(name string);

[ERROR (-1004)]: SyntaxError: syntax error near `TAG'

nebula> CREATE TAG `TAG` (name string);

Execution succeeded

nebula> CREATE TAG SPACE(name string);

Execution succeeded

nebula> CREATE TAG 中文(简体 string);

Execution succeeded

nebula> CREATE TAG `￥%special characters&*+-*/` (`q~！（）= wer` string);

Execution succeeded

ACROSS

ADD

ALTER

AND

AS

ASC

ASCENDING

BALANCE

BOOL

BY

CASE

CHANGE

COMPACT

CREATE

DATE

DATETIME

DELETE

DESC

DESCENDING

DESCRIBE

DISTINCT

DOUBLE

DOWNLOAD

DROP

DURATION

EDGE

EDGES

EXISTS

EXPLAIN

FALSE

FETCH

FIND

FIXED_STRING

FLOAT

FLUSH

4.1.5 Keywords

- 90/804 - 2023 Vesoft Inc.

Non-reserved keywords

FROM

GEOGRAPHY

GET

GO

GRANT

IF

IGNORE_EXISTED_INDEX

IN

INDEX

INDEXES

INGEST

INSERT

INT

INT16

INT32

INT64

INT8

INTERSECT

IS

JOIN

LEFT

LIST

LOOKUP

MAP

MATCH

MINUS

NO

NOT

NULL

OF

ON

OR

ORDER

OVER

OVERWRITE

PATH

PROP

REBUILD

RECOVER

REMOVE

RESTART

RETURN

REVERSELY

REVOKE

SET

SHOW

STEP

STEPS

STOP

STRING

SUBMIT

TAG

TAGS

TIME

TIMESTAMP

TO

TRUE

UNION

UNWIND

UPDATE

UPSERT

UPTO

USE

VERTEX

VERTICES

WHEN

WHERE

WITH

XOR

YIELD

ACCOUNT

ADMIN

AGENT

ALL

ALLSHORTESTPATHS

ANALYZER

ANY

ATOMIC_EDGE

AUTO

BASIC

BIDIRECT

BOTH

CHARSET

CLEAR

CLIENTS

COLLATE

COLLATION

COMMENT

4.1.5 Keywords

- 91/804 - 2023 Vesoft Inc.

CONFIGS

CONTAINS

DATA

DBA

DEFAULT

DIVIDE

DRAINER

DRAINERS

ELASTICSEARCH

ELSE

END

ENDS

ES_QUERY

FORCE

FORMAT

FULLTEXT

GOD

GRANTS

GRAPH

GROUP

GROUPS

GUEST

HDFS

HOST

HOSTS

HTTP

HTTPS

INTO

IP

JOB

JOBS

KILL

LEADER

LIMIT

LINESTRING

LISTENER

LOCAL

MERGE

META

NEW

NOLOOP

NONE

OFFSET

OPTIONAL

OUT

PART

PARTITION_NUM

PARTS

PASSWORD

PLAN

POINT

POLYGON

PROFILE

QUERIES

QUERY

READ

REDUCE

RENAME

REPLICA_FACTOR

RESET

ROLE

ROLES

S2_MAX_CELLS

S2_MAX_LEVEL

SAMPLE

SEARCH

SERVICE

SESSION

SESSIONS

SHORTEST

SHORTESTPATH

SIGN

SINGLE

SKIP

SNAPSHOT

SNAPSHOTS

SPACE

SPACES

STARTS

STATS

STATUS

STORAGE

SUBGRAPH

SYNC

TEXT

TEXT_SEARCH

THEN

TOP

TTL_COL

TTL_DURATION

USER

USERS

UUID

VALUE

4.1.5 Keywords

- 92/804 - 2023 Vesoft Inc.

VALUES

VARIABLES

VID_TYPE

WHITELIST

WRITE

ZONE

ZONES

Last update: November 3, 2023

4.1.5 Keywords

- 93/804 - 2023 Vesoft Inc.

4.1.6 nGQL style guide

nGQL does not have strict formatting requirements, but creating nGQL statements according to an appropriate and uniform style

can improve readability and avoid ambiguity. Using the same nGQL style in the same organization or project helps reduce

maintenance costs and avoid problems caused by format confusion or misunderstanding. This topic will provide a style guide for

writing nGQL statements.

The styles of nGQL and Cypher Style Guide are different.

Newline

Start a new line to write a clause.

Not recommended:

Recommended:

Start a new line to write different statements in a composite statement.

Not recommended:

Recommended:

If the clause exceeds 80 characters, start a new line at the appropriate place.

Not recommended:

Recommended:

If needed, you can also start a new line for better understanding, even if the clause does not exceed 80 characters.

Compatibility

1.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id;

GO FROM "player100" \

OVER follow REVERSELY \

YIELD src(edge) AS id;

2.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id | GO FROM $-.id \

OVER serve WHERE properties($^).age > 20 YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

GO FROM "player100" \

OVER follow REVERSELY \

YIELD src(edge) AS id | \

GO FROM $-.id OVER serve \

WHERE properties($^).age > 20 \

YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

3.

MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

WHERE (v2.player.name STARTS WITH "Y" AND v2.player.age > 35 AND v2.player.age < v.player.age) OR (v2.player.name STARTS WITH "T" AND v2.player.age < 45 AND v2.player.age > v.player.age) \

RETURN v2;

MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

WHERE (v2.player.name STARTS WITH "Y" AND v2.player.age > 35 AND v2.player.age < v.player.age) \

OR (v2.player.name STARTS WITH "T" AND v2.player.age < 45 AND v2.player.age > v.player.age) \

RETURN v2;

Note

4.1.6 nGQL style guide

- 94/804 - 2023 Vesoft Inc.

https://s3.amazonaws.com/artifacts.opencypher.org/M15/docs/style-guide.pdf

Identifier naming

In nGQL statements, characters other than keywords, punctuation marks, and blanks are all identifiers. Recommended methods

to name the identifiers are as follows.

Use singular nouns to name tags, and use the base form of verbs or verb phrases to form Edge types.

Not recommended:

Recommended:

Use the snake case to name identifiers, and connect words with underscores (_) with all the letters lowercase.

Not recommended:

Recommended:

Use uppercase keywords and lowercase variables.

Not recommended:

Recommended:

Pattern

Start a new line on the right side of the arrow indicating an edge when writing patterns.

Not recommended:

Recommended:

Anonymize the vertices and edges that do not need to be queried.

Not recommended:

Recommended:

Place named vertices in front of anonymous vertices.

Not recommended:

1.

MATCH p=(v:players)-[e:are_following]-(v2) \

RETURN nodes(p);

MATCH p=(v:player)-[e:follow]-(v2) \

RETURN nodes(p);

2.

MATCH (v:basketballTeam) \

RETURN v;

MATCH (v:basketball_team) \

RETURN v;

3.

match (V:player) return V limit 5;

MATCH (v:player) RETURN v LIMIT 5;

1.

MATCH (v:player{name: "Tim Duncan", age: 42}) \

-[e:follow]->()-[e:serve]->()<--(v2) \

RETURN v, e, v2;

MATCH (v:player{name: "Tim Duncan", age: 42})-[e:follow]-> \

()-[e:serve]->()<--(v2) \

RETURN v, e, v2;

2.

MATCH (v:player)-[e:follow]->(v2) \

RETURN v;

MATCH (v:player)-[:follow]->() \

RETURN v;

3.

4.1.6 nGQL style guide

- 95/804 - 2023 Vesoft Inc.

Recommended:

String

The strings should be surrounded by double quotes.

Not recommended:

Recommended:

When single or double quotes need to be nested in a string, use a backslash () to escape. For example:

Statement termination

End the nGQL statements with an English semicolon (;).

Not recommended:

Recommended:

Use a pipe (|) to separate a composite statement, and end the statement with an English semicolon at the end of the last line. Using

an English semicolon before a pipe will cause the statement to fail.

Not supported:

Supported:

In a composite statement that contains user-defined variables, use an English semicolon to end the statements that define the

variables. If you do not follow the rules to add a semicolon or use a pipe to end the composite statement, the execution will fail.

Not supported:

MATCH ()-[:follow]->(v) \

RETURN v;

MATCH (v)<-[:follow]-() \

RETURN v;

RETURN 'Hello Nebula!';

RETURN "Hello Nebula!\"123\"";

Note

RETURN "\"NebulaGraph is amazing,\" the user says.";

1.

FETCH PROP ON player "player100" YIELD properties(vertex)

FETCH PROP ON player "player100" YIELD properties(vertex);

2.

GO FROM "player100" \

OVER follow \

YIELD dst(edge) AS id; | \

GO FROM $-.id \

OVER serve \

YIELD properties($$).name AS Team, properties($^).name AS Player;

GO FROM "player100" \

OVER follow \

YIELD dst(edge) AS id | \

GO FROM $-.id \

OVER serve \

YIELD properties($$).name AS Team, properties($^).name AS Player;

3.

$var = GO FROM "player100" \

OVER follow \

YIELD follow._dst AS id \

GO FROM $var.id \

4.1.6 nGQL style guide

- 96/804 - 2023 Vesoft Inc.

Not supported:

Supported:

OVER serve \

YIELD $$.team.name AS Team, $^.player.name AS Player;

$var = GO FROM "player100" \

OVER follow \

YIELD follow._dst AS id | \

GO FROM $var.id \

OVER serve \

YIELD $$.team.name AS Team, $^.player.name AS Player;

$var = GO FROM "player100" \

OVER follow \

YIELD follow._dst AS id; \

GO FROM $var.id \

OVER serve \

YIELD $$.team.name AS Team, $^.player.name AS Player;

Last update: October 25, 2023

4.1.6 nGQL style guide

- 97/804 - 2023 Vesoft Inc.

4.2 Data types

4.2.1 Numeric types

nGQL supports both integer and floating-point number.

Integer

Signed 64-bit integer (INT64), 32-bit integer (INT32), 16-bit integer (INT16), and 8-bit integer (INT8) are supported.

Floating-point number

Both single-precision floating-point format (FLOAT) and double-precision floating-point format (DOUBLE) are supported.

Scientific notation is also supported, such as 1e2 , 1.1e2 , .3e4 , 1.e4 , and -1234E-10 .

The data type of DECIMAL in MySQL is not supported.

Reading and writing of data values

When writing and reading different types of data, nGQL complies with the following rules:

Type Declared keywords Range

INT64 INT64 or INT -9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807

INT32 INT32 -2,147,483,648 ~ 2,147,483,647

INT16 INT16 -32,768 ~ 32,767

INT8 INT8 -128 ~ 127

Type Declared keywords Range Precision

FLOAT FLOAT 3.4E +/- 38 6~7 bits

DOUBLE DOUBLE 1.7E +/- 308 15~16 bits

Note

Data type Set as VID Set as property Resulted data type

INT64 Supported Supported INT64

INT32 Not supported Supported INT64

INT16 Not supported Supported INT64

INT8 Not supported Supported INT64

FLOAT Not supported Supported DOUBLE

DOUBLE Not supported Supported DOUBLE

4.2 Data types

- 98/804 - 2023 Vesoft Inc.

For example, nGQL does not support setting VID as INT8, but supports setting a certain property type of TAG or Edge type as

INT8. When using the nGQL statement to read the property of INT8, the resulted type is INT64.

Multiple formats are supported:

Decimal, such as 123456 .

Hexadecimal, such as 0x1e240 .

Octal, such as 0361100 .

However, NebulaGraph will parse the written non-decimal value into a decimal value and save it. The value read is decimal.

For example, the type of the property score is INT . The value of 0xb is assigned to it through the INSERT statement. If querying

the property value with statements such as FETCH, you will get the result 11 , which is the decimal result of the hexadecimal

0xb .

Round a FLOAT/DOUBLE value when inserting it to an INT column.

•

•

•

•

•

Last update: October 25, 2023

4.2.1 Numeric types

- 99/804 - 2023 Vesoft Inc.

4.2.2 Boolean

A boolean data type is declared with the bool keyword and can only take the values true or false .

nGQL supports using boolean in the following ways:

Define the data type of the property value as a boolean.

Use boolean as judgment conditions in the WHERE clause.

•

•

Last update: October 25, 2023

4.2.2 Boolean

- 100/804 - 2023 Vesoft Inc.

4.2.3 String

Fixed-length strings and variable-length strings are supported.

Declaration and literal representation

The string type is declared with the keywords of:

STRING : Variable-length strings.

FIXED_STRING(<length>) : Fixed-length strings. <length> is the length of the string, such as FIXED_STRING(32) .

A string type is used to store a sequence of characters (text). The literal constant is a sequence of characters of any length

surrounded by double or single quotes. For example, "Hello, Cooper" or 'Hello, Cooper' .

String reading and writing

Nebula Graph supports using string types in the following ways:

Define the data type of VID as a fixed-length string.

Set the variable-length string as the Schema name, including the names of the graph space, tag, edge type, and property.

Define the data type of the property as a fixed-length or variable-length string.

For example:

Define the data type of the property as a fixed-length string

Define the data type of the property as a variable-length string

When the fixed-length string you try to write exceeds the length limit:

If the fixed-length string is a property, the writing will succeed, and NebulaGraph will truncate the string and only store the

part that meets the length limit.

If the fixed-length string is a VID, the writing will fail and NebulaGraph will return an error.

Escape Characters

In strings, the backslash (\) serves as an escape character used to denote special characters.

For example, to include a double quote (") within a string, you cannot directly write "Hello "world"" as it leads to a syntax error.

Instead, use the backslash (\) to escape the double quote, such as "Hello \"world\"" .

The backslash itself needs to be escaped as it's a special character. For example, to include a backslash in a string, you need to

write "Hello \\ world" .

•

•

•

•

•

•

nebula> CREATE TAG IF NOT EXISTS t1 (p1 FIXED_STRING(10));

•

nebula> CREATE TAG IF NOT EXISTS t2 (p2 STRING);

•

•

nebula> RETURN "Hello \"world\""

+-----------------+

| "Hello "world"" |

+-----------------+

| "Hello "world"" |

+-----------------+

nebula> RETURN "Hello \\ world"

+-----------------+

| "Hello \ world" |

+-----------------+

| "Hello \ world" |

+-----------------+

4.2.3 String

- 101/804 - 2023 Vesoft Inc.

For more examples of escape characters, see Escape character examples.

OpenCypher compatibility

There are some tiny differences between openCypher and Cypher, as well as nGQL. The following is what openCypher requires.

Single quotes cannot be converted to double quotes.

While Cypher accepts both single quotes and double quotes as the return results. nGQL follows the Cypher way.

File: Literals.feature

Feature: Literals

Background:

 Given any graph

 Scenario: Return a single-quoted string

 When executing query:

 """

 RETURN '' AS literal

 """

 Then the result should be, in any order:

 | literal |

 | '' | # Note: it should return single-quotes as openCypher required.

 And no side effects

nebula > YIELD '' AS quote1, "" AS quote2, "'" AS quote3, '"' AS quote4

+--------+--------+--------+--------+

| quote1 | quote2 | quote3 | quote4 |

+--------+--------+--------+--------+

| "" | "" | "'" | """ |

+--------+--------+--------+--------+

Last update: December 28, 2023

4.2.3 String

- 102/804 - 2023 Vesoft Inc.

https://en.wikipedia.org/wiki/Escape_character#Examples

4.2.4 Date and time types

This topic will describe the DATE , TIME , DATETIME , TIMESTAMP , and DURATION types.

Precautions

While inserting time-type property values with DATE , TIME , and DATETIME , NebulaGraph transforms them to a UTC time according

to the timezone specified with the timezone_name parameter in the configuration files.

To change the timezone, modify the timezone_name value in the configuration files of all NebulaGraph services.

date() , time() , and datetime() can convert a time-type property with a specified timezone. For example, datetime("2017-03-04

22:30:40.003000+08:00") or datetime("2017-03-04T22:30:40.003000[Asia/Shanghai]") .

date() , time() , datetime() , and timestamp() all accept empty parameters to return the current date, time, and datetime.

date() , time() , and datetime() all accept the property name to return a specific property value of itself. For example, date().month

returns the current month, while time("02:59:40").minute returns the minutes of the importing time.

For time operations it is recommended to use duration() to calculate the offset of the moment. Addition and subtraction of

date() and date() , timestamp() and timestamp() are also supported.

When setting the year of the time as a negative number, you need to use Map type data.

OpenCypher Compatibility

In nGQL:

Year, month, day, hour, minute, second, millisecond, and microsecond are supported, while the nanosecond is not supported.

localdatetime() is not supported.

Most string time formats are not supported. The exceptions are YYYY-MM-DDThh:mm:ss and YYYY-MM-DD hh:mm:ss .

The single-digit string time format is supported. For example, time("1:1:1") .

DATE

The DATE type is used for values with a date part but no time part. Nebula Graph retrieves and displays DATE values in the YYYY-MM-

DD format. The supported range is -32768-01-01 to 32767-12-31 .

The properties of date() include year , month , and day . date() supports the input of YYYYY , YYYYY-MM or YYYYY-MM-DD , and defaults to 01

for an untyped month or day.

•

Note

•

•

•

•

•

•

•

•

•

nebula> RETURN DATE({year:-123, month:12, day:3});

+------------------------------------+

| date({year:-(123),month:12,day:3}) |

+------------------------------------+

| -123-12-03 |

+------------------------------------+

nebula> RETURN DATE("23333");

+---------------+

| date("23333") |

+---------------+

| 23333-01-01 |

+---------------+

nebula> RETURN DATE("2023-12-12") - DATE("2023-12-11");

+---+

| (date("2023-12-12")-date("2023-12-11")) |

+---+

4.2.4 Date and time types

- 103/804 - 2023 Vesoft Inc.

TIME

The TIME type is used for values with a time part but no date part. Nebula Graph retrieves and displays TIME values in

hh:mm:ss.msmsmsususus format. The supported range is 00:00:00.000000 to 23:59:59.999999 .

The properties of time() include hour , minute , and second .

DATETIME

The DATETIME type is used for values that contain both date and time parts. Nebula Graph retrieves and displays DATETIME values in

YYYY-MM-DDThh:mm:ss.msmsmsususus format. The supported range is -32768-01-01T00:00:00.000000 to 32767-12-31T23:59:59.999999 .

The properties of datetime() include year , month , day , hour , minute , and second .

datetime() can convert TIMESTAMP to DATETIME . The value range of TIMESTAMP is 0~9223372036 .

datetime() supports an int argument. The int argument specifies a timestamp.

TIMESTAMP

The TIMESTAMP data type is used for values that contain both date and time parts. It has a range of 1970-01-01T00:00:01 UTC to

2262-04-11T23:47:16 UTC.

TIMESTAMP has the following features:

Stored and displayed in the form of a timestamp, such as 1615974839 , which means 2021-03-17T17:53:59 .

Supported TIMESTAMP querying methods: timestamp and timestamp() function.

Supported TIMESTAMP inserting methods: timestamp, timestamp() function, and now() function.

timestamp() function accepts empty arguments to get the current timestamp. It can pass an integer arguments to identify the

integer as a timestamp and the range of passed integer is: 0~9223372036。

timestamp() function can convert DATETIME to TIMESTAMP , and the data type of DATETIME should be a string .

The underlying storage data type is int64.

| 1 |

+---+

•

•

•

To get the current date and time.

nebula> RETURN datetime();

+----------------------------+

| datetime() |

+----------------------------+

| 2022-08-29T06:37:08.933000 |

+----------------------------+

To get the current hour.

nebula> RETURN datetime().hour;

+-----------------+

| datetime().hour |

+-----------------+

| 6 |

+-----------------+

To get date time from a given timestamp.

nebula> RETURN datetime(timestamp(1625469277));

+---------------------------------+

| datetime(timestamp(1625469277)) |

+---------------------------------+

| 2021-07-05T07:14:37.000000 |

+---------------------------------+

nebula> RETURN datetime(1625469277);

+----------------------------+

| datetime(1625469277) |

+----------------------------+

| 2021-07-05T07:14:37.000000 |

+----------------------------+

•

•

•

•

•

•

4.2.4 Date and time types

- 104/804 - 2023 Vesoft Inc.

The date and time format string passed into timestamp() cannot include any millisecond and microsecond, but the date and time

format string passed into timestamp(datetime()) can include a millisecond and a microsecond.

DURATION

The DURATION data type is used to indicate a period of time. Map data that are freely combined by years , months , days , hours ,

minutes , and seconds indicates the DURATION .

DURATION has the following features:

Creating indexes for DURATION is not supported.

DURATION can be used to calculate the specified time.

Examples

Create a tag named date1 with three properties: DATE , TIME , and DATETIME .

Insert a vertex named test1 .

Query whether the value of property p1 on the test1 tag is 2021-03-17 .

Return the content of the property p1 on test1 .

Search for vertices with p3 property values less than 2023-01-01T00:00:00.000000 , and return the p3 values.

To get the current timestamp.

nebula> RETURN timestamp();

+-------------+

| timestamp() |

+-------------+

| 1625469277 |

+-------------+

To get a timestamp from given date and time.

nebula> RETURN timestamp("2022-01-05T06:18:43");

+----------------------------------+

| timestamp("2022-01-05T06:18:43") |

+----------------------------------+

| 1641363523 |

+----------------------------------+

To get a timestamp using datetime().

nebula> RETURN timestamp(datetime("2022-08-29T07:53:10.939000"));

+---+

| timestamp(datetime("2022-08-29T07:53:10.939000")) |

+---+

| 1661759590 |

+---+

Note

•

•

1.

nebula> CREATE TAG IF NOT EXISTS date1(p1 date, p2 time, p3 datetime);

2.

nebula> INSERT VERTEX date1(p1, p2, p3) VALUES "test1":(date("2021-03-17"), time("17:53:59"), datetime("2017-03-04T22:30:40.003000[Asia/Shanghai]"));

3.

nebula> MATCH (v:date1) RETURN v.date1.p1 == date("2021-03-17");

+----------------------------------+

| (v.date1.p1==date("2021-03-17")) |

+----------------------------------+

| true |

+----------------------------------+

4.

nebula> CREATE TAG INDEX IF NOT EXISTS date1_index ON date1(p1);

nebula> REBUILD TAG INDEX date1_index;

nebula> MATCH (v:date1) RETURN v.date1.p1;

+------------------+

| v.date1.p1.month |

+------------------+

| 3 |

+------------------+

5.

4.2.4 Date and time types

- 105/804 - 2023 Vesoft Inc.

Create a tag named school with the property of TIMESTAMP .

Insert a vertex named DUT with a found-time timestamp of "1988-03-01T08:00:00" .

Insert a vertex named dut and store time with now() or timestamp() functions.

You can also use WITH statement to set a specific date and time, or to perform calculations. For example:

nebula> MATCH (v:date1) \

WHERE v.date1.p3 < datetime("2023-01-01T00:00:00.000000") \

RETURN v.date1.p3;

+----------------------------+

| v.date1.p3 |

+----------------------------+

| 2017-03-04T14:30:40.003000 |

+----------------------------+

6.

nebula> CREATE TAG IF NOT EXISTS school(name string , found_time timestamp);

7.

Insert as a timestamp. The corresponding timestamp of 1988-03-01T08:00:00 is 573177600, or 573206400 UTC.

nebula> INSERT VERTEX school(name, found_time) VALUES "DUT":("DUT", 573206400);

Insert in the form of date and time.

nebula> INSERT VERTEX school(name, found_time) VALUES "DUT":("DUT", timestamp("1988-03-01T08:00:00"));

8.

Use now() function to store time

nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", now());

Use timestamp() function to store time

nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", timestamp());

nebula> WITH time({hour: 12, minute: 31, second: 14, millisecond:111, microsecond: 222}) AS d RETURN d;

+-----------------+

| d |

+-----------------+

| 12:31:14.111222 |

+-----------------+

nebula> WITH date({year: 1984, month: 10, day: 11}) AS x RETURN x + 1;

+------------+

| (x+1) |

+------------+

| 1984-10-12 |

+------------+

nebula> WITH date('1984-10-11') as x, duration({years: 12, days: 14, hours: 99, minutes: 12}) as d \

 RETURN x + d AS sum, x - d AS diff;

+------------+------------+

| sum | diff |

+------------+------------+

| 1996-10-29 | 1972-09-23 |

+------------+------------+

Last update: October 25, 2023

4.2.4 Date and time types

- 106/804 - 2023 Vesoft Inc.

4.2.5 NULL

You can set the properties for vertices or edges to NULL . Also, you can set the NOT NULL constraint to make sure that the property

values are NOT NULL . If not specified, the property is set to NULL by default.

Logical operations with NULL

Here is the truth table for AND , OR , XOR , and NOT .

OpenCypher compatibility

The comparisons and operations about NULL are different from openCypher. There may be changes later.

COMPARISONS WITH NULL

The comparison operations with NULL are incompatible with openCypher.

OPERATIONS AND RETURN WITH NULL

The NULL operations and RETURN with NULL are incompatible with openCypher.

Examples

USE NOT NULL

Create a tag named player . Specify the property name as NOT NULL .

Use SHOW to create tag statements. The property name is NOT NULL . The property age is NULL by default.

Insert the vertex Kobe . The property age can be NULL .

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

nebula> CREATE TAG IF NOT EXISTS player(name string NOT NULL, age int);

nebula> SHOW CREATE TAG player;

+-----------+-----------------------------------+

| Tag | Create Tag |

+-----------+-----------------------------------+

| "student" | "CREATE TAG `player` (|

| | `name` string NOT NULL, |

| | `age` int64 NULL |

| |) ttl_duration = 0, ttl_col = """ |

+-----------+-----------------------------------+

nebula> INSERT VERTEX player(name, age) VALUES "Kobe":("Kobe",null);

4.2.5 NULL

- 107/804 - 2023 Vesoft Inc.

USE NOT NULL AND SET THE DEFAULT

Create a tag named player . Specify the property age as NOT NULL . The default value is 18 .

Insert the vertex Kobe . Specify the property name only.

Query the vertex Kobe . The property age is 18 by default.

nebula> CREATE TAG IF NOT EXISTS player(name string, age int NOT NULL DEFAULT 18);

nebula> INSERT VERTEX player(name) VALUES "Kobe":("Kobe");

nebula> FETCH PROP ON player "Kobe" YIELD properties(vertex);

+--------------------------+

| properties(VERTEX) |

+--------------------------+

| {age: 18, name: "Kobe"} |

+--------------------------+

Last update: October 25, 2023

4.2.5 NULL

- 108/804 - 2023 Vesoft Inc.

4.2.6 Lists

The list is a composite data type. A list is a sequence of values. Individual elements in a list can be accessed by their positions.

A list starts with a left square bracket [and ends with a right square bracket] . A list contains zero, one, or more expressions.

List elements are separated from each other with commas (,). Whitespace around elements is ignored in the list, thus line

breaks, tab stops, and blanks can be used for formatting.

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

List operations

You can use the preset list function to operate the list, or use the index to filter the elements in the list.

INDEX SYNTAX

The index of nGQL supports queries from front to back, starting from 0. 0 means the first element, 1 means the second element,

and so on. It also supports queries from back to front, starting from -1. -1 means the last element, -2 means the penultimate

element, and so on.

[M]: represents the element whose index is M.

[M..N]: represents the elements whose indexes are greater or equal to M but smaller than N . Return empty when N is 0.

[M..]: represents the elements whose indexes are greater or equal to M .

[..N]: represents the elements whose indexes are smaller than N . Return empty when N is 0.

Return empty if the index is out of bounds, while return normally if the index is within the bound.

Return empty if M ≥ N .

When querying a single element, if M is null, return BAD_TYPE . When conducting a range query, if M or N is null, return null .

Examples

[M]

[M..N]

[M..]

[..N]

•

•

•

•

Note

•

•

•

The following query returns the list [1,2,3].

nebula> RETURN list[1, 2, 3] AS a;

+-----------+

| a |

+-----------+

| [1, 2, 3] |

+-----------+

The following query returns the element whose index is 3 in the list [1,2,3,4,5]. In a list, the index starts from 0, and thus the return element is 4.

nebula> RETURN range(1,5)[3];

+---------------+

| range(1,5)[3] |

+---------------+

| 4 |

+---------------+

The following query returns the element whose index is -2 in the list [1,2,3,4,5]. The index of the last element in a list is -1, and thus the return element is 4.

nebula> RETURN range(1,5)[-2];

+------------------+

| range(1,5)[-(2)] |

+------------------+

| 4 |

+------------------+

The following query returns the elements whose indexes are from 0 to 3 (not including 3) in the list [1,2,3,4,5].

nebula> RETURN range(1,5)[0..3];

4.2.6 Lists

- 109/804 - 2023 Vesoft Inc.

+------------------+

| range(1,5)[0..3] |

+------------------+

| [1, 2, 3] |

+------------------+

The following query returns the elements whose indexes are greater than 2 in the list [1,2,3,4,5].

nebula> RETURN range(1,5)[3..] AS a;

+--------+

| a |

+--------+

| [4, 5] |

+--------+

The following query returns the elements whose indexes are smaller than 3.

nebula> WITH list[1, 2, 3, 4, 5] AS a \

 RETURN a[..3] AS r;

+-----------+

| r |

+-----------+

| [1, 2, 3] |

+-----------+

The following query filters the elements whose indexes are greater than 2 in the list [1,2,3,4,5], calculate them respectively, and returns them.

nebula> RETURN [n IN range(1,5) WHERE n > 2 | n + 10] AS a;

+--------------+

| a |

+--------------+

| [13, 14, 15] |

+--------------+

The following query returns the elements from the first to the penultimate (inclusive) in the list [1, 2, 3].

nebula> YIELD list[1, 2, 3][0..-1] AS a;

+--------+

| a |

+--------+

| [1, 2] |

+--------+

The following query returns the elements from the first (exclusive) to the third backward in the list [1, 2, 3, 4, 5].

nebula> YIELD list[1, 2, 3, 4, 5][-3..-1] AS a;

+--------+

| a |

+--------+

| [3, 4] |

+--------+

The following query sets the variables and returns the elements whose indexes are 1 and 2.

nebula> $var = YIELD 1 AS f, 3 AS t; \

 YIELD list[1, 2, 3][$var.f..$var.t] AS a;

+--------+

| a |

+--------+

| [2, 3] |

+--------+

The following query returns empty because the index is out of bound. It will return normally when the index is within the bound.

nebula> RETURN list[1, 2, 3, 4, 5] [0..10] AS a;

+-----------------+

| a |

+-----------------+

| [1, 2, 3, 4, 5] |

+-----------------+

nebula> RETURN list[1, 2, 3] [-5..5] AS a;

+-----------+

| a |

+-----------+

| [1, 2, 3] |

+-----------+

The following query returns empty because there is a [0..0].

nebula> RETURN list[1, 2, 3, 4, 5] [0..0] AS a;

+----+

| a |

+----+

| [] |

+----+

The following query returns empty because of M ≥ N.

nebula> RETURN list[1, 2, 3, 4, 5] [3..1] AS a;

+----+

| a |

+----+

| [] |

+----+

When conduct a range query, if `M` or `N` is null, return `null`.

nebula> WITH list[1,2,3] AS a \

 RETURN a[0..null] as r;

+----------+

| r |

+----------+

| __NULL__ |

4.2.6 Lists

- 110/804 - 2023 Vesoft Inc.

OpenCypher compatibility

In openCypher, return null when querying a single out-of-bound element. However, in nGQL, return OUT_OF_RANGE when querying

a single out-of-bound element.

A composite data type (i.e., set, map, and list) CAN NOT be stored as properties for vertices or edges.

It is recommended to modify the graph modeling method. The composite data type should be modeled as an adjacent edge of a

vertex, rather than its property. Each adjacent edge can be dynamically added or deleted. The rank values of the adjacent

edges can be used for sequencing.

Patterns are not supported in the list. For example, [(src)-[]->(m) | m.name] .

+----------+

The following query calculates the elements in the list [1,2,3,4,5] respectively and returns them without the list head.

nebula> RETURN tail([n IN range(1, 5) | 2 * n - 10]) AS a;

+-----------------+

| a |

+-----------------+

| [-6, -4, -2, 0] |

+-----------------+

The following query takes the elements in the list [1,2,3] as true and return.

nebula> RETURN [n IN range(1, 3) WHERE true | n] AS r;

+-----------+

| r |

+-----------+

| [1, 2, 3] |

+-----------+

The following query returns the length of the list [1,2,3].

nebula> RETURN size(list[1,2,3]);

+-------------------+

| size(list[1,2,3]) |

+-------------------+

| 3 |

+-------------------+

The following query calculates the elements in the list [92,90] and runs a conditional judgment in a where clause.

nebula> GO FROM "player100" OVER follow WHERE properties(edge).degree NOT IN [x IN [92, 90] | x + $$.player.age] \

 YIELD dst(edge) AS id, properties(edge).degree AS degree;

+-------------+--------+

| id | degree |

+-------------+--------+

| "player101" | 95 |

| "player102" | 90 |

+-------------+--------+

The following query takes the query result of the MATCH statement as the elements in a list. Then it calculates and returns them.

nebula> MATCH p = (n:player{name:"Tim Duncan"})-[:follow]->(m) \

 RETURN [n IN nodes(p) | n.player.age + 100] AS r;

+------------+

| r |

+------------+

| [142, 136] |

| [142, 141] |

+------------+

•

nebula> RETURN range(0,5)[-12];

+-------------------+

| range(0,5)[-(12)] |

+-------------------+

| OUT_OF_RANGE |

+-------------------+

•

•

Last update: October 25, 2023

4.2.6 Lists

- 111/804 - 2023 Vesoft Inc.

4.2.7 Sets

The set is a composite data type. A set is a set of values. Unlike a List, values in a set are unordered and each value must be

unique.

A set starts with a left curly bracket { and ends with a right curly bracket } . A set contains zero, one, or more expressions. Set

elements are separated from each other with commas (,). Whitespace around elements is ignored in the set, thus line breaks,

tab stops, and blanks can be used for formatting.

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

A set is not a data type in openCypher, but in nGQL, users can use the set.

Examples

•

•

The following query returns the set {1,2,3}.

nebula> RETURN set{1, 2, 3} AS a;

+-----------+

| a |

+-----------+

| {3, 2, 1} |

+-----------+

The following query returns the set {1,2}, Because the set does not allow repeating elements, and the order is unordered.

nebula> RETURN set{1, 2, 1} AS a;

+--------+

| a |

+--------+

| {2, 1} |

+--------+

The following query checks whether the set has the specified element 1.

nebula> RETURN 1 IN set{1, 2} AS a;

+------+

| a |

+------+

| true |

+------+

The following query counts the number of elements in the set.

nebula> YIELD size(set{1, 2, 1}) AS a;

+---+

| a |

+---+

| 2 |

+---+

The following query returns a set of target vertex property values.

nebula> GO FROM "player100" OVER follow \

 YIELD set{properties($$).name,properties($$).age} as a;

+-----------------------+

| a |

+-----------------------+

| {36, "Tony Parker"} |

| {41, "Manu Ginobili"} |

+-----------------------+

Last update: October 25, 2023

4.2.7 Sets

- 112/804 - 2023 Vesoft Inc.

4.2.8 Maps

The map is a composite data type. Maps are unordered collections of key-value pairs. In maps, the key is a string. The value can

have any data type. You can get the map element by using map['key'] .

A map starts with a left curly bracket { and ends with a right curly bracket } . A map contains zero, one, or more key-value

pairs. Map elements are separated from each other with commas (,). Whitespace around elements is ignored in the map, thus

line breaks, tab stops, and blanks can be used for formatting.

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

Map projection is not supported.

Examples

•

•

The following query returns the simple map.

nebula> YIELD map{key1: 'Value1', Key2: 'Value2'} as a;

+----------------------------------+

| a |

+----------------------------------+

| {Key2: "Value2", key1: "Value1"} |

+----------------------------------+

The following query returns the list type map.

nebula> YIELD map{listKey: [{inner: 'Map1'}, {inner: 'Map2'}]} as a;

+---+

| a |

+---+

| {listKey: [{inner: "Map1"}, {inner: "Map2"}]} |

+---+

The following query returns the hybrid type map.

nebula> RETURN map{a: LIST[1,2], b: SET{1,2,1}, c: "hee"} as a;

+----------------------------------+

| a |

+----------------------------------+

| {a: [1, 2], b: {2, 1}, c: "hee"} |

+----------------------------------+

The following query returns the specified element in a map.

nebula> RETURN map{a: LIST[1,2], b: SET{1,2,1}, c: "hee"}["b"] AS b;

+--------+

| b |

+--------+

| {2, 1} |

+--------+

The following query checks whether the map has the specified key, not support checks whether the map has the specified value yet.

nebula> RETURN "a" IN MAP{a:1, b:2} AS a;

+------+

| a |

+------+

| true |

+------+

Last update: October 25, 2023

4.2.8 Maps

- 113/804 - 2023 Vesoft Inc.

4.2.9 Type Conversion/Type coercions

Converting an expression of a given type to another type is known as type conversion.

NebulaGraph supports converting expressions explicit to other types. For details, see Type conversion functions.

Examples

nebula> UNWIND [true, false, 'true', 'false', NULL] AS b \

 RETURN toBoolean(b) AS b;

+----------+

| b |

+----------+

| true |

| false |

| true |

| false |

| __NULL__ |

+----------+

nebula> RETURN toFloat(1), toFloat('1.3'), toFloat('1e3'), toFloat('not a number');

+------------+----------------+----------------+-------------------------+

| toFloat(1) | toFloat("1.3") | toFloat("1e3") | toFloat("not a number") |

+------------+----------------+----------------+-------------------------+

| 1.0 | 1.3 | 1000.0 | __NULL__ |

+------------+----------------+----------------+-------------------------+

Last update: October 25, 2023

4.2.9 Type Conversion/Type coercions

- 114/804 - 2023 Vesoft Inc.

4.2.10 Geography

Geography is a data type composed of latitude and longitude that represents geospatial information. NebulaGraph currently

supports Point, LineString, and Polygon in Simple Features and some functions in SQL-MM 3, such as part of the core geo

parsing, construction, formatting, conversion, predicates, and dimensions.

Type description

A point is the basic data type of geography, which is determined by a latitude and a longitude. For example, "POINT(3 8)" means

that the longitude is 3° and the latitude is 8° . Multiple points can form a linestring or a polygon.

You cannot directly insert geographic data of the following types, such as INSERT VERTEX any_shape(geo) VALUES "1":("POINT(1 1)") . Instead, you

need to use a geography function to specify the data type before inserting, such as INSERT VERTEX any_shape(geo) VALUES "1":

(ST_GeogFromText("POINT(1 1)")); .

Examples

Note

Shape Example Description

Point "POINT(3 8)" Specifies the data type as a point.

LineString "LINESTRING(3 8, 4.7 73.23)" Specifies the data type as a linestring.

Polygon "POLYGON((0 1, 1 2, 2 3, 0 1))" Specifies the data type as a polygon.

//Create a Tag to allow storing any geography data type.

nebula> CREATE TAG IF NOT EXISTS any_shape(geo geography);

//Create a Tag to allow storing a point only.

nebula> CREATE TAG IF NOT EXISTS only_point(geo geography(point));

//Create a Tag to allow storing a linestring only.

nebula> CREATE TAG IF NOT EXISTS only_linestring(geo geography(linestring));

//Create a Tag to allow storing a polygon only.

nebula> CREATE TAG IF NOT EXISTS only_polygon(geo geography(polygon));

//Create an Edge type to allow storing any geography data type.

nebula> CREATE EDGE IF NOT EXISTS any_shape_edge(geo geography);

//Create a vertex to store the geography of a polygon.

nebula> INSERT VERTEX any_shape(geo) VALUES "103":(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

//Create an edge to store the geography of a polygon.

nebula> INSERT EDGE any_shape_edge(geo) VALUES "201"->"302":(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

//Query the geography of Vertex 103.

nebula> FETCH PROP ON any_shape "103" YIELD ST_ASText(any_shape.geo);

+---------------------------------+

| ST_ASText(any_shape.geo) |

+---------------------------------+

| "POLYGON((0 1, 1 2, 2 3, 0 1))" |

+---------------------------------+

//Query the geography of the edge which traverses from Vertex 201 to Vertex 302.

nebula> FETCH PROP ON any_shape_edge "201"->"302" YIELD ST_ASText(any_shape_edge.geo);

+---------------------------------+

| ST_ASText(any_shape_edge.geo) |

+---------------------------------+

| "POLYGON((0 1, 1 2, 2 3, 0 1))" |

+---------------------------------+

//Create an index for the geography of the Tag any_shape and run LOOKUP.

nebula> CREATE TAG INDEX IF NOT EXISTS any_shape_geo_index ON any_shape(geo);

nebula> REBUILD TAG INDEX any_shape_geo_index;

nebula> LOOKUP ON any_shape YIELD ST_ASText(any_shape.geo);

+---------------------------------+

| ST_ASText(any_shape.geo) |

+---------------------------------+

| "POLYGON((0 1, 1 2, 2 3, 0 1))" |

+---------------------------------+

4.2.10 Geography

- 115/804 - 2023 Vesoft Inc.

https://en.wikipedia.org/wiki/Simple_Features
https://www.techrepublic.com/index.php/resource-library/whitepapers/sql-mm-spatial-the-standard-to-manage-spatial-data-in-relational-database-systems/

When creating an index for geography properties, you can specify the parameters for the index.

Specifying the above two parameters does not affect the Point type of property. The s2_max_level value of the Point type is forced to be

30 .

For more index information, see Index overview.

Parameter Default

value

Description

s2_max_level 30 The maximum level of S2 cell used in the covering. Allowed values: 1 ~ 30 . Setting it to less

than the default means that NebulaGraph will be forced to generate coverings using larger

cells.

s2_max_cells 8 The maximum number of S2 cells used in the covering. Provides a limit on how much work

is done exploring the possible coverings. Allowed values: 1 ~ 30 . You may want to use

higher values for odd-shaped regions such as skinny rectangles.

Note

nebula> CREATE TAG INDEX IF NOT EXISTS any_shape_geo_index ON any_shape(geo) with (s2_max_level=30, s2_max_cells=8);

Last update: October 25, 2023

4.2.10 Geography

- 116/804 - 2023 Vesoft Inc.

4.3 Operators

4.3.1 Comparison operators

NebulaGraph supports the following comparison operators.

The result of the comparison operation is true or false .

Comparability between values of different types is often undefined. The result could be NULL or others.

EMPTY is currently used only for checking, and does not support functions or operations such as GROUP BY , count() , sum() , max() , hash() ,

collect() , + or * .

OpenCypher compatibility

openCypher does not have EMPTY . Thus EMPTY is not supported in MATCH statements.

Examples

==

String comparisons are case-sensitive. Values of different types are not equal.

The equal operator is == in nGQL, while in openCypher it is = .

Name Description

== Equal operator

!= , <> Not equal operator

> Greater than operator

>= Greater than or equal operator

< Less than operator

<= Less than or equal operator

IS NULL NULL check

IS NOT NULL Not NULL check

IS EMPTY EMPTY check

IS NOT EMPTY Not EMPTY check

Note

•

•

Note

nebula> RETURN 'A' == 'a', toUpper('A') == toUpper('a'), toLower('A') == toLower('a');

+------------+------------------------------+------------------------------+

| ("A"=="a") | (toUpper("A")==toUpper("a")) | (toLower("A")==toLower("a")) |

+------------+------------------------------+------------------------------+

| false | true | true |

+------------+------------------------------+------------------------------+

nebula> RETURN '2' == 2, toInteger('2') == 2;

+----------+---------------------+

| ("2"==2) | (toInteger("2")==2) |

+----------+---------------------+

4.3 Operators

- 117/804 - 2023 Vesoft Inc.

>

>=

<

<=

!=

IS [NOT] NULL

| false | true |

+----------+---------------------+

nebula> RETURN 3 > 2;

+-------+

| (3>2) |

+-------+

| true |

+-------+

nebula> WITH 4 AS one, 3 AS two \

 RETURN one > two AS result;

+--------+

| result |

+--------+

| true |

+--------+

nebula> RETURN 2 >= "2", 2 >= 2;

+----------+--------+

| (2>="2") | (2>=2) |

+----------+--------+

| __NULL__ | true |

+----------+--------+

nebula> YIELD 2.0 < 1.9;

+---------+

| (2<1.9) |

+---------+

| false |

+---------+

nebula> YIELD 0.11 <= 0.11;

+--------------+

| (0.11<=0.11) |

+--------------+

| true |

+--------------+

nebula> YIELD 1 != '1';

+----------+

| (1!="1") |

+----------+

| true |

+----------+

nebula> RETURN null IS NULL AS value1, null == null AS value2, null != null AS value3;

+--------+----------+----------+

| value1 | value2 | value3 |

+--------+----------+----------+

| true | __NULL__ | __NULL__ |

+--------+----------+----------+

nebula> RETURN length(NULL), size(NULL), count(NULL), NULL IS NULL, NULL IS NOT NULL, sin(NULL), NULL + NULL, [1, NULL] IS NULL;

+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

| length(NULL) | size(NULL) | count(NULL) | NULL IS NULL | NULL IS NOT NULL | sin(NULL) | (NULL+NULL) | [1,NULL] IS NULL |

+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

| __NULL__ | __NULL__ | 0 | true | false | __NULL__ | __NULL__ | false |

+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

nebula> WITH {name: null} AS `map` \

 RETURN `map`.name IS NOT NULL;

+----------------------+

| map.name IS NOT NULL |

+----------------------+

| false |

+----------------------+

nebula> WITH {name: 'Mats', name2: 'Pontus'} AS map1, \

 {name: null} AS map2, {notName: 0, notName2: null } AS map3 \

 RETURN map1.name IS NULL, map2.name IS NOT NULL, map3.name IS NULL;

+-------------------+-----------------------+-------------------+

| map1.name IS NULL | map2.name IS NOT NULL | map3.name IS NULL |

4.3.1 Comparison operators

- 118/804 - 2023 Vesoft Inc.

IS [NOT] EMPTY

+-------------------+-----------------------+-------------------+

| false | false | true |

+-------------------+-----------------------+-------------------+

nebula> MATCH (n:player) \

 RETURN n.player.age IS NULL, n.player.name IS NOT NULL, n.player.empty IS NULL;

+----------------------+---------------------------+------------------------+

| n.player.age IS NULL | n.player.name IS NOT NULL | n.player.empty IS NULL |

+----------------------+---------------------------+------------------------+

| false | true | true |

| false | true | true |

...

nebula> RETURN null IS EMPTY;

+---------------+

| NULL IS EMPTY |

+---------------+

| false |

+---------------+

nebula> RETURN "a" IS NOT EMPTY;

+------------------+

| "a" IS NOT EMPTY |

+------------------+

| true |

+------------------+

nebula> GO FROM "player100" OVER * WHERE properties($$).name IS NOT EMPTY YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "team204" |

| "player101" |

| "player125" |

+-------------+

Last update: October 25, 2023

4.3.1 Comparison operators

- 119/804 - 2023 Vesoft Inc.

4.3.2 Boolean operators

NebulaGraph supports the following boolean operators.

For the precedence of the operators, refer to Operator Precedence.

For the logical operations with NULL , refer to NULL.

Legacy version compatibility

Non-zero numbers cannot be converted to boolean values.

Name Description

AND Logical AND

NOT Logical NOT

OR Logical OR

XOR Logical XOR

•

Last update: October 25, 2023

4.3.2 Boolean operators

- 120/804 - 2023 Vesoft Inc.

4.3.3 Pipe operators

Multiple queries can be combined using pipe operators in nGQL.

OpenCypher compatibility

Pipe operators apply to native nGQL only.

Syntax

One major difference between nGQL and SQL is how sub-queries are composed.

In SQL, sub-queries are nested in the query statements.

In nGQL, the shell style PIPE (|) is introduced into the sub-queries.

Examples

Users must define aliases in the YIELD clause for the reference operator $- to use, just like $-.dstid in the preceding example.

Performance tips

In NebulaGraph, pipes will affect the performance. Take A | B as an example, the effects are as follows:

Pipe operators operate synchronously. That is, the data can enter the pipe clause as a whole after the execution of clause A before

the pipe operator is completed.

If A sends a large amount of data to | , the entire query request may be very slow. You can try to split this statement.

Send A from the application,

Split the return results on the application,

Send to multiple graphd processes concurrently,

Every graphd process executes part of B.

This is usually much faster than executing a complete A | B with a single graphd process.

•

•

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS dstid, properties($$).name AS Name | \

 GO FROM $-.dstid OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player102" |

| "player125" |

| "player100" |

+-------------+

1.

2.

a.

b.

c.

d.

Last update: January 5, 2024

4.3.3 Pipe operators

- 121/804 - 2023 Vesoft Inc.

4.3.4 Set operators

This topic will describe the set operators, including UNION , UNION ALL , INTERSECT , and MINUS . To combine multiple queries, use these

set operators.

All set operators have equal precedence. If a nGQL statement contains multiple set operators, NebulaGraph will evaluate them

from left to right unless parentheses explicitly specify another order.

The names and order of the variables defined in the query statements before and after the set operator must be consistent. For

example, the names and order of a,b,c in RETURN a,b,c UNION RETURN a,b,c need to be consistent.

UNION, UNION DISTINCT, and UNION ALL

Operator UNION DISTINCT (or by short UNION) returns the union of two sets A and B without duplicated elements.

Operator UNION ALL returns the union of two sets A and B with duplicated elements.

The <left> and <right> must have the same number of columns and data types. Different data types are converted according to

the Type Conversion.

EXAMPLES

Caution

<left> UNION [DISTINCT | ALL] <right> [UNION [DISTINCT | ALL] <right> ...]

•

•

•

The following statement returns the union of two query results without duplicated elements.

nebula> GO FROM "player102" OVER follow YIELD dst(edge) \

 UNION \

 GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player101" |

| "player125" |

+-------------+

nebula> MATCH (v:player) \

 WITH v.player.name AS v \

 RETURN n ORDER BY n LIMIT 3 \

 UNION \

 UNWIND ["Tony Parker", "Ben Simmons"] AS n \

 RETURN n;

+---------------------+

| n |

+---------------------+

| "Amar'e Stoudemire" |

| "Aron Baynes" |

| "Ben Simmons" |

| "Tony Parker" |

+---------------------+

The following statement returns the union of two query results with duplicated elements.

nebula> GO FROM "player102" OVER follow YIELD dst(edge) \

 UNION ALL \

 GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player101" |

| "player101" |

| "player125" |

+-------------+

nebula> MATCH (v:player) \

 WITH v.player.name AS n \

 RETURN n ORDER BY n LIMIT 3 \

 UNION ALL \

 UNWIND ["Tony Parker", "Ben Simmons"] AS n \

 RETURN n;

+---------------------+

| n |

+---------------------+

| "Amar'e Stoudemire" |

4.3.4 Set operators

- 122/804 - 2023 Vesoft Inc.

INTERSECT

Operator INTERSECT returns the intersection of two sets A and B (denoted by A ⋂ B).

Similar to UNION , the left and right must have the same number of columns and data types. Different data types are converted

according to the Type Conversion.

EXAMPLE

MINUS

Operator MINUS returns the subtraction (or difference) of two sets A and B (denoted by A-B). Always pay attention to the order of

left and right . The set A-B consists of elements that are in A but not in B.

EXAMPLE

| "Aron Baynes" |

| "Ben Simmons" |

| "Tony Parker" |

| "Ben Simmons" |

+---------------------+

UNION can also work with the YIELD statement. The DISTINCT keyword will check duplication by all the columns for every line, and remove duplicated lines if every column is the same.

nebula> GO FROM "player102" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age \

 UNION /* DISTINCT */ \

 GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age;

+-------------+--------+-----+

| id | Degree | Age |

+-------------+--------+-----+

| "player100" | 75 | 42 |

| "player101" | 75 | 36 |

| "player101" | 95 | 36 |

| "player125" | 95 | 41 |

+-------------+--------+-----+

<left> INTERSECT <right>

•

•

The following statement returns the intersection of two query results.

nebula> GO FROM "player102" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age \

 INTERSECT \

 GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age;

+----+--------+-----+

| id | Degree | Age |

+----+--------+-----+

+----+--------+-----+

nebula> MATCH (v:player)-[e:follow]->(v2) \

 WHERE id(v) == "player102" \

 RETURN id(v2) As id, e.degree As Degree, v2.player.age AS Age \

 INTERSECT \

 MATCH (v:player)-[e:follow]->(v2) \

 WHERE id(v) == "player100" \

 RETURN id(v2) As id, e.degree As Degree, v2.player.age AS Age;

+----+--------+-----+

| id | Degree | Age |

+----+--------+-----+

+----+--------+-----+

nebula> UNWIND [1,2] AS a RETURN a \

 INTERSECT \

 UNWIND [1,2,3,4] AS a \

 RETURN a;

+---+

| a |

+---+

| 1 |

| 2 |

+---+

<left> MINUS <right>

The following statement returns the elements in the first query result but not in the second query result.

nebula> GO FROM "player100" OVER follow YIELD dst(edge) \

 MINUS \

 GO FROM "player102" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

4.3.4 Set operators

- 123/804 - 2023 Vesoft Inc.

Precedence of the set operators and pipe operators

Please note that when a query contains a pipe | and a set operator, the pipe takes precedence. Refer to Pipe for details. The

query GO FROM 1 UNION GO FROM 2 | GO FROM 3 is the same as the query GO FROM 1 UNION (GO FROM 2 | GO FROM 3) .

EXAMPLES

The above query executes the statements in the red bar first and then executes the statement in the green box.

The parentheses can change the execution priority. For example:

+-------------+

| "player125" |

+-------------+

nebula> GO FROM "player102" OVER follow YIELD dst(edge) AS id\

 MINUS \

 GO FROM "player100" OVER follow YIELD dst(edge) AS id;

+-------------+

| id |

+-------------+

| "player100" |

+-------------+

nebula> MATCH (v:player)-[e:follow]->(v2) \

 WHERE id(v) =="player102" \

 RETURN id(v2) AS id\

 MINUS \

 MATCH (v:player)-[e:follow]->(v2) \

 WHERE id(v) =="player100" \

 RETURN id(v2) AS id;

+-------------+

| id |

+-------------+

| "player100" |

+-------------+

nebula> UNWIND [1,2,3] AS a RETURN a \

 MINUS \

 WITH 4 AS a \

 RETURN a;

+---+

| a |

+---+

| 1 |

| 2 |

| 3 |

+---+

nebula> GO FROM "player102" OVER follow \

 YIELD dst(edge) AS play_dst \

 UNION \

 GO FROM "team200" OVER serve REVERSELY \

 YIELD src(edge) AS play_src \

 | GO FROM $-.play_src OVER follow YIELD dst(edge) AS play_dst;

+-------------+

| play_dst |

+-------------+

| "player100" |

| "player101" |

| "player117" |

| "player105" |

+-------------+

nebula> (GO FROM "player102" OVER follow \

 YIELD dst(edge) AS play_dst \

 UNION \

 GO FROM "team200" OVER serve REVERSELY \

 YIELD src(edge) AS play_dst) \

 | GO FROM $-.play_dst OVER follow YIELD dst(edge) AS play_dst;

4.3.4 Set operators

- 124/804 - 2023 Vesoft Inc.

https://user-images.githubusercontent.com/42762957/97955863-3a213000-1de2-11eb-8de3-2c78da30747c.png
https://user-images.githubusercontent.com/42762957/97955863-3a213000-1de2-11eb-8de3-2c78da30747c.png

In the above query, the statements within the parentheses take precedence. That is, the UNION operation will be executed first,

and its output will be executed as the input of the next operation with pipes.

Last update: October 25, 2023

4.3.4 Set operators

- 125/804 - 2023 Vesoft Inc.

4.3.5 String operators

You can use the following string operators for concatenating, querying, and matching.

All the string searchings or matchings are case-sensitive.

Examples

+

CONTAINS

The CONTAINS operator requires string types on both left and right sides.

(NOT) IN

Name Description

+ Concatenates strings.

CONTAINS Performs searchings in strings.

(NOT) IN Checks whether a value is within a set of values.

(NOT) STARTS WITH Performs matchings at the beginning of a string.

(NOT) ENDS WITH Performs matchings at the end of a string.

Regular expressions Perform string matchings using regular expressions.

Note

nebula> RETURN 'a' + 'b';

+-----------+

| ("a"+"b") |

+-----------+

| "ab" |

+-----------+

nebula> UNWIND 'a' AS a UNWIND 'b' AS b RETURN a + b;

+-------+

| (a+b) |

+-------+

| "ab" |

+-------+

nebula> MATCH (s:player)-[e:serve]->(t:team) WHERE id(s) == "player101" \

 AND t.team.name CONTAINS "ets" RETURN s.player.name, e.start_year, e.end_year, t.team.name;

+---------------+--------------+------------+-------------+

| s.player.name | e.start_year | e.end_year | t.team.name |

+---------------+--------------+------------+-------------+

| "Tony Parker" | 2018 | 2019 | "Hornets" |

+---------------+--------------+------------+-------------+

nebula> GO FROM "player101" OVER serve WHERE (STRING)properties(edge).start_year CONTAINS "19" AND \

 properties($^).name CONTAINS "ny" \

 YIELD properties($^).name, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+---------------------+-----------------------------+---------------------------+---------------------+

| properties($^).name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+---------------------+-----------------------------+---------------------------+---------------------+

| "Tony Parker" | 1999 | 2018 | "Spurs" |

+---------------------+-----------------------------+---------------------------+---------------------+

nebula> GO FROM "player101" OVER serve WHERE !(properties($$).name CONTAINS "ets") \

 YIELD properties($^).name, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+---------------------+-----------------------------+---------------------------+---------------------+

| properties($^).name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+---------------------+-----------------------------+---------------------------+---------------------+

| "Tony Parker" | 1999 | 2018 | "Spurs" |

+---------------------+-----------------------------+---------------------------+---------------------+

nebula> RETURN 1 IN [1,2,3], "Yao" NOT IN ["Yi", "Tim", "Kobe"], NULL IN ["Yi", "Tim", "Kobe"];

+----------------+------------------------------------+-------------------------------+

| (1 IN [1,2,3]) | ("Yao" NOT IN ["Yi","Tim","Kobe"]) | (NULL IN ["Yi","Tim","Kobe"]) |

+----------------+------------------------------------+-------------------------------+

4.3.5 String operators

- 126/804 - 2023 Vesoft Inc.

(NOT) STARTS WITH

(NOT) ENDS WITH

REGULAR EXPRESSIONS

Regular expressions cannot work with native nGQL statements (GO , FETCH , LOOKUP , etc.). Use it in openCypher only (MATCH , WHERE , etc.).

NebulaGraph supports filtering by using regular expressions. The regular expression syntax is inherited from std::regex . You can

match on regular expressions by using =~ 'regexp' . For example:

| true | true | __NULL__ |

+----------------+------------------------------------+-------------------------------+

nebula> RETURN 'apple' STARTS WITH 'app', 'apple' STARTS WITH 'a', 'apple' STARTS WITH toUpper('a');

+-----------------------------+---------------------------+------------------------------------+

| ("apple" STARTS WITH "app") | ("apple" STARTS WITH "a") | ("apple" STARTS WITH toUpper("a")) |

+-----------------------------+---------------------------+------------------------------------+

| true | true | false |

+-----------------------------+---------------------------+------------------------------------+

nebula> RETURN 'apple' STARTS WITH 'b','apple' NOT STARTS WITH 'app';

+---------------------------+---------------------------------+

| ("apple" STARTS WITH "b") | ("apple" NOT STARTS WITH "app") |

+---------------------------+---------------------------------+

| false | false |

+---------------------------+---------------------------------+

nebula> RETURN 'apple' ENDS WITH 'app', 'apple' ENDS WITH 'e', 'apple' ENDS WITH 'E', 'apple' ENDS WITH 'b';

+---------------------------+-------------------------+-------------------------+-------------------------+

| ("apple" ENDS WITH "app") | ("apple" ENDS WITH "e") | ("apple" ENDS WITH "E") | ("apple" ENDS WITH "b") |

+---------------------------+-------------------------+-------------------------+-------------------------+

| false | true | false | false |

+---------------------------+-------------------------+-------------------------+-------------------------+

Note

nebula> RETURN "384748.39" =~ "\\d+(\\.\\d{2})?";

+--------------------------------+

| ("384748.39"=~"\d+(\.\d{2})?") |

+--------------------------------+

| true |

+--------------------------------+

nebula> MATCH (v:player) WHERE v.player.name =~ 'Tony.*' RETURN v.player.name;

+---------------+

| v.player.name |

+---------------+

| "Tony Parker" |

+---------------+

Last update: October 25, 2023

4.3.5 String operators

- 127/804 - 2023 Vesoft Inc.

4.3.6 List operators

NebulaGraph supports the following list operators:

Examples

List operator Description

+ Concatenates lists.

IN Checks if an element exists in a list.

[] Accesses an element(s) in a list using the index operator.

nebula> YIELD [1,2,3,4,5]+[6,7] AS myList;

+-----------------------+

| myList |

+-----------------------+

| [1, 2, 3, 4, 5, 6, 7] |

+-----------------------+

nebula> RETURN size([NULL, 1, 2]);

+------------------+

| size([NULL,1,2]) |

+------------------+

| 3 |

+------------------+

nebula> RETURN NULL IN [NULL, 1];

+--------------------+

| (NULL IN [NULL,1]) |

+--------------------+

| __NULL__ |

+--------------------+

nebula> WITH [2, 3, 4, 5] AS numberlist \

 UNWIND numberlist AS number \

 WITH number \

 WHERE number IN [2, 3, 8] \

 RETURN number;

+--------+

| number |

+--------+

| 2 |

| 3 |

+--------+

nebula> WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names RETURN names[1] AS result;

+--------+

| result |

+--------+

| "John" |

+--------+

Last update: October 25, 2023

4.3.6 List operators

- 128/804 - 2023 Vesoft Inc.

4.3.7 Arithmetic operators

NebulaGraph supports the following arithmetic operators.

Examples

Name Description

+ Addition operator

- Minus operator

* Multiplication operator

/ Division operator

% Modulo operator

- Changes the sign of the argument

nebula> RETURN 1+2 AS result;

+--------+

| result |

+--------+

| 3 |

+--------+

nebula> RETURN -10+5 AS result;

+--------+

| result |

+--------+

| -5 |

+--------+

nebula> RETURN (3*8)%5 AS result;

+--------+

| result |

+--------+

| 4 |

+--------+

Last update: October 25, 2023

4.3.7 Arithmetic operators

- 129/804 - 2023 Vesoft Inc.

4.3.8 Operator precedence

The following list shows the precedence of nGQL operators in descending order. Operators that are shown together on a line

have the same precedence.

- (negative number)

! , NOT

* , / , %

- , +

== , >= , > , <= , < , <> , !=

AND

OR , XOR

= (assignment)

For operators that occur at the same precedence level within an expression, evaluation proceeds left to right, with the exception

that assignments evaluate right to left.

The precedence of operators determines the order of evaluation of terms in an expression. To modify this order and group terms

explicitly, use parentheses.

Examples

OpenCypher compatibility

In openCypher, comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z in openCypher.

But in nGQL, x < y <= z is equivalent to (x < y) <= z . The result of (x < y) is a boolean. Compare it with an integer z , and you will

get the final result NULL .

•

•

•

•

•

•

•

•

nebula> RETURN 2+3*5;

+-----------+

| (2+(3*5)) |

+-----------+

| 17 |

+-----------+

nebula> RETURN (2+3)*5;

+-----------+

| ((2+3)*5) |

+-----------+

| 25 |

+-----------+

Last update: October 25, 2023

4.3.8 Operator precedence

- 130/804 - 2023 Vesoft Inc.

4.4 Functions and expressions

4.4.1 Built-in math functions

This topic describes the built-in math functions supported by NebulaGraph.

abs()

abs() returns the absolute value of the argument.

Syntax: abs(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

floor()

floor() returns the largest integer value smaller than or equal to the argument.(Rounds down)

Syntax: floor(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

ceil()

ceil() returns the smallest integer greater than or equal to the argument.(Rounds up)

Syntax: ceil(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

•

•

nebula> RETURN abs(-10);

+------------+

| abs(-(10)) |

+------------+

| 10 |

+------------+

nebula> RETURN abs(5-6);

+------------+

| abs((5-6)) |

+------------+

| 1 |

+------------+

•

•

nebula> RETURN floor(9.9);

+------------+

| floor(9.9) |

+------------+

| 9.0 |

+------------+

•

•

nebula> RETURN ceil(9.1);

+-----------+

| ceil(9.1) |

+-----------+

4.4 Functions and expressions

- 131/804 - 2023 Vesoft Inc.

round()

round() returns the rounded value of the specified number. Pay attention to the floating-point precision when using this function.

Syntax: round(<expression>, <digit>)

expression : An expression of which the result type is double.

digit : Decimal digits. If digit is less than 0, round at the left of the decimal point.

Result type: Double

Example:

sqrt()

sqrt() returns the square root of the argument.

Syntax: sqrt(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

cbrt()

cbrt() returns the cubic root of the argument.

Syntax: cbrt(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

| 10.0 |

+-----------+

•

•

•

nebula> RETURN round(314.15926, 2);

+--------------------+

| round(314.15926,2) |

+--------------------+

| 314.16 |

+--------------------+

nebula> RETURN round(314.15926, -1);

+-----------------------+

| round(314.15926,-(1)) |

+-----------------------+

| 310.0 |

+-----------------------+

•

•

nebula> RETURN sqrt(9);

+---------+

| sqrt(9) |

+---------+

| 3.0 |

+---------+

•

•

nebula> RETURN cbrt(8);

+---------+

| cbrt(8) |

+---------+

| 2.0 |

+---------+

4.4.1 Built-in math functions

- 132/804 - 2023 Vesoft Inc.

hypot()

hypot() returns the hypotenuse of a right-angled triangle.

Syntax: hypot(<expression_x>,<expression_y>)

expression_x , expression_y : An expression of which the result type is double. They represent the side lengths x and y of a right

triangle.

Result type: Double

Example:

pow()

pow() returns the result of x
y
.

Syntax: pow(<expression_x>,<expression_y>,)

expression_x : An expression of which the result type is double. It represents the base x .

expression_y : An expression of which the result type is double. It represents the exponential y .

Result type: Double

Example:

exp()

exp() returns the result of e
x
.

Syntax: exp(<expression>)

expression : An expression of which the result type is double. It represents the exponential x .

Result type: Double

Example:

exp2()

exp2() returns the result of 2
x
.

Syntax: exp2(<expression>)

expression : An expression of which the result type is double. It represents the exponential x .

Result type: Double

•

•

nebula> RETURN hypot(3,2*2);

+----------------+

| hypot(3,(2*2)) |

+----------------+

| 5.0 |

+----------------+

•

•

•

nebula> RETURN pow(3,3);

+----------+

| pow(3,3) |

+----------+

| 27 |

+----------+

•

•

nebula> RETURN exp(2);

+------------------+

| exp(2) |

+------------------+

| 7.38905609893065 |

+------------------+

•

•

4.4.1 Built-in math functions

- 133/804 - 2023 Vesoft Inc.

Example:

log()

log() returns the base-e logarithm of the argument. (\(log_{e}{N}\))

Syntax: log(<expression>)

expression : An expression of which the result type is double. It represents the antilogarithm N .

Result type: Double

Example:

log2()

log2() returns the base-2 logarithm of the argument. (\(log_{2}{N}\))

Syntax: log2(<expression>)

expression : An expression of which the result type is double. It represents the antilogarithm N .

Result type: Double

Example:

log10()

log10() returns the base-10 logarithm of the argument. (\(log_{10}{N}\))

Syntax: log10(<expression>)

expression : An expression of which the result type is double. It represents the antilogarithm N .

Result type: Double

Example:

sin()

sin() returns the sine of the argument. Users can convert angles to radians using the function radians() .

nebula> RETURN exp2(3);

+---------+

| exp2(3) |

+---------+

| 8.0 |

+---------+

•

•

nebula> RETURN log(8);

+--------------------+

| log(8) |

+--------------------+

| 2.0794415416798357 |

+--------------------+

•

•

nebula> RETURN log2(8);

+---------+

| log2(8) |

+---------+

| 3.0 |

+---------+

•

•

nebula> RETURN log10(100);

+------------+

| log10(100) |

+------------+

| 2.0 |

+------------+

4.4.1 Built-in math functions

- 134/804 - 2023 Vesoft Inc.

Syntax: sin(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

asin()

asin() returns the inverse sine of the argument. Users can convert angles to radians using the function radians() .

Syntax: asin(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

cos()

cos() returns the cosine of the argument. Users can convert angles to radians using the function radians() .

Syntax: cos(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

acos()

acos() returns the inverse cosine of the argument. Users can convert angles to radians using the function radians() .

Syntax: acos(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

•

•

nebula> RETURN sin(3);

+--------------------+

| sin(3) |

+--------------------+

| 0.1411200080598672 |

+--------------------+

•

•

nebula> RETURN asin(0.5);

+--------------------+

| asin(0.5) |

+--------------------+

| 0.5235987755982989 |

+--------------------+

•

•

nebula> RETURN cos(0.5);

+--------------------+

| cos(0.5) |

+--------------------+

| 0.8775825618903728 |

+--------------------+

•

•

nebula> RETURN acos(0.5);

+--------------------+

| acos(0.5) |

+--------------------+

4.4.1 Built-in math functions

- 135/804 - 2023 Vesoft Inc.

tan()

tan() returns the tangent of the argument. Users can convert angles to radians using the function radians() .

Syntax: tan(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

atan()

atan() returns the inverse tangent of the argument. Users can convert angles to radians using the function radians() .

Syntax: atan(<expression>)

expression : An expression of which the result type is double.

Result type: Double

Example:

rand()

rand() returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.[0,1).

Syntax: rand()

Result type: Double

Example:

rand32()

rand32() returns a random 32-bit integer in [min, max) .

| 1.0471975511965979 |

+--------------------+

•

•

nebula> RETURN tan(0.5);

+--------------------+

| tan(0.5) |

+--------------------+

| 0.5463024898437905 |

+--------------------+

•

•

nebula> RETURN atan(0.5);

+--------------------+

| atan(0.5) |

+--------------------+

| 0.4636476090008061 |

+--------------------+

•

nebula> RETURN rand();

+--------------------+

| rand() |

+--------------------+

| 0.6545837172298736 |

+--------------------+

4.4.1 Built-in math functions

- 136/804 - 2023 Vesoft Inc.

Syntax: rand32(<expression_min>,<expression_max>)

expression_min : An expression of which the result type is int. It represents the minimum min .

expression_max : An expression of which the result type is int. It represents the maximum max .

Result type: Int

If you set only one argument, it is parsed as max and min is 0 by default. If you set no argument, the system returns a random

signed 32-bit integer.

Example:

rand64()

rand64() returns a random 64-bit integer in [min, max) .

Syntax: rand64(<expression_min>,<expression_max>)

expression_min : An expression of which the result type is int. It represents the minimum min .

expression_max : An expression of which the result type is int. It represents the maximum max .

Result type: Int

If you set only one argument, it is parsed as max and min is 0 by default. If you set no argument, the system returns a random

signed 64-bit integer.

Example:

bit_and()

bit_and() returns the result of bitwise AND.

Syntax: bit_and(<expression_1>,<expression_2>)

expression_1 , expression_2 : An expression of which the result type is int.

Result type: Int

Example:

bit_or()

bit_or() returns the result of bitwise OR.

•

•

•

•

nebula> RETURN rand32(1,100);

+---------------+

| rand32(1,100) |

+---------------+

| 63 |

+---------------+

•

•

•

•

nebula> RETURN rand64(1,100);

+---------------+

| rand64(1,100) |

+---------------+

| 34 |

+---------------+

•

•

nebula> RETURN bit_and(5,6);

+--------------+

| bit_and(5,6) |

+--------------+

| 4 |

+--------------+

4.4.1 Built-in math functions

- 137/804 - 2023 Vesoft Inc.

Syntax: bit_or(<expression_1>,<expression_2>)

expression_1 , expression_2 : An expression of which the result type is int.

Result type: Int

Example:

bit_xor()

bit_xor() returns the result of bitwise XOR.

Syntax: bit_xor(<expression_1>,<expression_2>)

expression_1 , expression_2 : An expression of which the result type is int.

Result type: Int

Example:

size()

size() returns the number of elements in a list or a map, or the length of a string.

Syntax: size({<expression>|<string>})

expression : An expression for a list or map.

string : A specified string.

Result type: Int

Example:

range()

range() returns a list of integers from [start,end] in the specified steps.

•

•

nebula> RETURN bit_or(5,6);

+-------------+

| bit_or(5,6) |

+-------------+

| 7 |

+-------------+

•

•

nebula> RETURN bit_xor(5,6);

+--------------+

| bit_xor(5,6) |

+--------------+

| 3 |

+--------------+

•

•

•

nebula> RETURN size([1,2,3,4]);

+-----------------+

| size([1,2,3,4]) |

+-----------------+

| 4 |

+-----------------+

nebula> RETURN size("basketballplayer") as size;

+------+

| size |

+------+

| 16 |

+------+

4.4.1 Built-in math functions

- 138/804 - 2023 Vesoft Inc.

Syntax: range(<expression_start>,<expression_end>[,<expression_step>])

expression_start : An expression of which the result type is int. It represents the starting value start .

expression_end : An expression of which the result type is int. It represents the end value end .

expression_step : An expression of which the result type is int. It represents the step size step , step is 1 by default.

Result type: List

Example:

sign()

sign() returns the signum of the given number. If the number is 0 , the system returns 0 . If the number is negative, the system

returns -1 . If the number is positive, the system returns 1 .

Syntax: sign(<expression>)

expression : An expression of which the result type is double.

Result type: Int

Example:

e()

e() returns the base of the natural logarithm, e (2.718281828459045).

Syntax: e()

Result type: Double

Example:

pi()

pi() returns the mathematical constant pi (3.141592653589793).

Syntax: pi()

Result type: Double

Example:

•

•

•

•

nebula> RETURN range(1,3*3,2);

+------------------+

| range(1,(3*3),2) |

+------------------+

| [1, 3, 5, 7, 9] |

+------------------+

•

•

nebula> RETURN sign(10);

+----------+

| sign(10) |

+----------+

| 1 |

+----------+

•

nebula> RETURN e();

+-------------------+

| e() |

+-------------------+

| 2.718281828459045 |

+-------------------+

•

nebula> RETURN pi();

+-------------------+

| pi() |

+-------------------+

4.4.1 Built-in math functions

- 139/804 - 2023 Vesoft Inc.

radians()

radians() converts angles to radians.

Syntax: radians(<angle>)

Result type: Double

Example:

| 3.141592653589793 |

+-------------------+

•

nebula> RETURN radians(180);

+-------------------+

| radians(180) |

+-------------------+

| 3.141592653589793 |

+-------------------+

Last update: October 25, 2023

4.4.1 Built-in math functions

- 140/804 - 2023 Vesoft Inc.

4.4.2 Aggregating functions

This topic describes the aggregating functions supported by NebulaGraph.

avg()

avg() returns the average value of the argument.

Syntax: avg(<expression>)

Result type: Double

Example:

count()

count() returns the number of records.

(Native nGQL) You can use count() and GROUP BY together to group and count the number of parameters. Use YIELD to return.

(OpenCypher style) You can use count() and RETURN . GROUP BY is not necessary.

Syntax: count({<expression> | *})

count(*) returns the number of rows (including NULL).

Result type: Int

Example:

•

nebula> MATCH (v:player) RETURN avg(v.player.age);

+--------------------+

| avg(v.player.age) |

+--------------------+

| 33.294117647058826 |

+--------------------+

•

•

•

•

nebula> WITH [NULL, 1, 1, 2, 2] As a UNWIND a AS b \

 RETURN count(b), count(*), count(DISTINCT b);

+----------+----------+-------------------+

| count(b) | count(*) | count(distinct b) |

+----------+----------+-------------------+

| 4 | 5 | 2 |

+----------+----------+-------------------+

The statement in the following example searches for the people whom `player101` follows and people who follow `player101`, i.e. a bidirectional query.

Group and count the number of parameters.

nebula> GO FROM "player101" OVER follow BIDIRECT \

 YIELD properties($$).name AS Name \

 | GROUP BY $-.Name YIELD $-.Name, count(*);

+---------------------+----------+

| $-.Name | count(*) |

+---------------------+----------+

| "LaMarcus Aldridge" | 2 |

| "Tim Duncan" | 2 |

| "Marco Belinelli" | 1 |

| "Manu Ginobili" | 1 |

| "Boris Diaw" | 1 |

| "Dejounte Murray" | 1 |

+---------------------+----------+

Count the number of parameters.

nebula> MATCH (v1:player)-[:follow]-(v2:player) \

 WHERE id(v1)== "player101" \

 RETURN v2.player.name AS Name, count(*) as cnt ORDER BY cnt DESC;

+---------------------+-----+

| Name | cnt |

+---------------------+-----+

| "LaMarcus Aldridge" | 2 |

| "Tim Duncan" | 2 |

| "Boris Diaw" | 1 |

| "Manu Ginobili" | 1 |

| "Dejounte Murray" | 1 |

| "Marco Belinelli" | 1 |

+---------------------+-----+

4.4.2 Aggregating functions

- 141/804 - 2023 Vesoft Inc.

The preceding example retrieves two columns:

$-.Name : the names of the people.

count(*) : how many times the names show up.

Because there are no duplicate names in the basketballplayer dataset, the number 2 in the column count(*) shows that the person

in that row and player101 have followed each other.

max()

max() returns the maximum value.

Syntax: max(<expression>)

Result type: Same as the original argument.

Example:

min()

min() returns the minimum value.

•

•

a: The statement in the following example retrieves the age distribution of the players in the dataset.

nebula> LOOKUP ON player \

 YIELD player.age As playerage \

 | GROUP BY $-.playerage \

 YIELD $-.playerage as age, count(*) AS number \

 | ORDER BY $-.number DESC, $-.age DESC;

+-----+--------+

| age | number |

+-----+--------+

| 34 | 4 |

| 33 | 4 |

| 30 | 4 |

| 29 | 4 |

| 38 | 3 |

+-----+--------+

...

b: The statement in the following example retrieves the age distribution of the players in the dataset.

nebula> MATCH (n:player) \

 RETURN n.player.age as age, count(*) as number \

 ORDER BY number DESC, age DESC;

+-----+--------+

| age | number |

+-----+--------+

| 34 | 4 |

| 33 | 4 |

| 30 | 4 |

| 29 | 4 |

| 38 | 3 |

+-----+--------+

...

The statement in the following example counts the number of edges that Tim Duncan relates.

nebula> MATCH (v:player{name:"Tim Duncan"}) -[e]- (v2) \

 RETURN count(e);

+----------+

| count(e) |

+----------+

| 13 |

+----------+

The statement in the following example counts the number of edges that Tim Duncan relates and returns two columns (no DISTINCT and DISTINCT) in multi-hop queries.

nebula> MATCH (n:player {name : "Tim Duncan"})-[]->(friend:player)-[]->(fof:player) \

 RETURN count(fof), count(DISTINCT fof);

+------------+---------------------+

| count(fof) | count(distinct fof) |

+------------+---------------------+

| 4 | 3 |

+------------+---------------------+

•

nebula> MATCH (v:player) RETURN max(v.player.age);

+-------------------+

| max(v.player.age) |

+-------------------+

| 47 |

+-------------------+

4.4.2 Aggregating functions

- 142/804 - 2023 Vesoft Inc.

Syntax: min(<expression>)

Result type: Same as the original argument.

Example:

collect()

collect() returns a list containing the values returned by an expression. Using this function aggregates data by merging multiple

records or values into a single list.

Syntax: collect(<expression>)

Result type: List

Example:

•

nebula> MATCH (v:player) RETURN min(v.player.age);

+-------------------+

| min(v.player.age) |

+-------------------+

| 20 |

+-------------------+

•

nebula> UNWIND [1, 2, 1] AS a \

 RETURN a;

+---+

| a |

+---+

| 1 |

| 2 |

| 1 |

+---+

nebula> UNWIND [1, 2, 1] AS a \

 RETURN collect(a);

+------------+

| collect(a) |

+------------+

| [1, 2, 1] |

+------------+

nebula> UNWIND [1, 2, 1] AS a \

 RETURN a, collect(a), size(collect(a));

+---+------------+------------------+

| a | collect(a) | size(collect(a)) |

+---+------------+------------------+

| 2 | [2] | 1 |

| 1 | [1, 1] | 2 |

+---+------------+------------------+

The following examples sort the results in descending order, limit output rows to 3, and collect the output into a list.

nebula> UNWIND ["c", "b", "a", "d"] AS p \

 WITH p AS q \

 ORDER BY q DESC LIMIT 3 \

 RETURN collect(q);

+-----------------+

| collect(q) |

+-----------------+

| ["d", "c", "b"] |

+-----------------+

nebula> WITH [1, 1, 2, 2] AS coll \

 UNWIND coll AS x \

 WITH DISTINCT x \

 RETURN collect(x) AS ss;

+--------+

| ss |

+--------+

| [1, 2] |

+--------+

nebula> MATCH (n:player) \

 RETURN collect(n.player.age);

+---+

| collect(n.player.age) |

+---+

| [32, 32, 34, 29, 41, 40, 33, 25, 40, 37, ...

...

The following example aggregates all the players' names by their ages.

nebula> MATCH (n:player) \

 RETURN n.player.age AS age, collect(n.player.name);

+-----+--+

| age | collect(n.player.name) |

4.4.2 Aggregating functions

- 143/804 - 2023 Vesoft Inc.

std()

std() returns the population standard deviation.

Syntax: std(<expression>)

Result type: Double

Example:

sum()

sum() returns the sum value.

Syntax: sum(<expression>)

Result type: Same as the original argument.

Example:

Aggregating example

+-----+--+

| 24 | ["Giannis Antetokounmpo"] |

| 20 | ["Luka Doncic"] |

| 25 | ["Joel Embiid", "Kyle Anderson"] |

+-----+--+

...

nebula> GO FROM "player100" OVER serve \

 YIELD properties($$).name AS name \

 | GROUP BY $-.name \

 YIELD collect($-.name) AS name;

+-----------+

| name |

+-----------+

| ["Spurs"] |

+-----------+

nebula> LOOKUP ON player \

 YIELD player.age As playerage \

 | GROUP BY $-.playerage \

 YIELD collect($-.playerage) AS playerage;

+------------------+

| playerage |

+------------------+

| [22] |

| [47] |

| [43] |

| [25, 25] |

+------------------+

...

•

nebula> MATCH (v:player) RETURN std(v.player.age);

+-------------------+

| std(v.player.age) |

+-------------------+

| 6.423895701687502 |

+-------------------+

•

nebula> MATCH (v:player) RETURN sum(v.player.age);

+-------------------+

| sum(v.player.age) |

+-------------------+

| 1698 |

+-------------------+

nebula> GO FROM "player100" OVER follow YIELD dst(edge) AS dst, properties($$).age AS age \

 | GROUP BY $-.dst \

 YIELD \

 $-.dst AS dst, \

 toInteger((sum($-.age)/count($-.age)))+avg(distinct $-.age+1)+1 AS statistics;

+-------------+------------+

| dst | statistics |

+-------------+------------+

| "player125" | 84.0 |

| "player101" | 74.0 |

+-------------+------------+

4.4.2 Aggregating functions

- 144/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

4.4.2 Aggregating functions

- 145/804 - 2023 Vesoft Inc.

4.4.3 Built-in string functions

This topic describes the built-in string functions supported by NebulaGraph.

Precautions

A string type is used to store a sequence of characters (text). The literal constant is a sequence of characters of any length

surrounded by double or single quotes.

Like SQL, the position index of nGQL starts from 1 , while in C language it starts from 0 .

strcasecmp()

strcasecmp() compares string a and b without case sensitivity.

Syntax: strcasecmp(<string_a>,<string_b>)

string_a , string_b : Strings to compare.

Result type: Int

When string_a = string_b , the return value is 0 . When string_a > string_b , the return value is greater than 0 . When string_a <

string_b , the return value is less than 0 .

Example:

lower() and toLower()

lower() and toLower() can both returns the argument in lowercase.

Syntax: lower(<string>) , toLower(<string>)

string : A specified string.

Result type: String

Example:

upper() and toUpper()

upper() and toUpper() can both returns the argument in uppercase.

Syntax: upper(<string>) , toUpper(<string>)

string : A specified string.

Result type: String

Example:

•

•

•

•

•

nebula> RETURN strcasecmp("a","aa");

+----------------------+

| strcasecmp("a","aa") |

+----------------------+

| -97 |

+----------------------+

•

•

nebula> RETURN lower("Basketball_Player");

+----------------------------+

| lower("Basketball_Player") |

+----------------------------+

| "basketball_player" |

+----------------------------+

•

•

4.4.3 Built-in string functions

- 146/804 - 2023 Vesoft Inc.

length()

length() returns the length of the given string in bytes.

Syntax: length({<string>|<path>})

string : A specified string.

path : A specified path represented by a variable.

Result type: Int

Example:

trim()

trim() removes the spaces at the leading and trailing of the string.

Syntax: trim(<string>)

string : A specified string.

Result type: String

Example:

ltrim()

ltrim() removes the spaces at the leading of the string.

Syntax: ltrim(<string>)

string : A specified string.

Result type: String

Example:

nebula> RETURN upper("Basketball_Player");

+----------------------------+

| upper("Basketball_Player") |

+----------------------------+

| "BASKETBALL_PLAYER" |

+----------------------------+

•

•

•

nebula> RETURN length("basketball");

+----------------------+

| length("basketball") |

+----------------------+

| 10 |

+----------------------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) return length(p);

+-----------+

| length(p) |

+-----------+

| 1 |

| 1 |

| 1 |

+-----------+

•

•

nebula> RETURN trim(" basketball player ");

+-----------------------------+

| trim(" basketball player ") |

+-----------------------------+

| "basketball player" |

+-----------------------------+

•

•

nebula> RETURN ltrim(" basketball player ");

+------------------------------+

| ltrim(" basketball player ") |

+------------------------------+

4.4.3 Built-in string functions

- 147/804 - 2023 Vesoft Inc.

rtrim()

rtrim() removes the spaces at the trailing of the string.

Syntax: rtrim(<string>)

string : A specified string.

Result type: String

Example:

left()

left() returns a substring consisting of several characters from the leading of a string.

Syntax: left(<string>,<count>)

string : A specified string.

count : The number of characters from the leading of the string. If the string is shorter than count , the system returns the string

itself.

Result type: String

Example:

right()

right() returns a substring consisting of several characters from the trailing of a string.

Syntax: right(<string>,<count>)

string : A specified string.

count : The number of characters from the trailing of the string. If the string is shorter than count , the system returns the string

itself.

Result type: String

Example:

| "basketball player " |

+------------------------------+

•

•

nebula> RETURN rtrim(" basketball player ");

+------------------------------+

| rtrim(" basketball player ") |

+------------------------------+

| " basketball player" |

+------------------------------+

•

•

•

nebula> RETURN left("basketball_player",6);

+-----------------------------+

| left("basketball_player",6) |

+-----------------------------+

| "basket" |

+-----------------------------+

•

•

•

nebula> RETURN right("basketball_player",6);

+------------------------------+

| right("basketball_player",6) |

+------------------------------+

| "player" |

+------------------------------+

4.4.3 Built-in string functions

- 148/804 - 2023 Vesoft Inc.

lpad()

lpad() pads a specified string from the left-side to the specified length and returns the result string.

Syntax: lpad(<string>,<count>,<letters>)

string : A specified string.

count : The length of the string after it has been left-padded. If the length is less than that of string , only the length of string

characters from front to back will be returned.

letters : A string to be padding from the leading.

Result type: String

Example:

rpad()

rpad() pads a specified string from the right-side to the specified length and returns the result string.

Syntax: rpad(<string>,<count>,<letters>)

string : A specified string.

count : The length of the string after it has been right-padded. If the length is less than that of string , only the length of string

characters from front to back will be returned.

letters : A string to be padding from the trailing.

Result type: String

Example:

substr() and substring()

substr() and substring() return a substring extracting count characters starting from the specified position pos of a specified

string.

•

•

•

•

nebula> RETURN lpad("abcd",10,"b");

+---------------------+

| lpad("abcd",10,"b") |

+---------------------+

| "bbbbbbabcd" |

+---------------------+

nebula> RETURN lpad("abcd",3,"b");

+--------------------+

| lpad("abcd",3,"b") |

+--------------------+

| "abc" |

+--------------------+

•

•

•

•

nebula> RETURN rpad("abcd",10,"b");

+---------------------+

| rpad("abcd",10,"b") |

+---------------------+

| "abcdbbbbbb" |

+---------------------+

nebula> RETURN rpad("abcd",3,"b");

+--------------------+

| rpad("abcd",3,"b") |

+--------------------+

| "abc" |

+--------------------+

4.4.3 Built-in string functions

- 149/804 - 2023 Vesoft Inc.

Syntax: substr(<string>,<pos>,<count>) , substring(<string>,<pos>,<count>)

string : A specified string.

pos : The position of starting extract (character index). Data type is int.

count : The number of characters extracted from the start position onwards.

Result type: String

EXPLANATIONS FOR THE RETURN OF SUBSTR() AND SUBSTRING()

If pos is 0, it extracts from the specified string leading (including the first character).

If pos is greater than the maximum string index, an empty string is returned.

If pos is a negative number, BAD_DATA is returned.

If count is omitted, the function returns the substring starting at the position given by pos and extending to the end of the

string.

If count is 0, an empty string is returned.

Using NULL as any of the argument of substr() will cause an issue.

In openCypher, if a is null , null is returned.

Example:

reverse()

reverse() returns a string in reverse order.

Syntax: reverse(<string>)

string : A specified string.

Result type: String

Example:

•

•

•

•

•

•

•

•

•

•

OpenCypher compatibility

nebula> RETURN substr("abcdefg",2,4);

+-----------------------+

| substr("abcdefg",2,4) |

+-----------------------+

| "cdef" |

+-----------------------+

nebula> RETURN substr("abcdefg",0,4);

+-----------------------+

| substr("abcdefg",0,4) |

+-----------------------+

| "abcd" |

+-----------------------+

nebula> RETURN substr("abcdefg",2);

+---------------------+

| substr("abcdefg",2) |

+---------------------+

| "cdefg" |

+---------------------+

•

•

nebula> RETURN reverse("abcdefg");

+--------------------+

| reverse("abcdefg") |

+--------------------+

| "gfedcba" |

+--------------------+

4.4.3 Built-in string functions

- 150/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/878

replace()

replace() replaces string a in a specified string with string b.

Syntax: replace(<string>,<substr_a>,<string_b>)

string : A specified string.

substr_a : String a.

string_b : String b.

Result type: String

Example:

split()

split() splits a specified string at string b and returns a list of strings.

Syntax: split(<string>,<substr>)

string : A specified string.

substr : String b.

Result type: List

Example:

concat()

concat() returns strings concatenated by all strings.

Syntax: concat(<string1>,<string2>,...)

The function requires at least two or more strings. If there is only one string, the string itself is returned.

If any one of the strings is NULL , NULL is returned.

Result type: String

Example:

•

•

•

•

nebula> RETURN replace("abcdefg","cd","AAAAA");

+---------------------------------+

| replace("abcdefg","cd","AAAAA") |

+---------------------------------+

| "abAAAAAefg" |

+---------------------------------+

•

•

•

nebula> RETURN split("basketballplayer","a");

+-------------------------------+

| split("basketballplayer","a") |

+-------------------------------+

| ["b", "sketb", "llpl", "yer"] |

+-------------------------------+

•

•

•

//This example concatenates 1, 2, and 3.

nebula> RETURN concat("1","2","3") AS r;

+-------+

| r |

+-------+

| "123" |

+-------+

//In this example, one of the string is NULL.

nebula> RETURN concat("1","2",NULL) AS r;

+----------+

| r |

+----------+

| __NULL__ |

+----------+

4.4.3 Built-in string functions

- 151/804 - 2023 Vesoft Inc.

concat_ws()

concat_ws() returns strings concatenated by all strings that are delimited with a separator.

Syntax: concat_ws(<separator>,<string1>,<string2>,...)

The function requires at least two or more strings.

If the separator is NULL , the concat_ws() function returns NULL .

If the separator is not NULL and there is only one string, the string itself is returned.

If there is a NULL in the strings, NULL is ignored during the concatenation.

Example:

extract()

extract() uses regular expression matching to retrieve a single substring or all substrings from a string.

Syntax: extract(<string>,"<regular_expression>")

string : A specified string

regular_expression : A regular expression

Result type: List

Example:

nebula> GO FROM "player100" over follow \

 YIELD concat(src(edge), properties($^).age, properties($$).name, properties(edge).degree) AS A;

+------------------------------+

| A |

+------------------------------+

| "player10042Tony Parker95" |

| "player10042Manu Ginobili95" |

+------------------------------+

•

•

•

•

//This example concatenates a, b, and c with the separator +.

nebula> RETURN concat_ws("+","a","b","c") AS r;

+---------+

| r |

+---------+

| "a+b+c" |

+---------+

//In this example, the separator is NULL.

neubla> RETURN concat_ws(NULL,"a","b","c") AS r;

+----------+

| r |

+----------+

| __NULL__ |

+----------+

//In this example, the separator is + and there is a NULL in the strings.

nebula> RETURN concat_ws("+","a",NULL,"b","c") AS r;

+---------+

| r |

+---------+

| "a+b+c" |

+---------+

//In this example, the separator is + and there is only one string.

nebula> RETURN concat_ws("+","a") AS r;

+-----+

| r |

+-----+

| "a" |

+-----+

nebula> GO FROM "player100" over follow \

 YIELD concat_ws(" ",src(edge), properties($^).age, properties($$).name, properties(edge).degree) AS A;

+---------------------------------+

| A |

+---------------------------------+

| "player100 42 Tony Parker 95" |

| "player100 42 Manu Ginobili 95" |

+---------------------------------+

•

•

•

4.4.3 Built-in string functions

- 152/804 - 2023 Vesoft Inc.

json_extract()

json_extract() converts the specified JSON string to a map.

Syntax: extract(<string>)

string :A specified string, must be JSON string.

Result type: Map

Only Bool, Double, Int, String value and NULL are supported.

Only depth-1 nested Map is supported now. If nested Map depth is greater than 1, the nested item is left as an empty Map().

Example:

nebula> MATCH (a:player)-[b:serve]-(c:team{name: "Lakers"}) \

 WHERE a.player.age > 45 \

 RETURN extract(a.player.name, "\\w+") AS result;

+----------------------------+

| result |

+----------------------------+

| ["Shaquille", "O", "Neal"] |

+----------------------------+

nebula> MATCH (a:player)-[b:serve]-(c:team{name: "Lakers"}) \

 WHERE a.player.age > 45 \

 RETURN extract(a.player.name, "hello") AS result;

+--------+

| result |

+--------+

| [] |

+--------+

•

•

Caution

•

•

nebula> YIELD json_extract('{"a": 1, "b": {}, "c": {"d": true}}') AS result;

+-----------------------------+

| result |

+-----------------------------+

| {a: 1, b: {}, c: {d: true}} |

+-----------------------------+

Last update: October 25, 2023

4.4.3 Built-in string functions

- 153/804 - 2023 Vesoft Inc.

4.4.4 Built-in date and time functions

NebulaGraph supports the following built-in date and time functions:

For more information, see Date and time types.

Examples

Function Description

int now() Returns the current timestamp of the system.

timestamp timestamp() Returns the current timestamp of the system.

date date() Returns the current UTC date based on the current system.

time time() Returns the current UTC time based on the current system.

datetime datetime() Returns the current UTC date and time based on the current system.

map duration() Returns the period of time. It can be used to calculate the specified time.

nebula> RETURN now(), timestamp(), date(), time(), datetime();

+------------+-------------+------------+-----------------+----------------------------+

| now() | timestamp() | date() | time() | datetime() |

+------------+-------------+------------+-----------------+----------------------------+

| 1640057560 | 1640057560 | 2021-12-21 | 03:32:40.351000 | 2021-12-21T03:32:40.351000 |

+------------+-------------+------------+-----------------+----------------------------+

Last update: October 25, 2023

4.4.4 Built-in date and time functions

- 154/804 - 2023 Vesoft Inc.

4.4.5 Schema-related functions

This topic describes the schema-related functions supported by NebulaGraph. There are two types of schema-related functions,

one for native nGQL statements and the other for openCypher-compatible statements.

For nGQL statements

The following functions are available in YIELD and WHERE clauses of nGQL statements.

Since vertex, edge, vertices, edges, and path are keywords, you need to use AS <alias> to set the alias, such as GO FROM "player100" OVER

follow YIELD edge AS e; .

ID(VERTEX)

id(vertex) returns the ID of a vertex.

Syntax: id(vertex)

Result type: Same as the vertex ID.

Example:

PROPERTIES(VERTEX)

properties(vertex) returns the properties of a vertex.

Syntax: properties(vertex)

Result type: Map

Example:

You can also use the property reference symbols ($^ and $$) instead of the vertex field in the properties() function to get all

properties of a vertex.

$^ represents the data of the starting vertex at the beginning of exploration. For example, in GO FROM "player100" OVER follow

reversely YIELD properties($^) , $^ refers to the vertex player100 .

$$ represents the data of the end vertex at the end of exploration.

properties($^) and properties($$) are generally used in GO statements. For more information, see Property reference.

Note

•

nebula> LOOKUP ON player WHERE player.age > 45 YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player144" |

| "player140" |

+-------------+

•

nebula> LOOKUP ON player WHERE player.age > 45 \

 YIELD properties(vertex);

+-------------------------------------+

| properties(VERTEX) |

+-------------------------------------+

| {age: 47, name: "Shaquille O'Neal"} |

| {age: 46, name: "Grant Hill"} |

+-------------------------------------+

•

•

4.4.5 Schema-related functions

- 155/804 - 2023 Vesoft Inc.

You can use properties().<property_name> to get a specific property of a vertex. However, it is not recommended to use this method to

obtain specific properties because the properties() function returns all properties, which can decrease query performance.

PROPERTIES(EDGE)

properties(edge) returns the properties of an edge.

Syntax: properties(edge)

Result type: Map

Example:

You can use properties(edge).<property_name> to get a specific property of an edge. However, it is not recommended to use this method to

obtain specific properties because the properties(edge) function returns all properties, which can decrease query performance.

TYPE(EDGE)

type(edge) returns the edge type of an edge.

Syntax: type(edge)

Result type: String

Example:

SRC(EDGE)

src(edge) returns the source vertex ID of an edge.

Syntax: src(edge)

Result type: Same as the vertex ID.

Example:

Caution

•

nebula> GO FROM "player100" OVER follow \

 YIELD properties(edge);

+------------------+

| properties(EDGE) |

+------------------+

| {degree: 95} |

| {degree: 95} |

+------------------+

Caution

•

nebula> GO FROM "player100" OVER follow \

 YIELD src(edge), dst(edge), type(edge), rank(edge);

+-------------+-------------+------------+------------+

| src(EDGE) | dst(EDGE) | type(EDGE) | rank(EDGE) |

+-------------+-------------+------------+------------+

| "player100" | "player101" | "follow" | 0 |

| "player100" | "player125" | "follow" | 0 |

+-------------+-------------+------------+------------+

•

nebula> GO FROM "player100" OVER follow \

 YIELD src(edge), dst(edge);

+-------------+-------------+

| src(EDGE) | dst(EDGE) |

+-------------+-------------+

| "player100" | "player101" |

| "player100" | "player125" |

+-------------+-------------+

4.4.5 Schema-related functions

- 156/804 - 2023 Vesoft Inc.

The semantics of the query for the starting vertex with src(edge) and properties($^) are different. src(edge) indicates the starting

vertex ID of the edge in the graph database, while properties($^) indicates the data of the starting vertex where you start to expand

the graph, such as the data of the starting vertex player100 in the above GO statement.

DST(EDGE)

dst(edge) returns the destination vertex ID of an edge.

Syntax: dst(edge)

Result type: Same as the vertex ID.

Example:

dst(edge) indicates the destination vertex ID of the edge in the graph database.

RANK(EDGE)

rank(edge) returns the rank value of an edge.

Syntax: rank(edge)

Result type: Int

Example:

VERTEX

vertex returns the information of vertices, including VIDs, tags, properties, and values. You need to use AS <alias> to set the alias.

Syntax: vertex

Example:

EDGE

edge returns the information of edges, including edge types, source vertices, destination vertices, ranks, properties, and values.

You need to use AS <alias> to set the alias.

Note

•

nebula> GO FROM "player100" OVER follow \

 YIELD src(edge), dst(edge);

+-------------+-------------+

| src(EDGE) | dst(EDGE) |

+-------------+-------------+

| "player100" | "player101" |

| "player100" | "player125" |

+-------------+-------------+

Note

•

nebula> GO FROM "player100" OVER follow \

 YIELD src(edge), dst(edge), rank(edge);

+-------------+-------------+------------+

| src(EDGE) | dst(EDGE) | rank(EDGE) |

+-------------+-------------+------------+

| "player100" | "player101" | 0 |

| "player100" | "player125" | 0 |

+-------------+-------------+------------+

nebula> LOOKUP ON player WHERE player.age > 45 YIELD vertex AS v;

+--+

| v |

+--+

| ("player144" :player{age: 47, name: "Shaquille O'Neal"}) |

| ("player140" :player{age: 46, name: "Grant Hill"}) |

+--+

4.4.5 Schema-related functions

- 157/804 - 2023 Vesoft Inc.

Syntax: edge

Example:

VERTICES

vertices returns the information of vertices in a subgraph. For more information, see GET SUBGRAPH.

EDGES

edges returns the information of edges in a subgraph. For more information, see GET SUBGRAPH.

PATH

path returns the information of a path. For more information, see FIND PATH.

For statements compatible with openCypher

The following functions are available in RETURN and WHERE clauses of openCypher-compatible statements.

ID()

id() returns the ID of a vertex.

Syntax: id(<vertex>)

Result type: Same as the vertex ID.

Example:

TAGS() AND LABELS()

tags() and labels() return the Tag of a vertex.

Syntax: tags(<vertex>) , labels(<vertex>)

Result type: List

Example:

PROPERTIES()

properties() returns the properties of a vertex or an edge.

Syntax: properties(<vertex_or_edge>)

Result type: Map

nebula> GO FROM "player100" OVER follow YIELD edge AS e;

+--+

| e |

+--+

| [:follow "player100"->"player101" @0 {degree: 95}] |

| [:follow "player100"->"player125" @0 {degree: 95}] |

+--+

•

nebula> MATCH (v:player) RETURN id(v);

+-------------+

| id(v) |

+-------------+

| "player129" |

| "player115" |

| "player106" |

| "player102" |

...

•

nebula> MATCH (v) WHERE id(v) == "player100" \

 RETURN tags(v);

+------------+

| tags(v) |

+------------+

| ["player"] |

+------------+

•

4.4.5 Schema-related functions

- 158/804 - 2023 Vesoft Inc.

Example:

TYPE()

type() returns the edge type of an edge.

Syntax: type(<edge>)

Result type: String

Example:

TYPEID()

typeid() returns the internal ID value of the Edge type of the edge, which can be used to determine the direction by positive or

negative.

Syntax: typeid(<edge>)

Result type: Int

Example:

SRC()

src() returns the source vertex ID of an edge.

Syntax: src(<edge>)

Result type: Same as the vertex ID.

Example:

nebula> MATCH (v:player)-[e:follow]-() RETURN properties(v),properties(e);

+---------------------------------------+---------------+

| properties(v) | properties(e) |

+---------------------------------------+---------------+

| {age: 31, name: "Stephen Curry"} | {degree: 90} |

| {age: 47, name: "Shaquille O'Neal"} | {degree: 100} |

| {age: 34, name: "LeBron James"} | {degree: 13} |

...

•

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->() \

 RETURN type(e);

+----------+

| type(e) |

+----------+

| "serve" |

| "follow" |

| "follow" |

+----------+

•

nebula> MATCH (v:player)-[e:follow]-(v2) RETURN e,typeid(e), \

 CASE WHEN typeid(e) > 0 \

 THEN "Forward" ELSE "Reverse" END AS direction \

 LIMIT 5;

+--+-----------+-----------+

| e | typeid(e) | direction |

+--+-----------+-----------+

| [:follow "player127"->"player114" @0 {degree: 90}] | 5 | "Forward" |

| [:follow "player127"->"player148" @0 {degree: 70}] | 5 | "Forward" |

| [:follow "player148"->"player127" @0 {degree: 80}] | -5 | "Reverse" |

| [:follow "player147"->"player136" @0 {degree: 90}] | 5 | "Forward" |

| [:follow "player136"->"player147" @0 {degree: 90}] | -5 | "Reverse" |

+--+-----------+-----------+

•

nebula> MATCH ()-[e]->(v:player{name:"Tim Duncan"}) \

 RETURN src(e);

+-------------+

| src(e) |

+-------------+

| "player125" |

| "player113" |

| "player102" |

...

4.4.5 Schema-related functions

- 159/804 - 2023 Vesoft Inc.

DST()

dst() returns the destination vertex ID of an edge.

Syntax: dst(<edge>)

Result type: Same as the vertex ID.

Example:

STARTNODE()

startNode() visits a path and returns its information of source vertex ID, including VIDs, tags, properties, and values.

Syntax: startNode(<path>)

Example:

ENDNODE()

endNode() visits a path and returns its information of destination vertex ID, including VIDs, tags, properties, and values.

Syntax: endNode(<path>)

Example:

RANK()

rank() returns the rank value of an edge.

Syntax: rank(<edge>)

Result type: Int

Example:

•

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->() \

 RETURN dst(e);

+-------------+

| dst(e) |

+-------------+

| "team204" |

| "player101" |

| "player125" |

+-------------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) \

 RETURN startNode(p);

+--+

| startNode(p) |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) \

 RETURN endNode(p);

+----------------------------------+

| endNode(p) |

+----------------------------------+

| ("team204" :team{name: "Spurs"}) |

+----------------------------------+

•

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->() \

 RETURN rank(e);

+---------+

| rank(e) |

+---------+

| 0 |

| 0 |

| 0 |

+---------+

Last update: January 31, 2024

4.4.5 Schema-related functions

- 160/804 - 2023 Vesoft Inc.

4.4.6 List functions

This topic describes the list functions supported by NebulaGraph. Some of the functions have different syntax in native nGQL

statements and openCypher-compatible statements.

Precautions

Like SQL, the position index in nGQL starts from 1 , while in the C language it starts from 0 .

General

RANGE()

range() returns the list containing all the fixed-length steps in [start,end] .

Syntax: range(start, end [, step])

step : Optional parameters. step is 1 by default.

Result type: List

Example:

REVERSE()

reverse() returns the list reversing the order of all elements in the original list.

Syntax: reverse(<list>)

Result type: List

Example:

TAIL()

tail() returns all the elements of the original list, excluding the first one.

Syntax: tail(<list>)

Result type: List

Example:

HEAD()

head() returns the first element of a list.

•

•

nebula> RETURN range(1,9,2);

+-----------------+

| range(1,9,2) |

+-----------------+

| [1, 3, 5, 7, 9] |

+-----------------+

•

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids \

 RETURN reverse(ids);

+-----------------------------------+

| reverse(ids) |

+-----------------------------------+

| [487, 521, "abc", 4923, __NULL__] |

+-----------------------------------+

•

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids \

 RETURN tail(ids);

+-------------------------+

| tail(ids) |

+-------------------------+

| [4923, "abc", 521, 487] |

+-------------------------+

4.4.6 List functions

- 161/804 - 2023 Vesoft Inc.

Syntax: head(<list>)

Result type: Same as the element in the original list.

Example:

LAST()

last() returns the last element of a list.

Syntax: last(<list>)

Result type: Same as the element in the original list.

Example:

REDUCE()

reduce() applies an expression to each element in a list one by one, chains the result to the next iteration by taking it as the

initial value, and returns the final result. This function iterates each element e in the given list, runs the expression on e ,

accumulates the result with the initial value, and store the new result in the accumulator as the initial value of the next iteration.

It works like the fold or reduce method in functional languages such as Lisp and Scala.

In openCypher, the reduce() function is not defined. nGQL will implement the reduce() function in the Cypher way.

Syntax: reduce(<accumulator> = <initial>, <variable> IN <list> | <expression>)

accumulator : A variable that will hold the accumulated results as the list is iterated.

initial : An expression that runs once to give an initial value to the accumulator .

variable : A variable in the list that will be applied to the expression successively.

list : A list or a list of expressions.

expression : This expression will be run on each element in the list once and store the result value in the accumulator .

Result type: Depends on the parameters provided, along with the semantics of the expression.

Example:

•

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids \

 RETURN head(ids);

+-----------+

| head(ids) |

+-----------+

| __NULL__ |

+-----------+

•

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids \

 RETURN last(ids);

+-----------+

| last(ids) |

+-----------+

| 487 |

+-----------+

openCypher compatibility

•

•

•

•

•

•

nebula> RETURN reduce(totalNum = -4 * 5, n IN [1, 2] | totalNum + n * 2) AS r;

+-----+

| r |

+-----+

| -14 |

+-----+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \

 RETURN nodes(p)[0].player.age AS src1, nodes(p)[1].player.age AS dst2, \

 reduce(totalAge = 100, n IN nodes(p) | totalAge + n.player.age) AS sum;

+------+------+-----+

| src1 | dst2 | sum |

+------+------+-----+

4.4.6 List functions

- 162/804 - 2023 Vesoft Inc.

For nGQL statements

KEYS()

keys() returns a list containing the string representations for all the property names of vertices or edges.

Syntax: keys({vertex | edge})

Result type: List

Example:

LABELS()

labels() returns the list containing all the tags of a vertex.

Syntax: labels(verte)

Result type: List

Example:

For statements compatible with openCypher

KEYS()

keys() returns a list containing the string representations for all the property names of vertices, edges, or maps.

Syntax: keys(<vertex_or_edge>)

Result type: List

Example:

| 34 | 31 | 165 |

| 34 | 29 | 163 |

| 34 | 33 | 167 |

| 34 | 26 | 160 |

| 34 | 34 | 168 |

| 34 | 37 | 171 |

+------+------+-----+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" YIELD id(vertex) AS VertexID \

 | GO FROM $-.VertexID over follow \

 WHERE properties(edge).degree != reduce(totalNum = 5, n IN range(1, 3) | properties($$).age + totalNum + n) \

 YIELD properties($$).name AS id, properties($$).age AS age, properties(edge).degree AS degree;

+---------------------+-----+--------+

| id | age | degree |

+---------------------+-----+--------+

| "Tim Duncan" | 42 | 95 |

| "LaMarcus Aldridge" | 33 | 90 |

| "Manu Ginobili" | 41 | 95 |

+---------------------+-----+--------+

•

nebula> LOOKUP ON player \

 WHERE player.age > 45 \

 YIELD keys(vertex);

+-----------------+

| keys(VERTEX) |

+-----------------+

| ["age", "name"] |

| ["age", "name"] |

+-----------------+

•

nebula> FETCH PROP ON * "player101", "player102", "team204" \

 YIELD labels(vertex);

+----------------+

| labels(VERTEX) |

+----------------+

| ["player"] |

| ["player"] |

| ["team"] |

+----------------+

•

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->() \

 RETURN keys(e);

+----------------------------+

4.4.6 List functions

- 163/804 - 2023 Vesoft Inc.

LABELS()

labels() returns the list containing all the tags of a vertex.

Syntax: labels(<vertex>)

Result type: List

Example:

NODES()

nodes() returns the list containing all the vertices in a path.

Syntax: nodes(<path>)

Result type: List

Example:

RELATIONSHIPS()

relationships() returns the list containing all the relationships in a path.

Syntax: relationships(<path>)

Result type: List

Example:

| keys(e) |

+----------------------------+

| ["end_year", "start_year"] |

| ["degree"] |

| ["degree"] |

+----------------------------+

•

nebula> MATCH (v)-[e:serve]->() \

 WHERE id(v)=="player100" \

 RETURN labels(v);

+------------+

| labels(v) |

+------------+

| ["player"] |

+------------+

•

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) \

 RETURN nodes(p);

+---+

| nodes(p) |

+---+

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("team204" :team{name: "Spurs"})] |

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"})] |

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player125" :player{age: 41, name: "Manu Ginobili"})] |

+---+

•

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) \

 RETURN relationships(p);

+---+

| relationships(p) |

+---+

| [[:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}]] |

| [[:follow "player100"->"player101" @0 {degree: 95}]] |

| [[:follow "player100"->"player125" @0 {degree: 95}]] |

+---+

Last update: October 25, 2023

4.4.6 List functions

- 164/804 - 2023 Vesoft Inc.

4.4.7 Type conversion functions

This topic describes the type conversion functions supported by NebulaGraph.

toBoolean()

toBoolean() converts a string value to a boolean value.

Syntax: toBoolean(<value>)

Result type: Bool

Example:

toFloat()

toFloat() converts an integer or string value to a floating point number.

Syntax: toFloat(<value>)

Result type: Float

Example:

toString()

toString() converts non-compound types of data, such as numbers, booleans, and so on, to strings.

Syntax: toString(<value>)

Result type: String

Example:

toInteger()

toInteger() converts a floating point or string value to an integer value.

Syntax: toInteger(<value>)

Result type: Int

•

nebula> UNWIND [true, false, 'true', 'false', NULL] AS b \

 RETURN toBoolean(b) AS b;

+----------+

| b |

+----------+

| true |

| false |

| true |

| false |

| __NULL__ |

+----------+

•

nebula> RETURN toFloat(1), toFloat('1.3'), toFloat('1e3'), toFloat('not a number');

+------------+----------------+----------------+-------------------------+

| toFloat(1) | toFloat("1.3") | toFloat("1e3") | toFloat("not a number") |

+------------+----------------+----------------+-------------------------+

| 1.0 | 1.3 | 1000.0 | __NULL__ |

+------------+----------------+----------------+-------------------------+

•

nebula> RETURN toString(9669) AS int2str, toString(null) AS null2str;

+---------+----------+

| int2str | null2str |

+---------+----------+

| "9669" | __NULL__ |

+---------+----------+

•

4.4.7 Type conversion functions

- 165/804 - 2023 Vesoft Inc.

Example:

toSet()

toSet() converts a list or set value to a set value.

Syntax: toSet(<value>)

Result type: Set

Example:

hash()

hash() returns the hash value of the argument. The argument can be a number, a string, a list, a boolean, null, or an expression

that evaluates to a value of the preceding data types.

The source code of the hash() function (MurmurHash2), seed (0xc70f6907UL), and other parameters can be found in MurmurHash2.h .

For Java, the hash function operates as follows.

Syntax: hash(<string>)

Result type: Int

Example:

nebula> RETURN toInteger(1), toInteger('1'), toInteger('1e3'), toInteger('not a number');

+--------------+----------------+------------------+---------------------------+

| toInteger(1) | toInteger("1") | toInteger("1e3") | toInteger("not a number") |

+--------------+----------------+------------------+---------------------------+

| 1 | 1 | 1000 | __NULL__ |

+--------------+----------------+------------------+---------------------------+

•

nebula> RETURN toSet(list[1,2,3,1,2]) AS list2set;

+-----------+

| list2set |

+-----------+

| {3, 1, 2} |

+-----------+

MurmurHash2.hash64("to_be_hashed".getBytes(),"to_be_hashed".getBytes().length, 0xc70f6907)

•

nebula> RETURN hash("abcde");

+--------------------+

| hash("abcde") |

+--------------------+

| 811036730794841393 |

+--------------------+

nebula> YIELD hash([1,2,3]);

+----------------+

| hash([1,2,3]) |

+----------------+

| 11093822460243 |

+----------------+

nebula> YIELD hash(NULL);

+------------+

| hash(NULL) |

+------------+

| -1 |

+------------+

nebula> YIELD hash(toLower("HELLO NEBULA"));

+-------------------------------+

| hash(toLower("HELLO NEBULA")) |

+-------------------------------+

| -8481157362655072082 |

+-------------------------------+

Last update: October 25, 2023

4.4.7 Type conversion functions

- 166/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h

4.4.8 Conditional expressions

This topic describes the conditional functions supported by NebulaGraph.

CASE

The CASE expression uses conditions to filter the parameters. nGQL provides two forms of CASE expressions just like openCypher:

the simple form and the generic form.

The CASE expression will traverse all the conditions. When the first condition is met, the CASE expression stops reading the

conditions and returns the result. If no conditions are met, it returns the result in the ELSE clause. If there is no ELSE clause and

no conditions are met, it returns NULL .

THE SIMPLE FORM OF CASE EXPRESSIONS

Syntax

Always remember to end the CASE expression with an END .

Examples

•

CASE <comparer>

WHEN <value> THEN <result>

[WHEN ...]

[ELSE <default>]

END

Caution

Parameter Description

comparer A value or a valid expression that outputs a value. This value is used to compare with the value .

value It will be compared with the comparer . If the value matches the comparer , then this condition is met.

result The result is returned by the CASE expression if the value matches the comparer .

default The default is returned by the CASE expression if no conditions are met.

•

nebula> RETURN \

 CASE 2+3 \

 WHEN 4 THEN 0 \

 WHEN 5 THEN 1 \

 ELSE -1 \

 END \

 AS result;

+--------+

| result |

+--------+

| 1 |

+--------+

nebula> GO FROM "player100" OVER follow \

 YIELD properties($$).name AS Name, \

 CASE properties($$).age > 35 \

 WHEN true THEN "Yes" \

 WHEN false THEN "No" \

 ELSE "Nah" \

 END \

 AS Age_above_35;

+-----------------+--------------+

| Name | Age_above_35 |

+-----------------+--------------+

| "Tony Parker" | "Yes" |

| "Manu Ginobili" | "Yes" |

+-----------------+--------------+

4.4.8 Conditional expressions

- 167/804 - 2023 Vesoft Inc.

THE GENERIC FORM OF CASE EXPRESSIONS

Syntax

Examples

DIFFERENCES BETWEEN THE SIMPLE FORM AND THE GENERIC FORM

To avoid the misuse of the simple form and the generic form, it is important to understand their differences. The following

example can help explain them.

The preceding GO query is intended to output Yes when the player's age is above 35. However, in this example, when the player's

age is 36, the actual output is not as expected: It is No instead of Yes .

This is because the query uses the CASE expression in the simple form, and a comparison between the values of $$.player.age and

$$.player.age > 35 is made. When the player age is 36:

The value of $$.player.age is 36 . It is an integer.

$$.player.age > 35 is evaluated to be true . It is a boolean.

The values of $$.player.age and $$.player.age > 35 do not match. Therefore, the condition is not met and No is returned.

•

CASE

WHEN <condition> THEN <result>

[WHEN ...]

[ELSE <default>]

END

Parameter Description

condition If the condition is evaluated as true, the result is returned by the CASE expression.

result The result is returned by the CASE expression if the condition is evaluated as true.

default The default is returned by the CASE expression if no conditions are met.

•

nebula> YIELD \

 CASE WHEN 4 > 5 THEN 0 \

 WHEN 3+4==7 THEN 1 \

 ELSE 2 \

 END \

 AS result;

+--------+

| result |

+--------+

| 1 |

+--------+

nebula> MATCH (v:player) WHERE v.player.age > 30 \

 RETURN v.player.name AS Name, \

 CASE \

 WHEN v.player.name STARTS WITH "T" THEN "Yes" \

 ELSE "No" \

 END \

 AS Starts_with_T;

+---------------------+---------------+

| Name | Starts_with_T |

+---------------------+---------------+

| "Tim Duncan" | "Yes" |

| "LaMarcus Aldridge" | "No" |

| "Tony Parker" | "Yes" |

+---------------------+---------------+

nebula> GO FROM "player100" OVER follow \

 YIELD properties($$).name AS Name, properties($$).age AS Age, \

 CASE properties($$).age \

 WHEN properties($$).age > 35 THEN "Yes" \

 ELSE "No" \

 END \

 AS Age_above_35;

+-----------------+-----+--------------+

| Name | Age | Age_above_35 |

+-----------------+-----+--------------+

| "Tony Parker" | 36 | "No" |

| "Manu Ginobili" | 41 | "No" |

+-----------------+-----+--------------+

•

•

4.4.8 Conditional expressions

- 168/804 - 2023 Vesoft Inc.

coalesce()

coalesce() returns the first not null value in all expressions.

Syntax: coalesce(<expression_1>[,<expression_2>...])

Result type: Same as the original element.

Example:

•

nebula> RETURN coalesce(null,[1,2,3]) as result;

+-----------+

| result |

+-----------+

| [1, 2, 3] |

+-----------+

nebula> RETURN coalesce(null) as result;

+----------+

| result |

+----------+

| __NULL__ |

+----------+

Last update: October 25, 2023

4.4.8 Conditional expressions

- 169/804 - 2023 Vesoft Inc.

4.4.9 Predicate functions

Predicate functions return true or false . They are most commonly used in WHERE clauses.

NebulaGraph supports the following predicate functions:

NULL is returned if the list is NULL or all of its elements are NULL.

In openCypher, only function exists() is defined and specified. The other functions are implement-dependent.

Syntax

Examples

Functions Description

exists() Returns true if the specified property exists in the vertex, edge or map. Otherwise, returns false .

any() Returns true if the specified predicate holds for at least one element in the given list. Otherwise, returns

false .

all() Returns true if the specified predicate holds for all elements in the given list. Otherwise, returns false .

none() Returns true if the specified predicate holds for no element in the given list. Otherwise, returns false .

single() Returns true if the specified predicate holds for exactly one of the elements in the given list. Otherwise,

returns false .

Note

Compatibility

<predicate>(<variable> IN <list> WHERE <condition>)

nebula> RETURN any(n IN [1, 2, 3, 4, 5, NULL] \

 WHERE n > 2) AS r;

+------+

| r |

+------+

| true |

+------+

nebula> RETURN single(n IN range(1, 5) \

 WHERE n == 3) AS r;

+------+

| r |

+------+

| true |

+------+

nebula> RETURN none(n IN range(1, 3) \

 WHERE n == 0) AS r;

+------+

| r |

+------+

| true |

+------+

nebula> WITH [1, 2, 3, 4, 5, NULL] AS a \

 RETURN any(n IN a WHERE n > 2);

+-------------------------+

| any(n IN a WHERE (n>2)) |

+-------------------------+

| true |

+-------------------------+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \

 RETURN nodes(p)[0].player.name AS n1, nodes(p)[1].player.name AS n2, \

 all(n IN nodes(p) WHERE n.player.name NOT STARTS WITH "D") AS b;

+----------------+-------------------+-------+

4.4.9 Predicate functions

- 170/804 - 2023 Vesoft Inc.

| n1 | n2 | b |

+----------------+-------------------+-------+

| "LeBron James" | "Danny Green" | false |

| "LeBron James" | "Dejounte Murray" | false |

| "LeBron James" | "Chris Paul" | true |

| "LeBron James" | "Kyrie Irving" | true |

| "LeBron James" | "Carmelo Anthony" | true |

| "LeBron James" | "Dwyane Wade" | false |

+----------------+-------------------+-------+

nebula> MATCH p = (n:player{name:"LeBron James"})-[:follow]->(m) \

 RETURN single(n IN nodes(p) WHERE n.player.age > 40) AS b;

+------+

| b |

+------+

| true |

+------+

nebula> MATCH (n:player) \

 RETURN exists(n.player.id), n IS NOT NULL;

+---------------------+---------------+

| exists(n.player.id) | n IS NOT NULL |

+---------------------+---------------+

| false | true |

...

nebula> MATCH (n:player) \

 WHERE exists(n['name']) RETURN n;

+---+

| n |

+---+

| ("Grant Hill" :player{age: 46, name: "Grant Hill"}) |

| ("Marc Gasol" :player{age: 34, name: "Marc Gasol"}) |

+---+

...

Last update: October 25, 2023

4.4.9 Predicate functions

- 171/804 - 2023 Vesoft Inc.

4.4.10 Geography functions

Geography functions are used to generate or perform operations on the value of the geography data type.

For descriptions of the geography data types, see Geography.

Descriptions

Examples

Function Return

Type

Description

ST_Point(longitude, latitude) GEOGRAPHY Creates the geography that contains a point.

ST_GeogFromText(wkt_string) GEOGRAPHY Returns the geography corresponding to the input WKT

string.

ST_ASText(geography) STRING Returns the WKT string of the input geography.

ST_Centroid(geography) GEOGRAPHY Returns the centroid of the input geography in the form of

the single point geography.

ST_ISValid(geography) BOOL Returns whether the input geography is valid.

ST_Intersects(geography_1,

geography_2)

BOOL Returns whether geography_1 and geography_2 have

intersections.

ST_Covers(geography_1, geography_2) BOOL Returns whether geography_1 completely contains

geography_2. If there is no point outside geography_1 in

geography_2, return True.

ST_CoveredBy(geography_1,

geography_2)

BOOL Returns whether geography_2 completely contains

geography_1.If there is no point outside geography_2 in

geography_1, return True.

ST_DWithin(geography_1, geography_2,

distance)

BOOL If the distance between one point (at least) in geography_1

and one point in geography_2 is less than or equal to the

distance specified by the distance parameter (measured by

meters), return True.

ST_Distance(geography_1, geography_2) FLOAT Returns the smallest possible distance (measured by meters)

between two non-empty geographies.

S2_CellIdFromPoint(point_geography) INT Returns the S2 Cell ID that covers the point geography.

S2_CoveringCellIds(geography) ARRAY<INT64> Returns an array of S2 Cell IDs that cover the input

geography.

nebula> RETURN ST_ASText(ST_Point(1,1));

+--------------------------+

| ST_ASText(ST_Point(1,1)) |

+--------------------------+

| "POINT(1 1)" |

+--------------------------+

nebula> RETURN ST_ASText(ST_GeogFromText("POINT(3 8)"));

+--+

| ST_ASText(ST_GeogFromText("POINT(3 8)")) |

+--+

| "POINT(3 8)" |

+--+

nebula> RETURN ST_ASTEXT(ST_Centroid(ST_GeogFromText("LineString(0 1,1 0)")));

+--+

| ST_ASTEXT(ST_Centroid(ST_GeogFromText("LineString(0 1,1 0)"))) |

+--+

| "POINT(0.5000380800773782 0.5000190382261059)" |

+--+

4.4.10 Geography functions

- 172/804 - 2023 Vesoft Inc.

https://s2geometry.io/devguide/s2cell_hierarchy

nebula> RETURN ST_ISValid(ST_GeogFromText("POINT(3 8)"));

+---+

| ST_ISValid(ST_GeogFromText("POINT(3 8)")) |

+---+

| true |

+---+

nebula> RETURN ST_Intersects(ST_GeogFromText("LineString(0 1,1 0)"),ST_GeogFromText("LineString(0 0,1 1)"));

+--+

| ST_Intersects(ST_GeogFromText("LineString(0 1,1 0)"),ST_GeogFromText("LineString(0 0,1 1)")) |

+--+

| true |

+--+

nebula> RETURN ST_Covers(ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"),ST_Point(1,2));

+--+

| ST_Covers(ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"),ST_Point(1,2)) |

+--+

| true |

+--+

nebula> RETURN ST_CoveredBy(ST_Point(1,2),ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"));

+---+

| ST_CoveredBy(ST_Point(1,2),ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))")) |

+---+

| true |

+---+

nebula> RETURN ST_dwithin(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"),20000000000.0);

+---+

| ST_dwithin(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"),20000000000) |

+---+

| true |

+---+

nebula> RETURN ST_Distance(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"));

+--+

| ST_Distance(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)")) |

+--+

| 1.5685230187677438e+06 |

+--+

nebula> RETURN S2_CellIdFromPoint(ST_GeogFromText("Point(1 1)"));

+---+

| S2_CellIdFromPoint(ST_GeogFromText("Point(1 1)")) |

+---+

| 1153277837650709461 |

+---+

nebula> RETURN S2_CoveringCellIds(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

+--+

| S2_CoveringCellIds(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))")) |

+--+

| [1152391494368201343, 1153466862374223872, 1153554823304445952, 1153836298281156608, 1153959443583467520, 1154240918560178176, 1160503736791990272, 1160591697722212352] |

+--+

Last update: October 25, 2023

4.4.10 Geography functions

- 173/804 - 2023 Vesoft Inc.

4.5 General queries statements

4.5.1 Overview of NebulaGraph general query statements

This topic provides an overview of the general categories of query statements in NebulaGraph and outlines their use cases.

Background

NebulaGraph stores data in the form of vertices and edges. Each vertex can have zero or more tags and each edge has exactly

one edge type. Tags define the type of a vertex and describe its properties, while edge types define the type of an edge and

describe its properties. When querying, you can limit the scope of the query by specifying the tag of a vertex or the type of an

edge. For more information, see Patterns.

Categories

The primary query statements in NebulaGraph fall into the following categories:

FETCH PROP ON

LOOKUP ON

GO

MATCH

FIND PATH

GET SUBGRAPH

SHOW

FETCH PROP ON and LOOKUP ON statements are primarily for basic data queries, GO and MATCH for more intricate queries and graph

traversals, FIND PATH and GET SUBGRAPH for path and subgraph queries, and SHOW for retrieving database metadata.

Usage and use cases

FETCH PROP ON

Usage: Retrieve properties of a specified vertex or edge.

Use case: Knowing the specific vertex or edge ID and wanting to retrieve its properties.

Note:

Must specify the ID of the vertex or edge.

Must specify the tag of the vertex or the edge type of the edge.

Must use the YIELD clause to specify the returned properties.

Example:

For more information, see FETCH PROP ON.

LOOKUP ON

Usage: Index-based querying of vertex or edge IDs.

•

•

•

•

•

•

•

•

•

•

FETCH PROP ON player "player100" YIELD properties(vertex);

 --+--- ----+----- -------+----------

 | | |

 | | |

 | | +--------- Returns all properties under the player tag of the vertex.

 | |

 | +----------------- Retrieves from the vertex "player100".

 |

 +--------------------------- Retrieves properties under the player tag.

4.5 General queries statements

- 174/804 - 2023 Vesoft Inc.

Use case: Finding vertex or edge IDs based on property values.

Note: - Must pre-define indexes for the tag, edge type, or property. - Must specify the tag of the vertex or the edge type of the

edge. - Must use the YIELD clause to specify the returned IDs.

Example:

For more information, see LOOKUP ON.

GO

Usage: Traverse the graph based on a given vertex and return information about the starting vertex, edges, or target vertices as

needed. Use case: Complex graph traversals, such as finding friends of a vertex, friends' friends, etc.

Note: - Use property reference symbols ($^ and $$) to return properties of the starting or target vertices, e.g., YIELD

$^.player.name . - Use the functions properties($^) and properties($$) to return all properties of the starting or target vertices. Specify

property names in the function to return specific properties, e.g., YIELD properties($^).name . - Use the functions src(edge) and

dst(edge) to return the starting or destination vertex ID of an edge, e.g., YIELD src(edge) .

Example:

For more information, see GO.

MATCH

Usage: Execute complex graph pattern matching queries.

Use case: Complex graph pattern matching, such as finding combinations of vertices and edges that satisfy a specific pattern.

Note:

MATCH statements are compatible with the OpenCypher syntax but with some differences:

Use == for equality instead of = , e.g., WHERE player.name == "Tony Parker" .

When referencing properties of vertices, you need to specify the vertex's tag, e.g., YIELD player.name .

Introduces the WHERE id(v) == "player100" syntax.

Must use the RETURN clause to specify what information to return.

Example:

For more information, see MATCH.

FIND PATH

Usage: Query paths between given starting and target vertices or query properties of vertices and edges along paths.

LOOKUP ON player WHERE player.name == "Tony Parker" YIELD id(vertex);

 --+--- ------------------+--------------- ---+------

 | | |

 | | |

 | | +---- Returns the VID of the retrieved vertex.

 | |

 | +------------ Filtering is based on the value of the property name.

 |

 +----------------------------------- Queries based on the player tag.

GO 3 STEPS FROM "player102" OVER follow YIELD dst(edge);

-----+--- --+------- -+---- ---+-----

 | | | |

 | | | |

 | | | +--------- Returns the destination vertex of the last hop.

 | | |

 | | +------ Traverses out via the edge follow.

 | |

 | +--------------------- Starts from "player102".

 |

 +---------------------------------- Traverses 3 steps.

•

•

•

•

MATCH (v:player{name:"Tim Duncan"})-->(v2:player) \

 RETURN v2.player.name AS Name;

4.5.1 Overview of NebulaGraph general query statements

- 175/804 - 2023 Vesoft Inc.

Use case: Querying paths between two vertices.

Note: Must use the YIELD clause to specify returned information.

Example:

For more information, see FIND PATH.

GET SUBGRAPH

Usage: Extract a portion of the graph that satisfies specific conditions or query properties of vertices and edges in the subgraph.

Use case: Analyzing structures of the graph or specific regions, such as extracting the social network subgraph of a person or

the transportation network subgraph of an area.

Note: Must use the YIELD clause to specify returned information.

Example:

For more information, see GET SUBGRAPH.

FIND SHORTEST PATH FROM "player102" TO "team204" OVER * YIELD path AS p;

-------+----- -------+---------------- ---+-- ----+----

 | | | |

 | | | |

 | | | +---------- Returns the path as 'p'.

 | | |

 | | +----------- Travels outwards via all types of edges.

 | |

 | |

 | +------------------ From the given starting and target VIDs.

 |

 +--------------------------- Retrieves the shortest path.

GET SUBGRAPH 5 STEPS FROM "player101" YIELD VERTICES AS nodes, EDGES AS relationships;

 -----+- -----+-------- ------------------------+----------------

 | | |

 | | |

 | +------- Starts from "player101". +------------ Returns all vertices and edges.

 |

 +----------------- Gets exploration of 5 steps

4.5.1 Overview of NebulaGraph general query statements

- 176/804 - 2023 Vesoft Inc.

SHOW

SHOW statements are mainly used to obtain metadata information from the database, not for retrieving the actual data stored in

the database. These statements are typically used to query the structure and configuration of the database.

Compound queries

Query statements in NebulaGraph can be combined to achieve more complex queries.

When referencing the results of a subquery in a compound statement, you need to create an alias for the result and use the pipe

symbol(|) to pass it to the next subquery. Use $- in the next subquery to reference the alias of that result. See Pipe Symbol for

details.

Statement Syntax Example Description

SHOW CHARSET SHOW CHARSET SHOW CHARSET Shows the available character sets.

SHOW

COLLATION

SHOW COLLATION SHOW COLLATION Shows the collations supported by NebulaGraph.

SHOW CREATE

SPACE

SHOW CREATE SPACE

<space_name>

SHOW CREATE SPACE

basketballplayer

Shows the creating statement of the specified

graph space.

SHOW CREATE

TAG/EDGE

SHOW CREATE {TAG

<tag_name> | EDGE

<edge_name>}

SHOW CREATE TAG player Shows the basic information of the specified tag.

SHOW HOSTS SHOW HOSTS [GRAPH |

STORAGE | META]

SHOW HOSTS

SHOW HOSTS GRAPH

Shows the host and version information of Graph

Service, Storage Service, and Meta Service.

SHOW INDEX

STATUS

SHOW {TAG | EDGE} INDEX

STATUS

SHOW TAG INDEX STATUS Shows the status of jobs that rebuild native

indexes, which helps check whether a native

index is successfully rebuilt or not.

SHOW INDEXES SHOW {TAG | EDGE}

INDEXES

SHOW TAG INDEXES Shows the names of existing native indexes.

SHOW PARTS SHOW PARTS [<part_id>] SHOW PARTS Shows the information of a specified partition or

all partitions in a graph space.

SHOW ROLES SHOW ROLES IN

<space_name>

SHOW ROLES in

basketballplayer

Shows the roles that are assigned to a user

account.

SHOW

SNAPSHOTS

SHOW SNAPSHOTS SHOW SNAPSHOTS Shows the information of all the snapshots.

SHOW SPACES SHOW SPACES SHOW SPACES Shows existing graph spaces in NebulaGraph.

SHOW STATS SHOW STATS SHOW STATS Shows the statistics of the graph space collected

by the latest STATS job.

SHOW TAGS/

EDGES

SHOW TAGS | EDGES SHOW TAGS , SHOW EDGES Shows all the tags in the current graph space.

SHOW USERS SHOW USERS SHOW USERS Shows the user information.

SHOW

SESSIONS

SHOW SESSIONS SHOW SESSIONS Shows the information of all the sessions.

SHOW

SESSIONS

SHOW SESSION

<Session_Id>

SHOW SESSION

1623304491050858

Shows a specified session with its ID.

SHOW QUERIES SHOW [ALL] QUERIES SHOW QUERIES Shows the information of working queries in the

current session.

SHOW META

LEADER

SHOW META LEADER SHOW META LEADER Shows the information of the leader in the

current Meta cluster.

4.5.1 Overview of NebulaGraph general query statements

- 177/804 - 2023 Vesoft Inc.

Example:

The pipe symbol | is applicable only in nGQL and cannot be used in OpenCypher statements. If you need to perform compound

queries using MATCH statements, you can use the WITH clause.

Example:

More information

nGQL command cheatsheet

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS dstid, properties($$).name AS Name | \

 GO FROM $-.dstid OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player102" |

| "player125" |

| "player100" |

+-------------+

nebula> MATCH (v:player)-->(v2:player) \

 WITH DISTINCT v2 AS v2, v2.player.age AS Age \

 ORDER BY Age \

 WHERE Age<25 \

 RETURN v2.player.name AS Name, Age;

+----------------------+-----+

| Name | Age |

+----------------------+-----+

| "Luka Doncic" | 20 |

| "Ben Simmons" | 22 |

| "Kristaps Porzingis" | 23 |

+----------------------+-----+

Last update: January 31, 2024

4.5.1 Overview of NebulaGraph general query statements

- 178/804 - 2023 Vesoft Inc.

4.5.2 MATCH

The MATCH statement provides pattern-based search functionality, allowing you to retrieve data that matches one or more patterns

in NebulaGraph. By defining one or more patterns, you can search for data that matches the patterns in NebulaGraph. Once the

matching data is retrieved, you can use the RETURN clause to return it as a result.

The examples in this topic use the basketballplayer dataset as the sample dataset.

Syntax

The syntax of MATCH is relatively more flexible compared with that of other query statements such as GO or LOOKUP . The path type

of the MATCH statement is trail . That is, only vertices can be repeatedly visited in the graph traversal. Edges cannot be repeatedly

visited. For details, see path. But generally, it can be summarized as follows.

pattern : The MATCH statement supports matching one or multiple patterns. Multiple patterns are separated by commas (,). For

example: (a)-[]->(b),(c)-[]->(d) . For the detailed description of patterns, see Patterns.

clause_1 : The WHERE , WITH , UNWIND , and OPTIONAL MATCH clauses are supported, and the MATCH clause can also be used.

output : Define the list name for the output results to be returned. You can use AS to set an alias for the list.

clause_2 : The ORDER BY and LIMIT clauses are supported.

Starting from version 3.5.0, the MATCH statement supports full table scans. It can traverse vertices or edges in the graph without using

any indexes or filter conditions. In previous versions, the MATCH statement required an index for certain queries or needed to use LIMIT

to restrict the number of output results.

Starting from NebulaGraph version 3.0.0, in order to distinguish the properties of different tags, you need to specify a tag name

when querying properties. The original statement RETURN <variable_name>.<property_name> is changed to RETURN

<variable_name>.<tag_name>.<property_name> .

Notes

Avoid full table scans, as they may result in decreased query performance, and if there is insufficient memory during a full

table scan, the query may fail, and the system will report an error. It is recommended to use queries with filter conditions or

specifying tags and edge types, such as v:player and v.player.name in the statement MATCH (v:player) RETURN v.player.name AS Name .

You can create an index for a tag, edge type, or a specific property of a tag or edge type to improve query performance. For

example, you can create an index for the player tag or the name property of the player tag. For more information about the

usage and considerations for indexes, see Must-read for using indexes.

The MATCH statement cannot query dangling edges.

Using patterns in MATCH statements

MATCH VERTICES

You can use a user-defined variable in a pair of parentheses to represent a vertex in a pattern. For example: (v) .

MATCH <pattern> [<clause_1>] RETURN <output> [<clause_2>];

•

•

•

•

Legacy version compatibility

•

•

•

•

•

nebula> MATCH (v) \

 RETURN v \

 LIMIT 3;

+---+

| v |

+---+

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

| ("player106" :player{age: 25, name: "Kyle Anderson"}) |

4.5.2 MATCH

- 179/804 - 2023 Vesoft Inc.

MATCH TAGS

In NebulaGraph versions earlier than 3.0.0, the prerequisite for matching a tag is that the tag itself has an index or a certain

property of the tag has an index.

Starting from NebulaGraph 3.0.0, you can match tags without creating an index, but you need to use LIMIT to restrict the number of

output results.

Starting from NebulaGraph 3.5.0, the MATCH statement supports full table scans. There is no need to create an index for a tag or a

specific property of a tag, nor use LIMIT to restrict the number of output results in order to execute the MATCH statement.

You can specify a tag with :<tag_name> after the vertex in a pattern.

To match vertices with multiple tags, use colons (:).

MATCH VERTEX PROPERTIES

The prerequisite for matching a vertex property is that the tag itself has an index of the corresponding property. Otherwise, you

cannot execute the MATCH statement to match the property.

You can specify a vertex property with {<prop_name>: <prop_value>} after the tag in a pattern.

The WHERE clause can do the same thing:

| ("player115" :player{age: 40, name: "Kobe Bryant"}) |

+---+

Legacy version compatibility

•

•

•

nebula> MATCH (v:player) \

 RETURN v;

+---+

| v |

+---+

| ("player105" :player{age: 31, name: "Danny Green"}) |

| ("player109" :player{age: 34, name: "Tiago Splitter"}) |

| ("player111" :player{age: 38, name: "David West"}) |

...

nebula> CREATE TAG actor (name string, age int);

nebula> INSERT VERTEX actor(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> MATCH (v:player:actor) \

 RETURN v \

+--+

| v |

+--+

| ("player100" :actor{age: 42, name: "Tim Duncan"} :player{age: 42, name: "Tim Duncan"}) |

+--+

Note

The following example uses the name property to match a vertex.

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> MATCH (v:player) \

 WHERE v.player.name == "Tim Duncan" \

 RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

4.5.2 MATCH

- 180/804 - 2023 Vesoft Inc.

In openCypher 9, = is the equality operator. However, in nGQL, == is the equality operator and = is the assignment operator (as in

C++ or Java).

Use the WHERE clause to directly get all the vertices with the vertex property value Tim Duncan.

MATCH VIDS

You can use the VID to match a vertex. The id() function can retrieve the VID of a vertex.

To match multiple VIDs, use WHERE id(v) IN [vid_list] or WHERE id(v) IN {vid_list} .

MATCH CONNECTED VERTICES

You can use the -- symbol to represent edges of both directions and match vertices connected by these edges.

In nGQL 1.x, the -- symbol is used for inline comments. Starting from nGQL 2.x, the -- symbol represents an incoming or outgoing

edge.

OpenCypher compatibility

nebula> MATCH (v) \

 WITH v, properties(v) as props, keys(properties(v)) as kk \

 WHERE [i in kk where props[i] == "Tim Duncan"] \

 RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> WITH ['Tim Duncan', 'Yao Ming'] AS names \

 MATCH (v1:player)-->(v2:player) \

 WHERE v1.player.name in names \

 return v1, v2;

+--+--+

| v1 | v2 |

+--+--+

| ("player133" :player{age: 38, name: "Yao Ming"}) | ("player114" :player{age: 39, name: "Tracy McGrady"}) |

| ("player133" :player{age: 38, name: "Yao Ming"}) | ("player144" :player{age: 47, name: "Shaquille O'Neal"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("player125" :player{age: 41, name: "Manu Ginobili"}) |

+--+--+

nebula> MATCH (v) \

 WHERE id(v) == 'player101' \

 RETURN v;

+---+

| v |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

+---+

nebula> MATCH (v:player { name: 'Tim Duncan' })--(v2) \

 WHERE id(v2) IN ["player101", "player102"] \

 RETURN v2;

+---+

| v2 |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

+---+

nebula> MATCH (v) WHERE id(v) IN {"player100", "player101"} \

 RETURN v.player.name AS name;

+---------------+

| name |

+---------------+

| "Tony Parker" |

| "Tim Duncan" |

+---------------+

Legacy version compatibility

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) \

 RETURN v2.player.name AS Name;

4.5.2 MATCH

- 181/804 - 2023 Vesoft Inc.

You can add a > or < to the -- symbol to specify the direction of an edge.

In the following example, --> represents an edge that starts from v and points to v2 . To v , this is an outgoing edge, and to v2

this is an incoming edge.

To query the properties of the target vertices, use the CASE expression.

To extend the pattern, you can add more vertices and edges.

If you do not need to refer to a vertex, you can omit the variable representing it in the parentheses.

MATCH PATHS

Connected vertices and edges form a path. You can use a user-defined variable to name a path as follows.

+---------------------+

| Name |

+---------------------+

| "Manu Ginobili" |

| "Manu Ginobili" |

| "Tiago Splitter" |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2:player) \

 RETURN v2.player.name AS Name;

+-----------------+

| Name |

+-----------------+

| "Manu Ginobili" |

| "Tony Parker" |

+-----------------+

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) \

 RETURN \

 CASE WHEN v2.team.name IS NOT NULL \

 THEN v2.team.name \

 WHEN v2.player.name IS NOT NULL \

 THEN v2.player.name END AS Name;

+---------------------+

| Name |

+---------------------+

| "Manu Ginobili" |

| "Manu Ginobili" |

| "Spurs" |

| "Dejounte Murray" |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2)<--(v3) \

 RETURN v3.player.name AS Name;

+---------------------+

| Name |

+---------------------+

| "Dejounte Murray" |

| "LaMarcus Aldridge" |

| "Marco Belinelli" |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-->()<--(v3) \

 RETURN v3.player.name AS Name;

+---------------------+

| Name |

+---------------------+

| "Dejounte Murray" |

| "LaMarcus Aldridge" |

| "Marco Belinelli" |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) \

 RETURN p;

+--+

| p |

+--+

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})> |

+--+

4.5.2 MATCH

- 182/804 - 2023 Vesoft Inc.

In nGQL, the @ symbol represents the rank of an edge, but openCypher has no such concept.

MATCH EDGES

MATCH EDGE TYPES

Just like vertices, you can specify edge types with :<edge_type> in a pattern. For example: -[e:follow]- .

In NebulaGraph versions earlier than 3.0.0, the prerequisite for matching a edge type is that the edge type itself has an index or a

certain property of the edge type has an index.

Starting from version 3.0.0, there is no need to create an index for matching a edge type, but you need to use LIMIT to limit the

number of output results and you must specify the direction of the edge.

Starting from NebulaGraph 3.5.0, you can use the MATCH statement to match edges without creating an index for edge type or using

LIMIT to restrict the number of output results.

MATCH EDGE TYPE PROPERTIES

The prerequisite for matching an edge type property is that the edge type itself has an index of the corresponding property.

Otherwise, you cannot execute the MATCH statement to match the property.

You can specify edge type properties with {<prop_name>: <prop_value>} in a pattern. For example: [e:follow{likeness:95}] .

Use the WHERE clause to directly get all the edges with the edge property value 90.

OpenCypher compatibility

nebula> MATCH ()<-[e]-() \

 RETURN e \

 LIMIT 3;

+--+

| e |

+--+

| [:follow "player101"->"player102" @0 {degree: 90}] |

| [:follow "player103"->"player102" @0 {degree: 70}] |

| [:follow "player135"->"player102" @0 {degree: 80}] |

+--+

OpenCypher compatibility

•

•

•

nebula> MATCH ()-[e:follow]->() \

 RETURN e;

+--+

| e |

+--+

| [:follow "player102"->"player100" @0 {degree: 75}] |

| [:follow "player102"->"player101" @0 {degree: 75}] |

| [:follow "player129"->"player116" @0 {degree: 90}] |

...

Note

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow{degree:95}]->(v2) \

 RETURN e;

+--+

| e |

+--+

| [:follow "player100"->"player101" @0 {degree: 95}] |

| [:follow "player100"->"player125" @0 {degree: 95}] |

+--+

nebula> MATCH ()-[e]->() \

 WITH e, properties(e) as props, keys(properties(e)) as kk \

 WHERE [i in kk where props[i] == 90] \

 RETURN e;

+--+

| e |

+--+

4.5.2 MATCH

- 183/804 - 2023 Vesoft Inc.

MATCH MULTIPLE EDGE TYPES

The | symbol can help matching multiple edge types. For example: [e:follow|:serve] . The English colon (:) before the first edge

type cannot be omitted, but the English colon before the subsequent edge type can be omitted, such as [e:follow|serve] .

MATCH MULTIPLE EDGES

You can extend a pattern to match multiple edges in a path.

MATCH FIXED-LENGTH PATHS

You can use the :<edge_type>*<hop> pattern to match a fixed-length path. hop must be a non-negative integer.

If hop is 0, the pattern will match the source vertex of the path.

| [:follow "player125"->"player100" @0 {degree: 90}] |

| [:follow "player140"->"player114" @0 {degree: 90}] |

| [:follow "player133"->"player144" @0 {degree: 90}] |

| [:follow "player133"->"player114" @0 {degree: 90}] |

...

+--+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow|:serve]->(v2) \

 RETURN e;

+---+

| e |

+---+

| [:follow "player100"->"player101" @0 {degree: 95}] |

| [:follow "player100"->"player125" @0 {degree: 95}] |

| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |

+---+

nebula> MATCH (v:player{name:"Tim Duncan"})-[]->(v2)<-[e:serve]-(v3) \

 RETURN v2, v3;

+----------------------------------+---+

| v2 | v3 |

+----------------------------------+---+

| ("team204" :team{name: "Spurs"}) | ("player104" :player{age: 32, name: "Marco Belinelli"}) |

| ("team204" :team{name: "Spurs"}) | ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("team204" :team{name: "Spurs"}) | ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 RETURN DISTINCT v2 AS Friends;

+---+

| Friends |

+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

+---+

nebula> MATCH (v:player{name:"Tim Duncan"}) -[*0]-> (v2) \

 RETURN v2;

+--+

| v2 |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

4.5.2 MATCH

- 184/804 - 2023 Vesoft Inc.

When you conditionally filter on multi-hop edges, such as -[e:follow*2]-> , note that the e is a list of edges instead of a single edge.

For example, the following statement is correct from the syntax point of view which may not get your expected query result, because

the e is a list without the .degree property.

The correct statement is as follows:

Further, the following statement is for filtering the properties of the first-hop edge in multi-hop edges:

MATCH VARIABLE-LENGTH PATHS

You can use the :<edge_type>*[minHop..maxHop] pattern to match variable-length paths. minHop and maxHop are optional and default to 1

and infinity respectively.

If maxHop is not set, it may cause the Graph service to OOM. Execute this command with caution.

If neither minHop nor maxHop is specified, and only :<edge_type>* is set, the default values are applied to both, i.e., minHop is 1 and

maxHop is infinity.

Note

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 WHERE e.degree > 1 \

 RETURN DISTINCT v2 AS Friends;

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 WHERE ALL(e_ in e WHERE e_.degree > 0) \

 RETURN DISTINCT v2 AS Friends;

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 WHERE e[0].degree > 98 \

 RETURN DISTINCT v2 AS Friends;

Caution

Parameter Description

minHop Optional. minHop indicates the minimum length of the path, which must be a non-negative integer. The

default value is 1.

maxHop Optional. maxHop indicates the maximum length of the path, which must be a non-negative integer. The

default value is infinity.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*]->(v2) \

 RETURN v2 AS Friends;

+---+

| Friends |

+---+

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2) \

 RETURN v2 AS Friends;

+---+

| Friends |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..]->(v2) \

 RETURN v2 AS Friends;

+---+

| Friends |

+---+

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

...

4.5.2 MATCH

- 185/804 - 2023 Vesoft Inc.

You can use the DISTINCT keyword to aggregate duplicate results.

If minHop is 0 , the pattern will match the source vertex of the path. Compared to the preceding statement, the following example

uses 0 as the minHop . So in the following result set, "Tim Duncan" is counted one more time than it is in the preceding result set

because it is the source vertex.

When using the variable e to match fixed-length or variable-length paths in a pattern, such as -[e:follow*0..3]-> , it is not supported to

reference e in other patterns. For example, the following statement is not supported.

MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

You can specify multiple edge types in a fixed-length or variable-length pattern. In this case, hop , minHop , and maxHop take effect on

all edge types.

MATCH MULTIPLE PATTERNS

You can separate multiple patterns with commas (,).

MATCH SHORTEST PATHS

The allShortestPaths function can be used to find all shortest paths between two vertices.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2:player) \

 RETURN DISTINCT v2 AS Friends, count(v2);

+---+-----------+

| Friends | count(v2) |

+---+-----------+

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | 4 |

| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |

+---+-----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*0..3]->(v2:player) \

 RETURN DISTINCT v2 AS Friends, count(v2);

+---+-----------+

| Friends | count(v2) |

+---+-----------+

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | 5 |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |

| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |

+---+-----------+

Note

nebula> MATCH (v:player)-[e:like*1..3]->(n) \

 WHERE (n)-[e*1..4]->(:player) \

 RETURN v;

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow|serve*2]->(v2) \

 RETURN DISTINCT v2;

+---+

| v2 |

+---+

| ("team204" :team{name: "Spurs"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

| ("team215" :team{name: "Hornets"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

+---+

nebula> CREATE TAG INDEX IF NOT EXISTS team_index ON team(name(20));

nebula> REBUILD TAG INDEX team_index;

nebula> MATCH (v1:player{name:"Tim Duncan"}), (v2:team{name:"Spurs"}) \

 RETURN v1,v2;

+--+----------------------------------+

| v1 | v2 |

+--+----------------------------------+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("team204" :team{name: "Spurs"}) |

+--+----------------------------------+

nebula> MATCH p = allShortestPaths((a:player{name:"Tim Duncan"})-[e*..5]-(b:player{name:"Tony Parker"})) \

 RETURN p;

+--+

| p |

4.5.2 MATCH

- 186/804 - 2023 Vesoft Inc.

The shortestPath function can be used to find a single shortest path between two vertices.

Retrieve with multiple match

Multiple MATCH can be used when different patterns have different filtering criteria and return the rows that exactly match the

pattern.

Retrieve with optional match

See OPTIONAL MATCH.

In NebulaGraph, the performance and resource usage of the MATCH statement have been optimized. But we still recommend to use GO ,

LOOKUP , | , and FETCH instead of MATCH when high performance is required.

+--+

| <("player100" :player{age: 42, name: "Tim Duncan"})<-[:follow@0 {degree: 95}]-("player101" :player{age: 36, name: "Tony Parker"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})> |

+--+

nebula> MATCH p = shortestPath((a:player{name:"Tim Duncan"})-[e*..5]-(b:player{name:"Tony Parker"})) \

 RETURN p;

+--+

| p |

+--+

| <("player100" :player{age: 42, name: "Tim Duncan"})<-[:follow@0 {degree: 95}]-("player101" :player{age: 36, name: "Tony Parker"})> |

+--+

nebula> MATCH (m)-[]->(n) WHERE id(m)=="player100" \

 MATCH (n)-[]->(l) WHERE id(n)=="player125" \

 RETURN id(m),id(n),id(l);

+-------------+-------------+-------------+

| id(m) | id(n) | id(l) |

+-------------+-------------+-------------+

| "player100" | "player125" | "team204" |

| "player100" | "player125" | "player100" |

+-------------+-------------+-------------+

Caution

Last update: December 5, 2023

4.5.2 MATCH

- 187/804 - 2023 Vesoft Inc.

4.5.3 OPTIONAL MATCH

The feature is still in beta. It will continue to be optimized.

The OPTIONAL MATCH clause is used to search for the pattern described in it. OPTIONAL MATCH matches patterns against your graph

database, just like MATCH does. The difference is that if no matches are found, OPTIONAL MATCH will use a null for missing parts of the

pattern.

OpenCypher Compatibility

This topic applies to the openCypher syntax in nGQL only.

Limitations

The WHERE clause cannot be used in an OPTIONAL MATCH clause.

Example

The example of the use of OPTIONAL MATCH in the MATCH statement is as follows:

Using multiple MATCH instead of OPTIONAL MATCH returns rows that match the pattern exactly. The example is as follows:

Caution

nebula> MATCH (m)-[]->(n) WHERE id(m)=="player100" \

 OPTIONAL MATCH (n)-[]->(l) \

 RETURN id(m),id(n),id(l);

+-------------+-------------+-------------+

| id(m) | id(n) | id(l) |

+-------------+-------------+-------------+

| "player100" | "team204" | __NULL__ |

| "player100" | "player101" | "team204" |

| "player100" | "player101" | "team215" |

| "player100" | "player101" | "player100" |

| "player100" | "player101" | "player102" |

| "player100" | "player101" | "player125" |

| "player100" | "player125" | "team204" |

| "player100" | "player125" | "player100" |

+-------------+-------------+-------------+

nebula> MATCH (m)-[]->(n) WHERE id(m)=="player100" \

 MATCH (n)-[]->(l) \

 RETURN id(m),id(n),id(l);

+-------------+-------------+-------------+

| id(m) | id(n) | id(l) |

+-------------+-------------+-------------+

| "player100" | "player101" | "team204" |

| "player100" | "player101" | "team215" |

| "player100" | "player101" | "player100" |

| "player100" | "player101" | "player102" |

| "player100" | "player101" | "player125" |

| "player100" | "player125" | "team204" |

| "player100" | "player125" | "player100" |

+-------------+-------------+-------------+

Last update: October 25, 2023

4.5.3 OPTIONAL MATCH

- 188/804 - 2023 Vesoft Inc.

4.5.4 LOOKUP

The LOOKUP statement traverses data based on indexes. You can use LOOKUP for the following purposes:

Search for the specific data based on conditions defined by the WHERE clause.

List vertices with a tag: retrieve the VID of all vertices with a tag.

List edges with an edge type: retrieve the source vertex IDs, destination vertex IDs, and ranks of all edges with an edge type.

Count the number of vertices or edges with a tag or an edge type.

OpenCypher compatibility

This topic applies to native nGQL only.

Precautions

Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance can

be greatly reduced. DO NOT use indexes in production environments unless you are fully aware of their influences on your

service.

If the specified property is not indexed when using the LOOKUP statement, NebulaGraph randomly selects one of the available

indexes.

For example, the tag player has two properties, name and age . Both the tag player itself and the property name have indexes, but

the property age has no indexes. When running LOOKUP ON player WHERE player.age == 36 YIELD player.name; , NebulaGraph randomly uses

one of the indexes of the tag player and the property name . You can use the EXPLAIN statement to check the selected index.

Before the release 2.5.0, if the specified property is not indexed when using the LOOKUP statement, NebulaGraph reports an error

and does not use other indexes.

Prerequisites

Before using the LOOKUP statement, make sure that at least one index is created. If there are already related vertices, edges, or

properties before an index is created, the user must rebuild the index after creating the index to make it valid.

Syntax

WHERE <expression> : filters data with specified conditions. Both AND and OR are supported between different expressions. For more

information, see WHERE.

YIELD : Define the output to be returned. For details, see YIELD .

DISTINCT : Aggregate the output results and return the de-duplicated result set.

AS : Set an alias.

•

•

•

•

•

•

Legacy version compatibility

LOOKUP ON {<vertex_tag> | <edge_type>}

[WHERE <expression> [AND <expression> ...]]

YIELD [DISTINCT] <return_list> [AS <alias>];

<return_list>

 <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...];

•

•

•

•

4.5.4 LOOKUP

- 189/804 - 2023 Vesoft Inc.

Limitations of using WHERE in LOOKUP

The WHERE clause in a LOOKUP statement does not support the following operations:

$- and $^ .

Filter rank() .

In relational expressions, operators are not supported to have field names on both sides, such as tagName.prop1> tagName.prop2 .

Nested AliasProp expressions in operation expressions and function expressions are not supported.

The XOR operation is not supported.

String operations other than STARTS WITH are not supported.

Graph patterns.

Retrieve vertices

The following example returns vertices whose name is Tony Parker and the tag is player .

•

•

•

•

•

•

•

nebula> CREATE TAG INDEX IF NOT EXISTS index_player ON player(name(30), age);

nebula> REBUILD TAG INDEX index_player;

+------------+

| New Job Id |

+------------+

| 15 |

+------------+

nebula> LOOKUP ON player \

 WHERE player.name == "Tony Parker" \

 YIELD id(vertex);

+---------------+

| id(VERTEX) |

+---------------+

| "player101" |

+---------------+

nebula> LOOKUP ON player \

 WHERE player.name == "Tony Parker" \

 YIELD properties(vertex).name AS name, properties(vertex).age AS age;

+---------------+-----+

| name | age |

+---------------+-----+

| "Tony Parker" | 36 |

+---------------+-----+

nebula> LOOKUP ON player \

 WHERE player.age > 45 \

 YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player144" |

| "player140" |

+-------------+

nebula> LOOKUP ON player \

 WHERE player.name STARTS WITH "B" \

 AND player.age IN [22,30] \

 YIELD properties(vertex).name, properties(vertex).age;

+-------------------------+------------------------+

| properties(VERTEX).name | properties(VERTEX).age |

+-------------------------+------------------------+

| "Ben Simmons" | 22 |

| "Blake Griffin" | 30 |

+-------------------------+------------------------+

nebula> LOOKUP ON player \

 WHERE player.name == "Kobe Bryant"\

 YIELD id(vertex) AS VertexID, properties(vertex).name AS name |\

 GO FROM $-.VertexID OVER serve \

 YIELD $-.name, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+---------------+-----------------------------+---------------------------+---------------------+

| $-.name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+---------------+-----------------------------+---------------------------+---------------------+

| "Kobe Bryant" | 1996 | 2016 | "Lakers" |

+---------------+-----------------------------+---------------------------+---------------------+

4.5.4 LOOKUP

- 190/804 - 2023 Vesoft Inc.

Retrieve edges

The following example returns edges whose degree is 90 and the edge type is follow .

List vertices or edges with a tag or an edge type

To list vertices or edges with a tag or an edge type, at least one index must exist on the tag, the edge type, or its property.

nebula> CREATE EDGE INDEX IF NOT EXISTS index_follow ON follow(degree);

nebula> REBUILD EDGE INDEX index_follow;

+------------+

| New Job Id |

+------------+

| 62 |

+------------+

nebula> LOOKUP ON follow \

 WHERE follow.degree == 90 YIELD edge AS e;

+--+

| e |

+--+

| [:follow "player109"->"player125" @0 {degree: 90}] |

| [:follow "player118"->"player120" @0 {degree: 90}] |

| [:follow "player118"->"player131" @0 {degree: 90}] |

...

nebula> LOOKUP ON follow \

 WHERE follow.degree == 90 \

 YIELD properties(edge).degree;

+-------------+-------------+---------+-------------------------+

| SrcVID | DstVID | Ranking | properties(EDGE).degree |

+-------------+-------------+---------+-------------------------+

| "player150" | "player143" | 0 | 90 |

| "player150" | "player137" | 0 | 90 |

| "player148" | "player136" | 0 | 90 |

...

nebula> LOOKUP ON follow \

 WHERE follow.degree == 60 \

 YIELD dst(edge) AS DstVID, properties(edge).degree AS Degree |\

 GO FROM $-.DstVID OVER serve \

 YIELD $-.DstVID, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+-------------+-----------------------------+---------------------------+---------------------+

| $-.DstVID | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+-------------+-----------------------------+---------------------------+---------------------+

| "player105" | 2010 | 2018 | "Spurs" |

| "player105" | 2009 | 2010 | "Cavaliers" |

| "player105" | 2018 | 2019 | "Raptors" |

+-------------+-----------------------------+---------------------------+---------------------+

4.5.4 LOOKUP

- 191/804 - 2023 Vesoft Inc.

For example, if there is a player tag with a name property and an age property, to retrieve the VID of all vertices tagged with

player , there has to be an index on the player tag itself, the name property, or the age property.

The following example shows how to retrieve the VID of all vertices tagged with player .

The following example shows how to retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges of the follow

edge type.

Count the numbers of vertices or edges

The following example shows how to count the number of vertices tagged with player and edges of the follow edge type.

•

nebula> CREATE TAG IF NOT EXISTS player(name string,age int);

nebula> CREATE TAG INDEX IF NOT EXISTS player_index on player();

nebula> REBUILD TAG INDEX player_index;

+------------+

| New Job Id |

+------------+

| 66 |

+------------+

nebula> INSERT VERTEX player(name,age) \

 VALUES "player100":("Tim Duncan", 42), "player101":("Tony Parker", 36);

The following statement retrieves the VID of all vertices with the tag `player`. It is similar to `MATCH (n:player) RETURN id(n) /*, n */`.

nebula> LOOKUP ON player YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player100" |

| "player101" |

...

•

nebula> CREATE EDGE IF NOT EXISTS follow(degree int);

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index on follow();

nebula> REBUILD EDGE INDEX follow_index;

+------------+

| New Job Id |

+------------+

| 88 |

+------------+

nebula> INSERT EDGE follow(degree) \

 VALUES "player100"->"player101":(95);

The following statement retrieves all edges with the edge type `follow`. It is similar to `MATCH (s)-[e:follow]->(d) RETURN id(s), rank(e), id(d) /*, type(e) */`.

nebula)> LOOKUP ON follow YIELD edge AS e;

+---+

| e |

+---+

| [:follow "player105"->"player100" @0 {degree: 70}] |

| [:follow "player105"->"player116" @0 {degree: 80}] |

| [:follow "player109"->"player100" @0 {degree: 80}] |

...

nebula> LOOKUP ON player YIELD id(vertex)|\

 YIELD COUNT(*) AS Player_Number;

+---------------+

| Player_Number |

+---------------+

| 51 |

+---------------+

nebula> LOOKUP ON follow YIELD edge AS e| \

 YIELD COUNT(*) AS Follow_Number;

+---------------+

| Follow_Number |

+---------------+

| 81 |

+---------------+

4.5.4 LOOKUP

- 192/804 - 2023 Vesoft Inc.

You can also use SHOW STATS to count the numbers of vertices or edges.

Note

Last update: October 25, 2023

4.5.4 LOOKUP

- 193/804 - 2023 Vesoft Inc.

4.5.5 GO

The GO statement is used in the NebulaGraph database to traverse the graph starting from a given starting vertex with specified

filters and return results.

OpenCypher compatibility

This topic applies to native nGQL only.

Syntax

GO [[<M> TO] <N> {STEP|STEPS}] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

YIELD [DISTINCT] <return_list>

[{SAMPLE <sample_list> | <limit_by_list_clause>}]

[| GROUP BY {col_name | expr | position} YIELD <col_name>]

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset>,] <number_rows>];

<vertex_list> ::=

 <vid> [, <vid> ...]

<edge_type_list> ::=

 edge_type [, edge_type ...]

 | *

4.5.5 GO

- 194/804 - 2023 Vesoft Inc.

<N> {STEP|STEPS} : specifies the hop number. If not specified, the default value for N is one . When N is zero , NebulaGraph does not

traverse any edges and returns nothing.

The path type of the GO statement is walk , which means both vertices and edges can be repeatedly visited in graph traversal. For

more information, see Path.

M TO N {STEP|STEPS} : traverses from M to N hops. When M is zero , the output is the same as that of M is one . That is, the output of

GO 0 TO 2 and GO 1 TO 2 are the same.

<vertex_list> : represents a list of vertex IDs separated by commas.

<edge_type_list> : represents a list of edge types which the traversal can go through.

REVERSELY | BIDIRECT : defines the direction of the query. By default, the GO statement searches for outgoing edges of <vertex_list> .

If REVERSELY is set, GO searches for incoming edges. If BIDIRECT is set, GO searches for edges of both directions. The direction of

the query can be checked by returning the <edge_type>._type field using YIELD . A positive value indicates an outgoing edge, while

a negative value indicates an incoming edge.

WHERE <expression> : specifies the traversal filters. You can use the WHERE clause for the source vertices, the edges, and the

destination vertices. You can use it together with AND , OR , NOT , and XOR . For more information, see WHERE.

There are some restrictions for the WHERE clause when you traverse along with multiple edge types. For example, WHERE edge1.prop1 >

edge2.prop2 is not supported.

The GO statement is executed by traversing all the vertices and then filtering according to the filter condition.

YIELD [DISTINCT] <return_list> : defines the output to be returned. It is recommended to use the Schema-related functions to fill in

<return_list> . src(edge) , dst(edge) , type(edge)) , rank(edge) , etc., are currently supported, while nested functions are not. For more

information, see YIELD.

SAMPLE <sample_list> : takes samples from the result set. For more information, see SAMPLE.

<limit_by_list_clause> : limits the number of outputs during the traversal process. For more information, see LIMIT.

GROUP BY : groups the output into subgroups based on the value of the specified property. For more information, see GROUP BY.

After grouping, you need to use YIELD again to define the output that needs to be returned.

ORDER BY : sorts outputs with specified orders. For more information, see ORDER BY.

When the sorting method is not specified, the output orders can be different for the same query.

LIMIT [<offset>,] <number_rows>] : limits the number of rows of the output. For more information, see LIMIT.

<return_list> ::=

 <col_name> [AS <col_alias>] [, <col_name> [AS <col_alias>] ...]

•

Note

•

•

•

•

•

Note

•

•

•

•

•

•

•

Note

•

4.5.5 GO

- 195/804 - 2023 Vesoft Inc.

Notes

The WHERE and YIELD clauses in GO statements usually utilize property reference symbols ($^ and $$) or the properties($^) and

properties($$) functions to specify the properties of a vertex; use the properties(edge) function to specify the properties of an

edge. For details, see Property Reference Symbols and Schema-related Functions.

When referring to the result of a subquery in a compound GO statement, you need to set a name for the result and pass it to

the next subquery using the pipe symbol | , and reference the name of the result in the next subquery using $- . See the Pipe

Operator for details.

When the queried property has no value, the returned result displays NULL .

Cases and examples

TO QUERY THE IMMEDIATE NEIGHBORS OF A VERTEX

For example, to query the team that a person belongs to, assuming that the person is connected to the team by the serve edge

and the person's ID is player102 .

TO QUERY ALL VERTICES WITHIN A SPECIFIED NUMBER OF HOPS FROM A STARTING VERTEX

For example, to query all vertices within two hops of a person vertex, assuming that the person is connected to other people by

the follow edge and the person's ID is player102 .

TO ADD FILTERING CONDITIONS

Case: To query the vertices and edges that meet specific conditions.

For example, use the WHERE clause to query the edges with specific properties between the starting vertex and the destination

vertex.

•

•

•

nebula> GO FROM "player102" OVER serve YIELD dst(edge);

+-----------+

| dst(EDGE) |

+-----------+

| "team203" |

| "team204" |

+-----------+

Return all vertices that are 2 hops away from the player102 vertex.

nebula> GO 2 STEPS FROM "player102" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

| "player100" |

| "player102" |

| "player125" |

+-------------+

Return all vertices within 1 or 2 hops away from the player102 vertex.

nebula> GO 1 TO 2 STEPS FROM "player100" OVER follow \

 YIELD dst(edge) AS destination;

+-------------+

| destination |

+-------------+

| "player101" |

| "player125" |

...

The following MATCH query has the same semantics as the previous GO query.

nebula> MATCH (v) -[e:follow*1..2]->(v2) \

 WHERE id(v) == "player100" \

 RETURN id(v2) AS destination;

+-------------+

| destination |

+-------------+

| "player100" |

| "player102" |

...

nebula> GO FROM "player100", "player102" OVER serve \

 WHERE properties(edge).start_year > 1995 \

 YIELD DISTINCT properties($$).name AS team_name, properties(edge).start_year AS start_year, properties($^).name AS player_name;

+-----------------+------------+---------------------+

4.5.5 GO

- 196/804 - 2023 Vesoft Inc.

TO QUERY ALL EDGES

Case: To query all edges that are connected to the starting vertex.

TO QUERY MULTIPLE EDGE TYPES

Case: To query multiple edge types that are connected to the starting vertex. You can specify multiple edge types or the *

symbol to query multiple edge types.

For example, to query the follow and serve edges that are connected to the starting vertex.

TO QUERY INCOMING VERTICES USING THE REVERSELY KEYWORD

TO USE SUBQUERIES AS THE STARTING VERTICE OF A GRAPH TRAVERSAL

| team_name | start_year | player_name |

+-----------------+------------+---------------------+

| "Spurs" | 1997 | "Tim Duncan" |

| "Trail Blazers" | 2006 | "LaMarcus Aldridge" |

| "Spurs" | 2015 | "LaMarcus Aldridge" |

+-----------------+------------+---------------------+

Return all edges that are connected to the player102 vertex.

nebula> GO FROM "player102" OVER * BIDIRECT YIELD edge AS e;

+---+

| e |

+---+

| [:follow "player101"->"player102" @0 {degree: 90}] |

| [:follow "player103"->"player102" @0 {degree: 70}] |

| [:follow "player135"->"player102" @0 {degree: 80}] |

| [:follow "player102"->"player100" @0 {degree: 75}] |

| [:follow "player102"->"player101" @0 {degree: 75}] |

| [:serve "player102"->"team203" @0 {end_year: 2015, start_year: 2006}] |

| [:serve "player102"->"team204" @0 {end_year: 2019, start_year: 2015}] |

+---+

nebula> GO FROM "player100" OVER follow, serve \

 YIELD properties(edge).degree, properties(edge).start_year;

+-------------------------+-----------------------------+

| properties(EDGE).degree | properties(EDGE).start_year |

+-------------------------+-----------------------------+

| 95 | __NULL__ |

| 95 | __NULL__ |

| __NULL__ | 1997 |

+-------------------------+-----------------------------+

Return the vertices that follow the player100 vertex.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD src(edge) AS destination;

+-------------+

| destination |

+-------------+

| "player101" |

| "player102" |

...

The following MATCH query has the same semantics as the previous GO query.

nebula> MATCH (v)<-[e:follow]- (v2) WHERE id(v) == 'player100' \

 RETURN id(v2) AS destination;

+-------------+

| destination |

+-------------+

| "player101" |

| "player102" |

...

Return the friends of the player100 vertex and the teams that the friends belong to.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD src(edge) AS id | \

 GO FROM $-.id OVER serve \

 WHERE properties($^).age > 20 \

 YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

+---------------------+-----------------+

| FriendOf | Team |

+---------------------+-----------------+

| "Boris Diaw" | "Spurs" |

| "Boris Diaw" | "Jazz" |

| "Boris Diaw" | "Suns" |

...

The following MATCH query has the same semantics as the previous GO query.

nebula> MATCH (v)<-[e:follow]- (v2)-[e2:serve]->(v3) \

 WHERE id(v) == 'player100' \

 RETURN v2.player.name AS FriendOf, v3.team.name AS Team;

+---------------------+-----------------+

4.5.5 GO

- 197/804 - 2023 Vesoft Inc.

TO USE GROUP BY TO GROUP THE OUTPUT

You need to use YIELD to define the output that needs to be returned after grouping.

TO USE ORDER BY AND LIMIT TO SORT AND LIMIT THE OUTPUT

OTHER EXAMPLES

| FriendOf | Team |

+---------------------+-----------------+

| "Boris Diaw" | "Spurs" |

| "Boris Diaw" | "Jazz" |

| "Boris Diaw" | "Suns" |

...

The following example collects the outputs according to age.

nebula> GO 2 STEPS FROM "player100" OVER follow \

 YIELD src(edge) AS src, dst(edge) AS dst, properties($$).age AS age \

 | GROUP BY $-.dst \

 YIELD $-.dst AS dst, collect_set($-.src) AS src, collect($-.age) AS age;

+-------------+----------------------------+----------+

| dst | src | age |

+-------------+----------------------------+----------+

| "player125" | {"player101"} | [41] |

| "player100" | {"player125", "player101"} | [42, 42] |

| "player102" | {"player101"} | [33] |

+-------------+----------------------------+----------+

The following example groups the outputs and restricts the number of rows of the outputs.

nebula> $a = GO FROM "player100" OVER follow YIELD src(edge) AS src, dst(edge) AS dst; \

 GO 2 STEPS FROM $a.dst OVER follow \

 YIELD $a.src AS src, $a.dst, src(edge), dst(edge) \

 | ORDER BY $-.src | OFFSET 1 LIMIT 2;

+-------------+-------------+-------------+-------------+

| src | $a.dst | src(EDGE) | dst(EDGE) |

+-------------+-------------+-------------+-------------+

| "player100" | "player101" | "player100" | "player101" |

| "player100" | "player125" | "player100" | "player125" |

+-------------+-------------+-------------+-------------+

The following example determines if $$.player.name IS NOT EMPTY.

nebula> GO FROM "player100" OVER follow WHERE properties($$).name IS NOT EMPTY YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player125" |

| "player101" |

+-------------+

Last update: November 29, 2023

4.5.5 GO

- 198/804 - 2023 Vesoft Inc.

4.5.6 FETCH

The FETCH statement retrieves the properties of the specified vertices or edges.

OpenCypher Compatibility

This topic applies to native nGQL only.

Fetch vertex properties

SYNTAX

FETCH VERTEX PROPERTIES BY ONE TAG

Specify a tag in the FETCH statement to fetch the vertex properties by that tag.

FETCH SPECIFIC PROPERTIES OF A VERTEX

Use a YIELD clause to specify the properties to be returned.

FETCH PROPERTIES OF MULTIPLE VERTICES

Specify multiple VIDs (vertex IDs) to fetch properties of multiple vertices. Separate the VIDs with commas.

FETCH VERTEX PROPERTIES BY MULTIPLE TAGS

Specify multiple tags in the FETCH statement to fetch the vertex properties by the tags. Separate the tags with commas.

FETCH PROP ON {<tag_name>[, tag_name ...] | *}

<vid> [, vid ...]

YIELD [DISTINCT] <return_list> [AS <alias>];

Parameter Description

tag_name The name of the tag.

* Represents all the tags in the current graph space.

vid The vertex ID.

YIELD Define the output to be returned. For details, see YIELD .

AS Set an alias.

nebula> FETCH PROP ON player "player100" YIELD properties(vertex);

+-------------------------------+

| properties(VERTEX) |

+-------------------------------+

| {age: 42, name: "Tim Duncan"} |

+-------------------------------+

nebula> FETCH PROP ON player "player100" \

 YIELD properties(vertex).name AS name;

+--------------+

| name |

+--------------+

| "Tim Duncan" |

+--------------+

nebula> FETCH PROP ON player "player101", "player102", "player103" YIELD properties(vertex);

+--------------------------------------+

| properties(VERTEX) |

+--------------------------------------+

| {age: 33, name: "LaMarcus Aldridge"} |

| {age: 36, name: "Tony Parker"} |

| {age: 32, name: "Rudy Gay"} |

+--------------------------------------+

The following example creates a new tag t1.

nebula> CREATE TAG IF NOT EXISTS t1(a string, b int);

4.5.6 FETCH

- 199/804 - 2023 Vesoft Inc.

You can combine multiple tags with multiple VIDs in a FETCH statement.

FETCH VERTEX PROPERTIES BY ALL TAGS

Set an asterisk symbol * to fetch properties by all tags in the current graph space.

Fetch edge properties

SYNTAX

FETCH ALL PROPERTIES OF AN EDGE

The following statement fetches all the properties of the serve edge that connects vertex "player100" and vertex "team204" .

FETCH SPECIFIC PROPERTIES OF AN EDGE

Use a YIELD clause to fetch specific properties of an edge.

The following example attaches t1 to the vertex "player100".

nebula> INSERT VERTEX t1(a, b) VALUES "player100":("Hello", 100);

The following example fetches the properties of vertex "player100" by the tags player and t1.

nebula> FETCH PROP ON player, t1 "player100" YIELD vertex AS v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :t1{a: "Hello", b: 100}) |

+--+

nebula> FETCH PROP ON player, t1 "player100", "player103" YIELD vertex AS v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :t1{a: "Hello", b: 100}) |

| ("player103" :player{age: 32, name: "Rudy Gay"}) |

+--+

nebula> FETCH PROP ON * "player100", "player106", "team200" YIELD vertex AS v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :t1{a: "Hello", b: 100}) |

| ("player106" :player{age: 25, name: "Kyle Anderson"}) |

| ("team200" :team{name: "Warriors"}) |

+--+

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]

YIELD <output>;

Parameter Description

edge_type The name of the edge type.

src_vid The VID of the source vertex. It specifies the start of an edge.

dst_vid The VID of the destination vertex. It specifies the end of an edge.

rank The rank of the edge. It is optional and defaults to 0 . It distinguishes an edge from other edges with the

same edge type, source vertex, destination vertex, and rank.

YIELD Define the output to be returned. For details, see YIELD .

nebula> FETCH PROP ON serve "player100" -> "team204" YIELD properties(edge);

+------------------------------------+

| properties(EDGE) |

+------------------------------------+

| {end_year: 2016, start_year: 1997} |

+------------------------------------+

nebula> FETCH PROP ON serve "player100" -> "team204" \

 YIELD properties(edge).start_year;

+-----------------------------+

| properties(EDGE).start_year |

+-----------------------------+

| 1997 |

+-----------------------------+

4.5.6 FETCH

- 200/804 - 2023 Vesoft Inc.

FETCH PROPERTIES OF MULTIPLE EDGES

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to fetch properties of multiple edges. Separate the edge patterns

with commas.

Fetch properties based on edge rank

If there are multiple edges with the same edge type, source vertex, and destination vertex, you can specify the rank to fetch the

properties on the correct edge.

Use FETCH in composite queries

A common way to use FETCH is to combine it with native nGQL such as GO .

The following statement returns the degree values of the follow edges that start from vertex "player101" .

Or you can use user-defined variables to construct similar queries.

For more information about composite queries, see Composite queries (clause structure).

nebula> FETCH PROP ON serve "player100" -> "team204", "player133" -> "team202" YIELD edge AS e;

+---+

| e |

+---+

| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |

| [:serve "player133"->"team202" @0 {end_year: 2011, start_year: 2002}] |

+---+

The following example inserts edges with different ranks and property values.

nebula> insert edge serve(start_year,end_year) \

 values "player100"->"team204"@1:(1998, 2017);

nebula> insert edge serve(start_year,end_year) \

 values "player100"->"team204"@2:(1990, 2018);

By default, the FETCH statement returns the edge whose rank is 0.

nebula> FETCH PROP ON serve "player100" -> "team204" YIELD edge AS e;

+---+

| e |

+---+

| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |

+---+

To fetch on an edge whose rank is not 0, set its rank in the FETCH statement.

nebula> FETCH PROP ON serve "player100" -> "team204"@1 YIELD edge AS e;

+---+

| e |

+---+

| [:serve "player100"->"team204" @1 {end_year: 2017, start_year: 1998}] |

+---+

nebula> GO FROM "player101" OVER follow \

 YIELD src(edge) AS s, dst(edge) AS d \

 | FETCH PROP ON follow $-.s -> $-.d \

 YIELD properties(edge).degree;

+-------------------------+

| properties(EDGE).degree |

+-------------------------+

| 95 |

| 90 |

| 95 |

+-------------------------+

nebula> $var = GO FROM "player101" OVER follow \

 YIELD src(edge) AS s, dst(edge) AS d; \

 FETCH PROP ON follow $var.s -> $var.d \

 YIELD properties(edge).degree;

+-------------------------+

| properties(EDGE).degree |

+-------------------------+

| 95 |

| 90 |

| 95 |

+-------------------------+

Last update: October 25, 2023

4.5.6 FETCH

- 201/804 - 2023 Vesoft Inc.

4.5.7 SHOW

SHOW CHARSET

The SHOW CHARSET statement shows the available character sets.

Currently available types are utf8 and utf8mb4 . The default charset type is utf8 . NebulaGraph extends the uft8 to support four-

byte characters. Therefore utf8 and utf8mb4 are equivalent.

SYNTAX

EXAMPLE

SHOW CHARSET;

nebula> SHOW CHARSET;

+---------+-----------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+-----------------+-------------------+--------+

| "utf8" | "UTF-8 Unicode" | "utf8_bin" | 4 |

+---------+-----------------+-------------------+--------+

Parameter Description

Charset The name of the character set.

Description The description of the character set.

Default collation The default collation of the character set.

Maxlen The maximum number of bytes required to store one character.

Last update: October 25, 2023

4.5.7 SHOW

- 202/804 - 2023 Vesoft Inc.

SHOW COLLATION

The SHOW COLLATION statement shows the collations supported by NebulaGraph.

Currently available types are: utf8_bin and utf8mb4_bin .

When the character set is utf8 , the default collate is utf8_bin .

When the character set is utf8mb4 , the default collate is utf8mb4_bin .

SYNTAX

EXAMPLE

•

•

SHOW COLLATION;

nebula> SHOW COLLATION;

+------------+---------+

| Collation | Charset |

+------------+---------+

| "utf8_bin" | "utf8" |

+------------+---------+

Parameter Description

Collation The name of the collation.

Charset The name of the character set with which the collation is associated.

Last update: October 25, 2023

4.5.7 SHOW

- 203/804 - 2023 Vesoft Inc.

SHOW CREATE SPACE

The SHOW CREATE SPACE statement shows the creating statement of the specified graph space.

For details about the graph space information, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW CREATE SPACE <space_name>;

nebula> SHOW CREATE SPACE basketballplayer;

+--------------------+---+

| Space | Create Space |

+--------------------+---+

| "basketballplayer" | "CREATE SPACE `basketballplayer` (partition_num = 10, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(32))" |

+--------------------+---+

Last update: October 25, 2023

4.5.7 SHOW

- 204/804 - 2023 Vesoft Inc.

SHOW CREATE TAG/EDGE

The SHOW CREATE TAG statement shows the basic information of the specified tag. For details about the tag, see CREATE TAG.

The SHOW CREATE EDGE statement shows the basic information of the specified edge type. For details about the edge type, see

CREATE EDGE.

SYNTAX

EXAMPLES

SHOW CREATE {TAG <tag_name> | EDGE <edge_name>};

nebula> SHOW CREATE TAG player;

+----------+-----------------------------------+

| Tag | Create Tag |

+----------+-----------------------------------+

| "player" | "CREATE TAG `player` (|

| | `name` string NULL, |

| | `age` int64 NULL |

| |) ttl_duration = 0, ttl_col = """ |

+----------+-----------------------------------+

nebula> SHOW CREATE EDGE follow;

+----------+-----------------------------------+

| Edge | Create Edge |

+----------+-----------------------------------+

| "follow" | "CREATE EDGE `follow` (|

| | `degree` int64 NULL |

| |) ttl_duration = 0, ttl_col = """ |

+----------+-----------------------------------+

Last update: October 25, 2023

4.5.7 SHOW

- 205/804 - 2023 Vesoft Inc.

SHOW HOSTS

The SHOW HOSTS statement shows the cluster information, including the port, status, leader, partition, and version information. You

can also add the service type in the statement to view the information of the specific service.

SYNTAX

For a NebulaGraph cluster installed with the source code, the version of the cluster will not be displayed in the output after

executing the command SHOW HOSTS (GRAPH | STORAGE | META) with the service name.

EXAMPLES

SHOW HOSTS [GRAPH | STORAGE | META];

Note

nebula> SHOW HOSTS;

+-------------+-------+----------+--------------+----------------------------------+------------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+-------+----------+--------------+----------------------------------+------------------------------+---------+

| "storaged0" | 9779 | "ONLINE" | 8 | "docs:5, basketballplayer:3" | "docs:5, basketballplayer:3" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | 9 | "basketballplayer:4, docs:5" | "docs:5, basketballplayer:4" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | 8 | "basketballplayer:3, docs:5" | "docs:5, basketballplayer:3" | "3.6.0" |

+-------------+-------+----------+--------------+----------------------------------+------------------------------+---------+

nebula> SHOW HOSTS GRAPH;

+-----------+------+----------+---------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-----------+------+----------+---------+--------------+---------+

| "graphd" | 9669 | "ONLINE" | "GRAPH" | "3ba41bd" | "3.6.0" |

| "graphd1" | 9669 | "ONLINE" | "GRAPH" | "3ba41bd" | "3.6.0" |

| "graphd2" | 9669 | "ONLINE" | "GRAPH" | "3ba41bd" | "3.6.0" |

+-----------+------+----------+---------+--------------+---------+

nebula> SHOW HOSTS STORAGE;

+-------------+------+----------+-----------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-------------+------+----------+-----------+--------------+---------+

| "storaged0" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.6.0" |

+-------------+------+----------+-----------+--------------+---------+

nebula> SHOW HOSTS META;

+----------+------+----------+--------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+----------+------+----------+--------+--------------+---------+

| "metad2" | 9559 | "ONLINE" | "META" | "3ba41bd" | "3.6.0" |

| "metad0" | 9559 | "ONLINE" | "META" | "3ba41bd" | "3.6.0" |

| "metad1" | 9559 | "ONLINE" | "META" | "3ba41bd" | "3.6.0" |

+----------+------+----------+--------+--------------+---------+

Last update: October 25, 2023

4.5.7 SHOW

- 206/804 - 2023 Vesoft Inc.

SHOW INDEX STATUS

The SHOW INDEX STATUS statement shows the status of jobs that rebuild native indexes, which helps check whether a native index is

successfully rebuilt or not.

SYNTAX

EXAMPLES

RELATED TOPICS

Job manager and the JOB statements

REBUILD NATIVE INDEX

SHOW {TAG | EDGE} INDEX STATUS;

nebula> SHOW TAG INDEX STATUS;

+------------------------------------+--------------+

| Name | Index Status |

+------------------------------------+--------------+

| "date1_index" | "FINISHED" |

| "basketballplayer_all_tag_indexes" | "FINISHED" |

| "any_shape_geo_index" | "FINISHED" |

+------------------------------------+--------------+

nebula> SHOW EDGE INDEX STATUS;

+----------------+--------------+

| Name | Index Status |

+----------------+--------------+

| "follow_index" | "FINISHED" |

+----------------+--------------+

•

•

Last update: October 25, 2023

4.5.7 SHOW

- 207/804 - 2023 Vesoft Inc.

SHOW INDEXES

The SHOW INDEXES statement shows the names of existing native indexes.

SYNTAX

EXAMPLES

In NebulaGraph 2.x, SHOW TAG/EDGE INDEXES only returns Names .

SHOW {TAG | EDGE} INDEXES;

nebula> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

+------------------+----------+----------+

nebula> SHOW EDGE INDEXES;

+----------------+----------+---------+

| Index Name | By Edge | Columns |

+----------------+----------+---------+

| "follow_index" | "follow" | [] |

+----------------+----------+---------+

Legacy version compatibility

Last update: November 3, 2023

4.5.7 SHOW

- 208/804 - 2023 Vesoft Inc.

SHOW PARTS

The SHOW PARTS statement shows the information of a specified partition or all partitions in a graph space.

SYNTAX

EXAMPLES

The descriptions are as follows.

SHOW PARTS [<part_id>];

nebula> SHOW PARTS;

+--------------+--------------------+--------------------+-------+

| Partition ID | Leader | Peers | Losts |

+--------------+--------------------+--------------------+-------+

| 1 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

| 2 | "192.168.2.2:9779" | "192.168.2.2:9779" | "" |

| 3 | "192.168.2.3:9779" | "192.168.2.3:9779" | "" |

| 4 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

| 5 | "192.168.2.2:9779" | "192.168.2.2:9779" | "" |

| 6 | "192.168.2.3:9779" | "192.168.2.3:9779" | "" |

| 7 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

| 8 | "192.168.2.2:9779" | "192.168.2.2:9779" | "" |

| 9 | "192.168.2.3:9779" | "192.168.2.3:9779" | "" |

| 10 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

+--------------+--------------------+--------------------+-------+

nebula> SHOW PARTS 1;

+--------------+--------------------+--------------------+-------+

| Partition ID | Leader | Peers | Losts |

+--------------+--------------------+--------------------+-------+

| 1 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

+--------------+--------------------+--------------------+-------+

Parameter Description

Partition ID The ID of the partition.

Leader The IP (or hostname) and the port of the leader.

Peers The IPs (or hostnames) and the ports of all the replicas.

Losts The IPs (or hostnames) and the ports of replicas at fault.

Last update: November 22, 2023

4.5.7 SHOW

- 209/804 - 2023 Vesoft Inc.

SHOW ROLES

The SHOW ROLES statement shows the roles that are assigned to a user account.

The return message differs according to the role of the user who is running this statement:

If the user is a GOD or ADMIN and is granted access to the specified graph space, NebulaGraph shows all roles in this graph

space except for GOD .

If the user is a DBA , USER , or GUEST and is granted access to the specified graph space, NebulaGraph shows the user's own role

in this graph space.

If the user does not have access to the specified graph space, NebulaGraph returns PermissionError .

For more information about roles, see Roles and privileges.

SYNTAX

EXAMPLE

•

•

•

SHOW ROLES IN <space_name>;

nebula> SHOW ROLES in basketballplayer;

+---------+-----------+

| Account | Role Type |

+---------+-----------+

| "user1" | "ADMIN" |

+---------+-----------+

Last update: October 25, 2023

4.5.7 SHOW

- 210/804 - 2023 Vesoft Inc.

SHOW SNAPSHOTS

The SHOW SNAPSHOTS statement shows the information of all the snapshots.

For how to create a snapshot and backup data, see Snapshot.

ROLE REQUIREMENT

Only the root user who has the GOD role can use the SHOW SNAPSHOTS statement.

SYNTAX

EXAMPLE

SHOW SNAPSHOTS;

nebula> SHOW SNAPSHOTS;

+--------------------------------+---------+---+

| Name | Status | Hosts |

+--------------------------------+---------+---+

| "SNAPSHOT_2020_12_16_11_13_55" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |

| "SNAPSHOT_2020_12_16_11_14_10" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |

+--------------------------------+---------+---+

Last update: October 25, 2023

4.5.7 SHOW

- 211/804 - 2023 Vesoft Inc.

SHOW SPACES

The SHOW SPACES statement shows existing graph spaces in NebulaGraph.

For how to create a graph space, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW SPACES;

nebula> SHOW SPACES;

+---------------------+

| Name |

+---------------------+

| "docs" |

| "basketballplayer" |

+---------------------+

Last update: October 25, 2023

4.5.7 SHOW

- 212/804 - 2023 Vesoft Inc.

SHOW STATS

The SHOW STATS statement shows the statistics of the graph space collected by the latest SUBMIT JOB STATS job.

The statistics include the following information:

The number of vertices in the graph space

The number of edges in the graph space

The number of vertices of each tag

The number of edges of each edge type

The data returned by SHOW STATS is not real-time. The returned data is collected by the latest SUBMIT JOB STATS job and may include

TTL-expired data. The expired data will be deleted and not included in the statistics the next time the Compaction operation is

performed.

PREREQUISITES

You have to run the SUBMIT JOB STATS statement in the graph space where you want to collect statistics. For more information, see

SUBMIT JOB STATS.

The result of the SHOW STATS statement is based on the last executed SUBMIT JOB STATS statement. If you want to update the result, run

SUBMIT JOB STATS again. Otherwise the statistics will be wrong.

SYNTAX

EXAMPLES

•

•

•

•

Warning

Caution

SHOW STATS;

Choose a graph space.

nebula> USE basketballplayer;

Start SUBMIT JOB STATS.

nebula> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 98 |

+------------+

Make sure the job executes successfully.

nebula> SHOW JOB 98;

+----------------+---------------+------------+----------------------------+----------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+---------------+------------+----------------------------+----------------------------+-------------+

| 98 | "STATS" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| 0 | "storaged2" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| 1 | "storaged0" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| 2 | "storaged1" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| "Total:3" | "Succeeded:3" | "Failed:0" | "In Progress:0" | "" | "" |

+----------------+---------------+------------+----------------------------+----------------------------+-------------+

Show the statistics of the graph space.

nebula> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 51 |

| "Tag" | "team" | 30 |

| "Edge" | "follow" | 81 |

| "Edge" | "serve" | 152 |

| "Space" | "vertices" | 81 |

| "Space" | "edges" | 233 |

+---------+------------+-------+

4.5.7 SHOW

- 213/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

4.5.7 SHOW

- 214/804 - 2023 Vesoft Inc.

SHOW TAGS/EDGES

The SHOW TAGS statement shows all the tags in the current graph space.

The SHOW EDGES statement shows all the edge types in the current graph space.

SYNTAX

EXAMPLES

SHOW {TAGS | EDGES};

nebula> SHOW TAGS;

+----------+

| Name |

+----------+

| "player" |

| "star" |

| "team" |

+----------+

nebula> SHOW EDGES;

+----------+

| Name |

+----------+

| "follow" |

| "serve" |

+----------+

Last update: October 25, 2023

4.5.7 SHOW

- 215/804 - 2023 Vesoft Inc.

SHOW USERS

The SHOW USERS statement shows the user information.

ROLE REQUIREMENT

Only the root user who has the GOD role can use the SHOW USERS statement.

SYNTAX

EXAMPLE

SHOW USERS;

nebula> SHOW USERS;

+---------+-----------------+

| Account | IP Whitelist |

+---------+-----------------+

| "root" | "" |

| "user1" | "" |

| "user2" | "192.168.10.10" |

+---------+-----------------+

Last update: October 25, 2023

4.5.7 SHOW

- 216/804 - 2023 Vesoft Inc.

SHOW SESSIONS

When a user logs in to the database, a corresponding session will be created and users can query for session information.

The SHOW SESSIONS statement shows the information of all the sessions. It can also show a specified session with its ID.

PRECAUTIONS

The client will call the API release to release the session and clear the session information when you run exit after the

operation ends. If you exit the database in an unexpected way and the session timeout duration is not set via

session_idle_timeout_secs in nebula-graphd.conf, the session will not be released automatically. For those sessions that are not

automatically released, you need to delete them manually. For details, see KILL SESSIONS.

SHOW SESSIONS queries the session information of all the Graph services.

SHOW LOCAL SESSIONS queries the session information of the currently connected Graph service and does not query the session

information of other Graph services.

SHOW SESSION <Session_Id> queries the session information with a specific session id.

SYNTAX

EXAMPLES

•

•

•

•

SHOW [LOCAL] SESSIONS;

SHOW SESSION <Session_Id>;

nebula> SHOW SESSIONS;

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| SessionId | UserName | SpaceName | CreateTime | UpdateTime | GraphAddr | Timezone | ClientIp |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| 1651220858102296 | "root" | "basketballplayer" | 2022-04-29T08:27:38.102296 | 2022-04-29T08:50:46.282921 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

| 1651199330300991 | "root" | "basketballplayer" | 2022-04-29T02:28:50.300991 | 2022-04-29T08:16:28.339038 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

| 1651112899847744 | "root" | "basketballplayer" | 2022-04-28T02:28:19.847744 | 2022-04-28T08:17:44.470210 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

| 1651041092662100 | "root" | "basketballplayer" | 2022-04-27T06:31:32.662100 | 2022-04-27T07:01:25.200978 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

| 1650959429593975 | "root" | "basketballplayer" | 2022-04-26T07:50:29.593975 | 2022-04-26T07:51:47.184810 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

| 1650958897679595 | "root" | "" | 2022-04-26T07:41:37.679595 | 2022-04-26T07:41:37.683802 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

nebula> SHOW SESSION 1635254859271703;

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| SessionId | UserName | SpaceName | CreateTime | UpdateTime | GraphAddr | Timezone | ClientIp |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| 1651220858102296 | "root" | "basketballplayer" | 2022-04-29T08:27:38.102296 | 2022-04-29T08:50:54.254384 | "127.0.0.1:9669" | 0 | "127.0.0.1" |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

Parameter Description

SessionId The session ID, namely the identifier of a session.

UserName The username in a session.

SpaceName The name of the graph space that the user uses currently. It is null ("") when you first log in because there

is no specified graph space.

CreateTime The time when the session is created, namely the time when the user logs in. The time zone is specified by

timezone_name in the configuration file.

UpdateTime The system will update the time when there is an operation. The time zone is specified by timezone_name in the

configuration file.

GraphAddr The IP (or hostname) and port of the Graph server that hosts the session.

Timezone A reserved parameter that has no specified meaning for now.

ClientIp The IP or hostname of the client.

Last update: November 22, 2023

4.5.7 SHOW

- 217/804 - 2023 Vesoft Inc.

SHOW QUERIES

The SHOW QUERIES statement shows the information of working queries in the current session.

To terminate queries, see Kill Query.

PRECAUTIONS

The SHOW LOCAL QUERIES statement gets the status of queries in the current session from the local cache with almost no latency.

The SHOW QUERIES statement gets the information of queries in all the sessions from the Meta Service. The information will be

synchronized to the Meta Service according to the interval defined by session_reclaim_interval_secs . Therefore the information that

you get from the client may belong to the last synchronization interval.

SYNTAX

EXAMPLES

The descriptions are as follows.

Note

•

•

SHOW [LOCAL] QUERIES;

nebula> SHOW LOCAL QUERIES;

+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------------+

| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |

+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------------+

| 1625463842921750 | 46 | "root" | ""192.168.x.x":9669" | 2021-07-05T05:44:19.502903 | 0 | "RUNNING" | "SHOW LOCAL QUERIES;" |

+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------------+

nebula> SHOW QUERIES;

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| 1625456037718757 | 54 | "user1" | ""192.168.x.x":9669" | 2021-07-05T05:51:08.691318 | 1504502 | "RUNNING" | "MATCH p=(v:player)-[*1..4]-(v2) RETURN v2 AS Friends;" |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

The following statement returns the top 10 queries that have the longest duration.

nebula> SHOW QUERIES | ORDER BY $-.DurationInUSec DESC | LIMIT 10;

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| 1625471375320831 | 98 | "user2" | ""192.168.x.x":9669" | 2021-07-05T07:50:24.461779 | 2608176 | "RUNNING" | "MATCH (v:player)-[*1..4]-(v2) RETURN v2 AS Friends;" |

| 1625456037718757 | 99 | "user1" | ""192.168.x.x":9669" | 2021-07-05T07:50:24.910616 | 2159333 | "RUNNING" | "MATCH (v:player)-[*1..4]-(v2) RETURN v2 AS Friends;" |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

Parameter Description

SessionID The session ID.

ExecutionPlanID The ID of the execution plan.

User The username that executes the query.

Host The IP address and port of the Graph server that hosts the session.

StartTime The time when the query starts.

DurationInUSec The duration of the query. The unit is microsecond.

Status The current status of the query.

Query The query statement.

Last update: October 25, 2023

4.5.7 SHOW

- 218/804 - 2023 Vesoft Inc.

SHOW META LEADER

The SHOW META LEADER statement shows the information of the leader in the current Meta cluster.

For more information about the Meta service, see Meta service.

SYNTAX

EXAMPLE

SHOW META LEADER;

nebula> SHOW META LEADER;

+------------------+---------------------------+

| Meta Leader | secs from last heart beat |

+------------------+---------------------------+

| "127.0.0.1:9559" | 3 |

+------------------+---------------------------+

Parameter Description

Meta Leader Shows the information of the leader in the Meta cluster, including the IP (or hostname) and port of the

server where the leader is located.

secs from last heart

beat

Indicates the time interval since the last heartbeat. This parameter is measured in seconds.

Last update: November 22, 2023

4.5.7 SHOW

- 219/804 - 2023 Vesoft Inc.

4.5.8 FIND PATH

The FIND PATH statement finds the paths between the selected source vertices and destination vertices.

To improve the query performance with the FIND PATH statement, you can add the num_operator_threads parameter in the nebula-graphd.conf

configuration file. The value range of the num_operator_threads parameter is [2, 10] and make sure that the value is not greater than the

number of CPU cores of the machine where the graphd service is deployed. It is recommended to set the value to the number of CPU

cores of the machine where the graphd service is deployed. For more information about the nebula-graphd.conf configuration file, see

nebula-graphd.conf.

Syntax

SHORTEST finds all the shortest path.

ALL finds all the paths.

NOLOOP finds the paths without circles.

WITH PROP shows properties of vertices and edges. If not specified, properties will be hidden.

<vertex_id_list> is a list of vertex IDs separated with commas (,). It supports $- and $var .

<edge_type_list> is a list of edge types separated with commas (,). * is all edge types.

REVERSELY | BIDIRECT specifies the direction. REVERSELY is reverse graph traversal while BIDIRECT is bidirectional graph traversal.

<WHERE clause> filters properties of edges.

UPTO <N> {STEP|STEPS} is the maximum hop number of the path. The default value is 5 .

ORDER BY $-.path specifies the order of the returned paths. For information about the order rules, see Path.

LIMIT <M> specifies the maximum number of rows to return.

The path type of FIND PATH is trail . Only vertices can be repeatedly visited in graph traversal. For more information, see Path.

Limitations

When a list of source and/or destination vertex IDs are specified, the paths between any source vertices and the destination

vertices will be returned.

There can be cycles when searching all paths.

FIND PATH only supports filtering properties of edges with WHERE clauses. Filtering properties of vertices and functions are not

supported for now.

FIND PATH is a single-thread procedure, so it uses much memory.

Note

FIND { SHORTEST | SINGLE SHORTEST | ALL | NOLOOP } PATH [WITH PROP] FROM <vertex_id_list> TO <vertex_id_list>

OVER <edge_type_list> [REVERSELY | BIDIRECT]

[<WHERE clause>] [UPTO <N> {STEP|STEPS}]

YIELD path as <alias>

[| ORDER BY $-.path] [| LIMIT <M>];

<vertex_id_list> ::=

 [vertex_id [, vertex_id] ...]

•

•

•

•

•

•

•

•

•

•

•

Note

•

•

•

•

4.5.8 FIND PATH

- 220/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/release-3.6/src/common/datatypes/Path.h#L86

Examples

A returned path is like (<vertex_id>)-[:<edge_type_name>@<rank>]->(<vertex_id) .

FAQ

DOES IT SUPPORT THE WHERE CLAUSE TO ACHIEVE CONDITIONAL FILTERING DURING GRAPH TRAVERSAL?

FIND PATH only supports filtering properties of edges with WHERE clauses, such as WHERE follow.degree is EMPTY or follow.degree >=0 .

Filtering properties of vertices is not supported for now.

nebula> FIND SHORTEST PATH FROM "player102" TO "team204" OVER * YIELD path AS p;

+--+

| p |

+--+

| <("player102")-[:serve@0 {}]->("team204")> |

+--+

nebula> FIND SHORTEST PATH WITH PROP FROM "team204" TO "player100" OVER * REVERSELY YIELD path AS p;

+--+

| p |

+--+

| <("team204" :team{name: "Spurs"})<-[:serve@0 {end_year: 2016, start_year: 1997}]-("player100" :player{age: 42, name: "Tim Duncan"})> |

+--+

nebula> FIND SHORTEST PATH FROM "player100", "player130" TO "player132", "player133" OVER * BIDIRECT UPTO 18 STEPS YIELD path as p;

+--

+

|

p

|

+--

+

| <("player100")<-[:follow@0 {}]-("player144")<-[:follow@0 {}]-

("player133")> |

| <("player100")-[:serve@0 {}]->("team204")<-[:serve@0 {}]-("player138")-[:serve@0 {}]->("team225")<-[:serve@0 {}]-

("player132")> |

| <("player130")-[:serve@0 {}]->("team219")<-[:serve@0 {}]-("player112")-[:serve@0 {}]->("team204")<-[:serve@0 {}]-("player114")<-[:follow@0 {}]-

("player133")> |

| <("player130")-[:serve@0 {}]->("team219")<-[:serve@0 {}]-("player109")-[:serve@0 {}]->("team204")<-[:serve@0 {}]-("player114")<-[:follow@0 {}]-

("player133")> |

| <("player130")-[:serve@0 {}]->("team219")<-[:serve@0 {}]-("player104")-[:serve@20182019 {}]->("team204")<-[:serve@0 {}]-("player114")<-[:follow@0 {}]-

("player133")> |

| ...

|

| <("player130")-[:serve@0 {}]->("team219")<-[:serve@0 {}]-("player112")-[:serve@0 {}]->("team204")<-[:serve@0 {}]-("player138")-[:serve@0 {}]->("team225")<-[:serve@0 {}]-

("player132")> |

| <("player130")-[:serve@0 {}]->("team219")<-[:serve@0 {}]-("player109")-[:serve@0 {}]->("team204")<-[:serve@0 {}]-("player138")-[:serve@0 {}]->("team225")<-[:serve@0 {}]-

("player132")> |

| ...

|

+--

+

nebula> FIND ALL PATH FROM "player100" TO "team204" OVER * WHERE follow.degree is EMPTY or follow.degree >=0 YIELD path AS p;

+--+

| p |

+--+

| <("player100")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:serve@0 {}]->("team204")> |

|... |

+--+

nebula> FIND NOLOOP PATH FROM "player100" TO "team204" OVER * YIELD path AS p;

+--+

| p |

+--+

| <("player100")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:follow@0 {}]->("player102")-[:serve@0 {}]->("team204")> |

+--+

Last update: November 17, 2023

4.5.8 FIND PATH

- 221/804 - 2023 Vesoft Inc.

4.5.9 GET SUBGRAPH

The GET SUBGRAPH statement returns a subgraph that is generated by traversing a graph starting from a specified vertex.

GET SUBGRAPH statements allow you to specify the number of steps and the type or direction of edges during the traversal.

Syntax

WITH PROP shows the properties. If not specified, the properties will be hidden.

step_count specifies the number of hops from the source vertices and returns the subgraph from 0 to step_count hops. It must be

a non-negative integer. Its default value is 1.

vid specifies the vertex IDs.

edge_type specifies the edge type. You can use IN , OUT , and BOTH to specify the traversal direction of the edge type. The default

is BOTH .

<WHERE clause> specifies the filter conditions for the traversal, which can be used with the boolean operator AND .

YIELD defines the output that needs to be returned. You can return only vertices or edges. A column alias must be set.

The path type of GET SUBGRAPH is trail . Only vertices can be repeatedly visited in graph traversal. For more information, see Path.

Limitations

While using the WHERE clause in a GET SUBGRAPH statement, note the following restrictions:

Only support the AND operator.

Only support filter destination vertex, the vertex format must be $$.tagName.propName .

Support filter edge, the edge format must be edge_type.propName .

Support math functions, aggregate functions, string functions, datetime functions, type conversion functions and general

functions in list functions.

Not support aggregate functions, schema-related functions, conditional expression, predicate functions, geography function

and user-defined functions.

Examples

The following graph is used as the sample.

GET SUBGRAPH [WITH PROP] [<step_count> {STEP|STEPS}] FROM {<vid>, <vid>...}

[{IN | OUT | BOTH} <edge_type>, <edge_type>...]

[WHERE <expression> [AND <expression> ...]]

YIELD {[VERTICES AS <vertex_alias>] [,EDGES AS <edge_alias>]};

•

•

•

•

•

•

Note

•

•

•

•

•

4.5.9 GET SUBGRAPH

- 222/804 - 2023 Vesoft Inc.

Insert the test data:

nebula> CREATE SPACE IF NOT EXISTS subgraph(partition_num=15, replica_factor=1, vid_type=fixed_string(30));

nebula> USE subgraph;

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

nebula> CREATE TAG IF NOT EXISTS team(name string);

nebula> CREATE EDGE IF NOT EXISTS follow(degree int);

nebula> CREATE EDGE IF NOT EXISTS serve(start_year int, end_year int);

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

nebula> INSERT VERTEX team(name) VALUES "team203":("Trail Blazers"), "team204":("Spurs");

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player102":(90);

4.5.9 GET SUBGRAPH

- 223/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/subgraph_2022_8_3.png
https://docs-cdn.nebula-graph.com.cn/figures/subgraph_2022_8_3.png

This example goes one step from the vertex player101 over all edge types and gets the subgraph.

The returned subgraph is as follows.

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player100":(75);

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player101" -> "team204":(1999, 2018),"player102" -> "team203":(2006, 2015);

•

nebula> GET SUBGRAPH 1 STEPS FROM "player101" YIELD VERTICES AS nodes, EDGES AS relationships;

+---

+---+

| nodes |

relationships |

+---

+---+

| [("player101" :player{})] | [[:serve "player101"->"team204" @0 {}], [:follow "player101"->"player100" @0 {}], [:follow "player101"-

>"player102" @0 {}]] |

| [("team204" :team{}), ("player100" :player{}), ("player102" :player{})] | [[:follow "player102"->"player100" @0

{}]] |

+---

+---+

4.5.9 GET SUBGRAPH

- 224/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/subgraph-1-22-5-7.png
https://docs-cdn.nebula-graph.com.cn/figures/subgraph-1-22-5-7.png

This example goes one step from the vertex player101 over incoming follow edges and gets the subgraph.

There is no incoming follow edge to player101 , so only the vertex player101 is returned.

This example goes one step from the vertex player101 over outgoing serve edges, gets the subgraph, and shows the property of

the edge.

The returned subgraph is as follows.

This example goes two steps from the vertex player101 over follow edges, filters by degree > 90 and age > 30, and shows the

properties of edges.

FAQ

WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT GREATER THAN STEP_COUNT ?

To show the completeness of the subgraph, an additional hop is made on all vertices that meet the conditions. The following

graph is used as the sample.

•

nebula> GET SUBGRAPH 1 STEPS FROM "player101" IN follow YIELD VERTICES AS nodes, EDGES AS relationships;

+---------------------------+---------------+

| nodes | relationships |

+---------------------------+---------------+

| [("player101" :player{})] | [] |

+---------------------------+---------------+

•

nebula> GET SUBGRAPH WITH PROP 1 STEPS FROM "player101" OUT serve YIELD VERTICES AS nodes, EDGES AS relationships;

+---+---+

| nodes | relationships |

+---+---+

| [("player101" :player{age: 36, name: "Tony Parker"})] | [[:serve "player101"->"team204" @0 {end_year: 2018, start_year: 1999}]] |

| [("team204" :team{name: "Spurs"})] | [] |

+---+---+

•

nebula> GET SUBGRAPH WITH PROP 2 STEPS FROM "player101" \

 WHERE follow.degree > 90 AND $$.player.age > 30 \

 YIELD VERTICES AS nodes, EDGES AS relationships;

+---+--+

| nodes | relationships |

+---+--+

| [("player101" :player{age: 36, name: "Tony Parker"})] | [[:follow "player101"->"player100" @0 {degree: 95}]] |

| [("player100" :player{age: 42, name: "Tim Duncan"})] | [] |

+---+--+

4.5.9 GET SUBGRAPH

- 225/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/subgraph-2-22-5-7.png
https://docs-cdn.nebula-graph.com.cn/figures/subgraph-2-22-5-7.png

The returned paths of GET SUBGRAPH 1 STEPS FROM "A"; are A->B , B->A , and A->C . To show the completeness of the subgraph, an

additional hop is made on all vertices that meet the conditions, namely B->C .

The returned path of GET SUBGRAPH 1 STEPS FROM "A" IN follow; is B->A . To show the completeness of the subgraph, an additional hop

is made on all vertices that meet the conditions, namely A->B .

If you only query paths or vertices that meet the conditions, we suggest you use MATCH or GO. The example is as follows.

WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT LOWER THAN STEP_COUNT ?

The query stops when there is not enough subgraph data and will not return the null value.

•

•

nebula> MATCH p= (v:player) -- (v2) WHERE id(v)=="A" RETURN p;

nebula> GO 1 STEPS FROM "A" OVER follow YIELD src(edge),dst(edge);

nebula> GET SUBGRAPH 100 STEPS FROM "player101" OUT follow YIELD VERTICES AS nodes, EDGES AS relationships;

+--+--+

| nodes | relationships |

+--+--+

| [("player101" :player{})] | [[:follow "player101"->"player100" @0 {}], [:follow "player101"->"player102" @0 {}]] |

| [("player100" :player{}), ("player102" :player{})] | [[:follow "player102"->"player100" @0 {}]] |

+--+--+

Last update: November 17, 2023

4.5.9 GET SUBGRAPH

- 226/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/subgraph2.png
https://docs-cdn.nebula-graph.com.cn/figures/subgraph2.png

4.6 Clauses and options

4.6.1 GROUP BY

The GROUP BY clause can be used to aggregate data.

OpenCypher Compatibility

This topic applies to native nGQL only.

You can also use the count() function to aggregate data.

Syntax

The GROUP BY clause groups the rows with the same value. Then operations such as counting, sorting, and calculation can be

applied.

The GROUP BY clause works after the pipe symbol (|) and before a YIELD clause.

The aggregation_function() function supports avg() , sum() , max() , min() , count() , collect() , and std() .

Examples

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by player names, and

counts how many times the name shows up in the result set.

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by source vertices,

and returns the sum of degree values.

nebula> MATCH (v:player)<-[:follow]-(:player) RETURN v.player.name AS Name, count(*) as cnt ORDER BY cnt DESC;

+----------------------+-----+

| Name | cnt |

+----------------------+-----+

| "Tim Duncan" | 10 |

| "LeBron James" | 6 |

| "Tony Parker" | 5 |

| "Chris Paul" | 4 |

| "Manu Ginobili" | 4 |

+----------------------+-----+

...

| GROUP BY <var> YIELD <var>, <aggregation_function(var)>

nebula> GO FROM "player100" OVER follow BIDIRECT \

 YIELD properties($$).name as Name \

 | GROUP BY $-.Name \

 YIELD $-.Name as Player, count(*) AS Name_Count;

+---------------------+------------+

| Player | Name_Count |

+---------------------+------------+

| "Shaquille O'Neal" | 1 |

| "Tiago Splitter" | 1 |

| "Manu Ginobili" | 2 |

| "Boris Diaw" | 1 |

| "LaMarcus Aldridge" | 1 |

| "Tony Parker" | 2 |

| "Marco Belinelli" | 1 |

| "Dejounte Murray" | 1 |

| "Danny Green" | 1 |

| "Aron Baynes" | 1 |

+---------------------+------------+

nebula> GO FROM "player100" OVER follow \

 YIELD src(edge) AS player, properties(edge).degree AS degree \

 | GROUP BY $-.player \

 YIELD sum($-.degree);

+----------------+

| sum($-.degree) |

+----------------+

4.6 Clauses and options

- 227/804 - 2023 Vesoft Inc.

For more information about the sum() function, see Built-in math functions.

Implicit GROUP BY

The usage of GROUP BY in the above nGQL statements that explicitly write GROUP BY and act as grouping fields is called explicit

GROUP BY , while in openCypher, the GROUP BY is implicit, i.e., GROUP BY groups fields without explicitly writing GROUP BY . The explicit

GROUP BY in nGQL is the same as the implicit GROUP BY in openCypher, and nGQL also supports the implicit GROUP BY . For the implicit

usage of GROUP BY , see Stack Overflow.

For example, to look up the players over 34 years old with the same length of service, you can use the following statement:

| 190 |

+----------------+

nebula> LOOKUP ON player WHERE player.age > 34 YIELD id(vertex) AS v | \

 GO FROM $-.v OVER serve YIELD serve.start_year AS start_year, serve.end_year AS end_year | \

 YIELD $-.start_year, $-.end_year, count(*) AS count | \

 ORDER BY $-.count DESC | LIMIT 5;

+---------------+-------------+-------+

| $-.start_year | $-.end_year | count |

+---------------+-------------+-------+

| 2018 | 2019 | 3 |

| 2007 | 2012 | 2 |

| 1998 | 2004 | 2 |

| 2017 | 2018 | 2 |

| 2010 | 2011 | 2 |

+---------------+-------------+-------+

Last update: November 6, 2023

4.6.1 GROUP BY

- 228/804 - 2023 Vesoft Inc.

https://stackoverflow.com/questions/52722671/how-to-make-group-by-in-a-cypher-query

4.6.2 LIMIT AND SKIP

The LIMIT clause constrains the number of rows in the output. The usage of LIMIT in native nGQL statements and openCypher

compatible statements is different.

Native nGQL: Generally, a pipe | needs to be used before the LIMIT clause. The offset parameter can be set or omitted directly

after the LIMIT statement.

OpenCypher compatible statements: No pipes are permitted before the LIMIT clause. And you can use SKIP to indicate an

offset.

When using LIMIT in either syntax above, it is important to use an ORDER BY clause that constrains the output into a unique order.

Otherwise, you will get an unpredictable subset of the output.

LIMIT in native nGQL statements

In native nGQL, LIMIT has general syntax and exclusive syntax in GO statements.

GENERAL LIMIT SYNTAX IN NATIVE NGQL STATEMENTS

In native nGQL, the general LIMIT syntax works the same as in SQL . The LIMIT clause accepts one or two parameters. The values

of both parameters must be non-negative integers and be used after a pipe. The syntax and description are as follows:

For example:

LIMIT IN GO STATEMENTS

In addition to the general syntax in the native nGQL, the LIMIT in the GO statement also supports limiting the number of output

results based on edges.

Syntax:

•

•

Note

... | LIMIT [<offset>,] <number_rows>;

Parameter Description

offset The offset value. It defines the row from which to start returning. The offset starts from 0 . The default

value is 0 , which returns from the first row.

number_rows It constrains the total number of returned rows.

The following example returns the top 3 rows of data from the result.

nebula> LOOKUP ON player YIELD id(vertex)|\

 LIMIT 3;

+-------------+

| id(VERTEX) |

+-------------+

| "player100" |

| "player101" |

| "player102" |

+-------------+

The following example returns the 3 rows of data starting from the second row of the sorted output.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD properties($$).name AS Friend, properties($$).age AS Age \

 | ORDER BY $-.Age, $-.Friend \

 | LIMIT 1, 3;

+-------------------+-----+

| Friend | Age |

+-------------------+-----+

| "Danny Green" | 31 |

| "Aron Baynes" | 32 |

| "Marco Belinelli" | 32 |

+-------------------+-----+

4.6.2 LIMIT AND SKIP

- 229/804 - 2023 Vesoft Inc.

limit_list is a list. Elements in the list must be natural numbers, and the number of elements must be the same as the maximum

number of STEPS in the GO statement. The following takes GO 1 TO 3 STEPS FROM "A" OVER * LIMIT <limit_list> as an example to introduce

this usage of LIMIT in detail.

The list limit_list must contain 3 natural numbers, such as GO 1 TO 3 STEPS FROM "A" OVER * LIMIT [1,2,4] .

1 in LIMIT [1,2,4] means that the system automatically selects 1 edge to continue traversal in the first step. 2 means to select 2

edges to continue traversal in the second step. 4 indicates that 4 edges are selected to continue traversal in the third step.

Because GO 1 TO 3 STEPS means to return all the traversal results from the first to third steps, all the red edges and their source

and destination vertices in the figure below will be matched by this GO statement. And the yellow edges represent there is no

path selected when the GO statement traverses. If it is not GO 1 TO 3 STEPS but GO 3 STEPS , it will only match the red edges of the

third step and the vertices at both ends.

In the basketballplayer dataset, the example is as follows:

<go_statement> LIMIT <limit_list>;

•

•

•

nebula> GO 3 STEPS FROM "player100" \

 OVER * \

 YIELD properties($$).name AS NAME, properties($$).age AS Age \

 LIMIT [3,3,3];

+-----------------+----------+

| NAME | Age |

+-----------------+----------+

| "Tony Parker" | 36 |

| "Manu Ginobili" | 41 |

| "Spurs" | __NULL__ |

+-----------------+----------+

nebula> GO 3 STEPS FROM "player102" OVER * BIDIRECT\

 YIELD dst(edge) \

 LIMIT [rand32(5),rand32(5),rand32(5)];

+-------------+

| dst(EDGE) |

+-------------+

4.6.2 LIMIT AND SKIP

- 230/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/limit_in_go_1.png
https://docs-cdn.nebula-graph.com.cn/figures/limit_in_go_1.png

LIMIT in openCypher compatible statements

In openCypher compatible statements such as MATCH , there is no need to use a pipe when LIMIT is used. The syntax and

description are as follows:

Both offset and number_rows accept expressions, but the result of the expression must be a non-negative integer.

Fraction expressions composed of two integers are automatically floored to integers. For example, 8/6 is floored to 1.

EXAMPLES OF LIMIT

LIMIT can be used alone to return a specified number of results.

EXAMPLES OF SKIP

SKIP can be used alone to set the offset and return the data after the specified position.

EXAMPLE OF SKIP AND LIMIT

SKIP and LIMIT can be used together to return the specified amount of data starting from the specified position.

| "player100" |

| "player100" |

+-------------+

... [SKIP <offset>] [LIMIT <number_rows>];

Parameter Description

offset The offset value. It defines the row from which to start returning. The offset starts from 0 . The default

value is 0 , which returns from the first row.

number_rows It constrains the total number of returned rows.

Note

nebula> MATCH (v:player) RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Age LIMIT 5;

+-------------------------+-----+

| Name | Age |

+-------------------------+-----+

| "Luka Doncic" | 20 |

| "Ben Simmons" | 22 |

| "Kristaps Porzingis" | 23 |

| "Giannis Antetokounmpo" | 24 |

| "Kyle Anderson" | 25 |

+-------------------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC SKIP 1;

+-----------------+-----+

| Name | Age |

+-----------------+-----+

| "Manu Ginobili" | 41 |

| "Tony Parker" | 36 |

+-----------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC SKIP 1+1;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 36 |

+---------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC SKIP 1 LIMIT 1;

+-----------------+-----+

| Name | Age |

+-----------------+-----+

4.6.2 LIMIT AND SKIP

- 231/804 - 2023 Vesoft Inc.

| "Manu Ginobili" | 41 |

+-----------------+-----+

Last update: October 25, 2023

4.6.2 LIMIT AND SKIP

- 232/804 - 2023 Vesoft Inc.

4.6.3 SAMPLE

The SAMPLE clause takes samples evenly in the result set and returns the specified amount of data.

SAMPLE can be used in GO statements only. The syntax is as follows:

sample_list is a list. Elements in the list must be natural numbers, and the number of elements must be the same as the maximum

number of STEPS in the GO statement. The following takes GO 1 TO 3 STEPS FROM "A" OVER * SAMPLE <sample_list> as an example to introduce

this usage of SAMPLE in detail.

The list sample_list must contain 3 natural numbers, such as GO 1 TO 3 STEPS FROM "A" OVER * SAMPLE [1,2,4] .

1 in SAMPLE [1,2,4] means that the system automatically selects 1 edge to continue traversal in the first step. 2 means to select

2 edges to continue traversal in the second step. 4 indicates that 4 edges are selected to continue traversal in the third step. If

there is no matched edge in a certain step or the number of matched edges is less than the specified number, the actual

number will be returned.

Because GO 1 TO 3 STEPS means to return all the traversal results from the first to third steps, all the red edges and their source

and destination vertices in the figure below will be matched by this GO statement. And the yellow edges represent there is no

path selected when the GO statement traverses. If it is not GO 1 TO 3 STEPS but GO 3 STEPS , it will only match the red edges of the

third step and the vertices at both ends.

In the basketballplayer dataset, the example is as follows:

<go_statement> SAMPLE <sample_list>;

•

•

•

nebula> GO 3 STEPS FROM "player100" \

 OVER * \

4.6.3 SAMPLE

- 233/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/sample_in_go.png
https://docs-cdn.nebula-graph.com.cn/figures/sample_in_go.png

 YIELD properties($$).name AS NAME, properties($$).age AS Age \

 SAMPLE [1,2,3];

+-----------------+----------+

| NAME | Age |

+-----------------+----------+

| "Tony Parker" | 36 |

| "Manu Ginobili" | 41 |

| "Spurs" | __NULL__ |

+-----------------+----------+

nebula> GO 1 TO 3 STEPS FROM "player100" \

 OVER * \

 YIELD properties($$).name AS NAME, properties($$).age AS Age \

 SAMPLE [2,2,2];

+-----------------+----------+

| NAME | Age |

+-----------------+----------+

| "Manu Ginobili" | 41 |

| "Spurs" | __NULL__ |

| "Tim Duncan" | 42 |

| "Spurs" | __NULL__ |

| "Manu Ginobili" | 41 |

| "Spurs" | __NULL__ |

+-----------------+----------+

Last update: October 25, 2023

4.6.3 SAMPLE

- 234/804 - 2023 Vesoft Inc.

4.6.4 ORDER BY

The ORDER BY clause specifies the order of the rows in the output.

Native nGQL: You must use a pipe (|) and an ORDER BY clause after YIELD clause.

OpenCypher style: No pipes are permitted. The ORDER BY clause follows a RETURN clause.

There are two order options:

ASC : Ascending. ASC is the default order.

DESC : Descending.

Native nGQL Syntax

In the native nGQL syntax, $-. must be used after ORDER BY . But it is not required in releases prior to 2.5.0.

EXAMPLES

OpenCypher Syntax

EXAMPLES

•

•

•

•

<YIELD clause>

| ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...];

Compatibility

nebula> FETCH PROP ON player "player100", "player101", "player102", "player103" \

 YIELD player.age AS age, player.name AS name \

 | ORDER BY $-.age ASC, $-.name DESC;

+-----+---------------------+

| age | name |

+-----+---------------------+

| 32 | "Rudy Gay" |

| 33 | "LaMarcus Aldridge" |

| 36 | "Tony Parker" |

| 42 | "Tim Duncan" |

+-----+---------------------+

nebula> $var = GO FROM "player100" OVER follow \

 YIELD dst(edge) AS dst; \

 ORDER BY $var.dst DESC;

+-------------+

| dst |

+-------------+

| "player125" |

| "player101" |

+-------------+

<RETURN clause>

ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...];

nebula> MATCH (v:player) RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Name DESC;

+-----------------+-----+

| Name | Age |

+-----------------+-----+

| "Yao Ming" | 38 |

| "Vince Carter" | 42 |

| "Tracy McGrady" | 39 |

| "Tony Parker" | 36 |

| "Tim Duncan" | 42 |

+-----------------+-----+

...

In the following example, nGQL sorts the rows by age first. If multiple people are of the same age, nGQL will then sort them by name.

nebula> MATCH (v:player) RETURN v.player.age AS Age, v.player.name AS Name \

 ORDER BY Age DESC, Name ASC;

+-----+-------------------+

| Age | Name |

+-----+-------------------+

| 47 | "Shaquille O'Neal" |

4.6.4 ORDER BY

- 235/804 - 2023 Vesoft Inc.

Order of NULL values

nGQL lists NULL values at the end of the output for ascending sorting, and at the start for descending sorting.

| 46 | "Grant Hill" |

| 45 | "Jason Kidd" |

| 45 | "Steve Nash" |

+-----+-------------------+

...

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age;

+-----------------+----------+

| Name | Age |

+-----------------+----------+

| "Tony Parker" | 36 |

| "Manu Ginobili" | 41 |

| __NULL__ | __NULL__ |

+-----------------+----------+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC;

+-----------------+----------+

| Name | Age |

+-----------------+----------+

| __NULL__ | __NULL__ |

| "Manu Ginobili" | 41 |

| "Tony Parker" | 36 |

+-----------------+----------+

Last update: October 25, 2023

4.6.4 ORDER BY

- 236/804 - 2023 Vesoft Inc.

4.6.5 RETURN

The RETURN clause defines the output of an nGQL query. To return multiple fields, separate them with commas.

RETURN can lead a clause or a statement:

A RETURN clause can work in openCypher statements in nGQL, such as MATCH or UNWIND .

A RETURN statement can work independently to output the result of an expression.

OpenCypher compatibility

This topic applies to the openCypher syntax in nGQL only. For native nGQL, use YIELD .

RETURN does not support the following openCypher features yet.

Return variables with uncommon characters, for example:

Set a pattern in the RETURN clause and return all elements that this pattern matches, for example:

Map order description

When RETURN returns the map data structure, the order of key-value pairs is undefined.

Return vertices or edges

Use the RETURN {<vertex_name> | <edge_name>} to return vertices and edges all information.

•

•

•

MATCH (`non-english_characters`:player) \

RETURN `non-english_characters`;

•

MATCH (v:player) \

RETURN (v)-[e]->(v2);

nebula> RETURN {age: 32, name: "Marco Belinelli"};

+------------------------------------+

| {age:32,name:"Marco Belinelli"} |

+------------------------------------+

| {age: 32, name: "Marco Belinelli"} |

+------------------------------------+

nebula> RETURN {zage: 32, name: "Marco Belinelli"};

+-------------------------------------+

| {zage:32,name:"Marco Belinelli"} |

+-------------------------------------+

| {name: "Marco Belinelli", zage: 32} |

+-------------------------------------+

// Return vertices

nebula> MATCH (v:player) \

 RETURN v;

+---+

| v |

+---+

| ("player104" :player{age: 32, name: "Marco Belinelli"}) |

| ("player107" :player{age: 32, name: "Aron Baynes"}) |

| ("player116" :player{age: 34, name: "LeBron James"}) |

| ("player120" :player{age: 29, name: "James Harden"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

+---+

...

// Return edges

nebula> MATCH (v:player)-[e]->() \

 RETURN e;

+--+

| e |

+--+

| [:follow "player104"->"player100" @0 {degree: 55}] |

| [:follow "player104"->"player101" @0 {degree: 50}] |

| [:follow "player104"->"player105" @0 {degree: 60}] |

| [:serve "player104"->"team200" @0 {end_year: 2009, start_year: 2007}] |

4.6.5 RETURN

- 237/804 - 2023 Vesoft Inc.

Return VIDs

Use the id() function to retrieve VIDs.

Return Tag

Use the labels() function to return the list of tags on a vertex.

To retrieve the nth element in the labels(v) list, use labels(v)[n-1] . The following example shows how to use labels(v)[0] to return

the first tag in the list.

Return properties

When returning properties of a vertex, it is necessary to specify the tag to which the properties belong because a vertex can have

multiple tags and the same property name can appear on different tags.

It is possible to specify the tag of a vertex to return all properties of that tag, or to specify both the tag and a property name to

return only that property of the tag.

When returning edge properties, it is not necessary to specify the edge type to which the properties belong, because an edge can

only have one edge type.

| [:serve "player104"->"team208" @0 {end_year: 2016, start_year: 2015}] |

+--+

...

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN id(v);

+-------------+

| id(v) |

+-------------+

| "player100" |

+-------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN labels(v);

+------------+

| labels(v) |

+------------+

| ["player"] |

+------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN labels(v)[0];

+--------------+

| labels(v)[0] |

+--------------+

| "player" |

+--------------+

nebula> MATCH (v:player) \

 RETURN v.player, v.player.name, v.player.age \

 LIMIT 3;

+--------------------------------------+---------------------+--------------+

| v.player | v.player.name | v.player.age |

+--------------------------------------+---------------------+--------------+

| {age: 33, name: "LaMarcus Aldridge"} | "LaMarcus Aldridge" | 33 |

| {age: 25, name: "Kyle Anderson"} | "Kyle Anderson" | 25 |

| {age: 40, name: "Kobe Bryant"} | "Kobe Bryant" | 40 |

+--------------------------------------+---------------------+--------------+

// Return the property of a vertex

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \

 RETURN properties(v2);

+----------------------------------+

| properties(v2) |

+----------------------------------+

| {name: "Spurs"} |

| {age: 36, name: "Tony Parker"} |

| {age: 41, name: "Manu Ginobili"} |

+----------------------------------+

// Return the property of an edge

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->() \

 RETURN e.start_year, e.degree \

4.6.5 RETURN

- 238/804 - 2023 Vesoft Inc.

Return edge type

Use the type() function to return the matched edge types.

Return paths

Use RETURN <path_name> to return all the information of the matched paths.

RETURN VERTICES IN A PATH

Use the nodes() function to return all vertices in a path.

RETURN EDGES IN A PATH

Use the relationships() function to return all edges in a path.

RETURN PATH LENGTH

Use the length() function to return the length of a path.

+--------------+----------+

| e.start_year | e.degree |

+--------------+----------+

| __NULL__ | 95 |

| __NULL__ | 95 |

| 1997 | __NULL__ |

+--------------+----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e]->() \

 RETURN DISTINCT type(e);

+----------+

| type(e) |

+----------+

| "serve" |

| "follow" |

+----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*3]->() \

 RETURN p;

+--

+

|

p

|

+--

+

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2019, start_year: 2015}]->("team204" :team{name: "Spurs"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2015, start_year: 2006}]->("team203" :team{name: "Trail Blazers"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})-[:follow@0 {degree: 75}]->("player101" :player{age: 36, name: "Tony Parker"})> |

+--

+

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \

 RETURN nodes(p);

+---+

| nodes(p) |

+---+

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("team204" :team{name: "Spurs"})] |

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"})] |

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player125" :player{age: 41, name: "Manu Ginobili"})] |

+---+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \

 RETURN relationships(p);

+---+

| relationships(p) |

+---+

| [[:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}]] |

| [[:follow "player100"->"player101" @0 {degree: 95}]] |

| [[:follow "player100"->"player125" @0 {degree: 95}]] |

+---+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*..2]->(v2) \

 RETURN p AS Paths, length(p) AS Length;

+--

+--------+

4.6.5 RETURN

- 239/804 - 2023 Vesoft Inc.

Return all elements

To return all the elements that this pattern matches, use an asterisk (*).

Rename a field

Use the AS <alias> syntax to rename a field in the output.

Return a non-existing property

If a property matched does not exist, NULL is returned.

|

Paths

| Length |

+--

+--------+

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name:

"Spurs"})> | 1 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony

Parker"})> | 1 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu

Ginobili"})> | 1 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year: 2018, start_year: 1999}]-

>("team204" :team{name: "Spurs"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year: 2019, start_year: 2018}]-

>("team215" :team{name: "Hornets"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]->("player100" :player{age: 42,

name: "Tim Duncan"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41,

name: "Manu Ginobili"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:serve@0 {end_year: 2018, start_year: 2002}]-

>("team204" :team{name: "Spurs"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:follow@0 {degree: 90}]->("player100" :player{age: 42,

name: "Tim Duncan"})> | 2 |

+--

+--------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN *;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

 RETURN *;

+--+---+---+

| v | e | v2 |

+--+---+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player101" @0 {degree: 95}] | ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player125" @0 {degree: 95}] | ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] | ("team204" :team{name: "Spurs"}) |

+--+---+---+

nebula> MATCH (v:player{name:"Tim Duncan"})-[:serve]->(v2) \

 RETURN v2.team.name AS Team;

+---------+

| Team |

+---------+

| "Spurs" |

+---------+

nebula> RETURN "Amber" AS Name;

+---------+

| Name |

+---------+

| "Amber" |

+---------+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

 RETURN v2.player.name, type(e), v2.player.age;

+-----------------+----------+---------------+

| v2.player.name | type(e) | v2.player.age |

+-----------------+----------+---------------+

| "Manu Ginobili" | "follow" | 41 |

| __NULL__ | "serve" | __NULL__ |

| "Tony Parker" | "follow" | 36 |

+-----------------+----------+---------------+

4.6.5 RETURN

- 240/804 - 2023 Vesoft Inc.

Return expression results

To return the results of expressions such as literals, functions, or predicates, set them in a RETURN clause.

Return unique fields

Use DISTINCT to remove duplicate fields in the result set.

nebula> MATCH (v:player{name:"Tony Parker"})-->(v2:player) \

 RETURN DISTINCT v2.player.name, "Hello"+" graphs!", v2.player.age > 35;

+---------------------+----------------------+--------------------+

| v2.player.name | ("Hello"+" graphs!") | (v2.player.age>35) |

+---------------------+----------------------+--------------------+

| "LaMarcus Aldridge" | "Hello graphs!" | false |

| "Tim Duncan" | "Hello graphs!" | true |

| "Manu Ginobili" | "Hello graphs!" | true |

+---------------------+----------------------+--------------------+

nebula> RETURN 1+1;

+-------+

| (1+1) |

+-------+

| 2 |

+-------+

nebula> RETURN 1- -1;

+----------+

| (1--(1)) |

+----------+

| 2 |

+----------+

nebula> RETURN 3 > 1;

+-------+

| (3>1) |

+-------+

| true |

+-------+

nebula> RETURN 1+1, rand32(1, 5);

+-------+-------------+

| (1+1) | rand32(1,5) |

+-------+-------------+

| 2 | 1 |

+-------+-------------+

Before using DISTINCT.

nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \

 RETURN v2.player.name, v2.player.age;

+---------------------+---------------+

| v2.player.name | v2.player.age |

+---------------------+---------------+

| "Manu Ginobili" | 41 |

| "Boris Diaw" | 36 |

| "Marco Belinelli" | 32 |

| "Dejounte Murray" | 29 |

| "Tim Duncan" | 42 |

| "Tim Duncan" | 42 |

| "LaMarcus Aldridge" | 33 |

| "LaMarcus Aldridge" | 33 |

+---------------------+---------------+

After using DISTINCT.

nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \

 RETURN DISTINCT v2.player.name, v2.player.age;

+---------------------+---------------+

| v2.player.name | v2.player.age |

+---------------------+---------------+

| "Manu Ginobili" | 41 |

| "Boris Diaw" | 36 |

| "Marco Belinelli" | 32 |

| "Dejounte Murray" | 29 |

| "Tim Duncan" | 42 |

| "LaMarcus Aldridge" | 33 |

+---------------------+---------------+

Last update: October 25, 2023

4.6.5 RETURN

- 241/804 - 2023 Vesoft Inc.

4.6.6 TTL

TTL (Time To Live) is a mechanism in NebulaGraph that defines the lifespan of data. Once the data reaches its predefined

lifespan, it is automatically deleted from the database. This feature is particularly suitable for data that only needs temporary

storage, such as temporary sessions or cached data.

OpenCypher Compatibility

This topic applies to native nGQL only.

Precautions

You CANNOT modify a property schema with TTL options on it.

TTL options and indexes have coexistence issues.

TTL options and indexes CANNOT coexist on a tag or an edge type. If there is an index on a property, you cannot set TTL

options on other properties.

If there are TTL options on a tag, an edge type, or a property, you can still add an index on them.

TTL options

The native nGQL TTL feature has the following options.

Before setting ttl_use_ms to true , make sure that no TTL has been set for any property, as shortening the expiration time may cause

data to be erroneously deleted.

After setting ttl_use_ms to true , which sets the default TTL unit to milliseconds, the data type of the property specified by ttl_col must

be int , and the property value needs to be manually converted to milliseconds. For example, when setting ttl_col to a , you need to

convert the value of a to milliseconds, such as when the value of a is now() , you need to set the value of a to now() * 1000 .

Use TTL options

You must use the TTL options together to set a lifespan on a property.

Before using the TTL feature, you must first create a timestamp or integer property and specify it in the TTL options.

NebulaGraph will not automatically create or manage this timestamp property for you.

When inserting the value of the timestamp or integer property, it is recommended to use the now() function or the current

timestamp to represent the present time.

SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS

If a tag or an edge type is already created, to set a timeout on a property bound to the tag or edge type, use ALTER to update the

tag or edge type.

•

•

•

•

Option Description

ttl_col Specifies an existing property to set a lifespan on. The data type of the property must be int or timestamp .

ttl_duration Specifies the timeout adds-on value in seconds. The value must be a non-negative int64 number. A property

expires if the sum of its value and the ttl_duration value is smaller than the current timestamp. If the

ttl_duration value is 0 , the property never expires.

You can set ttl_use_ms to true in the configuration file nebula-storaged.conf (default path: /usr/local/nightly/etc/) to

set the default unit to milliseconds.

Warning

•

•

4.6.6 TTL

- 242/804 - 2023 Vesoft Inc.

SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

Use TTL options in the CREATE statement to set a timeout when creating a tag or an edge type. For more information, see CREATE

TAG and CREATE EDGE.

Data expiration and deletion

When the TTL options are set for a property of a tag or an edge type and the property's value is NULL , the property never expires.

If a property with a default value of now() is added to a tag or an edge type and the TTL options are set for the property, the history

data related to the tag or the edge type will never expire because the value of that property for the history data is the current

timestamp.

VERTEX PROPERTY EXPIRATION

Vertex property expiration has the following impact.

If a vertex has only one tag, once a property of the vertex expires, the vertex expires.

If a vertex has multiple tags, once a property of the vertex expires, properties bound to the same tag with the expired property

also expire, but the vertex does not expire and other properties of it remain untouched.

EDGE PROPERTY EXPIRATION

Since an edge can have only one edge type, once an edge property expires, the edge expires.

DATA DELETION

The expired data are still stored on the disk, but queries will filter them out.

NebulaGraph automatically deletes the expired data and reclaims the disk space during the next compaction.

If TTL is disabled, the corresponding data deleted after the last compaction can be queried again.

Create a tag.

nebula> CREATE TAG IF NOT EXISTS t1 (a timestamp);

Use ALTER to update the tag and set the TTL options.

nebula> ALTER TAG t1 TTL_COL = "a", TTL_DURATION = 5;

Insert a vertex with tag t1. The vertex expires 5 seconds after the insertion.

nebula> INSERT VERTEX t1(a) VALUES "101":(now());

Create a edge type.

nebula> CREATE EDGE IF NOT EXISTS e1 (a timestamp);

Use ALTER to update the edge type and set the TTL options.

nebula> ALTER EDGE e1 TTL_COL = "a", TTL_DURATION = 5;

Insert a dangling edge with edge type e1. The edge expires 5 seconds after the insertion.

nebula> INSERT EDGE e1 (a) VALUES "10"->"11":(now());

Create a tag and set the TTL options.

nebula> CREATE TAG IF NOT EXISTS t2(a int, b int, c string) TTL_DURATION= 100, TTL_COL = "a";

Insert a vertex with tag t2. The timeout timestamp is 1648197238 (1648197138 + 100).

nebula> INSERT VERTEX t2(a, b, c) VALUES "102":(1648197138, 30, "Hello");

Caution

•

•

•

•

Note

4.6.6 TTL

- 243/804 - 2023 Vesoft Inc.

Remove a timeout

To disable TTL and remove the timeout on a property, you can use the following approaches.

Drop the property with the timeout.

Set ttl_col to an empty string.

Set ttl_duration to 0 . This operation keeps the TTL options and prevents the property from expiring and the property schema

from being modified.

•

nebula> ALTER TAG t1 DROP (a);

•

nebula> ALTER TAG t1 TTL_COL = "";

•

nebula> ALTER TAG t1 TTL_DURATION = 0;

Last update: April 8, 2024

4.6.6 TTL

- 244/804 - 2023 Vesoft Inc.

4.6.7 WHERE

The WHERE clause filters the output by conditions.

The WHERE clause usually works in the following queries:

Native nGQL: such as GO and LOOKUP .

OpenCypher syntax: such as MATCH and WITH .

OpenCypher compatibility

Filtering on edge rank is a native nGQL feature. To retrieve the rank value in openCypher statements, use the rank() function,

such as MATCH (:player)-[e:follow]->() RETURN rank(e); .

Basic usage

In the following examples, $$ and $^ are reference operators. For more information, see Operators.

DEFINE CONDITIONS WITH BOOLEAN OPERATORS

Use the boolean operators NOT , AND , OR , and XOR to define conditions in WHERE clauses. For the precedence of the operators, see

Precedence.

•

•

Note

nebula> MATCH (v:player) \

 WHERE v.player.name == "Tim Duncan" \

 XOR (v.player.age < 30 AND v.player.name == "Yao Ming") \

 OR NOT (v.player.name == "Yao Ming" OR v.player.name == "Tim Duncan") \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

...

nebula> GO FROM "player100" \

 OVER follow \

 WHERE properties(edge).degree > 90 \

 OR properties($$).age != 33 \

 AND properties($$).name != "Tony Parker" \

 YIELD properties($$);

+----------------------------------+

| properties($$) |

+----------------------------------+

| {age: 41, name: "Manu Ginobili"} |

+----------------------------------+

4.6.7 WHERE

- 245/804 - 2023 Vesoft Inc.

FILTER ON PROPERTIES

Use vertex or edge properties to define conditions in WHERE clauses.

Filter on a vertex property:

Filter on an edge property:

FILTER ON DYNAMICALLY-CALCULATED PROPERTIES

FILTER ON EXISTING PROPERTIES

FILTER ON EDGE RANK

In nGQL, if a group of edges has the same source vertex, destination vertex, and properties, the only thing that distinguishes

them is the rank. Use rank conditions in WHERE clauses to filter such edges.

•

nebula> MATCH (v:player)-[e]->(v2) \

 WHERE v2.player.age < 25 \

 RETURN v2.player.name, v2.player.age;

+----------------------+---------------+

| v2.player.name | v2.player.age |

+----------------------+---------------+

| "Ben Simmons" | 22 |

| "Luka Doncic" | 20 |

| "Kristaps Porzingis" | 23 |

+----------------------+---------------+

nebula> GO FROM "player100" OVER follow \

 WHERE $^.player.age >= 42 \

 YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

+-------------+

| "player101" |

| "player125" |

+-------------+

•

nebula> MATCH (v:player)-[e]->() \

 WHERE e.start_year < 2000 \

 RETURN DISTINCT v.player.name, v.player.age;

+--------------------+--------------+

| v.player.name | v.player.age |

+--------------------+--------------+

| "Tony Parker" | 36 |

| "Tim Duncan" | 42 |

| "Grant Hill" | 46 |

...

nebula> GO FROM "player100" OVER follow \

 WHERE follow.degree > 90 \

 YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

nebula> MATCH (v:player) \

 WHERE v[toLower("AGE")] < 21 \

 RETURN v.player.name, v.player.age;

+---------------+-------+

| v.name | v.age |

+---------------+-------+

| "Luka Doncic" | 20 |

+---------------+-------+

nebula> MATCH (v:player) \

 WHERE exists(v.player.age) \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

...

4.6.7 WHERE

- 246/804 - 2023 Vesoft Inc.

FILTER ON PATTERN

Filter on strings

Use STARTS WITH , ENDS WITH , or CONTAINS in WHERE clauses to match a specific part of a string. String matching is case-sensitive.

STARTS WITH

STARTS WITH will match the beginning of a string.

The following example creates test data.

nebula> CREATE SPACE IF NOT EXISTS test (vid_type=FIXED_STRING(30));

nebula> USE test;

nebula> CREATE EDGE IF NOT EXISTS e1(p1 int);

nebula> CREATE TAG IF NOT EXISTS person(p1 int);

nebula> INSERT VERTEX person(p1) VALUES "1":(1);

nebula> INSERT VERTEX person(p1) VALUES "2":(2);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@0:(10);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@1:(11);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@2:(12);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@3:(13);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@4:(14);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@5:(15);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@6:(16);

The following example use rank to filter edges and retrieves edges with a rank greater than 2.

nebula> GO FROM "1" \

 OVER e1 \

 WHERE rank(edge) > 2 \

 YIELD src(edge), dst(edge), rank(edge) AS Rank, properties(edge).p1 | \

 ORDER BY $-.Rank DESC;

+-----------+-----------+------+---------------------+

| src(EDGE) | dst(EDGE) | Rank | properties(EDGE).p1 |

+-----------+-----------+------+---------------------+

| "1" | "2" | 6 | 16 |

| "1" | "2" | 5 | 15 |

| "1" | "2" | 4 | 14 |

| "1" | "2" | 3 | 13 |

+-----------+-----------+------+---------------------+

Filter edges by rank. Find follow edges with rank equal to 0.

nebula> MATCH (v)-[e:follow]->() \

 WHERE rank(e)==0 \

 RETURN *;

+--+---+

| v | e |

+--+---+

| ("player142" :player{age: 29, name: "Klay Thompson"}) | [:follow "player142"->"player117" @0 {degree: 90}] |

| ("player139" :player{age: 34, name: "Marc Gasol"}) | [:follow "player139"->"player138" @0 {degree: 99}] |

| ("player108" :player{age: 36, name: "Boris Diaw"}) | [:follow "player108"->"player100" @0 {degree: 80}] |

| ("player108" :player{age: 36, name: "Boris Diaw"}) | [:follow "player108"->"player101" @0 {degree: 80}] |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(t) \

 WHERE (v)-[e]->(t:team) \

 RETURN (v)-->();

+--

+

| (v)-->() = (v)--

>()

|

+--

+

| [<("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})>, <("player100" :player{age: 42, name: "Tim Duncan"})-

[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})>, <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41,

name: "Manu Ginobili"})>] |

+--

+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(t) \

 WHERE NOT (v)-[e]->(t:team) \

 RETURN (v)-->();

+--

+

| (v)-->() = (v)--

>()

|

+--

+

| [<("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})>, <("player100" :player{age: 42, name: "Tim Duncan"})-

[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})>, <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41,

name: "Manu Ginobili"})>] |

| [<("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})>, <("player100" :player{age: 42, name: "Tim Duncan"})-

[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})>, <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41,

name: "Manu Ginobili"})>] |

+--

+

4.6.7 WHERE

- 247/804 - 2023 Vesoft Inc.

The following example uses STARTS WITH "T" to retrieve the information of players whose name starts with T .

If you use STARTS WITH "t" in the preceding statement, an empty set is returned because no name in the dataset starts with the

lowercase t .

ENDS WITH

ENDS WITH will match the ending of a string.

The following example uses ENDS WITH "r" to retrieve the information of players whose name ends with r .

CONTAINS

CONTAINS will match a certain part of a string.

The following example uses CONTAINS "Pa" to match the information of players whose name contains Pa .

NEGATIVE STRING MATCHING

You can use the boolean operator NOT to negate a string matching condition.

nebula> MATCH (v:player) \

 WHERE v.player.name STARTS WITH "T" \

 RETURN v.player.name, v.player.age;

+------------------+--------------+

| v.player.name | v.player.age |

+------------------+--------------+

| "Tony Parker" | 36 |

| "Tiago Splitter" | 34 |

| "Tim Duncan" | 42 |

| "Tracy McGrady" | 39 |

+------------------+--------------+

nebula> MATCH (v:player) \

 WHERE v.player.name STARTS WITH "t" \

 RETURN v.player.name, v.player.age;

+---------------+--------------+

| v.player.name | v.player.age |

+---------------+--------------+

+---------------+--------------+

Empty set (time spent 5080/6474 us)

nebula> MATCH (v:player) \

 WHERE v.player.name ENDS WITH "r" \

 RETURN v.player.name, v.player.age;

+------------------+--------------+

| v.player.name | v.player.age |

+------------------+--------------+

| "Tony Parker" | 36 |

| "Tiago Splitter" | 34 |

| "Vince Carter" | 42 |

+------------------+--------------+

nebula> MATCH (v:player) \

 WHERE v.player.name CONTAINS "Pa" \

 RETURN v.player.name, v.player.age;

+---------------+--------------+

| v.player.name | v.player.age |

+---------------+--------------+

| "Paul George" | 28 |

| "Tony Parker" | 36 |

| "Paul Gasol" | 38 |

| "Chris Paul" | 33 |

+---------------+--------------+

nebula> MATCH (v:player) \

 WHERE NOT v.player.name ENDS WITH "R" \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

| "Russell Westbrook" | 30 |

...

4.6.7 WHERE

- 248/804 - 2023 Vesoft Inc.

Filter on lists

MATCH VALUES IN A LIST

Use the IN operator to check if a value is in a specific list.

MATCH VALUES NOT IN A LIST

Use NOT before IN to rule out the values in a list.

nebula> MATCH (v:player) \

 WHERE v.player.age IN range(20,25) \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Ben Simmons" | 22 |

| "Giannis Antetokounmpo" | 24 |

| "Kyle Anderson" | 25 |

| "Joel Embiid" | 25 |

| "Kristaps Porzingis" | 23 |

| "Luka Doncic" | 20 |

+-------------------------+--------------+

nebula> LOOKUP ON player \

 WHERE player.age IN [25,28] \

 YIELD properties(vertex).name, properties(vertex).age;

+-------------------------+------------------------+

| properties(VERTEX).name | properties(VERTEX).age |

+-------------------------+------------------------+

| "Kyle Anderson" | 25 |

| "Damian Lillard" | 28 |

| "Joel Embiid" | 25 |

| "Paul George" | 28 |

| "Ricky Rubio" | 28 |

+-------------------------+------------------------+

nebula> MATCH (v:player) \

 WHERE v.player.age NOT IN range(20,25) \

 RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Age;

+---------------------+-----+

| Name | Age |

+---------------------+-----+

| "Kyrie Irving" | 26 |

| "Cory Joseph" | 27 |

| "Damian Lillard" | 28 |

| "Paul George" | 28 |

| "Ricky Rubio" | 28 |

+---------------------+-----+

...

Last update: January 31, 2024

4.6.7 WHERE

- 249/804 - 2023 Vesoft Inc.

4.6.8 YIELD

YIELD defines the output of an nGQL query.

YIELD can lead a clause or a statement:

A YIELD clause works in nGQL statements such as GO , FETCH , or LOOKUP and must be defined to return the result.

A YIELD statement works in a composite query or independently.

OpenCypher compatibility

This topic applies to native nGQL only. For the openCypher syntax, use RETURN .

YIELD has different functions in openCypher and nGQL.

In openCypher, YIELD is used in the CALL[…YIELD] clause to specify the output of the procedure call.

NGQL does not support CALL[…YIELD] yet.

In nGQL, YIELD works like RETURN in openCypher.

In the following examples, $$ and $- are property references. For more information, see Reference to properties.

YIELD clauses

SYNTAX

USE A YIELD CLAUSE IN A STATEMENT

Use YIELD with GO :

•

•

•

Note

•

Note

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...];

Parameter Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

•

nebula> GO FROM "player100" OVER follow \

 YIELD properties($$).name AS Friend, properties($$).age AS Age;

+-----------------+-----+

| Friend | Age |

+-----------------+-----+

| "Tony Parker" | 36 |

4.6.8 YIELD

- 250/804 - 2023 Vesoft Inc.

Use YIELD with FETCH :

Use YIELD with LOOKUP :

YIELD statements

SYNTAX

USE A YIELD STATEMENT IN A COMPOSITE QUERY

In a composite query, a YIELD statement accepts, filters, and modifies the result set of the preceding statement, and then outputs

it.

The following query finds the players that "player100" follows and calculates their average age.

The following query finds the players that "player101" follows with the follow degrees greater than 90.

The following query finds the vertices in the player that are older than 30 and younger than 32, and returns the de-duplicate

results.

| "Manu Ginobili" | 41 |

+-----------------+-----+

•

nebula> FETCH PROP ON player "player100" \

 YIELD properties(vertex).name;

+-------------------------+

| properties(VERTEX).name |

+-------------------------+

| "Tim Duncan" |

+-------------------------+

•

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \

 YIELD properties(vertex).name, properties(vertex).age;

+-------------------------+------------------------+

| properties(VERTEX).name | properties(VERTEX).age |

+-------------------------+------------------------+

| "Tony Parker" | 36 |

+-------------------------+------------------------+

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]

[WHERE <conditions>];

Parameter Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

conditions Conditions set in a WHERE clause to filter the output. For more information, see WHERE .

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS ID \

 | FETCH PROP ON player $-.ID \

 YIELD properties(vertex).age AS Age \

 | YIELD AVG($-.Age) as Avg_age, count(*)as Num_friends;

+---------+-------------+

| Avg_age | Num_friends |

+---------+-------------+

| 38.5 | 2 |

+---------+-------------+

nebula> $var1 = GO FROM "player101" OVER follow \

 YIELD properties(edge).degree AS Degree, dst(edge) as ID; \

 YIELD $var1.ID AS ID WHERE $var1.Degree > 90;

+-------------+

| ID |

+-------------+

| "player100" |

| "player125" |

+-------------+

4.6.8 YIELD

- 251/804 - 2023 Vesoft Inc.

USE A STANDALONE YIELD STATEMENT

A YIELD statement can calculate a valid expression and output the result.

nebula> LOOKUP ON player \

 WHERE player.age < 32 and player.age >30 \

 YIELD DISTINCT properties(vertex).age as v;

+--------+

| v |

+--------+

| 31 |

+--------+

nebula> YIELD rand32(1, 6);

+-------------+

| rand32(1,6) |

+-------------+

| 3 |

+-------------+

nebula> YIELD "Hel" + "\tlo" AS string1, ", World!" AS string2;

+-------------+------------+

| string1 | string2 |

+-------------+------------+

| "Hel lo" | ", World!" |

+-------------+------------+

nebula> YIELD hash("Tim") % 100;

+-----------------+

| (hash(Tim)%100) |

+-----------------+

| 42 |

+-----------------+

nebula> YIELD \

 CASE 2+3 \

 WHEN 4 THEN 0 \

 WHEN 5 THEN 1 \

 ELSE -1 \

 END \

 AS result;

+--------+

| result |

+--------+

| 1 |

+--------+

nebula> YIELD 1- -1;

+----------+

| (1--(1)) |

+----------+

| 2 |

+----------+

Last update: January 17, 2024

4.6.8 YIELD

- 252/804 - 2023 Vesoft Inc.

4.6.9 WITH

The WITH clause can retrieve the output from a query part, process it, and pass it to the next query part as the input.

OpenCypher compatibility

This topic applies to openCypher syntax only.

WITH has a similar function with the Pipe symbol in native nGQL, but they work in different ways. DO NOT use pipe symbols in the

openCypher syntax or use WITH in native nGQL statements.

Combine statements and form a composite query

Use a WITH clause to combine statements and transfer the output of a statement as the input of another statement.

EXAMPLE 1

The following statement:

Matches a path.

Outputs all the vertices on the path to a list with the nodes() function.

Unwinds the list into rows.

Removes duplicated vertices and returns a set of distinct vertices.

EXAMPLE 2

The following statement:

Matches the vertex with the VID player100 .

Outputs all the tags of the vertex into a list with the labels() function.

Unwinds the list into rows.

Returns the output.

Note

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \

 WITH nodes(p) AS n \

 UNWIND n AS n1 \

 RETURN DISTINCT n1;

+---+

| n1 |

+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("team204" :team{name: "Spurs"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player104" :player{age: 32, name: "Marco Belinelli"}) |

| ("player144" :player{age: 47, name: "Shaquille O'Neal"}) |

| ("player105" :player{age: 31, name: "Danny Green"}) |

| ("player113" :player{age: 29, name: "Dejounte Murray"}) |

| ("player107" :player{age: 32, name: "Aron Baynes"}) |

| ("player109" :player{age: 34, name: "Tiago Splitter"}) |

| ("player108" :player{age: 36, name: "Boris Diaw"}) |

+---+

1.

2.

3.

4.

nebula> MATCH (v) \

 WHERE id(v)=="player100" \

 WITH labels(v) AS tags_unf \

 UNWIND tags_unf AS tags_f \

 RETURN tags_f;

+----------+

| tags_f |

+----------+

| "player" |

+----------+

4.6.9 WITH

- 253/804 - 2023 Vesoft Inc.

Filter composite queries

WITH can work as a filter in the middle of a composite query.

Process the output before using collect()

Use a WITH clause to sort and limit the output before using collect() to transform the output into a list.

Use with RETURN

Set an alias using a WITH clause, and then output the result through a RETURN clause.

nebula> MATCH (v:player)-->(v2:player) \

 WITH DISTINCT v2 AS v2, v2.player.age AS Age \

 ORDER BY Age \

 WHERE Age<25 \

 RETURN v2.player.name AS Name, Age;

+----------------------+-----+

| Name | Age |

+----------------------+-----+

| "Luka Doncic" | 20 |

| "Ben Simmons" | 22 |

| "Kristaps Porzingis" | 23 |

+----------------------+-----+

nebula> MATCH (v:player) \

 WITH v.player.name AS Name \

 ORDER BY Name DESC \

 LIMIT 3 \

 RETURN collect(Name);

+---+

| collect(Name) |

+---+

| ["Yao Ming", "Vince Carter", "Tracy McGrady"] |

+---+

nebula> WITH [1, 2, 3] AS `list` RETURN 3 IN `list` AS r;

+------+

| r |

+------+

| true |

+------+

nebula> WITH 4 AS one, 3 AS two RETURN one > two AS result;

+--------+

| result |

+--------+

| true |

+--------+

Last update: November 3, 2023

4.6.9 WITH

- 254/804 - 2023 Vesoft Inc.

4.6.10 UNWIND

UNWIND transform a list into a sequence of rows.

UNWIND can be used as an individual statement or as a clause within a statement.

UNWIND statement

SYNTAX

EXAMPLES

To transform a list.

UNWIND clause

SYNTAX

The UNWIND clause in native nGQL statements.

To use a UNWIND clause in a native nGQL statement, use it after the | operator and use the $- prefix for variables. If you use a

statement or clause after the UNWIND clause, use the | operator and use the $- prefix for variables.

The UNWIND clause in openCypher statements.

UNWIND <list> AS <alias> <RETURN clause>;

•

nebula> UNWIND [1,2,3] AS n RETURN n;

+---+

| n |

+---+

| 1 |

| 2 |

| 3 |

+---+

•

Note

<statement> | UNWIND $-.<var> AS <alias> <|> <clause>;

•

<statement> UNWIND <list> AS <alias> <RETURN clause>；

4.6.10 UNWIND

- 255/804 - 2023 Vesoft Inc.

EXAMPLES

To transform a list of duplicates into a unique set of rows using WITH DISTINCT in a UNWIND clause.

WITH DISTINCT is not available in native nGQL statements.

•

Note

// Transform the list `[1,1,2,2,3,3]` into a unique set of rows, sort the rows, and then transform the rows into a list of unique values.

nebula> WITH [1,1,2,2,3,3] AS n \

 UNWIND n AS r \

 WITH DISTINCT r AS r \

 ORDER BY r \

 RETURN collect(r);

+------------+

| collect(r) |

+------------+

4.6.10 UNWIND

- 256/804 - 2023 Vesoft Inc.

To use an UNWIND clause in a MATCH statement.

To use an UNWIND clause in a GO statement.

To use an UNWIND clause in a LOOKUP statement.

To use an UNWIND clause in a FETCH statement.

| [1, 2, 3] |

+------------+

•

// Get a list of the vertices in the matched path, transform the list into a unique set of rows, and then transform the rows into a list.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--(v2) \

 WITH nodes(p) AS n \

 UNWIND n AS r \

 WITH DISTINCT r AS r \

 RETURN collect(r);

+--+

| collect(r) |

+--+

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}), |

|("team204" :team{name: "Spurs"}), ("player102" :player{age: 33, name: "LaMarcus Aldridge"}), |

|("player125" :player{age: 41, name: "Manu Ginobili"}), ("player104" :player{age: 32, name: "Marco Belinelli"}), |

|("player144" :player{age: 47, name: "Shaquile O'Neal"}), ("player105" :player{age: 31, name: "Danny Green"}), |

|("player113" :player{age: 29, name: "Dejounte Murray"}), ("player107" :player{age: 32, name: "Aron Baynes"}), |

|("player109" :player{age: 34, name: "Tiago Splitter"}), ("player108" :player{age: 36, name: "Boris Diaw"})] |

+--+

•

// Query the vertices in a list for the corresponding edges with a specified statement.

nebula> YIELD ['player101', 'player100'] AS a | UNWIND $-.a AS b | GO FROM $-.b OVER follow YIELD edge AS e;

+--+

| e |

+--+

| [:follow "player101"->"player100" @0 {degree: 95}] |

| [:follow "player101"->"player102" @0 {degree: 90}] |

| [:follow "player101"->"player125" @0 {degree: 95}] |

| [:follow "player100"->"player101" @0 {degree: 95}] |

| [:follow "player100"->"player125" @0 {degree: 95}] |

+--+

•

// Find all the properties of players whose age is greater than 46, get a list of unique properties, and then transform the list into rows.

nebula> LOOKUP ON player \

 WHERE player.age > 46 \

 YIELD DISTINCT keys(vertex) as p | UNWIND $-.p as a | YIELD $-.a AS a;

+--------+

| a |

+--------+

| "age" |

| "name" |

+--------+

•

// Query player101 for all tags related to player101, get a list of the tags and then transform the list into rows.

nebula> CREATE TAG hero(like string, height int);

 INSERT VERTEX hero(like, height) VALUES "player101":("deep", 182);

 FETCH PROP ON * "player101" \

 YIELD tags(vertex) as t | UNWIND $-.t as a | YIELD $-.a AS a;

+----------+

| a |

+----------+

| "hero" |

| "player" |

+----------+

4.6.10 UNWIND

- 257/804 - 2023 Vesoft Inc.

To use an UNWIND clause in a GET SUBGRAPH statement.

To use an UNWIND clause in a FIND PATH statement.

•

// Get the subgraph including outgoing and incoming serve edges within 0~2 hops from/to player100, and transform the result into rows.

nebula> GET SUBGRAPH 2 STEPS FROM "player100" BOTH serve \

 YIELD edges as e | UNWIND $-.e as a | YIELD $-.a AS a;

+--+

| a |

+--+

| [:serve "player100"->"team204" @0 {}] |

| [:serve "player101"->"team204" @0 {}] |

| [:serve "player102"->"team204" @0 {}] |

| [:serve "player103"->"team204" @0 {}] |

| [:serve "player105"->"team204" @0 {}] |

| [:serve "player106"->"team204" @0 {}] |

| [:serve "player107"->"team204" @0 {}] |

| [:serve "player108"->"team204" @0 {}] |

| [:serve "player109"->"team204" @0 {}] |

| [:serve "player110"->"team204" @0 {}] |

| [:serve "player111"->"team204" @0 {}] |

| [:serve "player112"->"team204" @0 {}] |

| [:serve "player113"->"team204" @0 {}] |

| [:serve "player114"->"team204" @0 {}] |

| [:serve "player125"->"team204" @0 {}] |

| [:serve "player138"->"team204" @0 {}] |

| [:serve "player104"->"team204" @20132015 {}] |

| [:serve "player104"->"team204" @20182019 {}] |

+--+

•

// Find all the vertices in the shortest path from player101 to team204 along the serve edge, and transform the result into rows.

nebula> FIND SHORTEST PATH FROM "player101" TO "team204" OVER serve \

 YIELD path as p | YIELD nodes($-.p) AS nodes | UNWIND $-.nodes AS a | YIELD $-.a AS a;

+---------------+

| a |

+---------------+

| ("player101") |

| ("team204") |

+---------------+

Last update: October 25, 2023

4.6.10 UNWIND

- 258/804 - 2023 Vesoft Inc.

4.7 Variables and composite queries

4.7.1 Composite queries (clause structure)

Composite queries put data from different queries together. They then use filters, group-bys, or sorting before returning the

combined return results.

Nebula Graph supports three methods to run composite queries (or sub-queries):

(openCypher) Clauses are chained together, and they feed intermediate result sets between each other.

(Native nGQL) More than one query can be batched together, separated by semicolons (;). The result of the last query is

returned as the result of the batch.

(Native nGQL) Queries can be piped together by using the pipe (|). The result of the previous query can be used as the input

of the next query.

OpenCypher compatibility

In a composite query, do not put together openCypher and native nGQL clauses in one statement. For example, this statement is

undefined: MATCH ... | GO ... | YIELD

If you are in the openCypher way (MATCH , RETURN , WITH , etc), do not introduce any pipe or semicolons to combine the sub-clauses.

If you are in the native nGQL way (FETCH , GO , LOOKUP , etc), you must use pipe or semicolons to combine the sub-clauses.

Composite queries are not transactional queries (as in SQL/Cypher)

For example, a query is composed of three sub-queries: A B C , A | B | C or A; B; C . In that A is a read operation, B is a

computation operation, and C is a write operation. If any part fails in the execution, the whole result will be undefined. There is

no rollback. What is written depends on the query executor.

OpenCypher has no requirement of transaction .

Examples

OpenCypher compatibility statement

•

•

•

•

•

Note

•

Connect multiple queries with clauses.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \

 WITH nodes(p) AS n \

4.7 Variables and composite queries

- 259/804 - 2023 Vesoft Inc.

Native nGQL (Semicolon queries)

Native nGQL (Pipe queries)

 UNWIND n AS n1 \

 RETURN DISTINCT n1;

•

Only return edges.

nebula> SHOW TAGS; SHOW EDGES;

Insert multiple vertices.

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42); \

 INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36); \

 INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

•

Connect multiple queries with pipes.

nebula> GO FROM "player100" OVER follow YIELD dst(edge) AS id | \

 GO FROM $-.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------+-----------------+

| Team | Player |

+-----------+-----------------+

| "Spurs" | "Tony Parker" |

| "Hornets" | "Tony Parker" |

| "Spurs" | "Manu Ginobili" |

+-----------+-----------------+

Last update: October 25, 2023

4.7.1 Composite queries (clause structure)

- 260/804 - 2023 Vesoft Inc.

4.7.2 User-defined variables

User-defined variables allow passing the result of one statement to another.

OpenCypher compatibility

In openCypher, when you refer to the vertex, edge, or path of a variable, you need to name it first. For example:

The user-defined variable in the preceding query is v .

In a pattern of a MATCH statement, you cannot use the same edge variable repeatedly. For example, e cannot be written in the

pattern p=(v1)-[e*2..2]->(v2)-[e*2..2]->(v3) .

Native nGQL

User-defined variables are written as $var_name . The var_name consists of letters, numbers, or underline characters. Any other

characters are not permitted.

The user-defined variables are valid only at the current execution (namely, in this composite query). When the execution ends,

the user-defined variables will be automatically expired. The user-defined variables in one statement CANNOT be used in any

other clients, executions, or sessions.

You can use user-defined variables in composite queries. Details about composite queries, see Composite queries.

User-defined variables are case-sensitive.

To define a user-defined variable in a compound statement, end the statement with a semicolon (;). For details, please refer to the

nGQL Style Guide.

Example

Set operations and scope of user-defined variables

When assigning variables within a compound statement involving set operations, it is important to enclose the scope of the

variable assignment in parentheses. In the example below, the source of the $var assignment is the results of the output of two

INTERSECT statements.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;

+--+

| v |

+--+

| ("player100" :player{name: "Tim Duncan", age: 42}) |

+--+

Caution

Note

•

•

nebula> $var = GO FROM "player100" OVER follow YIELD dst(edge) AS id; \

 GO FROM $var.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------+-----------------+

| Team | Player |

+-----------+-----------------+

| "Spurs" | "Tony Parker" |

| "Hornets" | "Tony Parker" |

| "Spurs" | "Manu Ginobili" |

+-----------+-----------------+

$var = (\

 GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id \

4.7.2 User-defined variables

- 261/804 - 2023 Vesoft Inc.

 INTERSECT \

 GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id \

); \

 GO FROM $var.id OVER follow YIELD follow.degree AS degree

Last update: October 25, 2023

4.7.2 User-defined variables

- 262/804 - 2023 Vesoft Inc.

4.7.3 Reference to properties

nGQL provides property references to allow you to refer to the properties of the source vertex, the destination vertex, and the

edge in the GO statement, and to refer to the output results of the statement in composite queries. This topic describes how to

use these property references in nGQL.

This function applies to native nGQL only.

Property references for vertexes

PROPERTY REFERENCE SYNTAX

tag_name : The tag name of the vertex.

prop_name : The property name within the tag.

Property references for edges

PROPERTY REFERENCE SYNTAX

nGQL allows you to reference edge properties, including user-defined edge properties and four built-in edge properties.

edge_type : The edge type.

prop_name : The property name within the edge type.

Property references for composite queries

Note

Parameter Description

$^ Used to get the property of the source vertex.

$$ Used to get the property of the destination vertex.

$^.<tag_name>.<prop_name> # Source vertex property reference

$$.<tag_name>.<prop_name> # Destination vertex property reference

•

•

Parameter Description

_src The source vertex ID of the edge

_dst The destination vertex ID of the edge

_type The internal encoding of edge types that uses sign to indicate direction.

Positive numbers represent forward edges, while negative numbers represent backward edges.

_rank The rank value for the edge

<edge_type>.<prop_name> # User-defined edge property reference

<edge_type>._src|_dst|_type|_rank # Built-in edge property reference

•

•

Parameter Description

$- Used to get the output results of the statement before the pipe in the composite query. For more

information, see Pipe.

4.7.3 Reference to properties

- 263/804 - 2023 Vesoft Inc.

Examples

USE PROPERTY REFERENCES FOR VERTEXES

The following query returns the name property of the player tag on the source vertex and the age property of the player tag on the

destination vertex.

Starting from NebulaGraph 2.6.0, Schema-related functions are supported. The preceding example can be rewritten as follows in

NebulaGraph 3.6.0 to produce the same results:

NebulaGraph 3.6.0 is compatible with both new and old syntax.

USE PROPERTY REFERENCES FOR EDGES

The following query returns the degree property of the edge type follow .

The following query returns the source vertex, the destination vertex, the edge type, and the edge rank value of the edge type

follow .

Starting from NebulaGraph 2.6.0, Schema-related functions are supported. The preceding example can be rewritten as follows in

NebulaGraph 3.6.0 to produce the same results:

NebulaGraph 3.6.0 is compatible with both new and old syntax.

USE PROPERTY REFERENCES FOR COMPOSITE QUERIES

The following composite query performs the following actions:

Uses the property reference $-.id to get the results of the statement GO FROM "player100" OVER follow YIELD dst(edge) AS id , which returns

the destination vertex ID of the follow edge type.

Uses the properties($^) function to get the name property of the player tag on the source vertex of the serve edge type.

Uses the properties($$) function to get the name property of the team tag on the destination vertex of the serve edge type.

nebula> GO FROM "player100" OVER follow YIELD $^.player.name AS startName, $$.player.age AS endAge;

+--------------+--------+

| startName | endAge |

+--------------+--------+

| "Tim Duncan" | 36 |

| "Tim Duncan" | 41 |

+--------------+--------+

Legacy version compatibility

GO FROM "player100" OVER follow YIELD properties($^).name AS startName, properties($$).age AS endAge;

nebula> GO FROM "player100" OVER follow YIELD follow.degree;

+---------------+

| follow.degree |

+---------------+

| 95 |

+---------------+

nebula> GO FROM "player100" OVER follow YIELD follow._src, follow._dst, follow._type, follow._rank;

+-------------+-------------+--------------+--------------+

| follow._src | follow._dst | follow._type | follow._rank |

+-------------+-------------+--------------+--------------+

| "player100" | "player101" | 17 | 0 |

| "player100" | "player125" | 17 | 0 |

+-------------+-------------+--------------+--------------+

Legacy version compatibility

GO FROM "player100" OVER follow YIELD properties(edge).degree;

GO FROM "player100" OVER follow YIELD src(edge), dst(edge), type(edge), rank(edge);

1.

2.

3.

4.7.3 Reference to properties

- 264/804 - 2023 Vesoft Inc.

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id | \

 GO FROM $-.id OVER serve \

 YIELD properties($^).name AS Player, properties($$).name AS Team;

+-----------------+-----------+

| Player | Team |

+-----------------+-----------+

| "Tony Parker" | "Spurs" |

| "Tony Parker" | "Hornets" |

| "Manu Ginobili" | "Spurs" |

+-----------------+-----------+

Last update: January 31, 2024

4.7.3 Reference to properties

- 265/804 - 2023 Vesoft Inc.

4.8 Space statements

4.8.1 CREATE SPACE

Graph spaces are used to store data in a physically isolated way in NebulaGraph, which is similar to the database concept in

MySQL. The CREATE SPACE statement can create a new graph space or clone the schema of an existing graph space.

Prerequisites

Only the God role can use the CREATE SPACE statement. For more information, see AUTHENTICATION.

Syntax

CREATE GRAPH SPACES

CREATE SPACE [IF NOT EXISTS] <graph_space_name> (

 [partition_num = <partition_number>,]

 [replica_factor = <replica_number>,]

 vid_type = {FIXED_STRING(<N>) | INT[64]}

)

 [COMMENT = '<comment>']

Parameter Description

IF NOT EXISTS Detects if the related graph space exists. If it does not exist, a new one will be created. The graph space

existence detection here only compares the graph space name (excluding properties).

<graph_space_name> 1. Uniquely identifies a graph space in a NebulaGraph instance.

2. Space names cannot be modified after they are set.

3. By default, the name only supports 1-4 byte UTF-8 encoded characters, including English letters (case

sensitive), numbers, Chinese characters, etc. However, it cannot include special characters other than the

underscore (_), and cannot start with a number.

4. To use special characters, reserved keywords, or start with a number, quote the entire name with

backticks (`) and do not include periods (.) within the pair of backticks (`). For more information, see

Keywords and reserved words.

Note:

1. If you name a space in Chinese and encounter a SyntaxError , you need to quote the Chinese characters

with backticks (`).

2. To include a backtick (`) in a space name, use a backslash to escape the backtick, such as \`; to include

a backslash, the backslash itself also needs to be escaped, such as \ .

partition_num Specifies the number of partitions in each replica. The suggested value is 20 times (2 times for HDD) the

number of the hard disks in the cluster. For example, if you have three hard disks in the cluster, we

recommend that you set 60 partitions. The default value is 100.

replica_factor Specifies the number of replicas in the cluster. The suggested number is 3 in a production environment

and 1 in a test environment. The replica number must be an odd number for the need of quorum-based

voting. The default value is 1.

vid_type A required parameter. Specifies the VID type in a graph space. Available values are FIXED_STRING(N) and

INT64 . INT equals to INT64 .

`FIXED_STRING(<N>) specifies the VID as a string, while INT64 specifies it as an integer. N represents the

maximum length of the VIDs. If you set a VID that is longer than N bytes, NebulaGraph throws an error.

Note, for UTF-8 chars, the length may vary in different cases, i.e. a UTF-8 Chinese char is 3 byte, this

means 11 Chinese chars(length-33) will exeed a FIXED_STRING(32) vid defination.

COMMENT The remarks of the graph space. The maximum length is 256 bytes. By default, there is no comments on a

space.

4.8 Space statements

- 266/804 - 2023 Vesoft Inc.

If the replica number is set to one, you will not be able to load balance or scale out the NebulaGraph Storage Service with the

SUBMIT JOB BALANCE statement.

Restrictions on VID type change and VID length:

For NebulaGraph v1.x, the type of VIDs can only be INT64 , and the String type is not allowed. For NebulaGraph v2.x, both INT64 and

FIXED_STRING(<N>) VID types are allowed. You must specify the VID type when creating a graph space, and use the same VID type in

INSERT statements, otherwise, an error message Wrong vertex id type: 1001 occurs.

The length of the VID should not be longer than N characters. If it exceeds N , NebulaGraph throws The VID must be a 64-bit integer or a

string fitting space vertex id length limit. .

If the Host not enough! error appears, the immediate cause is that the number of online storage hosts is less than the value of

replica_factor specified when creating a graph space. In this case, you can use the SHOW HOSTS command to see if the following

situations occur:

For the case where there is only one storage host in a cluster, the value of replica_factor can only be specified to 1 . Or create a graph

space after storage hosts are scaled out.

A new storage host is found, but ADD HOSTS is not executed to activate it. In this case, run SHOW HOSTS to locate the new storage host

information and then run ADD HOSTS to activate it. A graph space can be created after there are enough storage hosts.

For offline storage hosts after running SHOW HOSTS , troubleshooting is needed.

For NebulaGraph v2.x before v2.5.0, vid_type is optional and defaults to FIXED_STRING(8) .

graph_space_name , partition_num , replica_factor , vid_type , and comment cannot be modified once set. To modify them, drop the current

working graph space with DROP SPACE and create a new one with CREATE SPACE .

CLONE GRAPH SPACES

Caution

•

•

•

•

•

•

•

•

Legacy version compatibility

Note

CREATE SPACE [IF NOT EXISTS] <new_graph_space_name> AS <old_graph_space_name>;

Parameter Description

IF NOT EXISTS Detects if the new graph space exists. If it does not exist, the new one will be created. The graph space

existence detection here only compares the graph space name (excluding properties).

<new_graph_space_name> The name of the graph space that is newly created.

By default, the space name only supports 1-4 byte UTF-8 encoded characters, including English letters

(case sensitive), numbers, Chinese characters, etc. But special characters can only use underscore,

and cannot start with a number.

To use special characters, reserved keywords, or start with a number, quote the entire name with

backticks (`) and cannot use periods (.). For more information, see Keywords and reserved words.

When a new graph space is created, the schema of the old graph space <old_graph_space_name> will be

cloned, including its parameters (the number of partitions and replicas, etc.), Tag, Edge type and

native indexes.

Note:

1. If you name a space in Chinese and encounter a SyntaxError , you need to quote the Chinese

characters with backticks (`).

2. To include a backtick (`) in a space name, use a backslash to escape the backtick, such as \`; to

include a backslash, the backslash itself also needs to be escaped, such as \ .

<old_graph_space_name> The name of the graph space that already exists.

4.8.1 CREATE SPACE

- 267/804 - 2023 Vesoft Inc.

Examples

Implementation of the operation

Trying to use a newly created graph space may fail because the creation is implemented asynchronously. To make sure the follow-up

operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds. To change the heartbeat interval, modify the

heartbeat_interval_secs parameter in the configuration files for all services. If the heartbeat interval is too short (i.e., less than 5

seconds), disconnection between peers may happen because of the misjudgment of machines in the distributed system.

Check partition distribution

On some large clusters, the partition distribution is possibly unbalanced because of the different startup times. You can run the

following command to do a check of the machine distribution.

To balance the request loads, use the following command.

The following example creates a graph space with a specified VID type and the maximum length. Other fields still use the default values.

nebula> CREATE SPACE IF NOT EXISTS my_space_1 (vid_type=FIXED_STRING(30));

The following example creates a graph space with a specified partition number, replica number, and VID type.

nebula> CREATE SPACE IF NOT EXISTS my_space_2 (partition_num=15, replica_factor=1, vid_type=FIXED_STRING(30));

The following example creates a graph space with a specified partition number, replica number, and VID type, and adds a comment on it.

nebula> CREATE SPACE IF NOT EXISTS my_space_3 (partition_num=15, replica_factor=1, vid_type=FIXED_STRING(30)) comment="Test the graph space";

Clone a graph space.

nebula> CREATE SPACE IF NOT EXISTS my_space_4 as my_space_3;

nebula> SHOW CREATE SPACE my_space_4;

+--------------+--+

| Space | Create Space |

+--------------+--+

| "my_space_4" | "CREATE SPACE `my_space_4` (partition_num = 15, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(30)) comment = '测试图空间'" |

+--------------+--+

Caution

nebula> SHOW HOSTS;

+-------------+------+----------+--------------+--------------------------------+--------------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+----------+--------------+--------------------------------+--------------------------------+---------+

| "storaged0" | 9779 | "ONLINE" | 8 | "basketballplayer:3, test:5" | "basketballplayer:10, test:10" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | 9 | "basketballplayer:4, test:5" | "basketballplayer:10, test:10" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:10, test:10" | "3.6.0" |

+-------------+------+----------+--------------+--------------------------------+--------------------------------+---------+

nebula> BALANCE LEADER;

nebula> SHOW HOSTS;

+-------------+------+----------+--------------+--------------------------------+--------------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

| "storaged0" | 9779 | "ONLINE" | 7 | "basketballplayer:3, test:4" | "basketballplayer:10, test:10" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | 7 | "basketballplayer:4, test:3" | "basketballplayer:10, test:10" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | 6 | "basketballplayer:3, test:3" | "basketballplayer:10, test:10" | "3.6.0" |

+-------------+------+----------+--------------+--------------------------------+--------------------------------+---------+

Last update: December 28, 2023

4.8.1 CREATE SPACE

- 268/804 - 2023 Vesoft Inc.

4.8.2 USE

USE specifies a graph space as the current working graph space for subsequent queries.

Prerequisites

Running the USE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

Examples

You cannot use two graph spaces in one statement.

Different from Fabric Cypher, graph spaces in NebulaGraph are fully isolated from each other. Making a graph space as the working

graph space prevents you from accessing other spaces. The only way to traverse in a new graph space is to switch by the USE

statement. In Fabric Cypher, you can use two graph spaces in one statement (using the USE + CALL syntax). But in NebulaGraph, you

can only use one graph space in one statement.

USE <graph_space_name>;

The following example creates two sample spaces.

nebula> CREATE SPACE IF NOT EXISTS space1 (vid_type=FIXED_STRING(30));

nebula> CREATE SPACE IF NOT EXISTS space2 (vid_type=FIXED_STRING(30));

The following example specifies space1 as the current working graph space.

nebula> USE space1;

The following example specifies space2 as the current working graph space. Hereafter, you cannot read any data from space1, because these vertices and edges being traversed have no

relevance with space1.

nebula> USE space2;

Caution

Last update: November 3, 2023

4.8.2 USE

- 269/804 - 2023 Vesoft Inc.

4.8.3 SHOW SPACES

SHOW SPACES lists all the graph spaces in the NebulaGraph examples.

Syntax

Example

To create graph spaces, see CREATE SPACE.

SHOW SPACES;

nebula> SHOW SPACES;

+--------------------+

| Name |

+--------------------+

| "cba" |

| "basketballplayer" |

+--------------------+

Last update: October 25, 2023

4.8.3 SHOW SPACES

- 270/804 - 2023 Vesoft Inc.

4.8.4 DESCRIBE SPACE

DESCRIBE SPACE returns the information about the specified graph space.

Syntax

You can use DESC instead of DESCRIBE for short.

The DESCRIBE SPACE statement is different from the SHOW SPACES statement. For details about SHOW SPACES , see SHOW SPACES.

Example

DESC[RIBE] SPACE <graph_space_name>;

nebula> DESCRIBE SPACE basketballplayer;

+----+--------------------+------------------+----------------+---------+------------+--------------------+---------+

| ID | Name | Partition Number | Replica Factor | Charset | Collate | Vid Type | Comment |

+----+--------------------+------------------+----------------+---------+------------+--------------------+---------+

| 1 | "basketballplayer" | 10 | 1 | "utf8" | "utf8_bin" | "FIXED_STRING(32)" | |

+----+--------------------+------------------+----------------+---------+------------+--------------------+---------+

Last update: October 25, 2023

4.8.4 DESCRIBE SPACE

- 271/804 - 2023 Vesoft Inc.

4.8.5 CLEAR SPACE

CLEAR SPACE deletes the vertices and edges in a graph space, but does not delete the graph space itself and the schema

information.

It is recommended to execute SUBMIT JOB COMPACT immediately after executing the CLEAR SPACE operation improve the query

performance. Note that the COMPACT operation may affect query performance, and it is recommended to perform this operation

during low business hours (e.g., early morning).

Permission requirements

Only the God role has the permission to run CLEAR SPACE .

Caution

Once cleared, the data CANNOT be recovered. Use CLEAR SPACE with caution.

CLEAR SPACE is not an atomic operation. If an error occurs, re-run CLEAR SPACE to avoid data remaining.

The larger the amount of data in the graph space, the longer it takes to clear it. If the execution fails due to client connection

timeout, increase the value of the storage_client_timeout_ms parameter in the Graph Service configuration.

During the execution of CLEAR SPACE , writing data into the graph space is not automatically prohibited. Such write operations

can result in incomplete data clearing, and the residual data can be damaged.

The NebulaGraph Community Edition does not support blocking data writing while allowing CLEAR SPACE .

Syntax

Example:

Data reserved

CLEAR SPACE does not delete the following data in a graph space:

Tag information.

Edge type information.

The metadata of native indexes and full-text indexes.

Note

•

•

•

•

Note

CLEAR SPACE [IF EXISTS] <space_name>;

Parameter/

Option

Description

IF EXISTS Check whether the graph space to be cleared exists. If it exists, continue to clear it. If it does not exist,

the execution finishes, and a message indicating that the execution succeeded is displayed.

If IF EXISTS is not set and the graph space does not exist, the CLEAR SPACE statement fails to execute, and an

error occurs.

space_name The name of the space to be cleared.

CLEAR SPACE basketballplayer;

•

•

•

4.8.5 CLEAR SPACE

- 272/804 - 2023 Vesoft Inc.

The following example shows what CLEAR SPACE deletes and reserves.

Enter the graph space basketballplayer.

nebula [(none)]> use basketballplayer;

Execution succeeded

List tags and Edge types.

nebula[basketballplayer]> SHOW TAGS;

+----------+

| Name |

+----------+

| "player" |

| "team" |

+----------+

Got 2 rows

nebula[basketballplayer]> SHOW EDGES;

+----------+

| Name |

+----------+

| "follow" |

| "serve" |

+----------+

Got 2 rows

Submit a job to make statistics of the graph space.

nebula[basketballplayer]> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 4 |

+------------+

Got 1 rows

Check the statistics.

nebula[basketballplayer]> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 51 |

| "Tag" | "team" | 30 |

| "Edge" | "follow" | 81 |

| "Edge" | "serve" | 152 |

| "Space" | "vertices" | 81 |

| "Space" | "edges" | 233 |

+---------+------------+-------+

Got 6 rows

List tag indexes.

nebula[basketballplayer]> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

+------------------+----------+----------+

Got 2 rows

----------------------- Dividing line for CLEAR SPACE -----------------------

Run CLEAR SPACE to clear the graph space basketballplayer.

nebula[basketballplayer]> CLEAR SPACE basketballplayer;

Execution succeeded

Update the statistics.

nebula[basketballplayer]> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 5 |

+------------+

Got 1 rows

Check the statistics. The tags and edge types still exist, but all the vertices and edges are gone.

nebula[basketballplayer]> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 0 |

| "Tag" | "team" | 0 |

| "Edge" | "follow" | 0 |

| "Edge" | "serve" | 0 |

| "Space" | "vertices" | 0 |

| "Space" | "edges" | 0 |

+---------+------------+-------+

Got 6 rows

Try to list the tag indexes. They still exist.

nebula[basketballplayer]> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

4.8.5 CLEAR SPACE

- 273/804 - 2023 Vesoft Inc.

+------------------+----------+----------+

Got 2 rows (time spent 523/978 us)

Last update: November 15, 2023

4.8.5 CLEAR SPACE

- 274/804 - 2023 Vesoft Inc.

4.8.6 DROP SPACE

DROP SPACE deletes the specified graph space and everything in it.

DROP SPACE can only delete the specified logic graph space while retain all the data on the hard disk by modifying the value of

auto_remove_invalid_space to false in the Storage service configuration file. For more information, see Storage configuration.

After you execute DROP SPACE , even if the snapshot contains data of the graph space, the data of the graph space cannot be recovered.

Prerequisites

Only the God role can use the DROP SPACE statement. For more information, see AUTHENTICATION.

Syntax

You can use the IF EXISTS keywords when dropping spaces. These keywords automatically detect if the related graph space exists.

If it exists, it will be deleted. Otherwise, no graph space will be deleted.

In NebulaGraph versions earlier than 3.1.0, the DROP SPACE statement does not remove all the files and directories from the disk by

default.

BE CAUTIOUS about running the DROP SPACE statement.

FAQ

Q: Why is my disk space not freed after executing the 'DROP SPACE' statement and deleting a graph space?

A: For NebulaGraph version earlier than 3.1.0, DROP SPACE can only delete the specified logic graph space and does not delete the

files and directories on the disk. To delete the files and directories on the disk, manually delete the corresponding file path. The

file path is located in <nebula_graph_install_path>/data/storage/nebula/<space_id> . The <space_id> can be viewed via DESCRIBE SPACE {space_name} .

Note

Warning

DROP SPACE [IF EXISTS] <graph_space_name>;

Legacy version compatibility

Danger

Last update: December 14, 2023

4.8.6 DROP SPACE

- 275/804 - 2023 Vesoft Inc.

4.9 Tag statements

4.9.1 CREATE TAG

CREATE TAG creates a tag with the given name in a graph space.

OpenCypher compatibility

Tags in nGQL are similar to labels in openCypher. But they are also quite different. For example, the ways to create them are

different.

In openCypher, labels are created together with vertices in CREATE statements.

In nGQL, tags are created separately using CREATE TAG statements. Tags in nGQL are more like tables in MySQL.

Prerequisites

Running the CREATE TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

To create a tag in a specific graph space, you must specify the current working space with the USE statement.

•

•

CREATE TAG [IF NOT EXISTS] <tag_name>

 (

 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']

 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]

)

 [TTL_DURATION = <ttl_duration>]

4.9 Tag statements

- 276/804 - 2023 Vesoft Inc.

EXAMPLES

Implementation of the operation

Trying to use a newly created tag may fail because the creation of the tag is implemented asynchronously. To make sure the

follow-up operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

 [TTL_COL = <prop_name>]

 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the tag that you want to create exists. If it does not exist, a new one will be created. The tag

existence detection here only compares the tag names (excluding properties).

<tag_name> 1. Each tag name in the graph space must be unique.

2. Tag names cannot be modified after they are set.

3. By default, the name only supports 1-4 byte UTF-8 encoded characters, including English letters (case

sensitive), numbers, Chinese characters, etc. However, it cannot include special characters other than the

underscore (_), and cannot start with a number.

4. To use special characters, reserved keywords, or start with a number, quote the entire name with

backticks (`) and do not include periods (.) within the pair of backticks (`). For more information, see

Keywords and reserved words.

Note:

1. If you name a tag in Chinese and encounter a SyntaxError , you need to quote the Chinese characters with

backticks (`).

2. To include a backtick (`) in a tag name, use a backslash to escape the backtick, such as \`; to include a

backslash, the backslash itself also needs to be escaped, such as \ .

<prop_name> The name of the property. It must be unique for each tag. The rules for permitted property names are the

same as those for tag names.

<data_type> Shows the data type of each property. For a full description of the property data types, see Data types and

Boolean.

NULL | NOT

NULL

Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT Specifies a default value for a property. The default value can be a literal value or an expression supported

by NebulaGraph. If no value is specified, the default value is used when inserting a new vertex.

COMMENT The remarks of a certain property or the tag itself. The maximum length is 256 bytes. By default, there will

be no comments on a tag.

TTL_DURATION Specifies the life cycle for the property. The property that exceeds the specified TTL expires. The expiration

threshold is the TTL_COL value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It means the data

never expires.

TTL_COL Specifies the property to set a timeout on. The data type of the property must be int or timestamp . A tag can

only specify one field as TTL_COL . For more information on TTL, see TTL options.

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

The following example creates a tag with no properties.

nebula> CREATE TAG IF NOT EXISTS no_property();

The following example creates a tag with a default value.

nebula> CREATE TAG IF NOT EXISTS player_with_default(name string, age int DEFAULT 20);

In the following example, the TTL of the create_time field is set to be 100 seconds.

nebula> CREATE TAG IF NOT EXISTS woman(name string, age int, \

 married bool, salary double, create_time timestamp) \

 TTL_DURATION = 100, TTL_COL = "create_time";

4.9.1 CREATE TAG

- 277/804 - 2023 Vesoft Inc.

Last update: December 28, 2023

4.9.1 CREATE TAG

- 278/804 - 2023 Vesoft Inc.

4.9.2 DROP TAG

DROP TAG drops a tag with the given name in the current working graph space.

A vertex can have one or more tags.

If a vertex has only one tag, the vertex CANNOT be accessed after you drop it. The vertex will be dropped in the next

compaction. But its edges are available, this operation will result in dangling edges.

If a vertex has multiple tags, the vertex is still accessible after you drop one of them. But all the properties defined by this

dropped tag CANNOT be accessed.

This operation only deletes the Schema data. All the files or directories in the disk will not be deleted directly until the next

compaction.

In NebulaGraph 3.6.0, inserting vertex without tag is not supported by default. If you want to use the vertex without tags, add --

graph_use_vertex_key=true to the configuration files (nebula-graphd.conf) of all Graph services in the cluster, and add --use_vertex_key=true to

the configuration files (nebula-storaged.conf) of all Storage services in the cluster.

Prerequisites

Running the DROP TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you drop a tag, make sure that the tag does not have any indexes. Otherwise, the conflict error ([ERROR (-1005)]: Conflict!)

will be returned when you run the DROP TAG statement. To drop an index, see DROP INDEX.

Syntax

IF NOT EXISTS : Detects if the tag that you want to drop exists. Only when it exists will it be dropped.

tag_name : Specifies the tag name that you want to drop. You can drop only one tag in one statement.

Example

•

•

Compatibility

•

•

DROP TAG [IF EXISTS] <tag_name>;

•

•

nebula> CREATE TAG IF NOT EXISTS test(p1 string, p2 int);

nebula> DROP TAG test;

Last update: November 3, 2023

4.9.2 DROP TAG

- 279/804 - 2023 Vesoft Inc.

4.9.3 ALTER TAG

ALTER TAG alters the structure of a tag with the given name in a graph space. You can add or drop properties, and change the data

type of an existing property. You can also set a TTL (Time-To-Live) on a property, or change its TTL duration.

Notes

Running the ALTER TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you alter properties for a tag, make sure that the properties are not indexed. If the properties contain any indexes, the

conflict error [ERROR (-1005)]: Conflict! will occur when you ALTER TAG . For more information on dropping an index, see DROP

INDEX.

The property name must be unique in a tag. If you add a property with the same name as an existing property or a dropped

property, the operation fails.

Syntax

tag_name : Specifies the tag name that you want to alter. You can alter only one tag in one statement. Before you alter a tag,

make sure that the tag exists in the current working graph space. If the tag does not exist, an error will occur when you alter

it.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER TAG statement, separated by commas.

When a property value is set to NOT NULL using ADD or CHANGE , a default value must be specified for the property, that is, the value

of DEFAULT must be specified.

When using CHANGE to modify the data type of a property:

Only the length of a FIXED_STRING or an INT can be increased. The length of a STRING or an INT cannot be decreased.

Only the data type conversions from FIXED_STRING to STRING and from FLOAT to DOUBLE are allowed.

Examples

Implementation of the operation

Trying to use a newly altered tag may fail because the alteration of the tag is implemented asynchronously. To make sure the

follow-up operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

•

ALTER TAG <tag_name>

 <alter_definition> [[, alter_definition] ...]

 [ttl_definition [, ttl_definition] ...]

 [COMMENT '<comment>'];

alter_definition:

| ADD (prop_name data_type [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>'])

| DROP (prop_name)

| CHANGE (prop_name data_type [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>'])

ttl_definition:

 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

•

•

•

•

•

nebula> CREATE TAG IF NOT EXISTS t1 (p1 string, p2 int);

nebula> ALTER TAG t1 ADD (p3 int32, fixed_string(10));

nebula> ALTER TAG t1 TTL_DURATION = 2, TTL_COL = "p2";

nebula> ALTER TAG t1 COMMENT = 'test1';

nebula> ALTER TAG t1 ADD (p5 double NOT NULL DEFAULT 0.4 COMMENT 'p5') COMMENT='test2';

// Change the data type of p3 in the TAG t1 from INT32 to INT64, and that of p4 from FIXED_STRING(10) to STRING.

nebula> ALTER TAG t1 CHANGE (p3 int64, p4 string);

[ERROR(-1005)]: Unsupported!

4.9.3 ALTER TAG

- 280/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

4.9.3 ALTER TAG

- 281/804 - 2023 Vesoft Inc.

4.9.4 SHOW TAGS

The SHOW TAGS statement shows the name of all tags in the current graph space.

You do not need any privileges for the graph space to run the SHOW TAGS statement. But the returned results are different based on

role privileges.

Syntax

Examples

SHOW TAGS;

nebula> SHOW TAGS;

+----------+

| Name |

+----------+

| "player" |

| "team" |

+----------+

Last update: October 25, 2023

4.9.4 SHOW TAGS

- 282/804 - 2023 Vesoft Inc.

4.9.5 DESCRIBE TAG

DESCRIBE TAG returns the information about a tag with the given name in a graph space, such as field names, data type, and so on.

Prerequisite

Running the DESCRIBE TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

You can use DESC instead of DESCRIBE for short.

Example

DESC[RIBE] TAG <tag_name>;

nebula> DESCRIBE TAG player;

+--------+----------+-------+---------+---------+

| Field | Type | Null | Default | Comment |

+--------+----------+-------+---------+---------+

| "name" | "string" | "YES" | | |

| "age" | "int64" | "YES" | | |

+--------+----------+-------+---------+---------+

Last update: October 25, 2023

4.9.5 DESCRIBE TAG

- 283/804 - 2023 Vesoft Inc.

4.9.6 DELETE TAG

DELETE TAG deletes a tag with the given name on a specified vertex.

Prerequisites

Running the DELETE TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

tag_name_list : The names of the tags you want to delete. Multiple tags are separated with commas (,). * means all tags.

VID : The VIDs of the vertices from which you want to delete the tags. Multiple VIDs are separated with commas (,).

Example

In openCypher, you can use the statement REMOVE v:LABEL to delete the tag LABEL of the vertex v .

DELETE TAG and DROP TAG have the same semantics but different syntax. In nGQL, use DELETE TAG .

DELETE TAG <tag_name_list> FROM <VID_list>;

•

•

nebula> CREATE TAG IF NOT EXISTS test1(p1 string, p2 int);

nebula> CREATE TAG IF NOT EXISTS test2(p3 string, p4 int);

nebula> INSERT VERTEX test1(p1, p2),test2(p3, p4) VALUES "test":("123", 1, "456", 2);

nebula> FETCH PROP ON * "test" YIELD vertex AS v;

+--+

| v |

+--+

| ("test" :test1{p1: "123", p2: 1} :test2{p3: "456", p4: 2}) |

+--+

nebula> DELETE TAG test1 FROM "test";

nebula> FETCH PROP ON * "test" YIELD vertex AS v;

+-----------------------------------+

| v |

+-----------------------------------+

| ("test" :test2{p3: "456", p4: 2}) |

+-----------------------------------+

nebula> DELETE TAG * FROM "test";

nebula> FETCH PROP ON * "test" YIELD vertex AS v;

+---+

| v |

+---+

+---+

Compatibility

•

•

Last update: November 3, 2023

4.9.6 DELETE TAG

- 284/804 - 2023 Vesoft Inc.

4.9.7 Add and delete tags

OpenCypher has the features of SET label and REMOVE label to speed up the process of querying or labeling.

NebulaGraph achieves the same operations by creating and inserting tags to an existing vertex, which can quickly query vertices

based on the tag name. Users can also run DELETE TAG to delete some vertices that are no longer needed.

Examples

For example, in the basketballplayer data set, some basketball players are also team shareholders. Users can create an index for

the shareholder tag shareholder for quick search. If the player is no longer a shareholder, users can delete the shareholder tag of

the corresponding player by DELETE TAG .

If the index is created after inserting the test data, use the REBUILD TAG INDEX <index_name_list>; statement to rebuild the index.

//This example creates the shareholder tag and index.

nebula> CREATE TAG IF NOT EXISTS shareholder();

nebula> CREATE TAG INDEX IF NOT EXISTS shareholder_tag on shareholder();

//This example adds a tag on the vertex.

nebula> INSERT VERTEX shareholder() VALUES "player100":();

nebula> INSERT VERTEX shareholder() VALUES "player101":();

//This example queries all the shareholders.

nebula> MATCH (v:shareholder) RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :shareholder{}) |

| ("player101" :player{age: 36, name: "Tony Parker"} :shareholder{}) |

+--+

nebula> LOOKUP ON shareholder YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player100" |

| "player101" |

+-------------+

//In this example, the "player100" is no longer a shareholder.

nebula> DELETE TAG shareholder FROM "player100";

nebula> LOOKUP ON shareholder YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player101" |

+-------------+

Note

Last update: October 25, 2023

4.9.7 Add and delete tags

- 285/804 - 2023 Vesoft Inc.

4.10 Edge type statements

4.10.1 CREATE EDGE

CREATE EDGE creates an edge type with the given name in a graph space.

OpenCypher compatibility

Edge types in nGQL are similar to relationship types in openCypher. But they are also quite different. For example, the ways to

create them are different.

In openCypher, relationship types are created together with vertices in CREATE statements.

In nGQL, edge types are created separately using CREATE EDGE statements. Edge types in nGQL are more like tables in MySQL.

Prerequisites

Running the CREATE EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

To create an edge type in a specific graph space, you must specify the current working space with the USE statement.

•

•

CREATE EDGE [IF NOT EXISTS] <edge_type_name>

 (

 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']

 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]

)

 [TTL_DURATION = <ttl_duration>]

4.10 Edge type statements

- 286/804 - 2023 Vesoft Inc.

EXAMPLES

 [TTL_COL = <prop_name>]

 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the edge type that you want to create exists. If it does not exist, a new one will be created. The

edge type existence detection here only compares the edge type names (excluding properties).

<edge_type_name> 1. The edge type name must be unique in a graph space.

2. Once the edge type name is set, it can not be altered.

3. By default, the name only supports 1-4 byte UTF-8 encoded characters, including English letters (case

sensitive), numbers, Chinese characters, etc. However, it cannot include special characters other than the

underscore (_), and cannot start with a number.

4. To use special characters, reserved keywords, or start with a number, quote the entire name with

backticks (`) and do not include periods (.) within the pair of backticks (`). For more information, see

Keywords and reserved words.

Note:

1. If you name an edge type in Chinese and encounter a SyntaxError , you need to quote the Chinese

characters with backticks (`).

2. To include a backtick (`) in an edge type name, use a backslash to escape the backtick, such as \`; to

include a backslash, the backslash itself also needs to be escaped, such as \ .

<prop_name> The name of the property. It must be unique for each edge type. The rules for permitted property names

are the same as those for edge type names.

<data_type> Shows the data type of each property. For a full description of the property data types, see Data types and

Boolean.

NULL | NOT NULL Specifies if the property supports NULL | NOT NULL . The default value is NULL . DEFAULT must be specified if NOT

NULL is set.

DEFAULT Specifies a default value for a property. The default value can be a literal value or an expression supported

by NebulaGraph. If no value is specified, the default value is used when inserting a new edge.

COMMENT The remarks of a certain property or the edge type itself. The maximum length is 256 bytes. By default,

there will be no comments on an edge type.

TTL_DURATION Specifies the life cycle for the property. The property that exceeds the specified TTL expires. The expiration

threshold is the TTL_COL value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It means the data

never expires.

TTL_COL Specifies the property to set a timeout on. The data type of the property must be int or timestamp . An edge

type can only specify one field as TTL_COL . For more information on TTL, see TTL options.

nebula> CREATE EDGE IF NOT EXISTS follow(degree int);

The following example creates an edge type with no properties.

nebula> CREATE EDGE IF NOT EXISTS no_property();

The following example creates an edge type with a default value.

nebula> CREATE EDGE IF NOT EXISTS follow_with_default(degree int DEFAULT 20);

In the following example, the TTL of the p2 field is set to be 100 seconds.

nebula> CREATE EDGE IF NOT EXISTS e1(p1 string, p2 int, p3 timestamp) \

 TTL_DURATION = 100, TTL_COL = "p2";

Last update: December 28, 2023

4.10.1 CREATE EDGE

- 287/804 - 2023 Vesoft Inc.

4.10.2 DROP EDGE

DROP EDGE drops an edge type with the given name in a graph space.

An edge can have only one edge type. After you drop it, the edge CANNOT be accessed. The edge will be deleted in the next

compaction.

This operation only deletes the Schema data. All the files or directories in the disk will not be deleted directly until the next

compaction.

Prerequisites

Running the DROP EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you drop an edge type, make sure that the edge type does not have any indexes. Otherwise, the conflict error ([ERROR

(-1005)]: Conflict!) will be returned. To drop an index, see DROP INDEX.

Syntax

IF NOT EXISTS : Detects if the edge type that you want to drop exists. Only when it exists will it be dropped.

edge_type_name : Specifies the edge type name that you want to drop. You can drop only one edge type in one statement.

Example

•

•

DROP EDGE [IF EXISTS] <edge_type_name>

•

•

nebula> CREATE EDGE IF NOT EXISTS e1(p1 string, p2 int);

nebula> DROP EDGE e1;

Last update: October 25, 2023

4.10.2 DROP EDGE

- 288/804 - 2023 Vesoft Inc.

4.10.3 ALTER EDGE

ALTER EDGE alters the structure of an edge type with the given name in a graph space. You can add or drop properties, and change

the data type of an existing property. You can also set a TTL (Time-To-Live) on a property, or change its TTL duration.

Notes

Running the ALTER EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you alter properties for an edge type, make sure that the properties are not indexed. If the properties contain any

indexes, the conflict error [ERROR (-1005)]: Conflict! will occur when you ALTER EDGE . For more information on dropping an index,

see DROP INDEX.

The property name must be unique in an edge type. If you add a property with the same name as an existing property or a

dropped property, the operation fails.

Only the length of a FIXED_STRING or an INT can be increased.

Only the data type conversions from FIXED_STRING to STRING and from FLOAT to DOUBLE are allowed.

Syntax

edge_type_name : Specifies the edge type name that you want to alter. You can alter only one edge type in one statement. Before

you alter an edge type, make sure that the edge type exists in the graph space. If the edge type does not exist, an error occurs

when you alter it.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER EDGE statement, separated by commas.

When a property value is set to NOT NULL using ADD or CHANGE , a default value must be specified for the property, that is, the value

of DEFAULT must be specified.

Example

Implementation of the operation

Trying to use a newly altered edge type may fail because the alteration of the edge type is implemented asynchronously. To make

sure the follow-up operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

•

•

•

ALTER EDGE <edge_type_name>

 <alter_definition> [, alter_definition] ...]

 [ttl_definition [, ttl_definition] ...]

 [COMMENT = '<comment>'];

alter_definition:

| ADD (prop_name data_type)

| DROP (prop_name)

| CHANGE (prop_name data_type)

ttl_definition:

 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

•

•

nebula> CREATE EDGE IF NOT EXISTS e1(p1 string, p2 int);

nebula> ALTER EDGE e1 ADD (p3 int, p4 string);

nebula> ALTER EDGE e1 TTL_DURATION = 2, TTL_COL = "p2";

nebula> ALTER EDGE e1 COMMENT = 'edge1';

Last update: October 25, 2023

4.10.3 ALTER EDGE

- 289/804 - 2023 Vesoft Inc.

4.10.4 SHOW EDGES

SHOW EDGES shows all edge types in the current graph space.

You do not need any privileges for the graph space to run the SHOW EDGES statement. But the returned results are different based

on role privileges.

Syntax

Example

SHOW EDGES;

nebula> SHOW EDGES;

+----------+

| Name |

+----------+

| "follow" |

| "serve" |

+----------+

Last update: October 25, 2023

4.10.4 SHOW EDGES

- 290/804 - 2023 Vesoft Inc.

4.10.5 DESCRIBE EDGE

DESCRIBE EDGE returns the information about an edge type with the given name in a graph space, such as field names, data type,

and so on.

Prerequisites

Running the DESCRIBE EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

You can use DESC instead of DESCRIBE for short.

Example

DESC[RIBE] EDGE <edge_type_name>

nebula> DESCRIBE EDGE follow;

+----------+---------+-------+---------+---------+

| Field | Type | Null | Default | Comment |

+----------+---------+-------+---------+---------+

| "degree" | "int64" | "YES" | | |

+----------+---------+-------+---------+---------+

Last update: October 25, 2023

4.10.5 DESCRIBE EDGE

- 291/804 - 2023 Vesoft Inc.

4.11 Vertex statements

4.11.1 INSERT VERTEX

The INSERT VERTEX statement inserts one or more vertices into a graph space in NebulaGraph.

Prerequisites

Running the INSERT VERTEX statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

IF NOT EXISTS detects if the VID that you want to insert exists. If it does not exist, a new one will be inserted.

IF NOT EXISTS only compares the names of the VID and the tag (excluding properties).

IF NOT EXISTS will read to check whether the data exists, which will have a significant impact on performance.

tag_name denotes the tag (vertex type), which must be created before INSERT VERTEX . For more information, see CREATE TAG.

NebulaGraph 3.6.0 supports inserting vertices without tags.

In NebulaGraph 3.6.0, inserting vertex without tag is not supported by default. If you want to use the vertex without tags, add --

graph_use_vertex_key=true to the configuration files (nebula-graphd.conf) of all Graph services in the cluster, add --use_vertex_key=true to the

configuration files (nebula-storaged.conf) of all Storage services in the cluster. An example of a command to insert a vertex without

tag is INSERT VERTEX VALUES "1":(); .

prop_name_list contains the names of the properties on the tag.

VID is the vertex ID. In NebulaGraph 2.0, string and integer VID types are supported. The VID type is set when a graph space

is created. For more information, see CREATE SPACE.

prop_value_list must provide the property values according to the prop_name_list . When the NOT NULL constraint is set for a given

property, an error is returned if no property is given. When the default value for a property is NULL , you can omit to specify the

property value. For details, see CREATE TAG.

INSERT VERTEX [IF NOT EXISTS] [tag_props, [tag_props] ...]

VALUES VID: ([prop_value_list])

tag_props:

 tag_name ([prop_name_list])

prop_name_list:

 [prop_name [, prop_name] ...]

prop_value_list:

 [prop_value [, prop_value] ...]

•

Note

•

•

•

Caution

Compatibility

•

•

•

4.11 Vertex statements

- 292/804 - 2023 Vesoft Inc.

INSERT VERTEX and CREATE have different semantics.

The semantics of INSERT VERTEX is closer to that of INSERT in NoSQL (key-value), or UPSERT (UPDATE or INSERT) in SQL.

When two INSERT statements (neither uses IF NOT EXISTS) with the same VID and TAG are operated at the same time, the latter

INSERT will overwrite the former.

When two INSERT statements with the same VID but different TAGS are operated at the same time, the operation of different tags will

not overwrite each other.

Examples are as follows.

Examples

A vertex can be inserted/written with new values multiple times. Only the last written values can be read.

If you insert a vertex that already exists with IF NOT EXISTS , there will be no modification.

Caution

•

•

•

Insert a vertex without tag.

nebula> INSERT VERTEX VALUES "1":();

The following examples create tag t1 with no property and inserts vertex "10" with no property.

nebula> CREATE TAG IF NOT EXISTS t1();

nebula> INSERT VERTEX t1() VALUES "10":();

nebula> CREATE TAG IF NOT EXISTS t2 (name string, age int);

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n1", 12);

In the following example, the insertion fails because "a13" is not int.

nebula> INSERT VERTEX t2 (name, age) VALUES "12":("n1", "a13");

The following example inserts two vertices at one time.

nebula> INSERT VERTEX t2 (name, age) VALUES "13":("n3", 12), "14":("n4", 8);

nebula> CREATE TAG IF NOT EXISTS t3(p1 int);

nebula> CREATE TAG IF NOT EXISTS t4(p2 string);

The following example inserts vertex "21" with two tags.

nebula> INSERT VERTEX t3 (p1), t4(p2) VALUES "21": (321, "hello");

The following examples insert vertex "11" with new values for multiple times.

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n2", 13);

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n3", 14);

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n4", 15);

nebula> FETCH PROP ON t2 "11" YIELD properties(vertex);

+-----------------------+

| properties(VERTEX) |

+-----------------------+

| {age: 15, name: "n4"} |

+-----------------------+

nebula> CREATE TAG IF NOT EXISTS t5(p1 fixed_string(5) NOT NULL, p2 int, p3 int DEFAULT NULL);

nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "001":("Abe", 2, 3);

In the following example, the insertion fails because the value of p1 cannot be NULL.

nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "002":(NULL, 4, 5);

[ERROR (-1009)]: SemanticError: No schema found for `t5'

In the following example, the value of p3 is the default NULL.

nebula> INSERT VERTEX t5(p1, p2) VALUES "003":("cd", 5);

nebula> FETCH PROP ON t5 "003" YIELD properties(vertex);

+---------------------------------+

| properties(VERTEX) |

+---------------------------------+

| {p1: "cd", p2: 5, p3: __NULL__} |

+---------------------------------+

In the following example, the allowed maximum length of p1 is 5.

nebula> INSERT VERTEX t5(p1, p2) VALUES "004":("shalalalala", 4);

nebula> FETCH PROP on t5 "004" YIELD properties(vertex);

+------------------------------------+

| properties(VERTEX) |

+------------------------------------+

| {p1: "shala", p2: 4, p3: __NULL__} |

+------------------------------------+

4.11.1 INSERT VERTEX

- 293/804 - 2023 Vesoft Inc.

The following example inserts vertex "1".

nebula> INSERT VERTEX t2 (name, age) VALUES "1":("n2", 13);

Modify vertex "1" with IF NOT EXISTS. But there will be no modification as vertex "1" already exists.

nebula> INSERT VERTEX IF NOT EXISTS t2 (name, age) VALUES "1":("n3", 14);

nebula> FETCH PROP ON t2 "1" YIELD properties(vertex);

+-----------------------+

| properties(VERTEX) |

+-----------------------+

| {age: 13, name: "n2"} |

+-----------------------+

Last update: November 3, 2023

4.11.1 INSERT VERTEX

- 294/804 - 2023 Vesoft Inc.

4.11.2 DELETE VERTEX

By default, the DELETE VERTEX statement deletes vertices but the incoming and outgoing edges of the vertices.

NebulaGraph 2.x deletes vertices and their incoming and outgoing edges.

NebulaGraph 3.6.0 only deletes the vertices, and does not delete the related outgoing and incoming edges of the vertices. At this

time, there will be dangling edges by default.

The DELETE VERTEX statement deletes one vertex or multiple vertices at a time. You can use DELETE VERTEX together with pipes. For

more information about pipe, see Pipe operator.

DELETE VERTEX deletes vertices directly.

DELETE TAG deletes a tag with the given name on a specified vertex.

Syntax

WITH EDGE: deletes vertices and the related incoming and outgoing edges of the vertices.

Examples

This query deletes the vertex whose ID is "team1".

This query shows that you can use DELETE VERTEX together with pipe to delete vertices.

Process of deleting vertices

Once NebulaGraph deletes the vertices, all edges (incoming and outgoing edges) of the target vertex will become dangling

edges. When NebulaGraph deletes the vertices WITH EDGE , NebulaGraph traverses the incoming and outgoing edges related to the

vertices and deletes them all. Then NebulaGraph deletes the vertices.

Atomic deletion is not supported during the entire process for now. Please retry when a failure occurs to avoid partial deletion, which

will cause pendent edges.

Deleting a supernode takes a lot of time. To avoid connection timeout before the deletion is complete, you can modify the parameter

--storage_client_timeout_ms in nebula-graphd.conf to extend the timeout period.

Compatibility

•

•

Note

•

•

DELETE VERTEX <vid> [, <vid> ...] [WITH EDGE];

•

Delete the vertex whose VID is `team1` but the related incoming and outgoing edges are not deleted.

nebula> DELETE VERTEX "team1";

Delete the vertex whose VID is `team1` and the related incoming and outgoing edges.

nebula> DELETE VERTEX "team1" WITH EDGE;

nebula> GO FROM "player100" OVER serve WHERE properties(edge).start_year == "2021" YIELD dst(edge) AS id | DELETE VERTEX $-.id;

Caution

•

•

Last update: October 25, 2023

4.11.2 DELETE VERTEX

- 295/804 - 2023 Vesoft Inc.

4.11.3 UPDATE VERTEX

The UPDATE VERTEX statement updates properties on tags of a vertex.

In NebulaGraph, UPDATE VERTEX supports compare-and-set (CAS).

An UPDATE VERTEX statement can only update properties on ONE TAG of a vertex.

Syntax

Example

Note

UPDATE VERTEX ON <tag_name> <vid>

SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Parameter Required Description Example

ON <tag_name> Yes Specifies the tag of the vertex. The properties to be updated must

be on this tag.

ON player

<vid> Yes Specifies the ID of the vertex to be updated. "player100"

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET age = age +1

WHEN <condition> No Specifies the filter conditions. If <condition> evaluates to false ,

the SET clause will not take effect.

WHEN name ==

"Tim"

YIELD <output> No Specifies the output format of the statement. YIELD name AS

Name

// This query checks the properties of vertex "player101".

nebula> FETCH PROP ON player "player101" YIELD properties(vertex);

+--------------------------------+

| properties(VERTEX) |

+--------------------------------+

| {age: 36, name: "Tony Parker"} |

+--------------------------------+

// This query updates the age property and returns name and the new age.

nebula> UPDATE VERTEX ON player "player101" \

 SET age = age + 2 \

 WHEN name == "Tony Parker" \

 YIELD name AS Name, age AS Age;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 38 |

+---------------+-----+

Last update: October 25, 2023

4.11.3 UPDATE VERTEX

- 296/804 - 2023 Vesoft Inc.

4.11.4 UPSERT VERTEX

The UPSERT statement is a combination of UPDATE and INSERT . You can use UPSERT VERTEX to update the properties of a vertex if it

exists or insert a new vertex if it does not exist.

An UPSERT VERTEX statement can only update the properties on ONE TAG of a vertex.

The performance of UPSERT is much lower than that of INSERT because UPSERT is a read-modify-write serialization operation at the

partition level.

Don't use UPSERT for scenarios with highly concurrent writes. You can use UPDATE or INSERT instead.

Syntax

Insert a vertex if it does not exist

If a vertex does not exist, it is created no matter the conditions in the WHEN clause are met or not, and the SET clause always takes

effect. The property values of the new vertex depend on:

How the SET clause is defined.

Whether the property has a default value.

For example, if:

The vertex to be inserted will have properties name and age based on the tag player .

The SET clause specifies that age = 30 .

Note

Danger

UPSERT VERTEX ON <tag> <vid>

SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Parameter Required Description Example

ON <tag> Yes Specifies the tag of the vertex. The properties to be updated

must be on this tag.

ON player

<vid> Yes Specifies the ID of the vertex to be updated or inserted. "player100"

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET age = age +1

WHEN <condition> No Specifies the filter conditions. WHEN name ==

"Tim"

YIELD <output> No Specifies the output format of the statement. YIELD name AS

Name

•

•

•

•

4.11.4 UPSERT VERTEX

- 297/804 - 2023 Vesoft Inc.

Then the property values in different cases are listed as follows:

Here are some examples:

In the last query of the preceding examples, since age has no default value, when the vertex is created, age is NULL , and

age = age + 1 does not take effect. But if age has a default value, age = age + 1 will take effect. For example:

Update a vertex if it exists

If the vertex exists and the WHEN conditions are met, the vertex is updated.

Are WHEN conditions met If properties have default values Value of name Value of age

Yes Yes The default value 30

Yes No NULL 30

No Yes The default value 30

No No NULL 30

// This query checks if the following three vertices exist. The result "Empty set" indicates that the vertices do not exist.

nebula> FETCH PROP ON * "player666", "player667", "player668" YIELD properties(vertex);

+--------------------+

| properties(VERTEX) |

+--------------------+

+--------------------+

Empty set

nebula> UPSERT VERTEX ON player "player666" \

 SET age = 30 \

 WHEN name == "Joe" \

 YIELD name AS Name, age AS Age;

+----------+----------+

| Name | Age |

+----------+----------+

| __NULL__ | 30 |

+----------+----------+

nebula> UPSERT VERTEX ON player "player666" \

 SET age = 31 \

 WHEN name == "Joe" \

 YIELD name AS Name, age AS Age;

+----------+-----+

| Name | Age |

+----------+-----+

| __NULL__ | 30 |

+----------+-----+

nebula> UPSERT VERTEX ON player "player667" \

 SET age = 31 \

 YIELD name AS Name, age AS Age;

+----------+-----+

| Name | Age |

+----------+-----+

| __NULL__ | 31 |

+----------+-----+

nebula> UPSERT VERTEX ON player "player668" \

 SET name = "Amber", age = age + 1 \

 YIELD name AS Name, age AS Age;

+---------+----------+

| Name | Age |

+---------+----------+

| "Amber" | __NULL__ |

+---------+----------+

nebula> CREATE TAG IF NOT EXISTS player_with_default(name string, age int DEFAULT 20);

Execution succeeded

nebula> UPSERT VERTEX ON player_with_default "player101" \

 SET age = age + 1 \

 YIELD name AS Name, age AS Age;

+----------+-----+

| Name | Age |

+----------+-----+

| __NULL__ | 21 |

+----------+-----+

nebula> FETCH PROP ON player "player101" YIELD properties(vertex);

+--------------------------------+

4.11.4 UPSERT VERTEX

- 298/804 - 2023 Vesoft Inc.

If the vertex exists and the WHEN conditions are not met, the update does not take effect.

| properties(VERTEX) |

+--------------------------------+

| {age: 36, name: "Tony Parker"} |

+--------------------------------+

nebula> UPSERT VERTEX ON player "player101" \

 SET age = age + 2 \

 WHEN name == "Tony Parker" \

 YIELD name AS Name, age AS Age;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 38 |

+---------------+-----+

nebula> FETCH PROP ON player "player101" YIELD properties(vertex);

+--------------------------------+

| properties(VERTEX) |

+--------------------------------+

| {age: 38, name: "Tony Parker"} |

+--------------------------------+

nebula> UPSERT VERTEX ON player "player101" \

 SET age = age + 2 \

 WHEN name == "Someone else" \

 YIELD name AS Name, age AS Age;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 38 |

+---------------+-----+

Last update: October 25, 2023

4.11.4 UPSERT VERTEX

- 299/804 - 2023 Vesoft Inc.

4.12 Edge statements

4.12.1 INSERT EDGE

The INSERT EDGE statement inserts an edge or multiple edges into a graph space from a source vertex (given by src_vid) to a

destination vertex (given by dst_vid) with a specific rank in NebulaGraph.

When inserting an edge that already exists, INSERT EDGE overrides the edge.

Syntax

IF NOT EXISTS detects if the edge that you want to insert exists. If it does not exist, a new one will be inserted.

IF NOT EXISTS only detects whether exist and does not detect whether the property values overlap.

IF NOT EXISTS will read to check whether the data exists, which will have a significant impact on performance.

<edge_type> denotes the edge type, which must be created before INSERT EDGE . Only one edge type can be specified in this

statement.

<prop_name_list> is the property name list in the given <edge_type> .

src_vid is the VID of the source vertex. It specifies the start of an edge.

dst_vid is the VID of the destination vertex. It specifies the end of an edge.

rank is optional. It specifies the edge rank of the same edge type. The data type is int . If not specified, the default value is 0 .

You can insert many edges with the same edge type, source vertex, and destination vertex by using different rank values.

OpenCypher has no such concept as rank.

<prop_value_list> must provide the value list according to <prop_name_list> . If the property values do not match the data type in the

edge type, an error is returned. When the NOT NULL constraint is set for a given property, an error is returned if no property is

given. When the default value for a property is NULL , you can omit to specify the property value. For details, see CREATE

EDGE.

Examples

INSERT EDGE [IF NOT EXISTS] <edge_type> (<prop_name_list>) VALUES

<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)

[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>), ...];

<prop_name_list> ::=

 [<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=

 [<prop_value> [, <prop_value>] ...]

•

Note

•

•

•

•

•

•

•

OpenCypher compatibility

•

The following example creates edge type e1 with no property and inserts an edge from vertex "10" to vertex "11" with no property.

nebula> CREATE EDGE IF NOT EXISTS e1();

nebula> INSERT EDGE e1 () VALUES "10"->"11":();

The following example inserts an edge from vertex "10" to vertex "11" with no property. The edge rank is 1.

nebula> INSERT EDGE e1 () VALUES "10"->"11"@1:();

4.12 Edge statements

- 300/804 - 2023 Vesoft Inc.

An edge can be inserted/written with property values multiple times. Only the last written values can be read.

If you insert an edge that already exists with IF NOT EXISTS , there will be no modification.

NebulaGraph 3.6.0 allows dangling edges. Therefore, you can write the edge before the source vertex or the destination vertex

exists. At this time, you can get the (not written) vertex VID through <edgetype>._src or <edgetype>._dst (which is not recommended).

Atomic operation is not guaranteed during the entire process for now. If it fails, please try again. Otherwise, partial writing will

occur. At this time, the behavior of reading the data is undefined. For example, if multiple machines are involved in the write

operation, only one of the forward and reverse edges of a single edge is written successfully, or only part of the edge is written

successfully when multiple edges are inserted. In this case, an error will be returned, so please execute the command again.

Concurrently writing the same edge will cause an edge conflict error, so please try again later.

The inserting speed of an edge is about half that of a vertex. Because in the storaged process, the insertion of an edge involves two

tasks, while the insertion of a vertex involves only one task.

nebula> CREATE EDGE IF NOT EXISTS e2 (name string, age int);

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 1);

The following example creates edge type e2 with two properties.

nebula> INSERT EDGE e2 (name, age) VALUES \

 "12"->"13":("n1", 1), "13"->"14":("n2", 2);

In the following example, the insertion fails because "a13" is not int.

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", "a13");

The following examples insert edge e2 with the new values for multiple times.

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 12);

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 13);

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 14);

nebula> FETCH PROP ON e2 "11"->"13" YIELD edge AS e;

+---+

| e |

+---+

| [:e2 "11"->"13" @0 {age: 14, name: "n1"}] |

+---+

The following example inserts edge e2 from vertex "14" to vertex "15".

nebula> INSERT EDGE e2 (name, age) VALUES "14"->"15"@1:("n1", 12);

The following example alters the edge with IF NOT EXISTS. But there will be no alteration because edge e2 already exists.

nebula> INSERT EDGE IF NOT EXISTS e2 (name, age) VALUES "14"->"15"@1:("n2", 13);

nebula> FETCH PROP ON e2 "14"->"15"@1 YIELD edge AS e;

+---+

| e |

+---+

| [:e2 "14"->"15" @1 {age: 12, name: "n1"}] |

+---+

Note

•

•

•

•

Last update: November 3, 2023

4.12.1 INSERT EDGE

- 301/804 - 2023 Vesoft Inc.

4.12.2 DELETE EDGE

The DELETE EDGE statement deletes one edge or multiple edges at a time. You can use DELETE EDGE together with pipe operators. For

more information, see PIPE OPERATORS.

To delete all the outgoing edges for a vertex, please delete the vertex. For more information, see DELETE VERTEX.

Syntax

If no rank is specified, NebulaGraph only deletes the edge with rank 0. Delete edges with all ranks, as shown in the following

example.

Examples

The following example shows that you can use DELETE EDGE together with pipe operators to delete edges that meet the conditions.

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid>[@<rank>] ...]

Caution

nebula> DELETE EDGE serve "player100" -> "team204"@0;

nebula> GO FROM "player100" OVER follow \

 WHERE dst(edge) == "player101" \

 YIELD src(edge) AS src, dst(edge) AS dst, rank(edge) AS rank \

 | DELETE EDGE follow $-.src->$-.dst @ $-.rank;

Last update: October 25, 2023

4.12.2 DELETE EDGE

- 302/804 - 2023 Vesoft Inc.

4.12.3 UPDATE EDGE

The UPDATE EDGE statement updates properties on an edge.

In NebulaGraph, UPDATE EDGE supports compare-and-swap (CAS).

Syntax

Example

The following example checks the properties of the edge with the GO statement.

The following example updates the start_year property and returns the end_year and the new start_year .

UPDATE EDGE ON <edge_type>

<src_vid> -> <dst_vid> [@<rank>]

SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Parameter Required Description Example

ON <edge_type> Yes Specifies the edge type. The properties to be updated must

be on this edge type.

ON serve

<src_vid> Yes Specifies the source vertex ID of the edge. "player100"

<dst_vid> Yes Specifies the destination vertex ID of the edge. "team204"

<rank> No Specifies the rank of the edge. The data type is int . 10

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET start_year =

start_year +1

WHEN

<condition>

No Specifies the filter conditions. If <condition> evaluates to

false , the SET clause does not take effect.

WHEN end_year < 2010

YIELD <output> No Specifies the output format of the statement. YIELD start_year AS

Start_Year

nebula> GO FROM "player100" \

 OVER serve \

 YIELD properties(edge).start_year, properties(edge).end_year;

+-----------------------------+---------------------------+

| properties(EDGE).start_year | properties(EDGE).end_year |

+-----------------------------+---------------------------+

| 1997 | 2016 |

+-----------------------------+---------------------------+

nebula> UPDATE EDGE on serve "player100" -> "team204"@0 \

 SET start_year = start_year + 1 \

 WHEN end_year > 2010 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 1998 | 2016 |

+------------+----------+

Last update: October 25, 2023

4.12.3 UPDATE EDGE

- 303/804 - 2023 Vesoft Inc.

4.12.4 UPSERT EDGE

The UPSERT statement is a combination of UPDATE and INSERT . You can use UPSERT EDGE to update the properties of an edge if it exists

or insert a new edge if it does not exist.

The performance of UPSERT is much lower than that of INSERT because UPSERT is a read-modify-write serialization operation at the

partition level.

Do not use UPSERT for scenarios with highly concurrent writes. You can use UPDATE or INSERT instead.

Syntax

Insert an edge if it does not exist

If an edge does not exist, it is created no matter the conditions in the WHEN clause are met or not, and the SET clause takes effect.

The property values of the new edge depend on:

How the SET clause is defined.

Whether the property has a default value.

For example, if:

The edge to be inserted will have properties start_year and end_year based on the edge type serve .

The SET clause specifies that end_year = 2021 .

Danger

UPSERT EDGE ON <edge_type>

<src_vid> -> <dst_vid> [@rank]

SET <update_prop>

[WHEN <condition>]

[YIELD <properties>]

Parameter Required Description Example

ON <edge_type> Yes Specifies the edge type. The properties to be updated

must be on this edge type.

ON serve

<src_vid> Yes Specifies the source vertex ID of the edge. "player100"

<dst_vid> Yes Specifies the destination vertex ID of the edge. "team204"

<rank> No Specifies the rank of the edge. 10

SET

<update_prop>

Yes Specifies the properties to be updated and how they will

be updated.

SET start_year =

start_year +1

WHEN <condition> No Specifies the filter conditions. WHEN end_year < 2010

YIELD <output> No Specifies the output format of the statement. YIELD start_year AS

Start_Year

•

•

•

•

4.12.4 UPSERT EDGE

- 304/804 - 2023 Vesoft Inc.

Then the property values in different cases are listed as follows:

Here are some examples:

In the last query of the preceding example, since end_year has no default value, when the edge is created, end_year is NULL , and

end_year = end_year + 1 does not take effect. But if end_year has a default value, end_year = end_year + 1 will take effect. For example:

Are WHEN conditions met If properties have default values Value of start_year Value of end_year

Yes Yes The default value 2021

Yes No NULL 2021

No Yes The default value 2021

No No NULL 2021

// This example checks if the following three vertices have any outgoing serve edge. The result "Empty set" indicates that such an edge does not exist.

nebula> GO FROM "player666", "player667", "player668" \

 OVER serve \

 YIELD properties(edge).start_year, properties(edge).end_year;

+-----------------------------+---------------------------+

| properties(EDGE).start_year | properties(EDGE).end_year |

+-----------------------------+---------------------------+

+-----------------------------+---------------------------+

Empty set

nebula> UPSERT EDGE on serve \

 "player666" -> "team200"@0 \

 SET end_year = 2021 \

 WHEN end_year == 2010 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2021 |

+------------+----------+

nebula> UPSERT EDGE on serve \

 "player666" -> "team200"@0 \

 SET end_year = 2022 \

 WHEN end_year == 2010 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2021 |

+------------+----------+

nebula> UPSERT EDGE on serve \

 "player667" -> "team200"@0 \

 SET end_year = 2022 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2022 |

+------------+----------+

nebula> UPSERT EDGE on serve \

 "player668" -> "team200"@0 \

 SET start_year = 2000, end_year = end_year + 1 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 2000 | __NULL__ |

+------------+----------+

nebula> CREATE EDGE IF NOT EXISTS serve_with_default(start_year int, end_year int DEFAULT 2010);

Execution succeeded

nebula> UPSERT EDGE on serve_with_default \

 "player668" -> "team200" \

 SET end_year = end_year + 1 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2011 |

+------------+----------+

4.12.4 UPSERT EDGE

- 305/804 - 2023 Vesoft Inc.

Update an edge if it exists

If the edge exists and the WHEN conditions are met, the edge is updated.

If the edge exists and the WHEN conditions are not met, the update does not take effect.

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \

 RETURN e;

+---+

| e |

+---+

| [:serve "player149"->"team219" @0 {end_year: 2019, start_year: 2016}] |

+---+

nebula> UPSERT EDGE on serve \

 "player149" -> "team219" \

 SET end_year = end_year + 1 \

 WHEN start_year == 2016 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 2016 | 2020 |

+------------+----------+

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \

 RETURN e;

+---+

| e |

+---+

| [:serve "player149"->"team219" @0 {end_year: 2020, start_year: 2016}] |

+---+

nebula> UPSERT EDGE on serve \

 "player149" -> "team219" \

 SET end_year = end_year + 1 \

 WHEN start_year != 2016 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 2016 | 2020 |

+------------+----------+

Last update: October 25, 2023

4.12.4 UPSERT EDGE

- 306/804 - 2023 Vesoft Inc.

4.13 Native index statements

4.13.1 Index overview

Indexes are built to fast process graph queries. Nebula Graph supports two kinds of indexes: native indexes and full-text indexes.

This topic introduces the index types and helps choose the right index.

Usage Instructions

Indexes can improve query performance but may reduce write performance.

An index is a prerequisite for locating data when executing a LOOKUP statement. If there is no index, an error will be reported

when executing the LOOKUP statement.

When using an index, NebulaGraph will automatically select the most optimal index.

Indexes with high selectivity, that is, when the ratio of the number of records with unique values in the index column to the

total number of records is high (for example, the ratio for ID numbers is 1), can significantly improve query performance. For

indexes with low selectivity (such as country), query performance might not experience a substantial improvement.

Native indexes

Native indexes allow querying data based on a given property. Features are as follows.

There are two kinds of native indexes: tag index and edge type index.

Native indexes must be updated manually. You can use the REBUILD INDEX statement to update native indexes.

Native indexes support indexing multiple properties on a tag or an edge type (composite indexes), but do not support indexing

across multiple tags or edge types.

OPERATIONS ON NATIVE INDEXES

CREATE INDEX

SHOW CREATE INDEX

SHOW INDEXES

DESCRIBE INDEX

REBUILD INDEX

SHOW INDEX STATUS

DROP INDEX

LOOKUP

MATCH

Geography index

Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property. Features are as follows.

Full-text indexes allow indexing just one property.

Full-text indexes do not support logical operations such as AND , OR , and NOT .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

4.13 Native index statements

- 307/804 - 2023 Vesoft Inc.

To do complete string matches, use native indexes.

Null values

Indexes do not support indexing null values.

Range queries

In addition to querying single results from native indexes, you can also do range queries. Not all the native indexes support

range queries. You can only do range searches for numeric, date, and time type properties.

Note

Last update: November 3, 2023

4.13.1 Index overview

- 308/804 - 2023 Vesoft Inc.

4.13.2 CREATE INDEX

Prerequisites

Before you create an index, make sure that the relative tag or edge type is created. For how to create tags or edge types, see

CREATE TAG and CREATE EDGE.

For how to create full-text indexes, see Deploy full-text index.

Must-read for using indexes

The concept and using restrictions of indexes are comparatively complex. Before you use indexes, you must read the following

sections carefully.

You can use CREATE INDEX to add native indexes for the existing tags, edge types, or properties. They are usually called as tag

indexes, edge type indexes, and property indexes.

Tag indexes and edge type indexes apply to queries related to the tag and the edge type, but do not apply to queries that are

based on certain properties on the tag. For example, you can use LOOKUP to retrieve all the vertices with the tag player .

Property indexes apply to property-based queries. For example, you can use the age property to retrieve the VID of all vertices

that meet age == 19 .

If a property index i_TA is created for the property A of the tag T and i_T for the tag T , the indexes can be replaced as follows

(the same for edge type indexes):

The query engine can use i_TA to replace i_T .

In the MATCH and LOOKUP statements, i_T may replace i_TA for querying properties.

In previous releases, the tag or edge type index in the LOOKUP statement cannot replace the property index for property queries.

Although the same results can be obtained by using alternative indexes for queries, the query performance varies according to

the selected index.

Indexes can dramatically reduce the write performance. The performance can be greatly reduced. DO NOT use indexes in

production environments unless you are fully aware of their influences on your service.

Long indexes decrease the scan performance of the Storage Service and use more memory. We suggest that you set the indexing

length the same as that of the longest string to be indexed. For variable-length string-type properties, the longest index length is 256

bytes; for fixed-length string-type properties, the longest index length is the length of the index itself.

Steps

If you must use indexes, we suggest that you:

Import the data into NebulaGraph.

Create indexes.

Rebuild indexes.

After the index is created and the data is imported, you can use LOOKUP or MATCH to retrieve the data. You do not need to specify

which indexes to use in a query, NebulaGraph figures that out by itself.

•

•

•

•

Legacy version compatibility

Caution

1.

2.

3.

4.

4.13.2 CREATE INDEX

- 309/804 - 2023 Vesoft Inc.

If you create an index before importing the data, the importing speed will be extremely slow due to the reduction in the write

performance.

Keep --disable_auto_compaction = false during daily incremental writing.

The newly created index will not take effect immediately. Trying to use a newly created index (such as LOOKUP or REBUILD INDEX) may fail

and return can't find xxx in the space because the creation is implemented asynchronously. To make sure the follow-up operations work

as expected, Wait for two heartbeat cycles, i.e., 20 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs in the

configuration files for all services.

After creating a new index, or dropping the old index and creating a new one with the same name again, you must REBUILD INDEX .

Otherwise, these data cannot be returned in the MATCH and LOOKUP statements.

Syntax

Create tag/edge type indexes

After indexing a tag or an edge type, you can use the LOOKUP statement to retrieve the VID of all vertices with the tag , or the source

vertex ID, destination vertex ID, and ranks of all edges with the edge type . For more information, see LOOKUP.

Note

Danger

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name> ON {<tag_name> | <edge_name>} ([<prop_name_list>]) [COMMENT '<comment>'];

Parameter Description

TAG | EDGE Specifies the index type that you want to create.

IF NOT EXISTS Detects if the index that you want to create exists. If it does not exist, a new one will be created.

<index_name> 1. The name of the index. It must be unique in a graph space. A recommended way of naming is

i_tagName_propName .

2. By default, the name only supports 1-4 byte UTF-8 encoded characters, including English letters (case

sensitive), numbers, Chinese characters, etc. However, it cannot include special characters other than

the underscore (_), and cannot start with a number.

3. To use special characters, reserved keywords, or start with a number, quote the entire name with

backticks (`) and do not include periods (.) within the pair of backticks (`). For more information, see

Keywords and reserved words.

Note:

1. If you name an index in Chinese and encounter a SyntaxError , you need to quote the Chinese characters

with backticks (`).

2. To include a backtick (`) in an index name, use a backslash to escape the backtick, such as \`; to

include a backslash, the backslash itself also needs to be escaped, such as \ .

<tag_name> |

<edge_name>

Specifies the name of the tag or edge associated with the index.

<prop_name_list> To index a variable-length string property, you must use prop_name(length) to specify the index length, and

the maximum index length is 256. To index a tag or an edge type, ignore the prop_name_list .

COMMENT The remarks of the index. The maximum length is 256 bytes. By default, there will be no comments on an

index.

nebula> CREATE TAG INDEX IF NOT EXISTS player_index on player();

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index on follow();

4.13.2 CREATE INDEX

- 310/804 - 2023 Vesoft Inc.

Create single-property indexes

The preceding example creates an index for the name property on all vertices carrying the player tag. This example creates an

index using the first 10 characters of the name property.

Create composite property indexes

An index on multiple properties on a tag (or an edge type) is called a composite property index.

Creating composite property indexes across multiple tags or edge types is not supported.

NebulaGraph follows the left matching principle to select indexes.

nebula> CREATE TAG INDEX IF NOT EXISTS player_index_0 on player(name(10));

To index a variable-length string property, you need to specify the index length.

nebula> CREATE TAG IF NOT EXISTS var_string(p1 string);

nebula> CREATE TAG INDEX IF NOT EXISTS var ON var_string(p1(10));

To index a fixed-length string property, you do not need to specify the index length.

nebula> CREATE TAG IF NOT EXISTS fix_string(p1 FIXED_STRING(10));

nebula> CREATE TAG INDEX IF NOT EXISTS fix ON fix_string(p1);

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index_0 on follow(degree);

nebula> CREATE TAG INDEX IF NOT EXISTS player_index_1 on player(name(10), age);

Caution

Note

Last update: December 28, 2023

4.13.2 CREATE INDEX

- 311/804 - 2023 Vesoft Inc.

4.13.3 SHOW INDEXES

SHOW INDEXES shows the defined tag or edge type indexes names in the current graph space.

Syntax

Examples

In NebulaGraph 2.x, the SHOW TAG/EDGE INDEXES statement only returns Names .

SHOW {TAG | EDGE} INDEXES

nebula> SHOW TAG INDEXES;

+------------------+--------------+-----------------+

| Index Name | By Tag | Columns |

+------------------+--------------+-----------------+

| "fix" | "fix_string" | ["p1"] |

| "player_index_0" | "player" | ["name"] |

| "player_index_1" | "player" | ["name", "age"] |

| "var" | "var_string" | ["p1"] |

+------------------+--------------+-----------------+

nebula> SHOW EDGE INDEXES;

+----------------+----------+---------+

| Index Name | By Edge | Columns |

| "follow_index" | "follow" | [] |

+----------------+----------+---------+

Legacy version compatibility

Last update: November 3, 2023

4.13.3 SHOW INDEXES

- 312/804 - 2023 Vesoft Inc.

4.13.4 SHOW CREATE INDEX

SHOW CREATE INDEX shows the statement used when creating a tag or an edge type. It contains detailed information about the index,

such as its associated properties.

Syntax

Examples

You can run SHOW TAG INDEXES to list all tag indexes, and then use SHOW CREATE TAG INDEX to show the information about the creation of

the specified index.

Edge indexes can be queried through a similar approach.

SHOW CREATE {TAG | EDGE} INDEX <index_name>;

nebula> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

+------------------+----------+----------+

nebula> SHOW CREATE TAG INDEX player_index_1;

+------------------+--+

| Tag Index Name | Create Tag Index |

+------------------+--+

| "player_index_1" | "CREATE TAG INDEX `player_index_1` ON `player` (|

| | `name`(20) |

| |)" |

+------------------+--+

nebula> SHOW EDGE INDEXES;

+----------------+----------+---------+

| Index Name | By Edge | Columns |

+----------------+----------+---------+

| "follow_index" | "follow" | [] |

+----------------+----------+---------+

nebula> SHOW CREATE EDGE INDEX follow_index;

+-----------------+---+

| Edge Index Name | Create Edge Index |

+-----------------+---+

| "follow_index" | "CREATE EDGE INDEX `follow_index` ON `follow` (|

| |)" |

+-----------------+---+

Last update: October 25, 2023

4.13.4 SHOW CREATE INDEX

- 313/804 - 2023 Vesoft Inc.

4.13.5 DESCRIBE INDEX

DESCRIBE INDEX can get the information about the index with a given name, including the property name (Field) and the property

type (Type) of the index.

Syntax

Examples

DESCRIBE {TAG | EDGE} INDEX <index_name>;

nebula> DESCRIBE TAG INDEX player_index_0;

+--------+--------------------+

| Field | Type |

+--------+--------------------+

| "name" | "fixed_string(30)" |

+--------+--------------------+

nebula> DESCRIBE TAG INDEX player_index_1;

+--------+--------------------+

| Field | Type |

+--------+--------------------+

| "name" | "fixed_string(10)" |

| "age" | "int64" |

+--------+--------------------+

Last update: October 25, 2023

4.13.5 DESCRIBE INDEX

- 314/804 - 2023 Vesoft Inc.

4.13.6 REBUILD INDEX

If data is updated or inserted before the creation of the index, you must rebuild the indexes manually to make sure that the indexes

contain the previously added data. Otherwise, you cannot use LOOKUP and MATCH to query the data based on the index. If the index is

created before any data insertion, there is no need to rebuild the index.

When the rebuild of an index is incomplete, queries that rely on the index can use only part of the index and therefore cannot obtain

accurate results.

You can use REBUILD INDEX to rebuild the created tag or edge type index. For details on how to create an index, see CREATE

INDEX.

The speed of rebuilding indexes can be optimized by modifying the rebuild_index_part_rate_limit and snapshot_batch_size parameters in the

configuration file. In addition, greater parameter values may result in higher memory and network usage, see Storage Service

configurations for details.

Syntax

Multiple indexes are permitted in a single REBUILD statement, separated by commas. When the index name is not specified, all

tag or edge indexes are rebuilt.

After the rebuilding is complete, you can use the SHOW {TAG | EDGE} INDEX STATUS command to check if the index is successfully

rebuilt. For details on index status, see SHOW INDEX STATUS.

Examples

Danger

•

•

Caution

REBUILD {TAG | EDGE} INDEX [<index_name_list>];

<index_name_list>::=

 [index_name [, index_name] ...]

•

•

nebula> CREATE TAG IF NOT EXISTS person(name string, age int, gender string, email string);

nebula> CREATE TAG INDEX IF NOT EXISTS single_person_index ON person(name(10));

The following example rebuilds an index and returns the job ID.

nebula> REBUILD TAG INDEX single_person_index;

+------------+

| New Job Id |

+------------+

| 31 |

+------------+

The following example checks the index status.

nebula> SHOW TAG INDEX STATUS;

+-----------------------+--------------+

| Name | Index Status |

+-----------------------+--------------+

| "single_person_index" | "FINISHED" |

+-----------------------+--------------+

You can also use "SHOW JOB <job_id>" to check if the rebuilding process is complete.

nebula> SHOW JOB 31;

+----------------+---------------------+------------+-------------------------+-------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+---------------------+------------+-------------------------+-------------------------+-------------+

| 31 | "REBUILD_TAG_INDEX" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:24.000 | "SUCCEEDED" |

| 0 | "storaged1" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:28.000 | "SUCCEEDED" |

| 1 | "storaged2" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:28.000 | "SUCCEEDED" |

| 2 | "storaged0" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:28.000 | "SUCCEEDED" |

| "Total:3" | "Succeeded:3" | "Failed:0" | "In Progress:0" | "" | "" |

+----------------+---------------------+------------+-------------------------+-------------------------+-------------+

4.13.6 REBUILD INDEX

- 315/804 - 2023 Vesoft Inc.

NebulaGraph creates a job to rebuild the index. The job ID is displayed in the preceding return message. To check if the

rebuilding process is complete, use the SHOW JOB <job_id> statement. For more information, see SHOW JOB.

Last update: November 3, 2023

4.13.6 REBUILD INDEX

- 316/804 - 2023 Vesoft Inc.

4.13.7 SHOW INDEX STATUS

SHOW INDEX STATUS returns the name of the created tag or edge type index and its status of job.

The status of rebuilding indexes includes:

QUEUE : The job is in a queue.

RUNNING : The job is running.

FINISHED : The job is finished.

FAILED : The job has failed.

STOPPED : The job has stopped.

INVALID : The job is invalid.

For details on how to create an index, see CREATE INDEX.

Syntax

Example

•

•

•

•

•

•

Note

SHOW {TAG | EDGE} INDEX STATUS;

nebula> SHOW TAG INDEX STATUS;

+----------------------+--------------+

| Name | Index Status |

+----------------------+--------------+

| "player_index_0" | "FINISHED" |

| "player_index_1" | "FINISHED" |

+----------------------+--------------+

Last update: November 3, 2023

4.13.7 SHOW INDEX STATUS

- 317/804 - 2023 Vesoft Inc.

4.13.8 DROP INDEX

DROP INDEX removes an existing index from the current graph space.

Prerequisite

Running the DROP INDEX statement requires some privileges of DROP TAG INDEX and DROP EDGE INDEX in the given graph space. Otherwise,

NebulaGraph throws an error.

Syntax

IF EXISTS : Detects whether the index that you want to drop exists. If it exists, it will be dropped.

Example

DROP {TAG | EDGE} INDEX [IF EXISTS] <index_name>;

nebula> DROP TAG INDEX player_index_0;

Last update: October 25, 2023

4.13.8 DROP INDEX

- 318/804 - 2023 Vesoft Inc.

4.14 Full-text index statements

4.14.1 Full-text index restrictions

This topic introduces the restrictions for full-text indexes. Please read the restrictions very carefully before using the full-text

indexes.

The full-text index feature has been redone in version 3.6.0 and is not compatible with previous versions. If you want to continue to

use wildcards, regulars, fuzzy matches, etc., there are 3 ways to do so as follows:

Delete the original full-text index, rebuild the full-text index in the new way, and use the new query syntax.

Delete the original full-text index and use the native index and string operators directly.

Continue to use the previous version of NebulaGraph and its full-text index.

For now, full-text search has the following limitations:

Currently, full-text search supports LOOKUP statements only.

The full-text index name can contain only numbers, lowercase letters, and underscores.

The names of full-text indexes within different graph spaces cannot be duplicated.

The query returns 10 records by default. You can use the LIMIT clause to return more records, up to 10,000. You can modify the

ElasticSearch parameters to adjust the maximum number of records returned.

If there is a full-text index on the tag/edge type, the tag/edge type cannot be deleted or modified.

The type of properties must be STRING or FIXED_STRING .

Full-text index can not be applied to search multiple tags/edge types.

Full-text index can not search properties with value NULL .

Altering Elasticsearch indexes is not supported at this time.

Modifying the analyzer is not supported. You have to delete the index data and then specify the analyzer when you rebuild the

index.

Make sure that you start the Elasticsearch cluster and Nebula Graph at the same time. If not, the data writing on the

Elasticsearch cluster can be incomplete.

It may take a while for Elasticsearch to create indexes. If Nebula Graph warns no index is found, you can check the status of

the indexing task.

NebulaGraph clusters deployed with K8s do not have native support for the full-text search feature. However, you can

manually deploy the feature yourself.

Caution

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: October 25, 2023

4.14 Full-text index statements

- 319/804 - 2023 Vesoft Inc.

4.14.2 Deploy full-text index

Nebula Graph full-text indexes are powered by Elasticsearch. This means that you can use Elasticsearch full-text query language

to retrieve what you want. Full-text indexes are managed through built-in procedures. They can be created only for variable

STRING and FIXED_STRING properties when the listener cluster and the Elasticsearch cluster are deployed.

Precaution

Before you start using the full-text index, please make sure that you know the restrictions.

Deploy Elasticsearch cluster

To deploy an Elasticsearch cluster, see Kubernetes Elasticsearch deployment or Elasticsearch installation.

To support external network access to Elasticsearch, set network.host to 0.0.0.0 in config/elasticsearch.yml .

You can configure the Elasticsearch to meet your business needs. To customize the Elasticsearch, see Elasticsearch Document.

Sign in to the text search clients

When the Elasticsearch cluster is deployed, use the SIGN IN statement to sign in to the Elasticsearch clients. Multiple

elastic_ip:port pairs are separated with commas. You must use the IPs and the port number in the configuration file for the

Elasticsearch.

SYNTAX

EXAMPLE

Elasticsearch does not have a username or password by default. If you configured a username and password, you need to specify

them in the SIGN IN statement.

The Elasticsearch client can only be logged in once, and if there are changes, you need to SIGN OUT and then SIGN IN again, and the

client takes effect globally, and multiple graph spaces share the same Elasticsearch client.

Show text search clients

The SHOW TEXT SEARCH CLIENTS statement can list the text search clients.

SYNTAX

EXAMPLE

Note

SIGN IN TEXT SERVICE (<elastic_ip:port>, {HTTP | HTTPS} [,"<username>", "<password>"]) [, (<elastic_ip:port>, ...)];

nebula> SIGN IN TEXT SERVICE (192.168.8.100:9200, HTTP);

Note

Caution

SHOW TEXT SEARCH CLIENTS;

nebula> SHOW TEXT SEARCH CLIENTS;

+-----------------+-----------------+------+

4.14.2 Deploy full-text index

- 320/804 - 2023 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/targz.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html

Sign out to the text search clients

The SIGN OUT TEXT SERVICE statement can sign out all the text search clients.

SYNTAX

EXAMPLE

| Type | Host | Port |

+-----------------+-----------------+------+

| "ELASTICSEARCH" | "192.168.8.100" | 9200 |

+-----------------+-----------------+------+

SIGN OUT TEXT SERVICE;

nebula> SIGN OUT TEXT SERVICE;

Last update: November 3, 2023

4.14.2 Deploy full-text index

- 321/804 - 2023 Vesoft Inc.

4.14.3 Deploy Raft Listener for NebulaGraph Storage service

Full-text index data is written to the Elasticsearch cluster asynchronously. The Raft Listener (Listener for short) is a separate

process that fetches data from the Storage Service and writes them into the Elasticsearch cluster.

Prerequisites

You have read and fully understood the restrictions for using full-text indexes.

You have deployed a NebulaGraph cluster.

You have deployed a Elasticsearch cluster.

You have prepared one or multiple servers to run one or multiple raft listeners.

Precautions

The Storage Service that you want to run as the Listener must have the same or later release with all the other Nebula Graph

services in the cluster.

For now, you can only add all Listeners to a graph space once and for all. Trying to add a new Listener to a graph space that

already has a Listener will fail. To add all Listeners, set them in one statement.

Deployment process

STEP 1: INSTALL THE LISTENER SERVICE

The Listener service uses the same binary as the storaged service. However, the configuration files are different and the

processes use different ports. You can install NebulaGraph on all servers that need to deploy a Listener, but only the storaged

service can be used. For details, see Install NebulaGraph by RPM or DEB Package.

STEP 2: PREPARE THE CONFIGURATION FILE FOR THE LISTENER

In the etc directory, remove the suffix from nebula-storaged-listener.conf.default or nebula-storaged-listener.conf.production to nebula-

storaged-listener.conf , and then modify the configuration content.

•

•

•

•

•

•

4.14.3 Deploy Raft Listener for NebulaGraph Storage service

- 322/804 - 2023 Vesoft Inc.

Most configurations are the same as the configurations of Storage Service. This topic only introduces the differences.

STEP 3: START LISTENERS

To initiate the Listener, navigate to the installation path of the desired cluster and execute the following command:

STEP 4: ADD LISTENERS TO NEBULAGRAPH

Connect to NebulaGraph and run USE <space> to enter the graph space that you want to create full-text indexes for. Then run the

following statement to add a Listener into NebulaGraph.

You must use real IPs for a Listener.

Add all Listeners in one statement completely.

Show Listeners

Run the SHOW LISTENER statement to list all Listeners.

EXAMPLE

Name Default value Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-metad-

listener.pid

The file that records the process ID.

meta_server_addrs - IP (or hostname) and ports of all Meta services. Multiple Meta services are

separated by commas.

local_ip - The local IP (or hostname) of the Listener service. Use real IP addresses

instead of domain names or loopback IP addresses such as 127.0.0.1 .

port - The listening port of the RPC daemon of the Listener service.

heartbeat_interval_secs 10 The heartbeat interval of the Meta service. The unit is second (s).

listener_path data/listener The WAL directory of the Listener. Only one directory is allowed.

data_path data For compatibility reasons, this parameter can be ignored. Fill in the default

value data .

part_man_type memory The type of the part manager. Optional values are memory and meta .

rocksdb_batch_size 4096 The default reserved bytes for batch operations.

rocksdb_block_cache 4 The default block cache size of BlockBasedTable. The unit is Megabyte

(MB).

engine_type rocksdb The type of the Storage engine, such as rocksdb , memory , etc.

part_type simple The type of the part, such as simple , consensus , etc.

./bin/nebula-storaged --flagfile etc/nebula-storaged-listener.conf

ADD LISTENER ELASTICSEARCH <listener_ip:port> [,<listener_ip:port>, ...]

Warning

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.100:9789,192.168.8.101:9789;

nebula> SHOW LISTENER;

+--------+-----------------+------------------------+-------------+

| PartId | Type | Host | Host Status |

+--------+-----------------+------------------------+-------------+

| 1 | "ELASTICSEARCH" | ""192.168.8.100":9789" | "ONLINE" |

4.14.3 Deploy Raft Listener for NebulaGraph Storage service

- 323/804 - 2023 Vesoft Inc.

Remove Listeners

Run the REMOVE LISTENER ELASTICSEARCH statement to remove all Listeners in a graph space.

EXAMPLE

| 2 | "ELASTICSEARCH" | ""192.168.8.100":9789" | "ONLINE" |

| 3 | "ELASTICSEARCH" | ""192.168.8.100":9789" | "ONLINE" |

+--------+-----------------+------------------------+-------------+

nebula> REMOVE LISTENER ELASTICSEARCH;

Last update: November 22, 2023

4.14.3 Deploy Raft Listener for NebulaGraph Storage service

- 324/804 - 2023 Vesoft Inc.

4.14.4 Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property.

You can use the WHERE clause to specify the search strings in LOOKUP statements.

Prerequisite

Before using the full-text index, make sure that you have deployed a Elasticsearch cluster and a Listener cluster. For more

information, see Deploy Elasticsearch and Deploy Listener.

Precaution

Before using the full-text index, make sure that you know the restrictions.

Full Text Queries

Full-text queries enable you to search for parsed text fields, using a parser with strict syntax to return content based on the

query string provided. For details, see Query string query.

Syntax

CREATE FULL-TEXT INDEXES

Composite indexes with multiple properties are supported when creating full-text indexes.

<analyzer_name> is the name of the analyzer. The default value is standard . To use other analyzers (e.g. IK Analysis), you need to

make sure that the corresponding analyzer is installed in Elasticsearch in advance.

SHOW FULL-TEXT INDEXES

REBUILD FULL-TEXT INDEXES

When there is a large amount of data, rebuilding full-text index is slow, you can modify snapshot_send_files=false in the configuration file

of Storage service(nebula-storaged.conf).

DROP FULL-TEXT INDEXES

USE QUERY OPTIONS

CREATE FULLTEXT {TAG | EDGE} INDEX <index_name> ON {<tag_name> | <edge_name>} (<prop_name> [,<prop_name>]...) [ANALYZER="<analyzer_name>"];

•

•

SHOW FULLTEXT INDEXES;

REBUILD FULLTEXT INDEX;

Caution

DROP FULLTEXT INDEX <index_name>;

LOOKUP ON {<tag> | <edge_type>} WHERE ES_QUERY(<index_name>, "<text>") YIELD <return_list> [| LIMIT [<offset>,] <number_rows>];

4.14.4 Full-text indexes

- 325/804 - 2023 Vesoft Inc.

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-dsl-query-string-query
https://github.com/medcl/elasticsearch-analysis-ik

index_name : The name of the full-text index.

text : Search conditions. The where can only be followed by the ES_QUERY, and all judgment conditions must be written in the

text. For supported syntax, see Query string syntax.

score() : The score calculated by doing N degree expansion for the eligible vertices. The default value is 1.0 . The higher the

score, the higher the degree of match. The return value is sorted by default from highest to lowest score. For details, see

Search and Scoring in Lucene.

Examples

<return_list>

 <prop_name> [AS <prop_alias>] [, <prop_name> [AS <prop_alias>] ...] [, id(vertex) [AS <prop_alias>]] [, score() AS <score_alias>]

•

•

•

// This example creates the graph space.

nebula> CREATE SPACE IF NOT EXISTS basketballplayer (partition_num=3,replica_factor=1, vid_type=fixed_string(30));

// This example signs in the text service.

nebula> SIGN IN TEXT SERVICE (192.168.8.100:9200, HTTP);

// This example checks the text service status.

nebula> SHOW TEXT SEARCH CLIENTS;

+-----------------+-----------------+------+

| Type | Host | Port |

+-----------------+-----------------+------+

| "ELASTICSEARCH" | "192.168.8.100" | 9200 |

+-----------------+-----------------+------+

// This example switches the graph space.

nebula> USE basketballplayer;

// This example adds the listener to the NebulaGraph cluster.

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.100:9789;

// This example checks the listener status. When the status is `Online`, the listener is ready.

nebula> SHOW LISTENER;

+--------+-----------------+------------------------+-------------+

| PartId | Type | Host | Host Status |

+--------+-----------------+------------------------+-------------+

| 1 | "ELASTICSEARCH" | ""192.168.8.100":9789" | "ONLINE" |

| 2 | "ELASTICSEARCH" | ""192.168.8.100":9789" | "ONLINE" |

| 3 | "ELASTICSEARCH" | ""192.168.8.100":9789" | "ONLINE" |

+--------+-----------------+------------------------+-------------+

// This example creates the tag.

nebula> CREATE TAG IF NOT EXISTS player(name string, city string);

// This example creates a single-attribute full-text index.

nebula> CREATE FULLTEXT TAG INDEX fulltext_index_1 ON player(name) ANALYZER="standard";

// This example creates a multi-attribute full-text indexe.

nebula> CREATE FULLTEXT TAG INDEX fulltext_index_2 ON player(name,city) ANALYZER="standard";

// This example rebuilds the full-text index.

nebula> REBUILD FULLTEXT INDEX;

// This example shows the full-text index.

nebula> SHOW FULLTEXT INDEXES;

+--------------------+-------------+-------------+--------------+------------+

| Name | Schema Type | Schema Name | Fields | Analyzer |

+--------------------+-------------+-------------+--------------+------------+

| "fulltext_index_1" | "Tag" | "player" | "name" | "standard" |

| "fulltext_index_2" | "Tag" | "player" | "name, city" | "standard" |

+--------------------+-------------+-------------+--------------+------------+

// This example inserts the test data.

nebula> INSERT VERTEX player(name, city) VALUES \

 "Russell Westbrook": ("Russell Westbrook", "Los Angeles"), \

 "Chris Paul": ("Chris Paul", "Houston"),\

 "Boris Diaw": ("Boris Diaw", "Houston"),\

 "David West": ("David West", "Philadelphia"),\

 "Danny Green": ("Danny Green", "Philadelphia"),\

 "Tim Duncan": ("Tim Duncan", "New York"),\

 "James Harden": ("James Harden", "New York"),\

 "Tony Parker": ("Tony Parker", "Chicago"),\

 "Aron Baynes": ("Aron Baynes", "Chicago"),\

 "Ben Simmons": ("Ben Simmons", "Phoenix"),\

 "Blake Griffin": ("Blake Griffin", "Phoenix");

// These examples run test queries.

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"Chris") YIELD id(vertex);

+--------------+

| id(VERTEX) |

+--------------+

| "Chris Paul" |

+--------------+

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"Harden") YIELD properties(vertex);

4.14.4 Full-text indexes

- 326/804 - 2023 Vesoft Inc.

https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax
https://lucene.apache.org/core/9_6_0/core/org/apache/lucene/search/package-summary.html#package.description

+--+

| properties(VERTEX) |

+--+

| {_vid: "James Harden", city: "New York", name: "James Harden"} |

+--+

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"Da*") YIELD properties(vertex);

+--+

| properties(VERTEX) |

+--+

| {_vid: "David West", city: "Philadelphia", name: "David West"} |

| {_vid: "Danny Green", city: "Philadelphia", name: "Danny Green"} |

+--+

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"*b*") YIELD id(vertex);

+---------------------+

| id(VERTEX) |

+---------------------+

| "Russell Westbrook" |

| "Boris Diaw" |

| "Aron Baynes" |

| "Ben Simmons" |

| "Blake Griffin" |

+---------------------+

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"*b*") YIELD id(vertex) | LIMIT 2,3;

+-----------------+

| id(VERTEX) |

+-----------------+

| "Aron Baynes" |

| "Ben Simmons" |

| "Blake Griffin" |

+-----------------+

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"*b*") YIELD id(vertex) | YIELD count(*);

+----------+

| count(*) |

+----------+

| 5 |

+----------+

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"*b*") YIELD id(vertex), score() AS score;

+---------------------+-------+

| id(VERTEX) | score |

+---------------------+-------+

| "Russell Westbrook" | 1.0 |

| "Boris Diaw" | 1.0 |

| "Aron Baynes" | 1.0 |

| "Ben Simmons" | 1.0 |

| "Blake Griffin" | 1.0 |

+---------------------+-------+

// For documents containing a word `b`, its score will be multiplied by a weighting factor of 4, while for documents containing a word `c`, the default weighting factor of 1 is used.

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_1,"*b*^4 OR *c*") YIELD id(vertex), score() AS score;

+---------------------+-------+

| id(VERTEX) | score |

+---------------------+-------+

| "Russell Westbrook" | 4.0 |

| "Boris Diaw" | 4.0 |

| "Aron Baynes" | 4.0 |

| "Ben Simmons" | 4.0 |

| "Blake Griffin" | 4.0 |

| "Chris Paul" | 1.0 |

| "Tim Duncan" | 1.0 |

+---------------------+-------+

// When using a multi-attribute full-text index query, the conditions are matched within all properties of the index.

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_2,"*h*") YIELD properties(vertex);

+--+

| properties(VERTEX) |

+--+

| {_vid: "Chris Paul", city: "Houston", name: "Chris Paul"} |

| {_vid: "Boris Diaw", city: "Houston", name: "Boris Diaw"} |

| {_vid: "David West", city: "Philadelphia", name: "David West"} |

| {_vid: "James Harden", city: "New York", name: "James Harden"} |

| {_vid: "Tony Parker", city: "Chicago", name: "Tony Parker"} |

| {_vid: "Aron Baynes", city: "Chicago", name: "Aron Baynes"} |

| {_vid: "Ben Simmons", city: "Phoenix", name: "Ben Simmons"} |

| {_vid: "Blake Griffin", city: "Phoenix", name: "Blake Griffin"} |

| {_vid: "Danny Green", city: "Philadelphia", name: "Danny Green"} |

+--+

// When using multi-attribute full-text index queries, you can specify different text for different properties for the query.

nebula> LOOKUP ON player WHERE ES_QUERY(fulltext_index_2,"name:*b* AND city:Houston") YIELD properties(vertex);

+---+

| properties(VERTEX) |

+---+

| {_vid: "Boris Diaw", city: "Houston", name: "Boris Diaw"} |

+---+

// Delete single-attribute full-text index.

nebula> DROP FULLTEXT INDEX fulltext_index_1;

4.14.4 Full-text indexes

- 327/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

4.14.4 Full-text indexes

- 328/804 - 2023 Vesoft Inc.

4.15 Query tuning and terminating statements

4.15.1 EXPLAIN and PROFILE

EXPLAIN helps output the execution plan of an nGQL statement without executing the statement.

PROFILE executes the statement, then outputs the execution plan as well as the execution profile. You can optimize the queries for

better performance according to the execution plan and profile.

Execution Plan

The execution plan is determined by the execution planner in the NebulaGraph query engine.

The execution planner processes the parsed nGQL statements into actions . An action is the smallest unit that can be executed. A

typical action fetches all neighbors of a given vertex, gets the properties of an edge, and filters vertices or edges based on the

given conditions. Each action is assigned to an operator that performs the action.

For example, a SHOW TAGS statement is processed into two actions and assigned to a Start operator and a ShowTags operator , while a

more complex GO statement may be processed into more than 10 actions and assigned to 10 operators.

Syntax

EXPLAIN

PROFILE

Output formats

The output of an EXPLAIN or a PROFILE statement has three formats, the default row format, the dot format, and the tck format. You

can use the format option to modify the output format. Omitting the format option indicates using the default row format.

•

EXPLAIN [format= {"row" | "dot" | "tck"}] <your_nGQL_statement>;

•

PROFILE [format= {"row" | "dot" | "tck"}] <your_nGQL_statement>;

4.15 Query tuning and terminating statements

- 329/804 - 2023 Vesoft Inc.

The row format

The row format outputs the return message in a table as follows.

EXPLAIN

PROFILE

The descriptions are as follows.

The dot format

You can use the format="dot" option to output the return message in the dot language, and then use Graphviz to generate a graph

of the plan.

Graphviz is open source graph visualization software. Graphviz provides an online tool for previewing DOT language files and

exporting them to other formats such as SVG or JSON. For more information, see Graphviz Online.

•

nebula> EXPLAIN format="row" SHOW TAGS;

Execution succeeded (time spent 327/892 us)

Execution Plan

-----+----------+--------------+----------------+--

| id | name | dependencies | profiling data | operator info |

-----+----------+--------------+----------------+--

| 1 | ShowTags | 0 | | outputVar: [{"colNames":[],"name":"__ShowTags_1","type":"DATASET"}] |

| | | | | inputVar: |

-----+----------+--------------+----------------+--

| 0 | Start | | | outputVar: [{"colNames":[],"name":"__Start_0","type":"DATASET"}] |

-----+----------+--------------+----------------+--

•

nebula> PROFILE format="row" SHOW TAGS;

+--------+

| Name |

+--------+

| player |

+--------+

| team |

+--------+

Got 2 rows (time spent 2038/2728 us)

Execution Plan

-----+----------+--------------+--+--

| id | name | dependencies | profiling data | operator info |

-----+----------+--------------+--+--

| 1 | ShowTags | 0 | ver: 0, rows: 1, execTime: 42us, totalTime: 1177us | outputVar: [{"colNames":[],"name":"__ShowTags_1","type":"DATASET"}] |

| | | | | inputVar: |

-----+----------+--------------+--+--

| 0 | Start | | ver: 0, rows: 0, execTime: 1us, totalTime: 57us | outputVar: [{"colNames":[],"name":"__Start_0","type":"DATASET"}] |

-----+----------+--------------+--+--

Parameter Description

id The ID of the operator .

name The name of the operator .

dependencies The ID of the operator that the current operator depends on.

profiling data The content of the execution profile. ver is the version of the operator . rows shows the number of rows to be

output by the operator . execTime shows the execution time of action . totalTime is the sum of the execution time,

the system scheduling time, and the queueing time.

operator info The detailed information of the operator .

Note

nebula> EXPLAIN format="dot" SHOW TAGS;

Execution succeeded (time spent 161/665 us)

Execution Plan

--- -------------

4.15.1 EXPLAIN and PROFILE

- 330/804 - 2023 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

The Graphviz graph transformed from the above DOT statement is as follows.

The tck format

The tck format is similar to a table, but without borders and dividing lines between rows. You can use the results as test cases for

unit testing. For information on tck format test cases, see TCK cases.

EXPLAIN

PROFILE

 plan

--- -------------

 digraph exec_plan {

 rankdir=LR;

 "ShowTags_0"[label="ShowTags_0|outputVar: \[\{\"colNames\":\[\],\"name\":\"__ShowTags_0\",\"type\":\"DATASET\"\}\]\l|inputVar:\l", shape=Mrecord];

 "Start_2"->"ShowTags_0";

 "Start_2"[label="Start_2|outputVar: \[\{\"colNames\":\[\],\"name\":\"__Start_2\",\"type\":\"DATASET\"\}\]\l|inputVar: \l", shape=Mrecord];

 }

--- -------------

•

nebula> EXPLAIN format="tck" FETCH PROP ON player "player_1","player_2","player_3" YIELD properties(vertex).name as name, properties(vertex).age as age;

Execution succeeded (time spent 261µs/613.718µs)

Execution Plan (optimize time 28 us)

| id | name | dependencies | profiling data | operator info |

| 2 | Project | 1 | | |

| 1 | GetVertices | 0 | | |

| 0 | Start | | | |

Wed, 22 Mar 2023 23:15:52 CST

•

nebula> PROFILE format="tck" FETCH PROP ON player "player_1","player_2","player_3" YIELD properties(vertex).name as name, properties(vertex).age as age;

| name | age |

| "Piter Park" | 24 |

| "aaa" | 24 |

| "ccc" | 24 |

Got 3 rows (time spent 1.474ms/2.19677ms)

Execution Plan (optimize time 41 us)

| id | name | dependencies | profiling data | operator info |

| 2 | Project | 1 | {"rows":3,"version":0} | |

| 1 | GetVertices | 0 | {"resp[0]":{"exec":"232(us)","host":"127.0.0.1:9779","total":"758(us)"},"rows":3,"total_rpc":"875(us)","version":0} | |

| 0 | Start | | {"rows":0,"version":0} | |

Wed, 22 Mar 2023 23:16:13 CST

Last update: October 25, 2023

4.15.1 EXPLAIN and PROFILE

- 331/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/docs-2.0/3.ngql-guide/16.query-tuning-statements/explain-show-tags.png
https://docs-cdn.nebula-graph.com.cn/docs-2.0/3.ngql-guide/16.query-tuning-statements/explain-show-tags.png
https://github.com/vesoft-inc/nebula/tree/master/tests/tck/features

4.15.2 Kill queries

KILL QUERY can terminate the query being executed, and is often used to terminate slow queries.

Users with the God role can kill any query. Other roles can only kill their own queries.

Syntax

session_id : The ID of the session.

plan_id : The ID of the execution plan.

The ID of the session and the ID of the execution plan can uniquely determine a query. Both can be obtained through the SHOW

QUERIES statement.

Examples

This example executes KILL QUERY in one session to terminate the query in another session.

The query will be terminated and the following information will be returned.

Note

KILL QUERY (session=<session_id>, plan=<plan_id>);

•

•

nebula> KILL QUERY(SESSION=1625553545984255,PLAN=163);

[ERROR (-1005)]: ExecutionPlanId[1001] does not exist in current Session.

Last update: October 25, 2023

4.15.2 Kill queries

- 332/804 - 2023 Vesoft Inc.

4.15.3 Kill sessions

The KILL SESSION command is to terminate running sessions.

Only the NebulaGraph root user can terminate sessions.

After executing the KILL SESSION command, all Graph services synchronize the latest session information after 2*

session_reclaim_interval_secs seconds (120 seconds by default).

Syntax

You can run the KILL SESSION command to terminate one or multiple sessions. The syntax is as follows:

To terminate one session

{SESSION|SESSIONS} : SESSION or SESSIONS , both are supported.

<SessionId> : Specifies the ID of one session. You can run the SHOW SESSIONS command to view the IDs of sessions.

To terminate multiple sessions

The KILL SESSION command supports the pipeline operation, combining the SHOW SESSIONS command with the KILL SESSION command to

terminate multiple sessions.

[WHERE <filter_clause>]：

Optional, the WHERE clause is used to filter sessions. <filter_expression> specifies a session filtering expression, for example,

WHERE $-.CreateTime < datetime("2022-12-14T18:00:00") . If the WHERE clause is not specified, all sessions are terminated.

Filtering conditions in a WHERE clause include: SessionId , UserName , SpaceName , CreateTime , UpdateTime , GraphAddr , Timezone , and ClientIp .

You can run the SHOW SESSIONS command to view descriptions of these conditions.

{SESSION|SESSIONS} : SESSION or SESSIONS , both are supported.

Please use filtering conditions with caution to avoid deleting sessions by mistake.

Examples

To terminate one session

Note

•

•

•

KILL {SESSION|SESSIONS} <SessionId>

•

•

•

SHOW SESSIONS

| YIELD $-.SessionId AS sid [WHERE <filter_clause>]

| KILL {SESSION|SESSIONS} $-.sid

Note

•

•

•

•

Caution

•

4.15.3 Kill sessions

- 333/804 - 2023 Vesoft Inc.

To terminate multiple sessions

Terminate all sessions whose creation time is less than 2023-01-05T18:00:00 .

Terminates the two sessions with the earliest creation times.

Terminates all sessions created by the username session_user1 .

Terminate all sessions.

When you terminate all sessions, the current session is terminated. Please use it with caution.

nebula> KILL SESSION 1672887983842984

•

•

nebula> SHOW SESSIONS | YIELD $-.SessionId AS sid WHERE $-.CreateTime < datetime("2023-01-05T18:00:00") | KILL SESSIONS $-.sid

•

nebula> SHOW SESSIONS | YIELD $-.SessionId AS sid, $-.CreateTime as CreateTime | ORDER BY $-.CreateTime ASC | LIMIT 2 | KILL SESSIONS $-.sid

•

nebula> SHOW SESSIONS | YIELD $-.SessionId as sid WHERE $-.UserName == "session_user1" | KILL SESSIONS $-.sid

•

nebula> SHOW SESSIONS | YIELD $-.SessionId as sid | KILL SESSION $-.sid

// Or

nebula> SHOW SESSIONS | KILL SESSIONS $-.SessionId

Caution

Last update: October 25, 2023

4.15.3 Kill sessions

- 334/804 - 2023 Vesoft Inc.

4.16 Job manager and the JOB statements

The long-term tasks run by the Storage Service are called jobs, such as COMPACT , FLUSH , and STATS . These jobs can be time-

consuming if the data amount in the graph space is large. The job manager helps you run, show, stop, and recover jobs.

All job management commands can be executed only after selecting a graph space.

4.16.1 SUBMIT JOB BALANCE LEADER

Starts a job to balance the distribution of all the storage leaders in all graph spaces. It returns the job ID.

For example:

4.16.2 SUBMIT JOB COMPACT

The SUBMIT JOB COMPACT statement triggers the long-term RocksDB compact operation in the current graph space.

For more information about compact configuration, see Storage Service configuration.

For example:

4.16.3 SUBMIT JOB FLUSH

The SUBMIT JOB FLUSH statement writes the RocksDB memfile in the memory to the hard disk in the current graph space.

For example:

4.16.4 SUBMIT JOB STATS

The SUBMIT JOB STATS statement starts a job that makes the statistics of the current graph space. Once this job succeeds, you can

use the SHOW STATS statement to list the statistics. For more information, see SHOW STATS.

If the data stored in the graph space changes, in order to get the latest statistics, you have to run SUBMIT JOB STATS again.

Note

nebula> SUBMIT JOB BALANCE LEADER;

+------------+

| New Job Id |

+------------+

| 33 |

+------------+

nebula> SUBMIT JOB COMPACT;

+------------+

| New Job Id |

+------------+

| 40 |

+------------+

nebula> SUBMIT JOB FLUSH;

+------------+

| New Job Id |

+------------+

| 96 |

+------------+

Note

4.16 Job manager and the JOB statements

- 335/804 - 2023 Vesoft Inc.

For example:

4.16.5 SUBMIT JOB DOWNLOAD/INGEST

The SUBMIT JOB DOWNLOAD HDFS and SUBMIT JOB INGEST commands are used to import the SST file into NebulaGraph. For detail, see Import

data from SST files.

The SUBMIT JOB DOWNLOAD HDFS command will download the SST file on the specified HDFS.

The SUBMIT JOB INGEST command will import the downloaded SST file into NebulaGraph.

For example:

4.16.6 SHOW JOB

The Meta Service parses a SUBMIT JOB request into multiple tasks and assigns them to the nebula-storaged processes. The SHOW JOB

<job_id> statement shows the information about a specific job and all its tasks in the current graph space.

job_id is returned when you run the SUBMIT JOB statement.

For example:

The descriptions are as follows.

nebula> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 9 |

+------------+

nebula> SUBMIT JOB DOWNLOAD HDFS "hdfs://192.168.10.100:9000/sst";

+------------+

| New Job Id |

+------------+

| 10 |

+------------+

nebula> SUBMIT JOB INGEST;

+------------+

| New Job Id |

+------------+

| 11 |

+------------+

nebula> SHOW JOB 8;

+----------------+-----------------+------------+----------------------------+----------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+-----------------+------------+----------------------------+----------------------------+-------------+

| 8 | "STATS" | "FINISHED" | 2022-10-18T08:14:45.000000 | 2022-10-18T08:14:45.000000 | "SUCCEEDED" |

| 0 | "192.168.8.129" | "FINISHED" | 2022-10-18T08:14:45.000000 | 2022-10-18T08:15:13.000000 | "SUCCEEDED" |

| "Total:1" | "Succeeded:1" | "Failed:0" | "In Progress:0" | "" | "" |

+----------------+-----------------+------------+----------------------------+----------------------------+-------------+

Parameter Description

Job Id(TaskId) The first row shows the job ID and the other rows show the task IDs and the last row shows the total

number of job-related tasks.

Command(Dest) The first row shows the command executed and the other rows show on which storaged processes the task

is running. The last row shows the number of successful tasks related to the job.

Status Shows the status of the job or task. The last row shows the number of failed tasks related to the job. For

more information, see Job status.

Start Time Shows a timestamp indicating the time when the job or task enters the RUNNING phase. The last row shows

the number of ongoing tasks related to the job.

Stop Time Shows a timestamp indicating the time when the job or task gets FINISHED , FAILED , or STOPPED .

Error Code The error code of job.

4.16.5 SUBMIT JOB DOWNLOAD/INGEST

- 336/804 - 2023 Vesoft Inc.

Job status

The descriptions are as follows.

The description of switching the status is described as follows.

4.16.7 SHOW JOBS

The SHOW JOBS statement lists all the unexpired jobs in the current graph space.

The default job expiration interval is one week. You can change it by modifying the job_expired_secs parameter of the Meta Service.

For how to modify job_expired_secs , see Meta Service configuration.

For example:

4.16.8 STOP JOB

The STOP JOB <job_id> statement stops jobs that are not finished in the current graph space.

For example:

4.16.9 RECOVER JOB

The RECOVER JOB [<job_id>] statement re-executes the jobs that status is FAILED or STOPPED in the current graph space and returns the

number of recovered jobs. If <job_id> is not specified, re-execution is performed from the earliest job and the number of jobs that

have been recovered is returned.

For example:

Status Description

QUEUE The job or task is waiting in a queue. The Start Time is empty in this phase.

RUNNING The job or task is running. The Start Time shows the beginning time of this phase.

FINISHED The job or task is successfully finished. The Stop Time shows the time when the job or task enters this

phase.

FAILED The job or task has failed. The Stop Time shows the time when the job or task enters this phase.

STOPPED The job or task is stopped without running. The Stop Time shows the time when the job or task enters this

phase.

REMOVED The job or task is removed.

Queue -- running -- finished -- removed

 \ \ /

 \ \ -- failed -- /

 \ \ /

 \ ---------- stopped -/

nebula> SHOW JOBS;

+--------+---------------------+------------+----------------------------+----------------------------+

| Job Id | Command | Status | Start Time | Stop Time |

+--------+---------------------+------------+----------------------------+----------------------------+

| 34 | "STATS" | "FINISHED" | 2021-11-01T03:32:27.000000 | 2021-11-01T03:32:27.000000 |

| 33 | "FLUSH" | "FINISHED" | 2021-11-01T03:32:15.000000 | 2021-11-01T03:32:15.000000 |

| 32 | "COMPACT" | "FINISHED" | 2021-11-01T03:32:06.000000 | 2021-11-01T03:32:06.000000 |

| 31 | "REBUILD_TAG_INDEX" | "FINISHED" | 2021-10-29T05:39:16.000000 | 2021-10-29T05:39:17.000000 |

| 10 | "COMPACT" | "FINISHED" | 2021-10-26T02:27:05.000000 | 2021-10-26T02:27:05.000000 |

+--------+---------------------+------------+----------------------------+----------------------------+

nebula> STOP JOB 22;

+---------------+

| Result |

+---------------+

| "Job stopped" |

+---------------+

4.16.7 SHOW JOBS

- 337/804 - 2023 Vesoft Inc.

4.16.10 FAQ

How to troubleshoot job problems?

The SUBMIT JOB operations use the HTTP port. Please check if the HTTP ports on the machines where the Storage Service is

running are working well. You can use the following command to debug.

nebula> RECOVER JOB;

+-------------------+

| Recovered job num |

+-------------------+

| 5 job recovered |

+-------------------+

curl "http://{storaged-ip}:19779/admin?space={space_name}&op=compact"

Last update: October 25, 2023

4.16.10 FAQ

- 338/804 - 2023 Vesoft Inc.

5. Deploy and install

5.1 Prepare resources for compiling, installing, and running NebulaGraph

This topic describes the requirements and suggestions for compiling and installing NebulaGraph, as well as how to estimate the

resource you need to reserve for running a NebulaGraph cluster.

5.1.1 About storage devices

NebulaGraph is designed and implemented for NVMe SSD. All default parameters are optimized for the SSD devices and require

extremely high IOPS and low latency.

Due to the poor IOPS capability and long random seek latency, HDD is not recommended. Users may encounter many

problems when using HDD.

Do not use remote storage devices, such as NAS or SAN. Do not connect an external virtual hard disk based on HDFS or Ceph.

RAID is not recommended because NebulaGraph provides a multi-replica mechanism. Configuring RAID would result in a

waste of resources.

Use local SSD devices, or AWS Provisioned IOPS SSD equivalence.

5.1.2 About CPU architecture

Starting with 3.0.2, you can run containerized NebulaGraph databases on Docker Desktop for ARM macOS or on ARM Linux

servers.

We do not recommend you deploy NebulaGraph on Docker Desktop for Windows due to its subpar performance. For details, see

#12401.

5.1.3 Requirements for compiling the source code

Hardware requirements for compiling NebulaGraph

Supported operating systems for compiling NebulaGraph

For now, we can only compile NebulaGraph in the Linux system. We recommend that you use any Linux system with kernel

version 4.15 or above.

To install NebulaGraph on Linux systems with kernel version lower than required, use RPM/DEB packages or TAR files.

•

•

•

•

Caution

Item Requirement

CPU architecture x86_64

Memory 4 GB

Disk 10 GB, SSD

Note

5. Deploy and install

- 339/804 - 2023 Vesoft Inc.

https://github.com/docker/for-win/issues/12401

Software requirements for compiling NebulaGraph

You must have the correct version of the software listed below to compile NebulaGraph. If they are not as required or you are not

sure, follow the steps in Prepare software for compiling NebulaGraph to get them ready.

Other third-party software will be automatically downloaded and installed to the build directory at the configure (cmake) stage.

Software Version Note

glibc 2.17 or above You can run ldd --version to check the glibc version.

make Any stable version -

m4 Any stable version -

git Any stable version -

wget Any stable version -

unzip Any stable version -

xz Any stable version -

readline-devel Any stable version -

ncurses-devel Any stable version -

zlib-devel Any stable version -

g++ 8.5.0 or above You can run gcc -v to check the gcc version.

cmake 3.14.0 or above You can run cmake --version to check the cmake version.

curl Any stable version -

redhat-lsb-core Any stable version -

libstdc++-static Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

libasan Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

bzip2 Any stable version -

5.1.3 Requirements for compiling the source code

- 340/804 - 2023 Vesoft Inc.

Prepare software for compiling NebulaGraph

If part of the dependencies are missing or the versions does not meet the requirements, manually install them with the following

steps. You can skip unnecessary dependencies or steps according to your needs.

Install dependencies.

For CentOS, RedHat, and Fedora users, run the following commands.

For Debian and Ubuntu users, run the following commands.

Check if the GCC and cmake on your host are in the right version. See Software requirements for compiling NebulaGraph for the

required versions.

If your GCC and CMake are in the right versions, then you are all set and you can ignore the subsequent steps. If they are not,

select and perform the needed steps as follows.

If the CMake version is incorrect, visit the CMake official website to install the required version.

If the G++ version is incorrect, visit the G++ official website or follow the instructions below to to install the required version.

For CentOS users, run:

For Ubuntu users, run:

1.

•

$ yum update

$ yum install -y make \

 m4 \

 git \

 wget \

 unzip \

 xz \

 readline-devel \

 ncurses-devel \

 zlib-devel \

 gcc \

 gcc-c++ \

 cmake \

 curl \

 redhat-lsb-core \

 bzip2

 // For CentOS 8+, RedHat 8+, and Fedora, install libstdc++-static and libasan as well

$ yum install -y libstdc++-static libasan

•

$ apt-get update

$ apt-get install -y make \

 m4 \

 git \

 wget \

 unzip \

 xz-utils \

 curl \

 lsb-core \

 build-essential \

 libreadline-dev \

 ncurses-dev \

 cmake \

 bzip2

2.

$ g++ --version

$ cmake --version

3.

4.

•

yum install centos-release-scl

yum install devtoolset-11

scl enable devtoolset-11 'bash'

•

add-apt-repository ppa:ubuntu-toolchain-r/test

apt install gcc-11 g++-11

5.1.3 Requirements for compiling the source code

- 341/804 - 2023 Vesoft Inc.

5.1.4 Requirements and suggestions for installing NebulaGraph in test environments

Hardware requirements for test environments

Supported operating systems for test environments

For now, we can only install NebulaGraph in the Linux system. To install NebulaGraph in a test environment, we recommend that

you use any Linux system with kernel version 3.9 or above.

Suggested service architecture for test environments

For example, for a single-machine test environment, you can deploy 1 metad, 1 storaged, and 1 graphd processes in the machine.

For a more common test environment, such as a cluster of 3 machines (named as A, B, and C), you can deploy NebulaGraph as

follows:

5.1.5 Requirements and suggestions for installing NebulaGraph in production environments

Hardware requirements for production environments

Supported operating systems for production environments

For now, we can only install NebulaGraph in the Linux system. To install NebulaGraph in a production environment, we

recommend that you use any Linux system with kernel version 3.9 or above.

Users can adjust some of the kernel parameters to better accommodate the need for running NebulaGraph. For more

information, see kernel configuration.

Item Requirement

CPU architecture x86_64

Number of CPU core 4

Memory 8 GB

Disk 100 GB, SSD

Process Suggested number

metad (the metadata service process) 1

storaged (the storage service process) 1 or more

graphd (the query engine service process) 1 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B None 1 1

C None 1 1

Item Requirement

CPU architecture x86_64

Number of CPU core 48

Memory 256 GB

Disk 2 * 1.6 TB, NVMe SSD

5.1.4 Requirements and suggestions for installing NebulaGraph in test environments

- 342/804 - 2023 Vesoft Inc.

Suggested service architecture for production environments

DO NOT deploy a single cluster across IDCs (The Enterprise Edtion supports data synchronization between clusters across IDCs).

Each metad process automatically creates and maintains a replica of the metadata. Usually, you need to deploy three metad

processes and only three.

The number of storaged processes does not affect the number of graph space replicas.

Users can deploy multiple processes on a single machine. For example, on a cluster of 5 machines (named as A, B, C, D, and E),

you can deploy NebulaGraph as follows:

Danger

Process Suggested number

metad (the metadata service process) 3

storaged (the storage service process) 3 or more

graphd (the query engine service process) 3 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B 1 1 1

C 1 1 1

D None 1 1

E None 1 1

5.1.5 Requirements and suggestions for installing NebulaGraph in production environments

- 343/804 - 2023 Vesoft Inc.

5.1.6 Capacity requirements for running a NebulaGraph cluster

Users can estimate the memory, disk space, and partition number needed for a NebulaGraph cluster of 3 replicas as follows.

Question 1: Why do I need to multiply by 7.5 in the disk space estimation formula?

Answer: On one hand, the data in one single replica takes up about 2.5 times more space than that of the original data file

(csv) according to test values. On the other hand, indexes take up additional space. Each indexed vertex or edge takes up 16

bytes of memory. The hard disk space occupied by the index can be empirically estimated as the total number of indexed

vertices or edges * 50 bytes.

Question 2: Why do we multiply the disk space and memory by 120%?

Answer: The extra 20% is for buffer.

Question 3: How to get the number of RocksDB instances?

Answer: Each graph space corresponds to one RocksDB instance and each directory in the --data_path item in the etc/nebula-

storaged.conf file corresponds to one RocksDB instance. That is, the number of RocksDB instances = the number of directories *

the number of graph spaces.

Users can decrease the memory size occupied by the bloom filter by adding --enable_partitioned_index_filter=true in etc/nebula-

storaged.conf . But it may decrease the read performance in some random-seek cases.

Each RocksDB instance takes up about 70M of disk space even when no data has been written yet. One partition corresponds to one

RocksDB instance, and when the partition setting is very large, for example, 100, the graph space takes up a lot of disk space after it

is created.

Resource Unit How to estimate Description

Disk space

for a cluster

Bytes the_sum_of_edge_number_and_vertex_number *

average_bytes_of_properties * 7.5 * 120%

For more information, see Edge

partitioning and storage amplification.

Memory for

a cluster

Bytes [the_sum_of_edge_number_and_vertex_number * 16 +

the_number_of_RocksDB_instances * (write_buffer_size

* max_write_buffer_number) + rocksdb_block_cache] *

120%

write_buffer_size and max_write_buffer_number

are RocksDB parameters. For more

information, see MemTable. For details

about rocksdb_block_cache , see Memory

usage in RocksDB.

Number of

partitions for

a graph

space

- the_number_of_disks_in_the_cluster *

disk_partition_num_multiplier

disk_partition_num_multiplier is an integer

between 2 and 20 (both including). Its

value depends on the disk performance.

Use 20 for SSD and 2 for HDD.

•

•

•

Note

Caution

Last update: March 26, 2024

5.1.6 Capacity requirements for running a NebulaGraph cluster

- 344/804 - 2023 Vesoft Inc.

https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache

5.2 Compile and install

5.2.1 Install NebulaGraph by compiling the source code

Installing NebulaGraph from the source code allows you to customize the compiling and installation settings and test the latest

features.

Prerequisites

Users have to prepare correct resources described in Prepare resources for compiling, installing, and running NebulaGraph.

Compilation of NebulaGraph offline is not currently supported.

The host to be installed with NebulaGraph has access to the Internet.

Installation steps

Use Git to clone the source code of NebulaGraph to the host.

[Recommended] To install NebulaGraph 3.6.0, run the following command.

To install the latest developing release, run the following command to clone the source code from the master branch.

Go to the nebula/third-party directory, and run the install-third-party.sh script to install the third-party libraries.

Go back to the nebula directory, create a directory named build , and enter the directory.

Generate Makefile with CMake.

The installation path is /usr/local/nebula by default. To customize it, add the -DCMAKE_INSTALL_PREFIX=<installation_path> CMake variable in the

following command.

For more information about CMake variables, see CMake variables.

Compile NebulaGraph.

Check Prepare resources for compiling, installing, and running NebulaGraph.

•

Note

•

1.

•

$ git clone --branch release-3.6 https://github.com/vesoft-inc/nebula.git

•

$ git clone https://github.com/vesoft-inc/nebula.git

2.

$ cd nebula/third-party

$./install-third-party.sh

3.

$ cd ..

$ mkdir build && cd build

4.

Note

$ cmake -DCMAKE_INSTALL_PREFIX=/usr/local/nebula -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release ..

5.

Note

5.2 Compile and install

- 345/804 - 2023 Vesoft Inc.

To speed up the compiling, use the -j option to set a concurrent number N . It should be \(\min(\text{CPU core number},

\frac{\text{the memory size(GB)}}{2})\).

Install NebulaGraph.

The configuration files in the etc/ directory (/usr/local/nebula/etc by default) are references. Users can create their own configuration

files accordingly. If you want to use the scripts in the script directory to start, stop, restart, and kill the service, and check the service

status, the configuration files have to be named as nebula-graph.conf , nebula-metad.conf , and nebula-storaged.conf .

Update the master branch

The source code of the master branch changes frequently. If the corresponding NebulaGraph release is installed, update it in the

following steps.

In the nebula directory, run git pull upstream master to update the source code.

In the nebula/build directory, run make -j{N} and make install again.

Next to do

Manage NebulaGraph services

CMake variables

USAGE OF CMAKE VARIABLES

The following CMake variables can be used at the configure (cmake) stage to adjust the compiling settings.

CMAKE_INSTALL_PREFIX

CMAKE_INSTALL_PREFIX specifies the path where the service modules, scripts, configuration files are installed. The default path is /usr/

local/nebula .

ENABLE_WERROR

ENABLE_WERROR is ON by default and it makes all warnings into errors. You can set it to OFF if needed.

ENABLE_TESTING

ENABLE_TESTING is ON by default and unit tests are built with the NebulaGraph services. If you just need the service modules, set it

to OFF .

ENABLE_ASAN

ENABLE_ASAN is OFF by default and the building of ASan (AddressSanitizer), a memory error detector, is disabled. To enable it, set

ENABLE_ASAN to ON . This variable is intended for NebulaGraph developers.

$ make -j{N} # E.g., make -j2

6.

$ sudo make install

Note

1.

2.

$ cmake -D<variable>=<value> ...

5.2.1 Install NebulaGraph by compiling the source code

- 346/804 - 2023 Vesoft Inc.

CMAKE_BUILD_TYPE

NebulaGraph supports the following building types of MAKE_BUILD_TYPE :

Debug

The default value of CMAKE_BUILD_TYPE . It indicates building NebulaGraph with the debug info but not the optimization options.

Release

It indicates building NebulaGraph with the optimization options but not the debug info.

RelWithDebInfo

It indicates building NebulaGraph with the optimization options and the debug info.

MinSizeRel

It indicates building NebulaGraph with the optimization options for controlling the code size but not the debug info.

ENABLE_INCLUDE_WHAT_YOU_USE

ENABLE_INCLUDE_WHAT_YOU_USE is OFF by default. When set to ON and include-what-you-use is installed on the system, the system reports

redundant headers contained in the project source code during makefile generation.

NEBULA_USE_LINKER

Specifies the program linker on the system. The available values are:

bfd , the default value, indicates that ld.bfd is applied as the linker.

lld , indicates that ld.lld, if installed on the system, is applied as the linker.

gold , indicates that ld.gold, if installed on the system, is applied as the linker.

CMAKE_C_COMPILER/CMAKE_CXX_COMPILER

Usually, CMake locates and uses a C/C++ compiler installed in the host automatically. But if your compiler is not installed at the

standard path, or if you want to use a different one, run the command as follows to specify the installation path of the target

compiler:

ENABLE_CCACHE

ENABLE_CCACHE is ON by default and Ccache (compiler cache) is used to speed up the compiling of NebulaGraph.

To disable ccache , setting ENABLE_CCACHE to OFF is not enough. On some platforms, the ccache installation hooks up or precedes the

compiler. In such a case, you have to set an environment variable export CCACHE_DISABLE=true or add a line disable=true in ~/.ccache/

ccache.conf as well. For more information, see the ccache official documentation.

NEBULA_THIRDPARTY_ROOT

NEBULA_THIRDPARTY_ROOT specifies the path where the third party software is installed. By default it is /opt/vesoft/third-party .

Examine problems

If the compiling fails, we suggest you:

Check whether the operating system release meets the requirements and whether the memory and hard disk space are sufficient.

Check whether the third-party is installed correctly.

Use make -j1 to reduce the compiling concurrency.

•

•

•

•

•

•

•

$ cmake -DCMAKE_C_COMPILER=<path_to_gcc/bin/gcc> -DCMAKE_CXX_COMPILER=<path_to_gcc/bin/g++> ..

$ cmake -DCMAKE_C_COMPILER=<path_to_clang/bin/clang> -DCMAKE_CXX_COMPILER=<path_to_clang/bin/clang++> ..

1.

2.

3.

5.2.1 Install NebulaGraph by compiling the source code

- 347/804 - 2023 Vesoft Inc.

https://ccache.dev/manual/3.7.6.html

Last update: November 14, 2023

5.2.1 Install NebulaGraph by compiling the source code

- 348/804 - 2023 Vesoft Inc.

5.2.2 Compile NebulaGraph using Docker

NebulaGraph's source code is written in C++. Compiling NebulaGraph requires certain dependencies which might conflict with

host system dependencies, potentially causing compilation failures. Docker offers a solution to this. NebulaGraph provides a

Docker image containing the complete compilation environment, ensuring an efficient build process and avoiding host OS

conflicts. This guide outlines the steps to compile NebulaGraph using Docker.

Prerequisites

Before you begin:

Docker: Ensure Docker is installed on your system.

Clone NebulaGraph's Source Code: Clone the repository locally using:

This clones the NebulaGraph source code to a subdirectory named nebula .

Compilation steps

Pull the NebulaGraph compilation image.

Here, we use the official NebulaGraph compilation image, ubuntu2004 . For different versions, see nebula-dev-docker.

Start the compilation container.

--security-opt seccomp=unconfined : Disables the seccomp security mechanism to avoid compilation errors.

-v "$PWD":/home : Mounts the local path of the NebulaGraph code to the container's /home directory.

-w /home : Sets the container's working directory to /home . Any command run inside the container will use this directory as the

current directory.

--name nebula_dev : Assigns a name to the container, making it easier to manage and operate.

vesoft/nebula-dev:ubuntu2004 : Uses the ubuntu2004 version of the vesoft/nebula-dev compilation image.

bash : Executes the bash command inside the container, entering the container's interactive terminal.

After executing this command, you'll enter an interactive terminal inside the container. To re-enter the container, use

docker exec -ti nebula_dev bash .

1.

2.

git clone --branch release-3.6 https://github.com/vesoft-inc/nebula.git

1.

docker pull vesoft/nebula-dev:ubuntu2004

2.

docker run -ti \

 --security-opt seccomp=unconfined \

 -v "$PWD":/home \

 -w /home \

 --name nebula_dev \

 vesoft/nebula-dev:ubuntu2004 \

 bash

•

•

•

•

•

•

5.2.2 Compile NebulaGraph using Docker

- 349/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-dev-docker/#nebula-graph-development-docker-image

Compile NebulaGraph inside the container.

Enter the NebulaGraph source code directory.

Create a build directory and enter it.

Use CMake to generate the Makefile.

For more on CMake, see CMake Parameters.

Compile NebulaGraph.

Compilation might take some time based on your system performance.

Install the Executables and Libraries.

Post successful compilation, NebulaGraph's binaries and libraries are located in /home/nebula/build . Install them to /usr/local/nebula :

Once completed, NebulaGraph is compiled and installed in the host directory /usr/local/nebula .

Next Steps

Start NebulaGraph Service

Connect to NebulaGraph

3.

a.

cd nebula

b.

mkdir build && cd build

c.

cmake -DCMAKE_CXX_COMPILER=$TOOLSET_CLANG_DIR/bin/g++ -DCMAKE_C_COMPILER=$TOOLSET_CLANG_DIR/bin/gcc -DENABLE_WERROR=OFF -DCMAKE_BUILD_TYPE=Debug -DENABLE_TESTING=OFF ..

d.

The -j parameter specifies the number of threads to use.

If you have a multi-core CPU, you can use more threads to speed up compilation.

make -j2

4.

make install

•

•

Last update: October 25, 2023

5.2.2 Compile NebulaGraph using Docker

- 350/804 - 2023 Vesoft Inc.

5.3 Local single-node installation

5.3.1 Install NebulaGraph with RPM or DEB package

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install NebulaGraph with the

RPM or DEB package.

The console is not complied or packaged with NebulaGraph server binaries. You can install nebula-console by yourself.

Prerequisites

The tool wget is installed.

Note

•

5.3 Local single-node installation

- 351/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console

Step 1: Download the package from cloud service

NebulaGraph is currently only supported for installation on Linux systems, and only CentOS 7.x, CentOS 8.x, Ubuntu 16.04, Ubuntu

18.04, and Ubuntu 20.04 operating systems are supported.

Download the released version.

URL:

For example, download the release package 3.6.0 for Centos 7.5 :

Download the release package 3.6.0 for Ubuntu 1804 :

Download the nightly version.

Nightly versions are usually used to test new features. Do not use it in a production environment.

Nightly versions may not be built successfully every night. And the names may change from day to day.

URL:

For example, download the Centos 7.5 package developed and built in 2021.11.28 :

For example, download the Ubuntu 1804 package developed and built in 2021.11.28 :

Note

•

//Centos 7

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.6.0/nebula-graph-3.6.0.ubuntu1804.amd64.deb.sha256sum.txt

•

Danger

•

•

//Centos 7

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

5.3.1 Install NebulaGraph with RPM or DEB package

- 352/804 - 2023 Vesoft Inc.

Step 2: Install NebulaGraph

Use the following syntax to install with an RPM package.

The option --prefix indicates the installation path. The default path is /usr/local/nebula/ .

For example, to install an RPM package in the default path for the 3.6.0 version, run the following command.

Use the following syntax to install with a DEB package.

Customizing the installation path is not supported when installing NebulaGraph with a DEB package. The default installation path

is /usr/local/nebula/ .

For example, to install a DEB package for the 3.6.0 version, run the following command.

The default installation path is /usr/local/nebula/ .

Next to do

Start NebulaGraph

Connect to NebulaGraph

•

$ sudo rpm -ivh --prefix=<installation_path> <package_name>

sudo rpm -ivh nebula-graph-3.6.0.el7.x86_64.rpm

•

$ sudo dpkg -i <package_name>

Note

sudo dpkg -i nebula-graph-3.6.0.ubuntu1804.amd64.deb

Note

•

•

Last update: October 25, 2023

5.3.1 Install NebulaGraph with RPM or DEB package

- 353/804 - 2023 Vesoft Inc.

https://docs.nebula-graph.io/3.6.0/2.quick-start/5.start-stop-service/
https://docs.nebula-graph.io/3.6.0/2.quick-start/3.connect-to-nebula-graph/

5.3.2 Install NebulaGraph graph with the tar.gz file

You can install NebulaGraph by downloading the tar.gz file.

NebulaGraph provides installing with the tar.gz file starting from version 2.6.0.

NebulaGraph is currently only supported for installation on Linux systems, and only CentOS 7.x, CentOS 8.x, Ubuntu 16.04, Ubuntu

18.04, and Ubuntu 20.04 operating systems are supported.

Installation steps

Download the NebulaGraph tar.gz file using the following address.

Before downloading, you need to replace <release_version> with the version you want to download.

For example, to download the NebulaGraph release-3.6 tar.gz file for CentOS 7.5 , run the following command:

Decompress the tar.gz file to the NebulaGraph installation directory.

tar.gz_file_name specifies the name of the tar.gz file.

install_path specifies the installation path.

For example:

Modify the name of the configuration file.

Enter the decompressed directory, rename the files nebula-graphd.conf.default , nebula-metad.conf.default , and nebula-storaged.conf.default in

the subdirectory etc , and delete .default to apply the default configuration of NebulaGraph.

To modify the configuration, see Configurations.

So far, you have installed NebulaGraph successfully.

Note

•

•

1.

//Centos 7

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.tar.gz.sha256sum.txt

//Centos 8

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.tar.gz.sha256sum.txt

//Ubuntu 1604

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.tar.gz.sha256sum.txt

//Ubuntu 1804

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.tar.gz.sha256sum.txt

//Ubuntu 2004

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.tar.gz.sha256sum.txt

wget https://oss-cdn.nebula-graph.com.cn/package/3.6.0/nebula-graph-3.6.0.el7.x86_64.tar.gz

2.

tar -xvzf <tar.gz_file_name> -C <install_path>

•

•

tar -xvzf nebula-graph-3.6.0.el7.x86_64.tar.gz -C /home/joe/nebula/install

3.

Note

5.3.2 Install NebulaGraph graph with the tar.gz file

- 354/804 - 2023 Vesoft Inc.

Next to do

Manage NebulaGraph services

Last update: October 25, 2023

5.3.2 Install NebulaGraph graph with the tar.gz file

- 355/804 - 2023 Vesoft Inc.

5.3.3 Standalone NebulaGraph

Standalone NebulaGraph merges the Meta, Storage, and Graph services into a single process deployed on a single machine. This

topic introduces scenarios, deployment steps, etc. of standalone NebulaGraph.

Do not use standalone NebulaGraph in production environments.

Background

The traditional NebulaGraph consists of three services, each service having executable binary files and the corresponding

process. Processes communicate with each other by RPC. In standalone NebulaGraph, the three processes corresponding to the

three services are combined into one process. For more information about NebulaGraph, see Architecture overview.

Scenarios

Small data sizes and low availability requirements. For example, test environments that are limited by the number of machines,

scenarios that are only used to verify functionality.

Limitations

Single service instance per machine.

High availability and reliability not supported.

Resource requirements

For information about the resource requirements for standalone NebulaGraph, see Software requirements for compiling

NebulaGraph.

Steps

Currently, you can only install standalone NebulaGraph with the source code. The steps are similar to those of the multi-process

NebulaGraph. You only need to modify the step Generate Makefile with CMake by adding -DENABLE_STANDALONE_VERSION=on to the

command. For example:

For more information about installation details, see Install NebulaGraph by compiling the source code.

After installing standalone NebulaGraph, see the topic connect to Service to connect to NebulaGraph databases.

Configuration file

The path to the configuration file for standalone NebulaGraph is /usr/local/nebula/etc by default.

You can run sudo cat nebula-standalone.conf.default to see the file content. The parameters and the corresponding descriptions in the

file are generally the same as the configurations for multi-process NebulaGraph except for the following parameters.

Danger

•

•

cmake -DCMAKE_INSTALL_PREFIX=/usr/local/nebula -DENABLE_TESTING=OFF -DENABLE_STANDALONE_VERSION=on -DCMAKE_BUILD_TYPE=Release ..

Parameter Predefined value Description

meta_port 9559 The port number of the Meta service.

storage_port 9779 The port number of the Storage Service.

meta_data_path data/meta The path to Meta data.

5.3.3 Standalone NebulaGraph

- 356/804 - 2023 Vesoft Inc.

You can run commands to check configurable parameters and the corresponding descriptions. For details, see Configurations.

Last update: October 25, 2023

5.3.3 Standalone NebulaGraph

- 357/804 - 2023 Vesoft Inc.

5.4 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

For now, NebulaGraph does not provide an official deployment tool. Users can deploy a NebulaGraph cluster with RPM or DEB

package manually. This topic provides an example of deploying a NebulaGraph cluster on multiple servers (machines).

5.4.1 Deployment

5.4.2 Prerequisites

Prepare 5 machines for deploying the cluster.

Use the NTP service to synchronize time in the cluster.

5.4.3 Manual deployment process

Install NebulaGraph

Install NebulaGraph on each machine in the cluster. Available approaches of installation are as follows.

Install NebulaGraph with RPM or DEB package

Install NebulaGraph by compiling the source code

Modify the configurations

To deploy NebulaGraph according to your requirements, you have to modify the configuration files.

All the configuration files for NebulaGraph, including nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf , are stored in the

etc directory in the installation path. You only need to modify the configuration for the corresponding service on the machines.

The configurations that need to be modified for each machine are as follows.

Users can refer to the content of the following configurations, which only show part of the cluster settings. The hidden content

uses the default setting so that users can better understand the relationship between the servers in the NebulaGraph cluster.

Machine name IP address Number of graphd Number of storaged Number of metad

A 192.168.10.111 1 1 1

B 192.168.10.112 1 1 1

C 192.168.10.113 1 1 1

D 192.168.10.114 1 1 None

E 192.168.10.115 1 1 None

•

•

•

•

Machine name The configuration to be modified

A nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

B nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

C nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

D nebula-graphd.conf , nebula-storaged.conf

E nebula-graphd.conf , nebula-storaged.conf

5.4 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 358/804 - 2023 Vesoft Inc.

The main configuration to be modified is meta_server_addrs . All configurations need to fill in the IP addresses and ports of all Meta

services. At the same time, local_ip needs to be modified as the network IP address of the machine itself. For detailed descriptions of

the configuration parameters, see:

Meta Service configurations

Graph Service configurations

Storage Service configurations

Deploy machine A

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

Note

•

•

•

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.111

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.111

Storage daemon listening port

--port=9779

•

########## networking ##########

Comma separated Meta Server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-metad process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.111

Meta daemon listening port

--port=9559

5.4.3 Manual deployment process

- 359/804 - 2023 Vesoft Inc.

Deploy machine B

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.112

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.112

Storage daemon listening port

--port=9779

•

########## networking ##########

Comma separated Meta Server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-metad process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.112

Meta daemon listening port

--port=9559

5.4.3 Manual deployment process

- 360/804 - 2023 Vesoft Inc.

Deploy machine C

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

Deploy machine D

nebula-graphd.conf

nebula-storaged.conf

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.113

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.113

Storage daemon listening port

--port=9779

•

########## networking ##########

Comma separated Meta Server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-metad process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.113

Meta daemon listening port

--port=9559

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.114

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.114

Storage daemon listening port

--port=9779

5.4.3 Manual deployment process

- 361/804 - 2023 Vesoft Inc.

Deploy machine E

nebula-graphd.conf

nebula-storaged.conf

Start the cluster

Start the corresponding service on each machine. Descriptions are as follows.

The command to start the NebulaGraph services is as follows.

Make sure all the processes of services on each machine are started. Otherwise, you will fail to start NebulaGraph.

When the graphd process, the storaged process, and the metad process are all started, you can use all instead.

/usr/local/nebula is the default installation path for NebulaGraph. Use the actual path if you have customized the path. For more

information about how to start and stop the services, see Manage NebulaGraph services.

Check the cluster status

Install the native CLI client NebulaGraph Console, then connect to any machine that has started the graphd process, run

ADD HOSTS command to add storage hosts, and run SHOW HOSTS to check the cluster status. For example:

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.115

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.115

Storage daemon listening port

--port=9779

Machine name The process to be started

A graphd, storaged, metad

B graphd, storaged, metad

C graphd, storaged, metad

D graphd, storaged

E graphd, storaged

sudo /usr/local/nebula/scripts/nebula.service start <metad|graphd|storaged|all>

Note

•

•

•

$./nebula-console --addr 192.168.10.111 --port 9669 -u root -p nebula

2021/05/25 01:41:19 [INFO] connection pool is initialized successfully

Welcome to NebulaGraph!

> ADD HOSTS 192.168.10.111:9779, 192.168.10.112:9779, 192.168.10.113:9779, 192.168.10.114:9779, 192.168.10.115:9779;

5.4.3 Manual deployment process

- 362/804 - 2023 Vesoft Inc.

> SHOW HOSTS;

+------------------+------+----------+--------------+----------------------+------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+------------------+------+----------+--------------+----------------------+------------------------+---------+

| "192.168.10.111" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "192.168.10.112" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "192.168.10.113" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "192.168.10.114" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "192.168.10.115" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

+------------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

Last update: October 25, 2023

5.4.3 Manual deployment process

- 363/804 - 2023 Vesoft Inc.

5.5 Deploy NebulaGraph with Docker Compose

Using Docker Compose can quickly deploy NebulaGraph services based on the prepared configuration file. It is only

recommended to use this method when testing functions of NebulaGraph.

5.5.1 Prerequisites

You have installed the following applications on your host.

If you are deploying NebulaGraph as a non-root user, grant the user with Docker-related privileges. For detailed instructions,

see Manage Docker as a non-root user.

You have started the Docker service on your host.

If you have already deployed another version of NebulaGraph with Docker Compose on your host, to avoid compatibility issues,

you need to delete the nebula-docker-compose/data directory.

5.5.2 Deploy NebulaGraph

Clone the 3.6.0 branch of the nebula-docker-compose repository to your host with Git.

The master branch contains the untested code for the latest NebulaGraph development release. DO NOT use this release in a

production environment.

The x.y version of Docker Compose aligns to the x.y version of NebulaGraph. For the NebulaGraph z version, Docker Compose does

not publish the corresponding z version, but pulls the z version of the NebulaGraph image.

Go to the nebula-docker-compose directory.

Run the following command to start all the NebulaGraph services.

Update the NebulaGraph images and NebulaGraph Console images first if they are out of date.

The return result after executing the command varies depending on the installation directory.

•

Application Recommended version Official installation reference

Docker Latest Install Docker Engine

Docker Compose Latest Install Docker Compose

Git Latest Download Git

•

•

•

1.

Danger

$ git clone -b release-3.6 https://github.com/vesoft-inc/nebula-docker-compose.git

Note

2.

$ cd nebula-docker-compose/

3.

Note

•

•

[nebula-docker-compose]$ docker-compose up -d

Creating nebula-docker-compose_metad0_1 ... done

Creating nebula-docker-compose_metad2_1 ... done

Creating nebula-docker-compose_metad1_1 ... done

Creating nebula-docker-compose_graphd2_1 ... done

5.5 Deploy NebulaGraph with Docker Compose

- 364/804 - 2023 Vesoft Inc.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://git-scm.com/download/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

Starting from NebulaGraph version 3.1.0, nebula-docker-compose automatically starts a NebulaGraph Console docker container and

adds the storage host to the cluster (i.e. ADD HOSTS command).

For more information of the preceding services, see NebulaGraph architecture.

5.5.3 Connect to NebulaGraph

There are two ways to connect to NebulaGraph:

Connected with Nebula Console outside the container. Because the external mapping port for the Graph service is also fixed as

9669 in the container's configuration file, you can connect directly through the default port. For details, see Connect to

NebulaGraph.

Log into the container installed NebulaGraph Console, then connect to the Graph service. This section describes this approach.

Run the following command to view the name of NebulaGraph Console docker container.

Run the following command to enter the NebulaGraph Console docker container.

Connect to NebulaGraph with NebulaGraph Console.

By default, the authentication is off, you can only log in with an existing username (the default is root) and any password. To turn it on,

see Enable authentication.

Run the following commands to view the cluster state.

Run exit twice to switch back to your terminal (shell).

Creating nebula-docker-compose_graphd_1 ... done

Creating nebula-docker-compose_graphd1_1 ... done

Creating nebula-docker-compose_storaged0_1 ... done

Creating nebula-docker-compose_storaged2_1 ... done

Creating nebula-docker-compose_storaged1_1 ... done

Compatibility

Note

•

•

1.

$ docker-compose ps

 Name Command State Ports

--

nebula-docker-compose_console_1 sh -c sleep 3 && Up

 nebula-co ...

......

2.

docker exec -it nebula-docker-compose_console_1 /bin/sh

/ #

3.

/ # ./usr/local/bin/nebula-console -u <user_name> -p <password> --address=graphd --port=9669

Note

4.

nebula> SHOW HOSTS;

+-------------+------+----------+--------------+----------------------+------------------------+---------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+----------+--------------+----------------------+------------------------+---------+

| "storaged0" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.6.0" |

+-------------+------+----------+--------------+----------------------+------------------------+---------+

5.5.3 Connect to NebulaGraph

- 365/804 - 2023 Vesoft Inc.

5.5.4 Check the NebulaGraph service status and ports

Run docker-compose ps to list all the services of NebulaGraph and their status and ports.

NebulaGraph provides services to the clients through port 9669 by default. To use other ports, modify the docker-compose.yaml file in the

nebula-docker-compose directory and restart the NebulaGraph services.

If the service is abnormal, you can first confirm the abnormal container name (such as nebula-docker-compose_graphd2_1).

Then you can execute docker ps to view the corresponding CONTAINER ID (such as 2a6c56c405f5).

Use the CONTAINER ID to log in the container and troubleshoot.

5.5.5 Check the service data and logs

All the data and logs of NebulaGraph are stored persistently in the nebula-docker-compose/data and nebula-docker-compose/logs directories.

The structure of the directories is as follows:

Note

$ docker-compose ps

nebula-docker-compose_console_1 sh -c sleep 3 && Up

 nebula-co ...

nebula-docker-compose_graphd1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49174->19669/tcp,:::49174->19669/tcp, 0.0.0.0:49171->19670/tcp,:::49171->19670/tcp, 0.0.0.0:49177->9669/

tcp,:::49177->9669/tcp

nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49175->19669/tcp,:::49175->19669/tcp, 0.0.0.0:49172->19670/tcp,:::49172->19670/tcp, 0.0.0.0:49178->9669/

tcp,:::49178->9669/tcp

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49180->19669/tcp,:::49180->19669/tcp, 0.0.0.0:49179->19670/tcp,:::49179->19670/tcp, 0.0.0.0:9669->9669/

tcp,:::9669->9669/tcp

nebula-docker-compose_metad0_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49157->19559/tcp,:::49157->19559/tcp, 0.0.0.0:49154->19560/tcp,:::49154->19560/tcp, 0.0.0.0:49160->9559/

tcp,:::49160->9559/tcp, 9560/tcp

nebula-docker-compose_metad1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49156->19559/tcp,:::49156->19559/tcp, 0.0.0.0:49153->19560/tcp,:::49153->19560/tcp, 0.0.0.0:49159->9559/

tcp,:::49159->9559/tcp, 9560/tcp

nebula-docker-compose_metad2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49158->19559/tcp,:::49158->19559/tcp, 0.0.0.0:49155->19560/tcp,:::49155->19560/tcp, 0.0.0.0:49161->9559/

tcp,:::49161->9559/tcp, 9560/tcp

nebula-docker-compose_storaged0_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49166->19779/tcp,:::49166->19779/tcp, 0.0.0.0:49163->19780/tcp,:::49163->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49169->9779/tcp,:::49169->9779/tcp, 9780/tcp

nebula-docker-compose_storaged1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49165->19779/tcp,:::49165->19779/tcp, 0.0.0.0:49162->19780/tcp,:::49162->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49168->9779/tcp,:::49168->9779/tcp, 9780/tcp

nebula-docker-compose_storaged2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49167->19779/tcp,:::49167->19779/tcp, 0.0.0.0:49164->19780/tcp,:::49164->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49170->9779/tcp,:::49170->9779/tcp, 9780/tcp

[nebula-docker-compose]$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

2a6c56c405f5 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49230->9669/tcp, 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/

tcp nebula-docker-compose_graphd2_1

7042e0a8e83d vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49227->9779/tcp, 0.0.0.0:49226->19779/

tcp, 0.0.0.0:49225->19780/tcp nebula-docker-compose_storaged2_1

18e3ea63ad65 vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49219->9779/tcp, 0.0.0.0:49218->19779/

tcp, 0.0.0.0:49217->19780/tcp nebula-docker-compose_storaged0_1

4dcabfe8677a vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49224->9669/tcp, 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/

tcp nebula-docker-compose_graphd1_1

a74054c6ae25 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:9669->9669/tcp, 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/

tcp nebula-docker-compose_graphd_1

880025a3858c vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49216->9779/tcp, 0.0.0.0:49215->19779/

tcp, 0.0.0.0:49214->19780/tcp nebula-docker-compose_storaged1_1

45736a32a23a vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49213->9559/tcp, 0.0.0.0:49212->19559/tcp, 0.

0.0.0:49211->19560/tcp nebula-docker-compose_metad0_1

3b2c90eb073e vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49207->9559/tcp, 0.0.0.0:49206->19559/tcp, 0.

0.0.0:49205->19560/tcp nebula-docker-compose_metad2_1

7bb31b7a5b3f vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49210->9559/tcp, 0.0.0.0:49209->19559/tcp, 0.

0.0.0:49208->19560/tcp nebula-docker-compose_metad1_1

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash

[root@2a6c56c405f5 nebula]#

nebula-docker-compose/

 |-- docker-compose.yaml

 ├── data

 │ ├── meta0

 │ ├── meta1

 │ ├── meta2

 │ ├── storage0

 │ ├── storage1

 │ └── storage2

5.5.4 Check the NebulaGraph service status and ports

- 366/804 - 2023 Vesoft Inc.

5.5.6 Stop the NebulaGraph services

You can run the following command to stop the NebulaGraph services:

The following information indicates you have successfully stopped the NebulaGraph services:

The parameter -v in the command docker-compose down -v will delete all your local NebulaGraph storage data. Try this command if you

are using the nightly release and having some compatibility issues.

5.5.7 Modify configurations

The configuration file of NebulaGraph deployed by Docker Compose is nebula-docker-compose/docker-compose.yaml . To make the new

configuration take effect, modify the configuration in this file and restart the service.

For more instructions, see Configurations.

5.5.8 FAQ

How to fix the docker mapping to external ports?

To set the ports of corresponding services as fixed mapping, modify the docker-compose.yaml in the nebula-docker-compose directory. For

example:

9669:9669 indicates the internal port 9669 is uniformly mapped to external ports, while 19669 indicates the internal port 19669 is

randomly mapped to external ports.

 └── logs

 ├── graph

 ├── graph1

 ├── graph2

 ├── meta0

 ├── meta1

 ├── meta2

 ├── storage0

 ├── storage1

 └── storage2

$ docker-compose down

Stopping nebula-docker-compose_console_1 ... done

Stopping nebula-docker-compose_graphd1_1 ... done

Stopping nebula-docker-compose_graphd_1 ... done

Stopping nebula-docker-compose_graphd2_1 ... done

Stopping nebula-docker-compose_storaged1_1 ... done

Stopping nebula-docker-compose_storaged0_1 ... done

Stopping nebula-docker-compose_storaged2_1 ... done

Stopping nebula-docker-compose_metad2_1 ... done

Stopping nebula-docker-compose_metad0_1 ... done

Stopping nebula-docker-compose_metad1_1 ... done

Removing nebula-docker-compose_console_1 ... done

Removing nebula-docker-compose_graphd1_1 ... done

Removing nebula-docker-compose_graphd_1 ... done

Removing nebula-docker-compose_graphd2_1 ... done

Removing nebula-docker-compose_storaged1_1 ... done

Removing nebula-docker-compose_storaged0_1 ... done

Removing nebula-docker-compose_storaged2_1 ... done

Removing nebula-docker-compose_metad2_1 ... done

Removing nebula-docker-compose_metad0_1 ... done

Removing nebula-docker-compose_metad1_1 ... done

Removing network nebula-docker-compose_nebula-net

Danger

graphd:

 image: vesoft/nebula-graphd:release-3.6

 ...

 ports:

 - 9669:9669

 - 19669

 - 19670

5.5.6 Stop the NebulaGraph services

- 367/804 - 2023 Vesoft Inc.

How to upgrade or update the docker images of NebulaGraph services?

In the nebula-docker-compose/docker-compose.yaml file, change all the image values to the required image version.

In the nebula-docker-compose directory, run docker-compose pull to update the images of the Graph Service, Storage Service, Meta

Service, and NebulaGraph Console.

Run docker-compose up -d to start the NebulaGraph services again.

After connecting to NebulaGraph with NebulaGraph Console, run SHOW HOSTS GRAPH , SHOW HOSTS STORAGE , or SHOW HOSTS META to check the

version of the responding service respectively.

ERROR: toomanyrequests when docker-compose pull

You may meet the following error.

ERROR: toomanyrequests: You have reached your pull rate limit. You may increase the limit by authenticating and upgrading: https://www.docker.com/increase-

rate-limit .

You have met the rate limit of Docker Hub. Learn more on Understanding Docker Hub Rate Limiting.

How to update the NebulaGraph Console client?

The command docker-compose pull updates both the NebulaGraph services and the NebulaGraph Console.

How to activate storaged containers when they remain in offline status?

The activation script for storaged containers in Docker Compose may fail to run in rare cases. You can connect to NebulaGraph

with NebulaGraph Console or NebulaGraph Studio and then manually run the ADD HOSTS command to activate them by adding the

storaged containers to the cluster. An example of the command is as follows:

5.5.9 Related documents

Install and deploy NebulaGraph with the source code

Install NebulaGraph by RPM or DEB

Connect to NebulaGraph

1.

2.

3.

4.

nebula> ADD HOSTS "storaged0":9779,"storaged1":9779,"storaged2":9779

•

•

•

Last update: February 19, 2024

5.5.9 Related documents

- 368/804 - 2023 Vesoft Inc.

https://www.docker.com/increase-rate-limit

5.6 Deploy NebulaGraph with NebulaGraph Lite

Using NebulaGraph Lite can quickly deploy NebulaGraph and start experiencing NebulaGraph in just five minutes. It is ideal for

ad-hoc development and learning NebulaGraph.

5.6.1 Benefits

Quick installation of NebulaGraph Lite through the Python package management tool.

NebulaGraph Lite supports the deployment of NebulaGraph with non-root permission.

NebulaGraph Lite supports the deployment of NebulaGraph in containers or any Jupyter Notebook platform on Linux-based

systems.

5.6.2 Steps

Run the following statement to install NebulaGraph Lite.

Start NebulaGraph Lite. NebulaGraph Lite automatically deploys and starts a single-node NebulaGraph service, and imports a test

dataset.

Start from Jupyter Notebook

Start from the command line

The following result is returned indicating that the startup and import of the test dataset was successful.

5.6.3 What's next

Connect to NebulaGraph with NebulaGraph Jupyter Extension.

Connect to NebulaGraph with NebulaGraph Console.

•

•

•

1.

pip3 install nebulagraph-lite

2.

•

from nebulagraph_lite import nebulagraph_let as ng_let

n = ng_let()

n.start()

•

nebulagraph start

Info: loading basketballplayer dataset...

 _ _ _ _ ____ _

 | \ | | ___| |__ _ _| | __ _ / ___|_ __ __ _ _ __ | |__

 | \| |/ _ | '_ \| | | | |/ _` | | _| '__/ _` | '_ \| '_ \

 | |\ | __| |_) | |_| | | (_| | |_| | | | (_| | |_) | | | |

 |_| _|___|_.__/ __,_|_|__,_|____|_| __,_| .__/|_| |_|

 |_|

 lite version

[OK] nebulagraph_lite started successfully!

•

•

Last update: April 15, 2024

5.6 Deploy NebulaGraph with NebulaGraph Lite

- 369/804 - 2023 Vesoft Inc.

https://github.com/nebula-contrib/nebulagraph-lite
https://jupyter-nebulagraph.readthedocs.io/en/latest/

5.7 Install NebulaGraph with ecosystem tools

You can install the NebulaGraph Community Edition with the following ecosystem tools:

NebulaGraph Operator

5.7.1 Installation details

To install NebulaGraph with NebulaGraph Operator, see Install NebulaGraph clusters.

•

•

Last update: November 15, 2023

5.7 Install NebulaGraph with ecosystem tools

- 370/804 - 2023 Vesoft Inc.

5.8 Manage NebulaGraph Service

NebulaGraph supports managing services with scripts.

5.8.1 Manage services with script

You can use the nebula.service script to start, stop, restart, terminate, and check the NebulaGraph services.

nebula.service is stored in the /usr/local/nebula/scripts directory by default. If you have customized the path, use the actual path in your

environment.

Syntax

5.8.2 Start NebulaGraph

Run the following command to start NebulaGraph.

5.8.3 Stop NebulaGraph

Do not run kill -9 to forcibly terminate the processes. Otherwise, there is a low probability of data loss.

Note

$ sudo /usr/local/nebula/scripts/nebula.service

[-v] [-c <config_file_path>]

<start | stop | restart | kill | status>

<metad | graphd | storaged | all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the NebulaGraph services as the target services.

$ sudo /usr/local/nebula/scripts/nebula.service start all

[INFO] Starting nebula-metad...

[INFO] Done

[INFO] Starting nebula-graphd...

[INFO] Done

[INFO] Starting nebula-storaged...

[INFO] Done

Danger

5.8 Manage NebulaGraph Service

- 371/804 - 2023 Vesoft Inc.

Run the following command to stop NebulaGraph.

5.8.4 Check the service status

Run the following command to check the service status of NebulaGraph.

NebulaGraph is running normally if the following information is returned.

After starting NebulaGraph, the port of the nebula-storaged process is shown in red. Because the nebula-storaged process waits for the

nebula-metad to add the current Storage service during the startup process. The Storage works after it receives the ready signal.

Starting from NebulaGraph 3.0.0, the Meta service cannot directly read or write data in the Storage service that you add in the

configuration file. The configuration file only registers the Storage service to the Meta service. You must run the ADD HOSTS

command to enable the Meta to read and write data in the Storage service. For more information, see Manage Storage hosts.

If the returned result is similar to the following one, there is a problem. You may also go to the NebulaGraph community for

help.

The NebulaGraph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the

returned result to troubleshoot problems.

5.8.5 Next to do

Connect to NebulaGraph

$ sudo /usr/local/nebula/scripts/nebula.service stop all

[INFO] Stopping nebula-metad...

[INFO] Done

[INFO] Stopping nebula-graphd...

[INFO] Done

[INFO] Stopping nebula-storaged...

[INFO] Done

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

INFO] nebula-metad(33fd35e): Running as 29020, Listening on 9559

[INFO] nebula-graphd(33fd35e): Running as 29095, Listening on 9669

[WARN] nebula-storaged after v3.0.0 will not start service until it is added to cluster.

[WARN] See Manage Storage hosts:ADD HOSTS in https://docs.nebula-graph.io/

[INFO] nebula-storaged(33fd35e): Running as 29147, Listening on 9779

Note

•

[INFO] nebula-metad: Running as 25600, Listening on 9559

[INFO] nebula-graphd: Exited

[INFO] nebula-storaged: Running as 25646, Listening on 9779

Last update: October 25, 2023

5.8.4 Check the service status

- 372/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions
https://docs.nebula-graph.io/3.6.0/2.quick-start/3.connect-to-nebula-graph/

5.9 Connect to NebulaGraph

This topic provides basic instruction on how to use the native CLI client NebulaGraph Console to connect to NebulaGraph.

When connecting to NebulaGraph for the first time, you must register the Storage Service before querying data.

NebulaGraph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. For more information, see the client list.

5.9.1 Prerequisites

You have started NebulaGraph services.

The machine on which you plan to run NebulaGraph Console has network access to the Graph Service of NebulaGraph.

The NebulaGraph Console version is compatible with the NebulaGraph version.

NebulaGraph Console and NebulaGraph of the same version number are the most compatible. There may be compatibility issues

when connecting to NebulaGraph with a different version of NebulaGraph Console. The error message incompatible version between

client and server is displayed when there is such an issue.

Steps

On the NebulaGraph Console releases page, select a NebulaGraph Console version and click Assets.

It is recommended to select the latest version.

In the Assets area, find the correct binary file for the machine where you want to run NebulaGraph Console and download the file

to the machine.

(Optional) Rename the binary file to nebula-console for convenience.

For Windows, rename the file to nebula-console.exe .

On the machine to run NebulaGraph Console, grant the execute permission of the nebula-console binary file to the user.

For Windows, skip this step.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Caution

•

•

•

Note

1.

Note

2.

3.

Note

4.

Note

$ chmod 111 nebula-console

5.

5.9 Connect to NebulaGraph

- 373/804 - 2023 Vesoft Inc.

https://docs.nebula-graph.io/3.6.0/4.deployment-and-installation/manage-service/
https://github.com/vesoft-inc/nebula-console/releases

Run the following command to connect to NebulaGraph.

For Linux or macOS:

For Windows:

Parameter descriptions are as follows:

For information on more parameters, see the project repository.

6.

•

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

•

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

Parameter Description

-h/-help Shows the help menu.

-addr/-address Sets the IP (or hostname) of the Graph service. The default address is 127.0.0.1.

-P/-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your NebulaGraph account. Before enabling authentication, you can use any existing

username. The default username is root .

-p/-password Sets the password of your NebulaGraph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is millisecond. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

The result will be returned and the connection stops then.

-enable_ssl Enables SSL encryption when connecting to NebulaGraph.

-ssl_root_ca_path Sets the storage path of the certification authority file.

-ssl_cert_path Sets the storage path of the certificate file.

-

ssl_private_key_path

Sets the storage path of the private key file.

Last update: October 25, 2023

5.9.1 Prerequisites

- 374/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/release-3.6

5.10 Manage Storage hosts

Starting from NebulaGraph 3.0.0, setting Storage hosts in the configuration files only registers the hosts on the Meta side, but

does not add them into the cluster. You must run the ADD HOSTS statement to add the Storage hosts.

NebulaGraph Cloud clusters add Storage hosts automatically. Cloud users do not need to manually run ADD HOSTS .

5.10.1 Prerequisites

You have connected to the NebulaGraph database.

5.10.2 Add Storage hosts

Add the Storage hosts to a NebulaGraph cluster.

To make sure the follow-up operations work as expected, wait for two heartbeat cycles, i.e., 20 seconds, and then run SHOW HOSTS to

check whether the host is online.

Make sure that the IP address and port number are the same as those in the configuration file. For example, the default IP address

and port number in standalone deployment are 127.0.0.1:9779 .

When using a domain name, enclose it in quotation marks, for example, ADD HOSTS "foo-bar":9779 .

Ensure that the storage host to be added is not used by any other cluster, otherwise, the storage adding operation will fail.

5.10.3 Drop Storage hosts

Delete the Storage hosts from cluster.

You can not delete an in-use Storage host directly. Delete the associated graph space before deleting the Storage host.

5.10.4 View Storage hosts

View the Storage hosts in the cluster.

Note

•

nebula> ADD HOSTS <ip>:<port> [,<ip>:<port> ...];

nebula> ADD HOSTS "<hostname>":<port> [,"<hostname>":<port> ...];

Note

•

•

•

•

Note

nebula> DROP HOSTS <ip>:<port> [,<ip>:<port> ...];

nebula> DROP HOSTS "<hostname>":<port> [,"<hostname>":<port> ...];

nebula> SHOW HOSTS STORAGE;

+-------------+------+----------+-----------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-------------+------+----------+-----------+--------------+---------+

| "storaged0" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.6.0" |

| "storaged1" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.6.0" |

| "storaged2" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.6.0" |

+-------------+------+----------+-----------+--------------+---------+

5.10 Manage Storage hosts

- 375/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

5.10.4 View Storage hosts

- 376/804 - 2023 Vesoft Inc.

5.11 Upgrade NebulaGraph to 3.6.0

This topic describes how to upgrade NebulaGraph from version 2.x and 3.x to 3.6.0, taking upgrading from version 2.6.1 to 3.6.0

as an example.

5.11.1 Applicable source versions

This topic applies to upgrading NebulaGraph from 2.5.0 and later 2.x, and 3.x versions to 3.6.0. It does not apply to historical

versions earlier than 2.5.0, including the 1.x versions.

To upgrade NebulaGraph from historical versions to 3.6.0:

Upgrade it to the latest 2.5 version according to the docs of that version.

Follow this topic to upgrade it to 3.6.0.

To upgrade NebulaGraph from versions earlier than 2.0.0 (including the 1.x versions) to 3.6.0, you need to find the

date_time_zonespec.csv in the share/resources directory of 3.6.0 files, and then copy it to the same directory in the NebulaGraph

installation path.

5.11.2 Limitations

Rolling Upgrade is not supported. You must stop all the NebulaGraph services before the upgrade.

There is no upgrade script. You have to manually upgrade each server in the cluster.

This topic does not apply to scenarios where NebulaGraph is deployed with Docker, including Docker Swarm, Docker

Compose, and K8s.

You must upgrade the old NebulaGraph services on the same machines they are deployed. DO NOT change the IP addresses,

configuration files of the machines, and DO NOT change the cluster topology.

Known issues that could cause data loss are listed on GitHub known issues. The issues are all related to altering schema or

default values.

DO NOT use soft links to switch the data directories.

You must have the sudo privileges to complete the steps in this topic.

5.11.3 Upgrade influences

Client compatibility

1.

2.

Caution

•

•

•

•

•

•

•

•

5.11 Upgrade NebulaGraph to 3.6.0

- 377/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/857

After the upgrade, you will not be able to connect to NebulaGraph from old clients. You will need to upgrade all clients to a

version compatible with NebulaGraph 3.6.0.

Configuration changes

A few configuration parameters have been changed. For more information, see the release notes and configuration docs.

nGQL compatibility

The nGQL syntax is partially incompatible:

Disable the YIELD clause to return custom variables.

The YIELD clause is required in the FETCH , GO , LOOKUP , FIND PATH and GET SUBGRAPH statements.

It is required to specify a tag to query properties of a vertex in a MATCH statement. For example, from return v.name to return

v.player.name .

Full-text indexes

Before upgrading a NebulaGraph cluster with full-text indexes deployed, you must manually delete the full-text indexes in

Elasticsearch, and then run the SIGN IN command to log into ES and recreate the indexes after the upgrade is complete. To

manually delete the full-text indexes in Elasticsearch, you can use the curl command curl -XDELETE -u <es_username>:<es_password>

'<es_access_ip>:<port>/<fullindex_name>' , for example, curl -XDELETE -u elastic:elastic 'http://192.168.8.xxx:9200/nebula_index_2534' . If no

username and password are set for Elasticsearch, you can omit the -u <es_username>:<es_password> part.

There may be other undiscovered influences. Before the upgrade, we recommend that you read the release notes and user manual

carefully, and keep an eye on the posts on the forum and issues on Github.

5.11.4 Preparations before the upgrade

Download the package of NebulaGraph 3.6.0 according to your operating system and system architecture. You need the binary

files during the upgrade. Find the package on the download page.

You can also get the new binaries from the source code or the RPM/DEB package.

Locate the data files based on the value of the data_path parameters in the Storage and Meta configurations, and backup the

data files. The default paths are nebula/data/storage and nebula/data/meta .

The old data will not be automatically backed up during the upgrade. You must manually back up the data to avoid data loss.

Backup the configuration files.

Collect the statistics of all graph spaces before the upgrade. After the upgrade, you can collect again and compare the results

to make sure that no data is lost. To collect the statistics:

Run SUBMIT JOB STATS .

Run SHOW JOBS and record the result.

•

•

•

•

•

•

Caution

•

Note

•

Danger

•

•

a.

b.

5.11.4 Preparations before the upgrade

- 378/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions
https://github.com/vesoft-inc/nebula/issues
https://nebula-graph.io/download/

5.11.5 Upgrade steps

Stop all NebulaGraph services.

nebula_install_path indicates the installation path of NebulaGraph.

The storaged progress needs around 1 minute to flush data. You can run nebula.service status all to check if all services are stopped.

For more information about starting and stopping services, see Manage services.

If the services are not fully stopped in 20 minutes, stop upgrading and ask for help on the forum or Github.

Starting from version 3.0.0, it is possible to insert vertices without tags. If you need to keep vertices without tags, add --

graph_use_vertex_key=true in the configuration file (nebula-graphd.conf) of all Graph services within the cluster; and add --use_vertex_key=true in

the configuration file (nebula-storaged.conf) of all Storage services."

In the target path where you unpacked the package, use the binaries in the bin directory to replace the old binaries in the bin

directory in the NebulaGraph installation path.

Update the binary of the corresponding service on each NebulaGraph server.

Modify the following parameters in all Graph configuration files to accommodate the value range of the new version. If the

parameter values are within the specified range, skip this step.

Set a value in [1,604800] for session_idle_timeout_secs . The recommended value is 28800.

Set a value in [1,604800] for client_idle_timeout_secs . The recommended value is 28800.

The default values of these parameters in the 2.x versions are not within the range of the new version. If you do not change the

default values, the upgrade will fail. For detailed parameter description, see Graph Service Configuration.

Start all Meta services.

Once started, the Meta services take several seconds to elect a leader.

To verify that Meta services are all started, you can start any Graph server, connect to it through NebulaGraph Console, and run

SHOW HOSTS meta and SHOW META LEADER . If the status of Meta services are correctly returned, the services are successfully started.

If the operation fails, stop the upgrade and ask for help on the forum or GitHub.

Start all the Graph and Storage services.

If the operation fails, stop the upgrade and ask for help on the forum or GitHub.

1.

<nebula_install_path>/scripts/nebula.service stop all

Note

Caution

2.

Note

3.

•

•

4.

<nebula_install_path>/scripts/nebula-metad.service start

Note

5.

Note

5.11.5 Upgrade steps

- 379/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions
https://github.com/vesoft-inc/nebula/issues
https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues
https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues

Connect to the new version of NebulaGraph to verify that services are available and data are complete. For how to connect, see

Connect to NebulaGraph.

Currently, there is no official way to check whether the upgrade is successful. You can run the following reference statements to

test the upgrade:

You can also test against new features in version 3.6.0.

5.11.6 Upgrade failure and rollback

If the upgrade fails, stop all NebulaGraph services of the new version, recover the old configuration files and binaries, and start

the services of the old version.

All NebulaGraph clients in use must be switched to the old version.

5.11.7 FAQ

Can I write through the client during the upgrade?

A: No. You must stop all NebulaGraph services during the upgrade.

The Space 0 not found warning message during the upgrade process

When the Space 0 not found warning message appears during the upgrade process, you can ignore it. The space 0 is used to store

meta information about the Storage service and does not contain user data, so it will not affect the upgrade.

How to upgrade if a machine has only the Graph Service, but not the Storage Service?

A: You only need to update the configuration files and binaries of the Graph Service.

How to resolve the error Permission denied ?

A: Try again with the sudo privileges.

Is there any change in gflags?

A: Yes. For more information, see the release notes and configuration docs.

Is there a tool or solution for verifying data consistency after the upgrade?

A: No. But if you only want to check the number of vertices and edges, run SUBMIT JOB STATS and SHOW STATS after the upgrade, and

compare the result with the result that you recorded before the upgrade.

How to solve the issue that Storage is OFFLINE and Leader count is 0 ?

A: Run the following statement to add the Storage hosts into the cluster manually.

For example:

6.

nebula> SHOW HOSTS;

nebula> SHOW HOSTS storage;

nebula> SHOW SPACES;

nebula> USE <space_name>

nebula> SHOW PARTS;

nebula> SUBMIT JOB STATS;

nebula> SHOW STATS;

nebula> MATCH (v) RETURN v LIMIT 5;

ADD HOSTS <ip>:<port>[, <ip>:<port> ...];

ADD HOSTS 192.168.10.100:9779, 192.168.10.101:9779, 192.168.10.102:9779;

5.11.6 Upgrade failure and rollback

- 380/804 - 2023 Vesoft Inc.

If the issue persists, ask for help on the forum or GitHub.

Why the job type changed after the upgrade, but job ID remains the same?

A: SHOW JOBS depends on an internal ID to identify job types, but in NebulaGraph 2.5.0 the internal ID changed in this pull request,

so this issue happens after upgrading from a version earlier than 2.5.0.

Last update: October 25, 2023

5.11.7 FAQ

- 381/804 - 2023 Vesoft Inc.

https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc/nebula-common/pull/562/files

5.12 Uninstall NebulaGraph

This topic describes how to uninstall NebulaGraph.

Before re-installing NebulaGraph on a machine, follow this topic to completely uninstall the old NebulaGraph, in case the remaining

data interferes with the new services, including inconsistencies between Meta services.

5.12.1 Prerequisite

The NebulaGraph services should be stopped before the uninstallation. For more information, see Manage NebulaGraph services.

5.12.2 Step 1: Delete data files of the Storage and Meta Services

If you have modified the data_path in the configuration files for the Meta Service and Storage Service, the directories where

NebulaGraph stores data may not be in the installation path of NebulaGraph. Check the configuration files to confirm the data

paths, and then manually delete the directories to clear all data.

For a NebulaGraph cluster, delete the data files of all Storage and Meta servers.

Check the Storage Service disk settings. For example:

Check the Metad Service configurations and find the corresponding metadata directories.

Delete the data and the directories found in step 2.

5.12.3 Step 2: Delete the installation directories

Delete all installation directories, including the cluster.id file in them.

The default installation path is /usr/local/nebula , which is specified by --prefix while installing NebulaGraph.

Uninstall NebulaGraph deployed with source code

Find the installation directories of NebulaGraph, and delete them all.

Uninstall NebulaGraph deployed with RPM packages

Run the following command to get the NebulaGraph version.

The return message is as follows.

Caution

Note

1.

########## Disk ##########

Root data path. Split by comma. e.g. --data_path=/disk1/path1/,/disk2/path2/

One path per Rocksdb instance.

--data_path=/nebula/data/storage

2.

3.

Note

1.

$ rpm -qa | grep "nebula"

5.12 Uninstall NebulaGraph

- 382/804 - 2023 Vesoft Inc.

Run the following command to uninstall NebulaGraph.

For example:

Delete the installation directories.

Uninstall NebulaGraph deployed with DEB packages

Run the following command to get the NebulaGraph version.

The return message is as follows.

Run the following command to uninstall NebulaGraph.

For example:

Delete the installation directories.

Uninstall NebulaGraph deployed with Docker Compose

In the nebula-docker-compose directory, run the following command to stop the NebulaGraph services.

Delete the nebula-docker-compose directory.

nebula-graph-3.6.0-1.x86_64

2.

sudo rpm -e <nebula_version>

sudo rpm -e nebula-graph-3.6.0-1.x86_64

3.

1.

$ dpkg -l | grep "nebula"

ii nebula-graph 3.6.0 amd64 NebulaGraph Package built using CMake

2.

sudo dpkg -r <nebula_version>

sudo dpkg -r nebula-graph

3.

1.

docker-compose down -v

2.

Last update: November 3, 2023

5.12.3 Step 2: Delete the installation directories

- 383/804 - 2023 Vesoft Inc.

6. Configure and log

6.1 Configurations

6.1.1 Configurations

NebulaGraph builds the configurations based on the gflags repository. Most configurations are flags. When the NebulaGraph

service starts, it will get the configuration information from Configuration files by default. Configurations that are not in the file

apply the default values.

Because there are many configurations and they may change as NebulaGraph develops, this topic will not introduce all

configurations. To get detailed descriptions of configurations, follow the instructions below.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

In the topic of 1.x, we provide a method of using the CONFIGS command to modify the configurations in the cache. However, using this

method in a production environment can easily cause inconsistencies of configurations between clusters and the local. Therefore,

this method will no longer be introduced starting with version 2.x.

Get the configuration list and descriptions

Use the following command to get all the configuration information of the service corresponding to the binary file:

For example:

The above examples use the default storage path /usr/local/nebula/bin/ . If you modify the installation path of NebulaGraph, use the

actual path to query the configurations.

Get configurations

Use the curl command to get the value of the running configurations.

For example:

Note

•

•

Legacy version compatibility

<binary> --help

Get the help information from Meta

$ /usr/local/nebula/bin/nebula-metad --help

Get the help information from Graph

$ /usr/local/nebula/bin/nebula-graphd --help

Get the help information from Storage

$ /usr/local/nebula/bin/nebula-storaged --help

Get the running configurations from Meta

curl 127.0.0.1:19559/flags

Get the running configurations from Graph

curl 127.0.0.1:19669/flags

Get the running configurations from Storage

curl 127.0.0.1:19779/flags

6. Configure and log

- 384/804 - 2023 Vesoft Inc.

https://gflags.github.io/gflags/

Utilizing the -s or `-silent option allows for the concealment of the progress bar and error messages. For example:

In an actual environment, use the real IP (or hostname) instead of 127.0.0.1 in the above example.

Configuration files

CONFIGURATION FILES FOR CLUSTERS INSTALLED FROM SOURCE, WITH AN RPM/DEB PACKAGE, OR A TAR PACKAGE

NebulaGraph provides two initial configuration files for each service, <service_name>.conf.default and <service_name>.conf.production . You

can use them in different scenarios conveniently. For clusters installed from source and with a RPM/DEB package, the default

path is /usr/local/nebula/etc/ . For clusters installed with a TAR package, the path is <install_path>/<tar_package_directory>/etc .

The configuration values in the initial configuration file are for reference only and can be adjusted according to actual needs. To

use the initial configuration file, choose one of the above two files and delete the suffix .default or .production to make it valid.

To ensure the availability of services, it is recommended that configurations for the same service be consistent, except for local_ip .

For example, three Storage servers are deployed in one NebulaGraph cluster. The configurations of the three Storage servers are

recommended to be consistent, except for local_ip .

The initial configuration files corresponding to each service are as follows.

Each initial configuration file of all services contains local_config . The default value is true , which means that the NebulaGraph

service will get configurations from its configuration files and start it.

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

CONFIGURATION FILES FOR CLUSTERS INSTALLED WITH DOCKER COMPOSE

For clusters installed with Docker Compose, the configuration file's default installation path of the cluster is <install_path>/nebula-

docker-compose/docker-compose.yaml . The parameters in the command field of the file are the launch parameters for each service.

CONFIGURATION FILES FOR CLUSTERS INSTALLED WITH NEBULAGRAPH OPERATOR

For clusters installed with Kubectl through NebulaGraph Operator, the configuration file's path is the path of the cluster YAML

file. You can modify the configuration of each service through the spec.{graphd|storaged|metad}.config parameter.

The services cannot be configured for clusters installed with Helm.

curl -s 127.0.0.1:19559/flags

Note

Note

NebulaGraph service Initial configuration file Description

Meta nebula-metad.conf.default and nebula-metad.conf.production Meta service configuration

Graph nebula-graphd.conf.default and nebula-graphd.conf.production Graph service configuration

Storage nebula-storaged.conf.default and nebula-storaged.conf.production Storage service configuration

Caution

Note

6.1.1 Configurations

- 385/804 - 2023 Vesoft Inc.

Modify configurations

You can modify the configurations of NebulaGraph in the configuration file or use commands to dynamically modify

configurations.

Using both methods to modify the configuration can cause the configuration information to be managed inconsistently, which may

result in confusion. It is recommended to only use the configuration file to manage the configuration, or to make the same

modifications to the configuration file after dynamically updating the configuration through commands to ensure consistency.

MODIFYING CONFIGURATIONS IN THE CONFIGURATION FILE

By default, each NebulaGraph service gets configured from its configuration files. You can modify configurations and make them

valid according to the following steps:

For clusters installed from source, with a RPM/DEB, or a TAR package

Use a text editor to modify the configuration files of the target service and save the modification.

Choose an appropriate time to restart all NebulaGraph services to make the modifications valid.

For clusters installed with Docker Compose

In the <install_path>/nebula-docker-compose/docker-compose.yaml file, modify the configurations of the target service.

In the nebula-docker-compose directory, run the command docker-compose up -d to restart the service involving configuration

modifications.

For clusters installed with Kubectl

For details, see Customize configuration parameters for a NebulaGraph cluster.

DYNAMICALLY MODIFYING CONFIGURATIONS USING COMMAND

You can dynamically modify the configuration of NebulaGraph by using the curl command. For example, to modify the wal_ttl

parameter of the Storage service to 600 , use the following command:

In this command, {"wal_ttl":"600"} specifies the configuration parameter and its value to be modified, and 192.168.15.6:19779

specifies the IP address and HTTP port number of the Storage service.

The functionality of dynamically modifying configurations is only applicable to prototype verification and testing environments. It is

not recommended to use this feature in production environments. This is because when the local_config value is set to true , the

dynamically modified configuration is not persisted, and the configuration will be restored to the initial configuration after the

service is restarted.

Only part of the configuration parameters can be dynamically modified. For the specific list of parameters that can be modified, see

the description of Whether supports runtime dynamic modifications in the respective service configuration.

Caution

•

a.

b.

•

a.

b.

•

curl -X PUT -H "Content-Type: application/json" -d'{"wal_ttl":"600"}' -s "http://192.168.15.6:19779/flags"

Caution

•

•

Last update: November 22, 2023

6.1.1 Configurations

- 386/804 - 2023 Vesoft Inc.

6.1.2 Meta Service configuration

NebulaGraph provides two initial configuration files for the Meta service, nebula-metad.conf.default and nebula-metad.conf.production .

Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, NebulaGraph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-metad.conf.default .

Some parameter values in the configuration file can be dynamically modified during runtime. We label these parameters as Yes that

supports runtime dynamic modification in this article. When the local_config value is set to true , the dynamically modified

configuration is not persisted, and the configuration will be restored to the initial configuration after the service is restarted. For

more information, see Modify configurations.

For all parameters and their current values, see Configurations.

Basics configurations

Caution

•

•

Caution

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

daemonize true When set to true , the process is a daemon process. No

pid_file pids/nebula-

metad.pid

The file that records the process ID. No

timezone_name - Specifies the NebulaGraph time zone. This parameter is not

predefined in the initial configuration files. You can manually

set it if you need it. The system default value is UTC+00:00:00 .

For the format of the parameter value, see Specifying the

Time Zone with TZ. For example, --timezone_name=UTC+08:00

represents the GMT+8 time zone.

No

6.1.2 Meta Service configuration

- 387/804 - 2023 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

While inserting property values of time types, NebulaGraph transforms time types (except TIMESTAMP) to the corresponding UTC

according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC time.

timezone_name is only used to transform the data stored in NebulaGraph. Other time-related data of the NebulaGraph processes still

uses the default time zone of the host, such as the log printing time.

Logging configurations

Note

•

•

Name Predefined

value

Description Whether

supports runtime

dynamic

modifications

log_dir logs The directory that stores the Meta Service log. It is

recommended to put logs on a different hard disk

from the data.

No

minloglevel 0 Specifies the minimum level of the log. That is, log

messages at or above this level. Optional values are

0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It

is recommended to set it to 0 during debugging and

1 in a production environment. If it is set to 4 ,

NebulaGraph will not print any logs.

Yes

v 0 Specifies the detailed level of VLOG. That is, log all

VLOG messages less or equal to the level. Optional

values are 0 , 1 , 2 , 3 , 4 , 5 . The VLOG macro

provided by glog allows users to define their own

numeric logging levels and control verbose

messages that are logged with the parameter v . For

details, see Verbose Logging.

Yes

logbufsecs 0 Specifies the maximum time to buffer the logs. If

there is a timeout, it will output the buffered log to

the log file. 0 means real-time output. This

configuration is measured in seconds.

No

redirect_stdout true When set to true , the process redirects the stdout

and stderr to separate output files.

No

stdout_log_file metad-

stdout.log

Specifies the filename for the stdout log. No

stderr_log_file metad-

stderr.log

Specifies the filename for the stderr log. No

stderrthreshold 3 Specifies the minloglevel to be copied to the stderr

log.

No

timestamp_in_logfile_name true Specifies if the log file name contains a timestamp.

true indicates yes, false indicates no.

No

6.1.2 Meta Service configuration

- 388/804 - 2023 Vesoft Inc.

https://github.com/google/glog#verbose-logging

Networking configurations

It is recommended to use a real IP when using IP address. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Storage configurations

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

meta_server_addrs 127.0.0.1:9559 Specifies the IPs (or hostnames) and ports of all

Meta Services. Multiple addresses are separated

with commas.

No

local_ip 127.0.0.1 Specifies the local IP (or hostname) for the Meta

Service. The local IP address is used to identify the

nebula-metad process. If it is a distributed cluster or

requires remote access, modify it to the

corresponding address.

No

port 9559 Specifies RPC daemon listening port of the Meta

service. The neighboring +1 (9560) port is used for

Raft communication between Meta services.

No

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service. No

ws_http_port 19559 Specifies the port for the HTTP service. No

ws_storage_http_port 19779 Specifies the Storage service listening port used by

the HTTP protocol. It must be consistent with the

ws_http_port in the Storage service configuration file.

This parameter only applies to standalone

NebulaGraph.

No

Caution

Name Predefined

Value

Description Whether supports runtime dynamic

modifications

data_path data/meta The storage path for Meta

data.

No

6.1.2 Meta Service configuration

- 389/804 - 2023 Vesoft Inc.

Misc configurations

RocksDB options configurations

Name Predefined

Value

Description Whether supports

runtime dynamic

modifications

default_parts_num 10 Specifies the default partition number when

creating a new graph space.

No

default_replica_factor 1 Specifies the default replica number when

creating a new graph space.

No

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make

sure the heartbeat_interval_secs values for all

services are the same, otherwise NebulaGraph

CANNOT work normally. This configuration is

measured in seconds.

Yes

agent_heartbeat_interval_secs 60 Specifies the default heartbeat interval for the

Agent service. This configuration influences the

time it takes for the system to determine that

the Agent service is offline. This configuration is

measured in seconds.

No

Name Predefined

Value

Description Whether supports runtime

dynamic modifications

rocksdb_wal_sync true Enables or disables RocksDB WAL

synchronization. Available values are true

(enable) and false (disable).

No

Last update: April 7, 2024

6.1.2 Meta Service configuration

- 390/804 - 2023 Vesoft Inc.

6.1.3 Graph Service configuration

NebulaGraph provides two initial configuration files for the Graph Service, nebula-graphd.conf.default and nebula-graphd.conf.production .

Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, NebulaGraph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-metad.conf.default .

Some parameter values in the configuration file can be dynamically modified during runtime. We label these parameters as Yes that

supports runtime dynamic modification in this article. When the local_config value is set to true , the dynamically modified

configuration is not persisted, and the configuration will be restored to the initial configuration after the service is restarted. For

more information, see Modify configurations.

For all parameters and their current values, see Configurations.

Caution

•

•

Caution

6.1.3 Graph Service configuration

- 391/804 - 2023 Vesoft Inc.

Basics configurations

While inserting property values of time types, NebulaGraph transforms time types (except TIMESTAMP) to the corresponding UTC

according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC time.

timezone_name is only used to transform the data stored in NebulaGraph. Other time-related data of the NebulaGraph processes still

uses the default time zone of the host, such as the log printing time.

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

daemonize true When set to true , the process is a daemon process. No

pid_file pids/nebula-

graphd.pid

The file that records the process ID. No

enable_optimizer true When set to true , the optimizer is enabled. No

timezone_name - Specifies the NebulaGraph time zone. This parameter is

not predefined in the initial configuration files. The system

default value is UTC+00:00:00 . For the format of the

parameter value, see Specifying the Time Zone with TZ.

For example, --timezone_name=UTC+08:00 represents the GMT+8

time zone.

No

default_charset utf8 Specifies the default charset when creating a new graph

space.

No

default_collate utf8_bin Specifies the default collate when creating a new graph

space.

No

local_config true When set to true , the process gets configurations from the

configuration files.

No

Note

•

•

6.1.3 Graph Service configuration

- 392/804 - 2023 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Name Predefined

value

Description Whether

supports runtime

dynamic

modifications

log_dir logs The directory that stores the Graph service log. It is

recommended to put logs on a different hard disk

from the data.

No

minloglevel 0 Specifies the minimum level of the log. That is, log

messages at or above this level. Optional values are

0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It

is recommended to set it to 0 during debugging and

1 in a production environment. If it is set to 4 ,

NebulaGraph will not print any logs.

Yes

v 0 Specifies the detailed level of VLOG. That is, log all

VLOG messages less or equal to the level. Optional

values are 0 , 1 , 2 , 3 , 4 , 5 . The VLOG macro

provided by glog allows users to define their own

numeric logging levels and control verbose

messages that are logged with the parameter v . For

details, see Verbose Logging.

Yes

logbufsecs 0 Specifies the maximum time to buffer the logs. If

there is a timeout, it will output the buffered log to

the log file. 0 means real-time output. This

configuration is measured in seconds.

No

redirect_stdout true When set to true , the process redirects the stdout

and stderr to separate output files.

No

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log. No

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log. No

stderrthreshold 3 Specifies the minloglevel to be copied to the stderr

log.

No

timestamp_in_logfile_name true Specifies if the log file name contains a timestamp.

true indicates yes, false indicates no.

No

6.1.3 Graph Service configuration

- 393/804 - 2023 Vesoft Inc.

https://github.com/google/glog#verbose-logging

Query configurations

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

accept_partial_success false When set to false , the process treats partial

success as an error. This configuration only

applies to read-only requests. Write requests

always treat partial success as an error. A

partial success query will prompt Got partial

result .

Yes

session_reclaim_interval_secs 60 Specifies the interval that the Session

information is sent to the Meta service. This

configuration is measured in seconds.

Yes

max_allowed_query_size 4194304 Specifies the maximum length of queries. Unit:

bytes. The default value is 4194304 , namely

4MB.

Yes

6.1.3 Graph Service configuration

- 394/804 - 2023 Vesoft Inc.

Networking configurations

6.1.3 Graph Service configuration

- 395/804 - 2023 Vesoft Inc.

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

meta_server_addrs 127.0.0.1:9559 Specifies the IPs (or hostnames) and ports of all

Meta Services. Multiple addresses are separated

with commas.

No

local_ip 127.0.0.1 Specifies the local IP (or hostname) for the Graph

Service. The local IP address is used to identify the

nebula-graphd process. If it is a distributed cluster

or requires remote access, modify it to the

corresponding address.

No

listen_netdev any Specifies the listening network device. No

port 9669 Specifies RPC daemon listening port of the Graph

service.

No

reuse_port false When set to false , the SO_REUSEPORT is closed. No

listen_backlog 1024 Specifies the maximum length of the connection

queue for socket monitoring. This configuration

must be modified together with the

net.core.somaxconn .

No

client_idle_timeout_secs 28800 Specifies the time to expire an idle connection. The

value ranges from 1 to 604800. The default is 8

hours. This configuration is measured in seconds.

No

session_idle_timeout_secs 28800 Specifies the time to expire an idle session. The

value ranges from 1 to 604800. The default is 8

hours. This configuration is measured in seconds.

No

num_accept_threads 1 Specifies the number of threads that accept

incoming connections.

No

num_netio_threads 0 Specifies the number of networking IO threads. 0

is the number of CPU cores.

No

num_max_connections 0 Max active connections for all networking threads.

0 means no limit.

Max connections for each networking thread =

num_max_connections / num_netio_threads

No

num_worker_threads 0 Specifies the number of threads that execute

queries. 0 is the number of CPU cores.

No

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service. No

ws_http_port 19669 Specifies the port for the HTTP service. No

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure

the heartbeat_interval_secs values for all services are

the same, otherwise NebulaGraph CANNOT work

normally. This configuration is measured in

seconds.

Yes

storage_client_timeout_ms - Specifies the RPC connection timeout threshold

between the Graph Service and the Storage

Service. This parameter is not predefined in the

initial configuration files. You can manually set it if

you need it. The system default value is 60000 ms.

No

slow_query_threshold_us 200000 When the execution time of a query exceeds the

value, the query is called a slow query. Unit:

No

6.1.3 Graph Service configuration

- 396/804 - 2023 Vesoft Inc.

It is recommended to use a real IP when using IP address. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Authorization configurations

Memory configurations

Metrics configurations

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

Microsecond.

Note: Even if the execution time of DML

statements exceeds this value, they will not be

recorded as slow queries.

ws_meta_http_port 19559 Specifies the Meta service listening port used by

the HTTP protocol. It must be consistent with the

ws_http_port in the Meta service configuration file.

No

Caution

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

enable_authorize false When set to false , the system authentication is

not enabled. For more information, see

Authentication.

No

auth_type password Specifies the login method. Available values are

password , ldap , and cloud .

No

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

system_memory_high_watermark_ratio 0.8 Specifies the trigger threshold of the high-

level memory alarm mechanism. If the

system memory usage is higher than this

value, an alarm mechanism will be triggered,

and NebulaGraph will stop querying. This

parameter is not predefined in the initial

configuration files.

Yes

Name Predefined

value

Description Whether

supports

runtime

dynamic

modifications

enable_space_level_metrics false Enable or disable space-level metrics. Such metric

names contain the name of the graph space that it

monitors, for example,

query_latency_us{space=basketballplayer}.avg.3600 . You can

view the supported metrics with the curl command. For

more information, see Query NebulaGraph metrics.

No

6.1.3 Graph Service configuration

- 397/804 - 2023 Vesoft Inc.

Session configurations

Experimental configurations

The switch of the experimental feature is only available in the Community Edition.

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

max_sessions_per_ip_per_user 300 The maximum number of active sessions

that can be created from a single IP

adddress for a single user.

No

Note

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

enable_experimental_feature false Specifies the experimental feature. Optional

values are true and false .

No

enable_data_balance true Whether to enable the BALANCE DATA

feature. Only works when

enable_experimental_feature is true .

No

6.1.3 Graph Service configuration

- 398/804 - 2023 Vesoft Inc.

Memory tracker configurations

Memory Tracker is a memory management tool designed to monitor and limit memory usage. For large-scale queries, Memory

Tracker can prevent Out Of Memory (OOM) issues. If you're using Memory Tracker in a containerized environment, you need to add

the relevant configurations to the configuration file of the Graph service.

Create the directory /sys/fs/cgroup/graphd/ , and then add and configure the memory.max file under the directory.

Add the following configurations to etc/nebula-graphd.conf .

For more details, see Memory Tracker: Memory Management Practice in NebulaGraph Database.

Note

1.

2.

--containerized=true

--cgroup_v2_controllers=/sys/fs/cgroup/graphd/cgroup.controllers

--cgroup_v2_memory_stat_path=/sys/fs/cgroup/graphd/memory.stat

--cgroup_v2_memory_max_path=/sys/fs/cgroup/graphd/memory.max

--cgroup_v2_memory_current_path=/sys/fs/cgroup/graphd/memory.current

6.1.3 Graph Service configuration

- 399/804 - 2023 Vesoft Inc.

https://www.nebula-graph.io/posts/memory-tracker-practices

Name Predefined

value

Description Whether

supports

runtime

dynamic

modifications

memory_tracker_limit_ratio 0.8 The value of this parameter can be set to

(0, 1] , 2 , and 3 .

Caution: When setting this

parameter, ensure that the value of

system_memory_high_watermark_ratio is not set

to 1 , otherwise the value of this

parameter will not take effect.

(0, 1] : The percentage of available

memory. Formula: Percentage of available

memory = Available memory / (Total memory -

Reserved memory) .

When an ongoing query results in

memory usage exceeding the configured

limit, the query fails and subsequently

the memory is released.

Note: For the hybrid deployment of a

cluster with cloud-based and on-premises

nodes, the value of

memory_tracker_limit_ratio should be set to a

lower value. For example, when the

graphd is expected to occupy only 50% of

memory, the value can be set to less than

0.5 .

2 : Dynamic Self Adaptive mode.

MemoryTracker dynamically adjusts the

available memory based on the system's

current available memory.

Note: This feature is experimental. As

memory usage cannot be monitored in

real time in dynamic adaptive mode, an

OOM error may still occur to handle

large memory allocations.

3 : Disable MemoryTracker.

MemoryTracker only logs memory usage

and does not interfere with executions

even if the limit is exceeded.

Yes

memory_tracker_untracked_reserved_memory_mb 50 The reserved memory that is not tracked

by the memory tracker. Unit: MB.

Yes

memory_tracker_detail_log false Whether to enable the memory tracker

log. When the value is true , the memory

tracker log is generated.

Yes

memory_tracker_detail_log_interval_ms 60000 The time interval for generating the

memory tracker log. Unit: Millisecond.

memory_tracker_detail_log is true when this

parameter takes effect.

Yes

memory_purge_enabled true Whether to enable the memory purge

feature. When the value is true , the

memory purge feature is enabled.

Yes

memory_purge_interval_seconds 10 The time interval for the memory purge

feature to purge memory. Unit: Second.

Yes

6.1.3 Graph Service configuration

- 400/804 - 2023 Vesoft Inc.

performance optimization configurations

Name Predefined

value

Description Whether

supports

runtime

dynamic

modifications

This parameter only takes effect if

memory_purge_enabled is set to true.

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

max_job_size 1 The maximum number of concurrent jobs, i.e., the

maximum number of threads used in the phase of

query execution where concurrent execution is

possible. It is recommended to be half of the

physical CPU cores.

Yes

min_batch_size 8192 The minimum batch size for processing the dataset.

Takes effect only when max_job_size is greater than

1.

Yes

optimize_appendvertices false When enabled, the MATCH statement is executed

without filtering dangling edges.

Yes

path_batch_size 10000 The number of paths constructed per thread. Yes

Last update: April 19, 2024

6.1.3 Graph Service configuration

- 401/804 - 2023 Vesoft Inc.

6.1.4 Storage Service configurations

NebulaGraph provides two initial configuration files for the Storage Service, nebula-storaged.conf.default and nebula-

storaged.conf.production . Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, NebulaGraph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-metad.conf.default .

For parameters that are not included in nebula-metad.conf.default , see nebula-storaged.conf.production .

Some parameter values in the configuration file can be dynamically modified during runtime. We label these parameters as Yes that

supports runtime dynamic modification in this article. When the local_config value is set to true , the dynamically modified

configuration is not persisted, and the configuration will be restored to the initial configuration after the service is restarted. For

more information, see Modify configurations.

The configurations of the Raft Listener and the Storage service are different. For details, see Deploy Raft listener.

For all parameters and their current values, see Configurations.

Caution

•

•

Caution

Note

6.1.4 Storage Service configurations

- 402/804 - 2023 Vesoft Inc.

Basics configurations

While inserting property values of time types, NebulaGraph transforms time types (except TIMESTAMP) to the corresponding UTC

according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC.

timezone_name is only used to transform the data stored in NebulaGraph. Other time-related data of the NebulaGraph processes still

uses the default time zone of the host, such as the log printing time.

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

daemonize true When set to true , the process is a daemon process. No

pid_file pids/nebula-

storaged.pid

The file that records the process ID. No

timezone_name UTC+00:00:00 Specifies the NebulaGraph time zone. This parameter is not

predefined in the initial configuration files, if you need to

use this parameter, add it manually. For the format of the

parameter value, see Specifying the Time Zone with TZ. For

example, --timezone_name=UTC+08:00 represents the GMT+8 time

zone.

No

local_config true When set to true , the process gets configurations from the

configuration files.

No

Note

•

•

6.1.4 Storage Service configurations

- 403/804 - 2023 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Name Predefined

value

Description Whether

supports runtime

dynamic

modifications

log_dir logs The directory that stores the Storage service log. It

is recommended to put logs on a different hard disk

from the data.

No

minloglevel 0 Specifies the minimum level of the log. That is, log

messages at or above this level. Optional values are

0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It

is recommended to set it to 0 during debugging and

1 in a production environment. If it is set to 4 ,

NebulaGraph will not print any logs.

Yes

v 0 Specifies the detailed level of VLOG. That is, log all

VLOG messages less or equal to the level. Optional

values are 0 , 1 , 2 , 3 , 4 , 5 . The VLOG macro

provided by glog allows users to define their own

numeric logging levels and control verbose

messages that are logged with the parameter v . For

details, see Verbose Logging.

Yes

logbufsecs 0 Specifies the maximum time to buffer the logs. If

there is a timeout, it will output the buffered log to

the log file. 0 means real-time output. This

configuration is measured in seconds.

No

redirect_stdout true When set to true , the process redirects the stdout

and stderr to separate output files.

No

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log. No

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log. No

stderrthreshold 3 Specifies the minloglevel to be copied to the stderr

log.

No

timestamp_in_logfile_name true Specifies if the log file name contains a timestamp.

true indicates yes, false indicates no.

No

6.1.4 Storage Service configurations

- 404/804 - 2023 Vesoft Inc.

https://github.com/google/glog#verbose-logging

Networking configurations

It is recommended to use a real IP when using IP address. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Raft configurations

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

meta_server_addrs 127.0.0.1:9559 Specifies the IPs (or hostnames) and ports of all

Meta Services. Multiple addresses are separated

with commas.

No

local_ip 127.0.0.1 Specifies the local IP (or hostname) for the Storage

Service. The local IP address is used to identify the

nebula-storaged process. If it is a distributed cluster

or requires remote access, modify it to the

corresponding address.

No

port 9779 Specifies RPC daemon listening port of the Storage

service. The neighboring ports -1 (9778) and +1

(9780) are also used.

9778 : The port used by the Admin service, which

receives Meta commands for Storage.

9780 : The port used for Raft communication

between Storage services.

No

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service. No

ws_http_port 19779 Specifies the port for the HTTP service. No

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure

the heartbeat_interval_secs values for all services are

the same, otherwise NebulaGraph CANNOT work

normally. This configuration is measured in seconds.

Yes

Caution

Name Predefined

value

Description Whether supports

runtime dynamic

modifications

raft_heartbeat_interval_secs 30 Specifies the time to expire the Raft

election. The configuration is measured

in seconds.

Yes

raft_rpc_timeout_ms 500 Specifies the time to expire the Raft

RPC. The configuration is measured in

milliseconds.

Yes

wal_ttl 14400 Specifies the lifetime of the RAFT WAL.

The configuration is measured in

seconds.

Yes

6.1.4 Storage Service configurations

- 405/804 - 2023 Vesoft Inc.

Disk configurations

Name Predefined value Description Whether

supports

runtime

dynamic

modifications

data_path data/storage Specifies the data storage path. Multiple paths are separated with

commas. For NebulaGraph of the community edition, one RocksDB

instance corresponds to one path.

No

minimum_reserved_bytes 268435456 Specifies the minimum remaining space of each data storage path. When

the value is lower than this standard, the cluster data writing may fail.

This configuration is measured in bytes.

No

rocksdb_batch_size 4096 Specifies the block cache for a batch operation. The configuration is

measured in bytes.

No

rocksdb_block_cache 4 Specifies the block cache for BlockBasedTable. The configuration is

measured in megabytes.

No

disable_page_cache false Enables or disables the operating system's page cache for NebulaGraph.

By default, the parameter value is false and page cache is enabled. If the

value is set to true , page cache is disabled and sufficient block cache

space must be configured for NebulaGraph.

No

engine_type rocksdb Specifies the engine type. No

rocksdb_compression lz4 Specifies the compression algorithm for RocksDB. Optional values are

no , snappy , lz4 , lz4hc , zlib , bzip2 , and zstd .

This parameter modifies the compression algorithm for each level. If you

want to set different compression algorithms for each level, use the

parameter rocksdb_compression_per_level .

No

rocksdb_compression_per_level \ Specifies the compression algorithm for each level. The priority is higher

than rocksdb_compression . For example, no:no:lz4:lz4:snappy:zstd:snappy .

You can also not set certain levels of compression algorithms, for

example, no:no:lz4:lz4::zstd , level L4 and L6 use the compression

algorithm of rocksdb_compression .

No

enable_rocksdb_statistics false When set to false , RocksDB statistics is disabled. No

rocksdb_stats_level kExceptHistogramOrTimers Specifies the stats level for RocksDB. Optional values are

kExceptHistogramOrTimers , kExceptTimers , kExceptDetailedTimers , kExceptTimeForMutex ,

and kAll .

No

enable_rocksdb_prefix_filtering true When set to true , the prefix bloom filter for RocksDB is enabled. Enabling

prefix bloom filter makes the graph traversal faster but occupies more

memory.

No

enable_rocksdb_whole_key_filtering false When set to true , the whole key bloom filter for RocksDB is enabled.

rocksdb_filtering_prefix_length 12 Specifies the prefix length for each key. Optional values are 12 and 16 .

The configuration is measured in bytes.

No

enable_partitioned_index_filter false When set to true , it reduces the amount of memory used by the bloom

filter. But in some random-seek situations, it may reduce the read

performance. This parameter is not predefined in the initial configuration

files, if you need to use this parameter, add it manually.

No

6.1.4 Storage Service configurations

- 406/804 - 2023 Vesoft Inc.

RocksDB options

The format of the RocksDB option is {"<option_name>":"<option_value>"} . Multiple options are separated with commas.

Supported options of rocksdb_db_options and rocksdb_column_family_options are listed as follows.

rocksdb_db_options

rocksdb_column_family_options

For more information, see RocksDB official documentation.

Name Predefined value Description Whether supports

runtime dynamic

modifications

rocksdb_db_options {} Specifies the

RocksDB database

options.

No

rocksdb_column_family_options {"write_buffer_size":"67108864",

"max_write_buffer_number":"4",

"max_bytes_for_level_base":"268435456"}

Specifies the

RocksDB column

family options.

No

rocksdb_block_based_table_options {"block_size":"8192"} Specifies the

RocksDB block

based table options.

No

•

max_total_wal_size

delete_obsolete_files_period_micros

max_background_jobs

stats_dump_period_sec

compaction_readahead_size

writable_file_max_buffer_size

bytes_per_sync

wal_bytes_per_sync

delayed_write_rate

avoid_flush_during_shutdown

max_open_files

stats_persist_period_sec

stats_history_buffer_size

strict_bytes_per_sync

enable_rocksdb_prefix_filtering

enable_rocksdb_whole_key_filtering

rocksdb_filtering_prefix_length

num_compaction_threads

rate_limit

•

write_buffer_size

max_write_buffer_number

level0_file_num_compaction_trigger

level0_slowdown_writes_trigger

level0_stop_writes_trigger

target_file_size_base

target_file_size_multiplier

max_bytes_for_level_base

max_bytes_for_level_multiplier

disable_auto_compactions

6.1.4 Storage Service configurations

- 407/804 - 2023 Vesoft Inc.

https://rocksdb.org/

Misc configurations

The configuration snapshot in the following table is different from the snapshot in NebulaGraph. The snapshot here refers to the stock

data on the leader when synchronizing Raft.

Caution

Name Predefined

value

Description Whether

supports runtime

dynamic

modifications

query_concurrently true Whether to turn on multi-threaded queries.

Enabling it can improve the latency performance

of individual queries, but it will reduce the overall

throughput under high pressure.

Yes

auto_remove_invalid_space true After executing DROP SPACE , the specified graph

space will be deleted. This parameter sets

whether to delete all the data in the specified

graph space at the same time. When the value is

true , all the data in the specified graph space will

be deleted at the same time.

Yes

num_io_threads 16 The number of network I/O threads used to send

RPC requests and receive responses.

No

num_max_connections 0 Max active connections for all networking

threads. 0 means no limit.

Max connections for each networking thread =

num_max_connections / num_netio_threads

No

num_worker_threads 32 The number of worker threads for one RPC-based

Storage service.

No

max_concurrent_subtasks 10 The maximum number of concurrent subtasks to

be executed by the task manager.

No

snapshot_part_rate_limit 10485760 The rate limit when the Raft leader synchronizes

the stock data with other members of the Raft

group. Unit: bytes/s.

Yes

snapshot_batch_size 1048576 The amount of data sent in each batch when the

Raft leader synchronizes the stock data with

other members of the Raft group. Unit: bytes.

Yes

rebuild_index_part_rate_limit 4194304 The rate limit when the Raft leader synchronizes

the index data rate with other members of the

Raft group during the index rebuilding process.

Unit: bytes/s.

Yes

rebuild_index_batch_size 1048576 The amount of data sent in each batch when the

Raft leader synchronizes the index data with

other members of the Raft group during the index

rebuilding process. Unit: bytes.

Yes

6.1.4 Storage Service configurations

- 408/804 - 2023 Vesoft Inc.

Memory Tracker configurations

Memory Tracker is a memory management tool designed to monitor and limit memory usage. For large-scale queries, Memory

Tracker can prevent Out Of Memory (OOM) issues. If you're using Memory Tracker in a containerized environment, you need to add

the relevant configurations to the configuration file of the Storage service.

Create the directory /sys/fs/cgroup/storaged/ , and then add and configure the memory.max file under the directory.

Add the following configurations to etc/nebula-storaged.conf .

For more details, see Memory Tracker: Memory Management Practice in NebulaGraph Database.

Note

1.

2.

--containerized=true

--cgroup_v2_controllers=/sys/fs/cgroup/graphd/cgroup.controllers

--cgroup_v2_memory_stat_path=/sys/fs/cgroup/graphd/memory.stat

--cgroup_v2_memory_max_path=/sys/fs/cgroup/graphd/memory.max

--cgroup_v2_memory_current_path=/sys/fs/cgroup/graphd/memory.current

6.1.4 Storage Service configurations

- 409/804 - 2023 Vesoft Inc.

https://www.nebula-graph.io/posts/memory-tracker-practices

Name Predefined

value

Description Whether

supports

runtime

dynamic

modifications

memory_tracker_limit_ratio 0.8 The value of this parameter can be set to

(0, 1] , 2 , and 3 .

(0, 1] : The percentage of available

memory. Formula: Percentage of available

memory = Available memory / (Total memory -

Reserved memory) .

When an ongoing query results in

memory usage exceeding the configured

limit, the query fails and subsequently

the memory is released.

Note: For the hybrid deployment of a

cluster with cloud-based and on-premises

nodes, the value of

memory_tracker_limit_ratio should be set to a

lower value. For example, when the

graphd is expected to occupy only 50% of

memory, the value can be set to less than

0.5 .

2 : Dynamic Self Adaptive mode.

MemoryTracker dynamically adjusts the

available memory based on the system's

current available memory.

Note: This feature is experimental. As

memory usage cannot be monitored in

real time in dynamic adaptive mode, an

OOM error may still occur to handle

large memory allocations.

3 : Disable MemoryTracker.

MemoryTracker only logs memory usage

and does not interfere with executions

even if the limit is exceeded.

Yes

memory_tracker_untracked_reserved_memory_mb 50 The reserved memory that is not tracked

by the Memory Tracker. Unit: MB.

Yes

memory_tracker_detail_log false Whether to enable the Memory Tracker

log. When the value is true , the Memory

Tracker log is generated.

Yes

memory_tracker_detail_log_interval_ms 60000 The time interval for generating the

Memory Tracker log. Unit: Millisecond.

memory_tracker_detail_log is true when this

parameter takes effect.

Yes

memory_purge_enabled true Whether to enable the memory purge

feature. When the value is true , the

memory purge feature is enabled.

Yes

memory_purge_interval_seconds 10 The time interval for the memory purge

feature to purge memory. Unit: Second.

This parameter only takes effect if

memory_purge_enabled is set to true.

Yes

6.1.4 Storage Service configurations

- 410/804 - 2023 Vesoft Inc.

For super-Large vertices

When the query starting from each vertex gets an edge, truncate it directly to avoid too many neighboring edges on the super-

large vertex, because a single query occupies too much hard disk and memory. Or you can truncate a certain number of edges

specified in the Max_edge_returned_per_vertex parameter. Excess edges will not be returned. This parameter applies to all spaces.

Storage configurations for large dataset

One graph space takes up at least about 300 MB of memory.

When you have a large dataset (in the RocksDB directory) and your memory is tight, we suggest that you set the

enable_partitioned_index_filter parameter to true . The performance is affected because RocksDB indexes are cached.

Property name Default

value

Description Whether supports

runtime dynamic

modifications

max_edge_returned_per_vertex 2147483647 Specifies the maximum number of edges

returned for each dense vertex. Excess

edges are truncated and not returned. This

parameter is not predefined in the initial

configuration files, if you need to use this

parameter, add it manually.

No

Warning

Last update: April 19, 2024

6.1.4 Storage Service configurations

- 411/804 - 2023 Vesoft Inc.

6.1.5 Kernel configurations

This topic introduces the Kernel configurations in Nebula Graph.

Resource control

You may run the ulimit command to control the resource threshold. However, the changes made only take effect for the current

session or sub-process. To make permanent changes, edit file /etc/security/limits.conf . The configuration is as follows:

The configuration modification takes effect for new sessions.

The parameter descriptions are as follows.

You can run man limits.conf for more helpful information.

Memory

VM.SWAPPINESS

vm.swappiness specifies the percentage of the available memory before starting swap. The greater the value, the more likely the

swap occurs. We recommend that you set it to 0. When set to 0, the page cache is removed first. Note that when vm.swappiness is 0,

it does not mean that there is no swap.

VM.MIN_FREE_KBYTES

vm.min_free_kbytes specifies the minimum number of kilobytes available kept by Linux VM. If you have a large system memory, we

recommend that you increase this value. For example, if your physical memory 128GB, set it to 5GB. If the value is not big

enough, the system cannot apply for enough continuous physical memory.

VM.MAX_MAP_COUNT

vm.max_map_count limits the maximum number of vma (virtual memory area) for a process. The default value is 65530 . It is enough for

most applications. If your memory application fails because the memory consumption is large, increase the vm.max_map_count value.

VM.DIRTY_*

These values control the dirty data cache for the system. For write-intensive scenarios, you can make adjustments based on your

needs (throughput priority or delay priority). We recommend that you use the system default value.

<domain> <type> <item> <value>

* soft core unlimited

* hard core unlimited

* soft nofile 130000

* hard nofile 130000

Note

Parameter Description

domain Control Domain. This parameter can be a user name, a user group name (starting with @), or * to indicate

all users.

type Control type. This parameter can be soft or hard . soft indicates a soft threshold (the default threshold) for

the resource and hard indicates a maximum value that can be set by the user. The ulimit command can be

used to increase soft , but not to exceed hard .

item Resource types. For example, core limits the size of the core dump file, and nofile limits the maximum

number of file descriptors a process can open.

value Resource limit value. This parameter can be a number, or unlimited to indicate that there is no limit.

6.1.5 Kernel configurations

- 412/804 - 2023 Vesoft Inc.

TRANSPARENT HUGE PAGES

Transparent Huge Pages (THP) is a memory management feature of the Linux kernel, which enhances the system's ability to use

large pages. In most database systems, Transparent Huge Pages can degrade performance, so it is recommended to disable it.

Perform the following steps:

Edit the GRUB configuration file /etc/default/grub .

Add transparent_hugepage=never to the GRUB_CMDLINE_LINUX option, and then save and exit.

Update the GRUB configuration.

For CentOS:

For Ubuntu:

Reboot the computer.

If you don't want to reboot, you can run the following commands to temporarily disable THP until the next reboot.

Networking

NET.IPV4.TCP_SLOW_START_AFTER_IDLE

The default value of net.ipv4.tcp_slow_start_after_idle is 1 . If set, the congestion window is timed out after an idle period. We

recommend that you set it to 0 , especially for long fat scenarios (high latency and large bandwidth).

NET.CORE.SOMAXCONN

net.core.somaxconn specifies the maximum number of connection queues listened by the socket. The default value is 128 . For

scenarios with a large number of burst connections, we recommend that you set it to greater than 1024 .

NET.IPV4.TCP_MAX_SYN_BACKLOG

net.ipv4.tcp_max_syn_backlog specifies the maximum number of TCP connections in the SYN_RECV (semi-connected) state. The

setting rule for this parameter is the same as that of net.core.somaxconn .

NET.CORE.NETDEV_MAX_BACKLOG

net.core.netdev_max_backlog specifies the maximum number of packets. The default value is 1000 . We recommend that you increase it

to greater than 10,000 , especially for 10G network adapters.

NET.IPV4.TCP_KEEPALIVE_*

These values keep parameters alive for TCP connections. For applications that use a 4-layer transparent load balancer, if the idle

connection is disconnected unexpectedly, decrease the values of tcp_keepalive_time and tcp_keepalive_intvl .

NET.IPV4.TCP_RMEM/WMEM

net.ipv4.tcp_wmem/rmem specifies the minimum, default, and maximum size of the buffer pool sent/received by the TCP socket. For

long fat links, we recommend that you increase the default value to bandwidth (GB) * RTT (ms) .

1.

sudo vi /etc/default/grub

2.

GRUB_CMDLINE_LINUX="... transparent_hugepage=never"

3.

•

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

•

sudo update-grub

4.

sudo reboot

echo 'never' > /sys/kernel/mm/transparent_hugepage/enabled

echo 'never' > /sys/kernel/mm/transparent_hugepage/defrag

6.1.5 Kernel configurations

- 413/804 - 2023 Vesoft Inc.

SCHEDULER

For SSD devices, we recommend that you set scheduler to noop or none . The path is /sys/block/DEV_NAME/queue/scheduler .

Other parameters

KERNEL.CORE_PATTERN

we recommend that you set it to core and set kernel.core_uses_pid to 1 .

Modify parameters

SYSCTL

sysctl <conf_name>

Checks the current parameter value.

sysctl -w <conf_name>=<value>

Modifies the parameter value. The modification takes effect immediately. The original value is restored after restarting.

sysctl -p [<file_path>]

Loads Linux parameter values from the specified configuration file. The default path is /etc/sysctl.conf .

PRLIMIT

The prlimit command gets and sets process resource limits. You can modify the hard threshold by using it and the sudo command.

For example, prlimit --nofile = 130000 --pid = $$ adjusts the maximum number of open files permitted by the current process to

14000 . And the modification takes effect immediately. Note that this command is only available in RedHat 7u or higher versions.

•

•

•

Last update: January 8, 2024

6.1.5 Kernel configurations

- 414/804 - 2023 Vesoft Inc.

6.2 Log management

6.2.1 Runtime logs

Runtime logs are provided for DBAs and developers to locate faults when the system fails.

NebulaGraph uses glog to print runtime logs, uses gflags to control the severity level of the log, and provides an HTTP interface

to dynamically change the log level at runtime to facilitate tracking.

Log directory

The default runtime log directory is /usr/local/nebula/logs/ .

If the log directory is deleted while NebulaGraph is running, the log would not continue to be printed. However, this operation

will not affect the services. To recover the logs, restart the services.

Parameter descriptions

minloglevel : Specifies the minimum level of the log. That is, no logs below this level will be printed. Optional values are 0

(INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It is recommended to set it to 0 during debugging and 1 in a production

environment. If it is set to 4 , NebulaGraph will not print any logs.

v : Specifies the detailed level of the log. The larger the value, the more detailed the log is. Optional values are 0 , 1 , 2 , 3 .

The default severity level for the metad, graphd, and storaged logs can be found in their respective configuration files. The

default path is /usr/local/nebula/etc/ .

Check the severity level

Check all the flag values (log values included) of the current gflags with the following command.

Examples are as follows:

Check the current minloglevel in the Meta service:

Check the current v in the Storage service:

Change the severity level

Change the severity level of the log with the following command.

•

•

$ curl <ws_ip>:<ws_port>/flags

Parameter Description

ws_ip The IP address for the HTTP service, which can be found in the configuration files above. The default value

is 127.0.0.1 .

ws_port The port for the HTTP service, which can be found in the configuration files above. The default values are

19559 (Meta), 19669 (Graph), and 19779 (Storage) respectively.

•

$ curl 127.0.0.1:19559/flags | grep 'minloglevel'

•

$ curl 127.0.0.1:19779/flags | grep -w 'v'

6.2 Log management

- 415/804 - 2023 Vesoft Inc.

https://github.com/google/glog
https://gflags.github.io/gflags/

Examples are as follows:

If the log level is changed while NebulaGraph is running, it will be restored to the level set in the configuration file after

restarting the service. To permanently modify it, see Configuration files.

RocksDB runtime logs

RocksDB runtime logs are usually used to debug RocksDB parameters and stored in /usr/local/nebula/data/storage/nebula/$id/data/LOG .

$id is the ID of the example.

Log recycling

Glog does not inherently support log recycling. To implement this feature, you can either use cron jobs in Linux to regularly

remove old log files or use the log management tool, logrotate, to rotate logs for regular archiving and deletion.

$ curl -X PUT -H "Content-Type: application/json" -d '{"<key>":<value>[,"<key>":<value>]}' "<ws_ip>:<ws_port>/flags"

Parameter Description

key The type of the log to be changed. For optional values, see Parameter descriptions.

value The level of the log. For optional values, see Parameter descriptions.

ws_ip The IP address for the HTTP service, which can be found in the configuration files above. The default value

is 127.0.0.1 .

ws_port The port for the HTTP service, which can be found in the configuration files above. The default values are

19559 (Meta), 19669 (Graph), and 19779 (Storage) respectively.

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19779/flags" # storaged

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19669/flags" # graphd

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19559/flags" # metad

6.2.1 Runtime logs

- 416/804 - 2023 Vesoft Inc.

https://man7.org/linux/man-pages/man1/crontab.1.html
https://github.com/logrotate/logrotate

LOG RECYCLING USING CRON JOBS

This section provides an example of how to use cron jobs to regularly delete old log files from the Graph service's runtime logs.

In the Graph service configuration file, apply the following settings and restart the service:

By setting timestamp_in_logfile_name to true , the log file name includes a timestamp, allowing regular deletion of old log files.

The max_log_size parameter sets the maximum size of a single log file in MB, such as 500 . Once this size is exceeded, a new log file is

automatically created. The default value is 1800 .

Use the following command to open the cron job editor.

Add a cron job command to the editor to regularly delete old log files.

The find command in the above command should be executed by the root user or a user with sudo privileges.

* * * * * : This cron job time field signifies that the task is executed every minute. For other settings, see Cron Expression.

<log_path> : The path of the service runtime log file, such as /usr/local/nebula/logs .

<YourProjectName> : The log file name, such as nebula-graphd.* .

-mtime +7 : This deletes log files that are older than 7 days. Alternatively, use -mmin +n to delete log files older than n minutes. For

details, see the find command.

-delete : This deletes log files that meet the conditions.

For example, to automatically delete the Graph service runtime log files older than 7 days at 3 o'clock every morning, use:

Save the cron job and exit the editor.

LOG RECYCLING USING LOGROTATE

Logrotate is a tool that can rotate specified log files for archiving and recycling.

You must be the root user or a user with sudo privileges to install or run logrotate.

1.

timestamp_in_logfile_name = true

max_log_size = 500

•

•

2.

crontab -e

3.

* * * * * find <log_path> -name "<YourProjectName>" -mtime +7 -delete

Caution

•

•

•

•

•

0 3 * * * find /usr/local/nebula/logs -name nebula-graphd.* -mtime +7 -delete

4.

Note

6.2.1 Runtime logs

- 417/804 - 2023 Vesoft Inc.

https://crontab.cronhub.io/

This section provides an example of how to use logrotate to manage the Graph service's INFO level log file (/usr/local/nebula/logs/

nebula-graphd.INFO.impl).

6.2.1 Runtime logs

- 418/804 - 2023 Vesoft Inc.

In the Graph service configuration file, set timestamp_in_logfile_name to false so that the logrotate tool can recognize the log file name.

Then, restart the service.

Install logrotate.

For Debian/Ubuntu:

For CentOS/RHEL:

Create a logrotate configuration file, add log rotation rules, and save the configuration file.

In the /etc/logrotate.d directory, create a new logrotate configuration file nebula-graphd.INFO .

Then, add the following content:

Modify the parameters in the configuration file according to actual needs. For more information about parameter configuration, see

logrotate.

Test the logrotate configuration.

1.

timestamp_in_logfile_name = false

2.

•

sudo apt-get install logrotate

•

sudo yum install logrotate

3.

sudo vim /etc/logrotate.d/nebula-graphd.INFO

The absolute path of the log file needs to be configured

And the file name cannot be a symbolic link file, such as `nebula-graph.INFO`

/usr/local/nebula/logs/nebula-graphd.INFO.impl {

 daily

 rotate 2

 copytruncate

 nocompress

 missingok

 notifempty

 create 644 root root

 dateext

 dateformat .%Y-%m-%d-%s

 maxsize 1k

}

Parameter Description

daily Rotate the log daily. Other available time units include hourly , daily , weekly , monthly , and yearly .

rotate 2 Keep the most recent 2 log files before deleting the older one.

copytruncate Copy the current log file and then truncate it, ensuring no disruption to the logging process.

nocompress Do not compress the old log files.

missingok Do not report errors if the log file is missing.

notifempty Do not rotate the log file if it's empty.

create 644 root root Create a new log file with the specified permissions and ownership.

dateext Add a date extension to the log file name.

The default is the current date in the format -%Y%m%d .

You can extend this using the dateformat option.

dateformat .%Y-%m-%d-

%s

This must follow immediately after dateext and defines the file name after log rotation.

Before V3.9.0, only %Y , %m , %d , and %s parameters were supported.

Starting from V3.9.0, the %H parameter is also supported.

maxsize 1k Rotate the log when it exceeds 1 kilobyte (1024 bytes) in size or when the specified time unit (e.g., daily)

passes.

You can use size units like k and M , with the default unit being bytes.

4.

6.2.1 Runtime logs

- 419/804 - 2023 Vesoft Inc.

https://github.com/logrotate/logrotate

To verify whether the logrotate configuration is correct, use the following command for testing.

Execute logrotate.

Although logrotate is typically executed automatically by cron jobs, you can manually execute the following command to perform

log rotation immediately.

-fv : f stands for forced execution, v stands for verbose output.

Verify the log rotation results.

After log rotation, new log files are found in the /usr/local/nebula/logs directory, such as nebula-graphd.INFO.impl.2024-01-04-1704338204 . The

original log content is cleared, but the file is retained for new log entries. When the number of log files exceeds the value set by

rotate , the oldest log file is deleted.

For example, rotate 2` means keeping the 2 most recently generated log files. When the number of log files exceeds 2, the oldest

log file is deleted.

If you need to rotate multiple log files, create multiple configuration files in the /etc/logrotate.d directory, with each configuration

file corresponding to a log file. For example, to rotate the INFO level log file and the WARNING level log file of the Meta service,

create two configuration files nebula-metad.INFO and nebula-metad.WARNING , and add log rotation rules in them respectively.

sudo logrotate --debug /etc/logrotate.d/nebula-graphd.INFO

5.

sudo logrotate -fv /etc/logrotate.d/nebula-graphd.INFO

6.

[test@test logs]$ ll

-rw-r--r-- 1 root root 0 Jan 4 11:18 nebula-graphd.INFO.impl

-rw-r--r-- 1 root root 6894 Jan 4 11:16 nebula-graphd.INFO.impl.2024-01-04-1704338204 # This file is deleted when a new log file is generated

-rw-r--r-- 1 root root 222 Jan 4 11:18 nebula-graphd.INFO.impl.2024-01-04-1704338287

[test@test logs]$ ll

-rw-r--r-- 1 root root 0 Jan 4 11:18 nebula-graphd.INFO.impl

-rw-r--r-- 1 root root 222 Jan 4 11:18 nebula-graphd.INFO.impl.2024-01-04-1704338287

-rw-r--r-- 1 root root 222 Jan 4 11:18 nebula-graphd.INFO.impl.2024-01-04-1704338339 # The new log file is generated

Last update: January 5, 2024

6.2.1 Runtime logs

- 420/804 - 2023 Vesoft Inc.

7. Monitor

7.1 Query NebulaGraph metrics

NebulaGraph supports querying the monitoring metrics through HTTP ports.

7.1.1 Metrics structure

Each metric of NebulaGraph consists of three fields: name, type, and time range. The fields are separated by periods, for

example, num_queries.sum.600 . Different NebulaGraph services (Graph, Storage, or Meta) support different metrics. The detailed

description is as follows.

7.1.2 Query metrics over HTTP

Syntax

If NebulaGraph is deployed with Docker Compose, run docker-compose ps to check the ports that are mapped from the service ports

inside of the container and then query through them.

Query a single metric

Query the query number in the last 10 minutes in the Graph Service.

Field Example Description

Metric

name

num_queries Indicates the function of the metric.

Metric

type

sum Indicates how the metrics are collected. Supported types are SUM, AVG, RATE, and the P-

th sample quantiles such as P75, P95, P99, and P999.

Time

range

600 The time range in seconds for the metric collection. Supported values are 5, 60, 600, and

3600, representing the last 5 seconds, 1 minute, 10 minutes, and 1 hour.

curl -G "http://<host>:<port>/stats?stats=<metric_name_list> [&format=json]"

Parameter Description

host The IP (or hostname) of the server. You can find it in the configuration file in the installation directory.

port The HTTP port of the server. You can find it in the configuration file in the installation directory. The

default ports are 19559 (Meta), 19669 (Graph), and 19779 (Storage).

metric_name_list The metrics names. Multiple metrics are separated by commas (,).

&format=json Optional. Returns the result in the JSON format.

Note

$ curl -G "http://192.168.8.40:19669/stats?stats=num_queries.sum.600"

num_queries.sum.600=400

7. Monitor

- 421/804 - 2023 Vesoft Inc.

Query multiple metrics

Query the following metrics together:

The average heartbeat latency in the last 1 minute.

The average latency of the slowest 1% heartbeats, i.e., the P99 heartbeats, in the last 10 minutes.

Return a JSON result.

Query the number of new vertices in the Storage Service in the last 10 minutes and return the result in the JSON format.

Query all metrics in a service.

If no metric is specified in the query, NebulaGraph returns all metrics in the service.

Space-level metrics

The Graph service supports a set of space-level metrics that record the information of different graph spaces separately.

Space-level metrics can be queried only by querying all metrics. For example, run curl -G "http://192.168.8.40:19559/stats" to show all

metrics. The returned result contains the graph space name in the form of '{space=space_name}', such as

num_active_queries{space=basketballplayer}.sum.5=0 .

To enable space-level metrics, set the value of enable_space_level_metrics to true in the Graph service configuration file before starting

NebulaGraph. For details about how to modify the configuration, see Configuration Management.

•

•

$ curl -G "http://192.168.8.40:19559/stats?stats=heartbeat_latency_us.avg.60,heartbeat_latency_us.p99.600"

heartbeat_latency_us.avg.60=281

heartbeat_latency_us.p99.600=985

$ curl -G "http://192.168.8.40:19779/stats?stats=num_add_vertices.sum.600&format=json"

[{"value":1,"name":"num_add_vertices.sum.600"}]

$ curl -G "http://192.168.8.40:19559/stats"

heartbeat_latency_us.avg.5=304

heartbeat_latency_us.avg.60=308

heartbeat_latency_us.avg.600=299

heartbeat_latency_us.avg.3600=285

heartbeat_latency_us.p75.5=652

heartbeat_latency_us.p75.60=669

heartbeat_latency_us.p75.600=651

heartbeat_latency_us.p75.3600=642

heartbeat_latency_us.p95.5=930

heartbeat_latency_us.p95.60=963

heartbeat_latency_us.p95.600=933

heartbeat_latency_us.p95.3600=929

heartbeat_latency_us.p99.5=986

heartbeat_latency_us.p99.60=1409

heartbeat_latency_us.p99.600=989

heartbeat_latency_us.p99.3600=986

num_heartbeats.rate.5=0

num_heartbeats.rate.60=0

num_heartbeats.rate.600=0

num_heartbeats.rate.3600=0

num_heartbeats.sum.5=2

num_heartbeats.sum.60=40

num_heartbeats.sum.600=394

num_heartbeats.sum.3600=2364

...

Caution

7.1.2 Query metrics over HTTP

- 422/804 - 2023 Vesoft Inc.

7.1.3 Metric description

Graph

Parameter Description

num_active_queries The number of changes in the number of active queries.

Formula: The number of started queries minus the number of finished queries

within a specified time.

num_active_sessions The number of changes in the number of active sessions.

Formula: The number of logged in sessions minus the number of logged out

sessions within a specified time.

For example, when querying num_active_sessions.sum.5 , if there were 10 sessions

logged in and 30 sessions logged out in the last 5 seconds, the value of this metric

is -20 (10-30).

num_aggregate_executors The number of executions for the Aggregation operator.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions_out_of_max_allowed The number of sessions that failed to authenticate logins because the value of the

parameter FLAG_OUT_OF_MAX_ALLOWED_CONNECTIONS was exceeded.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_indexscan_executors The number of executions for index scan operators.

num_killed_queries The number of killed queries.

num_opened_sessions The number of sessions connected to the server.

num_queries The number of queries.

num_query_errors_leader_changes The number of the raft leader changes due to query errors.

num_query_errors The number of query errors.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

num_sentences The number of statements received by the Graphd service.

num_slow_queries The number of slow queries.

num_sort_executors The number of executions for the Sort operator.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The latency of queries.

slow_query_latency_us The latency of slow queries.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

resp_part_completeness The completeness of the partial success. You need to set accept_partial_success to

true in the graph configuration first.

7.1.3 Metric description

- 423/804 - 2023 Vesoft Inc.

Meta

Parameter Description

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

heartbeat_latency_us The latency of heartbeats.

num_heartbeats The number of heartbeats.

num_raft_votes The number of votes in Raft.

transfer_leader_latency_us The latency of transferring the raft leader.

num_agent_heartbeats The number of heartbeats for the AgentHBProcessor.

agent_heartbeat_latency_us The latency of the AgentHBProcessor.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_send_snapshot The number of times that Raft sends snapshots to other nodes.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

append_wal_latency_us The Raft write latency for a single WAL.

num_grant_votes The number of times that Raft votes for other nodes.

num_start_elect The number of times that Raft starts an election.

7.1.3 Metric description

- 424/804 - 2023 Vesoft Inc.

Storage

7.1.3 Metric description

- 425/804 - 2023 Vesoft Inc.

Parameter Description

add_edges_latency_us The latency of adding edges.

add_vertices_latency_us The latency of adding vertices.

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

delete_edges_latency_us The latency of deleting edges.

delete_vertices_latency_us The latency of deleting vertices.

get_neighbors_latency_us The latency of querying neighbor vertices.

get_dst_by_src_latency_us The latency of querying the destination vertex by the source vertex.

num_get_prop The number of executions for the GetPropProcessor.

num_get_neighbors_errors The number of execution errors for the GetNeighborsProcessor.

num_get_dst_by_src_errors The number of execution errors for the GetDstBySrcProcessor.

get_prop_latency_us The latency of executions for the GetPropProcessor.

num_edges_deleted The number of deleted edges.

num_edges_inserted The number of inserted edges.

num_raft_votes The number of votes in Raft.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Storage service sent to the Meta service.

num_rpc_sent_to_metad The number of RPC requests that the Storaged service sent to the Metad service.

num_tags_deleted The number of deleted tags.

num_vertices_deleted The number of deleted vertices.

num_vertices_inserted The number of inserted vertices.

transfer_leader_latency_us The latency of transferring the raft leader.

lookup_latency_us The latency of executions for the LookupProcessor.

num_lookup_errors The number of execution errors for the LookupProcessor.

num_scan_vertex The number of executions for the ScanVertexProcessor.

num_scan_vertex_errors The number of execution errors for the ScanVertexProcessor.

update_edge_latency_us The latency of executions for the UpdateEdgeProcessor.

num_update_vertex The number of executions for the UpdateVertexProcessor.

num_update_vertex_errors The number of execution errors for the UpdateVertexProcessor.

kv_get_latency_us The latency of executions for the Getprocessor.

kv_put_latency_us The latency of executions for the PutProcessor.

kv_remove_latency_us The latency of executions for the RemoveProcessor.

num_kv_get_errors The number of execution errors for the GetProcessor.

num_kv_get The number of executions for the GetProcessor.

num_kv_put_errors The number of execution errors for the PutProcessor.

num_kv_put The number of executions for the PutProcessor.

7.1.3 Metric description

- 426/804 - 2023 Vesoft Inc.

Parameter Description

num_kv_remove_errors The number of execution errors for the RemoveProcessor.

num_kv_remove The number of executions for the RemoveProcessor.

forward_tranx_latency_us The latency of transmission.

scan_edge_latency_us The latency of executions for the ScanEdgeProcessor.

num_scan_edge_errors The number of execution errors for the ScanEdgeProcessor.

num_scan_edge The number of executions for the ScanEdgeProcessor.

scan_vertex_latency_us The latency of executions for the ScanVertexProcessor.

num_add_edges The number of times that edges are added.

num_add_edges_errors The number of errors when adding edges.

num_add_vertices The number of times that vertices are added.

num_start_elect The number of times that Raft starts an election.

num_add_vertices_errors The number of errors when adding vertices.

num_delete_vertices_errors The number of errors when deleting vertices.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

num_grant_votes The number of times that Raft votes for other nodes.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_delete_tags The number of times that tags are deleted.

num_delete_tags_errors The number of errors when deleting tags.

num_delete_edges The number of edge deletions.

num_delete_edges_errors The number of errors when deleting edges

num_send_snapshot The number of times that snapshots are sent.

update_vertex_latency_us The latency of executions for the UpdateVertexProcessor.

append_wal_latency_us The Raft write latency for a single WAL.

num_update_edge The number of executions for the UpdateEdgeProcessor.

delete_tags_latency_us The latency of deleting tags.

num_update_edge_errors The number of execution errors for the UpdateEdgeProcessor.

num_get_neighbors The number of executions for the GetNeighborsProcessor.

num_get_dst_by_src The number of executions for the GetDstBySrcProcessor.

num_get_prop_errors The number of execution errors for the GetPropProcessor.

num_delete_vertices The number of times that vertices are deleted.

num_lookup The number of executions for the LookupProcessor.

num_sync_data The number of times the Storage service synchronizes data from the Drainer.

num_sync_data_errors The number of errors that occur when the Storage service synchronizes data from the Drainer.

sync_data_latency_us The latency of the Storage service synchronizing data from the Drainer.

7.1.3 Metric description

- 427/804 - 2023 Vesoft Inc.

Graph space

Space-level metrics are created dynamically, so that only when the behavior is triggered in the graph space, the corresponding

metric is created and can be queried by the user.

Note

Parameter Description

num_active_queries The number of queries currently being executed.

num_queries The number of queries.

num_sentences The number of statements received by the Graphd service.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The latency of queries.

num_slow_queries The number of slow queries.

num_query_errors The number of query errors.

num_query_errors_leader_changes The number of raft leader changes due to query errors.

num_killed_queries The number of killed queries.

num_aggregate_executors The number of executions for the Aggregation operator.

num_sort_executors The number of executions for the Sort operator.

num_indexscan_executors The number of executions for index scan operators.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_opened_sessions The number of sessions connected to the server.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

slow_query_latency_us The latency of slow queries.

Last update: March 29, 2024

7.1.3 Metric description

- 428/804 - 2023 Vesoft Inc.

7.2 RocksDB statistics

NebulaGraph uses RocksDB as the underlying storage. This topic describes how to collect and show the RocksDB statistics of

NebulaGraph.

7.2.1 Enable RocksDB

By default, the function of RocksDB statistics is disabled. To enable RocksDB statistics, you need to:

Modify the --enable_rocksdb_statistics parameter as true in the nebula-storaged.conf file. The default path of the configuration file

is /use/local/nebula/etc .

Restart the service to make the modification valid.

7.2.2 Get RocksDB statistics

Users can use the built-in HTTP service in the storage service to get the following types of statistics. Results in the JSON format

are supported.

All RocksDB statistics.

Specified RocksDB statistics.

7.2.3 Examples

Use the following command to get all RocksDB statistics:

For example:

Use the following command to get specified RocksDB statistics:

For example, use the following command to get the information of rocksdb.bytes.read and rocksdb.block.cache.add .

Use the following command to get specified RocksDB statistics in the JSON format:

For example, use the following command to get the information of rocksdb.bytes.read and rocksdb.block.cache.add and return the

results in the JSON format.

1.

2.

•

•

curl -L "http://${storage_ip}:${port}/rocksdb_stats"

curl -L "http://172.28.2.1:19779/rocksdb_stats"

rocksdb.blobdb.blob.file.bytes.read=0

rocksdb.blobdb.blob.file.bytes.written=0

rocksdb.blobdb.blob.file.bytes.synced=0

...

curl -L "http://${storage_ip}:${port}/rocksdb_stats?stats=${stats_name}"

curl -L "http://172.28.2.1:19779/rocksdb_stats?stats=rocksdb.bytes.read,rocksdb.block.cache.add"

rocksdb.block.cache.add=14

rocksdb.bytes.read=1632

curl -L "http://${storage_ip}:${port}/rocksdb_stats?stats=${stats_name}&format=json"

curl -L "http://172.28.2.1:19779/rocksdb_stats?stats=rocksdb.bytes.read,rocksdb.block.cache.add&format=json"

[

 {

 "rocksdb.block.cache.add": 1

 },

 {

 "rocksdb.bytes.read": 160

7.2 RocksDB statistics

- 429/804 - 2023 Vesoft Inc.

 }

]

Last update: October 25, 2023

7.2.3 Examples

- 430/804 - 2023 Vesoft Inc.

8. Data security

8.1 Authentication and authorization

8.1.1 Authentication

NebulaGraph replies on local authentication to implement access control.

NebulaGraph creates a session when a client connects to it. The session stores information about the connection, including the

user information. If the authentication system is enabled, the session will be mapped to corresponding users.

By default, the authentication is disabled and NebulaGraph allows connections with the username root and any password.

Local authentication

Local authentication indicates that usernames and passwords are stored locally on the server, with the passwords encrypted.

Users will be authenticated when trying to visit NebulaGraph.

ENABLE LOCAL AUTHENTICATION

Modify the nebula-graphd.conf file (/usr/local/nebula/etc/ is the default path) to set the following parameters:

--enable_authorize : Set its value to true to enable authentication.

By default, the authentication is disabled and NebulaGraph allows connections with the username root and any password.

You can use the username root and password nebula to log into NebulaGraph after enabling local authentication. This account has the

build-in God role. For more information about roles, see Roles and privileges.

--failed_login_attempts : This parameter is optional, and you need to add this parameter manually. Specify the attempts of continuously

entering incorrect passwords for a single Graph service. When the number exceeds the limitation, your account will be locked. For

multiple Graph services, the allowed attempts are number of services * failed_login_attempts .

--password_lock_time_in_secs : This parameter is optional, and you need to add this parameter manually. Specify the time how long your

account is locked after multiple incorrect password entries are entered. Unit: second.

Restart the NebulaGraph services. For how to restart, see Manage NebulaGraph services.

Note

1.

•

Note

•

•

•

•

2.

Last update: April 9, 2024

8. Data security

- 431/804 - 2023 Vesoft Inc.

8.1.2 User management

User management is an indispensable part of NebulaGraph access control. This topic describes how to manage users and roles.

After enabling authentication, only valid users can connect to NebulaGraph and access the resources according to the user roles.

By default, the authentication is disabled. NebulaGraph allows connections with the username root and any password.

Once the role of a user is modified, the user has to re-login to make the new role takes effect.

CREATE USER

The root user with the GOD role can run CREATE USER to create a new user.

Syntax

IF NOT EXISTS : Detects if the user name exists. The user will be created only if the user name does not exist.

user_name : Sets the name of the user. The maximum length is 16 characters.

password : Sets the password of the user. The default password is the empty string (''). The maximum length is 24 characters.

Example

GRANT ROLE

Users with the GOD role or the ADMIN role can run GRANT ROLE to assign a built-in role in a graph space to a user. For more

information about NebulaGraph built-in roles, see Roles and privileges.

Syntax

Example

Note

•

•

•

CREATE USER [IF NOT EXISTS] <user_name> [WITH PASSWORD '<password>'];

•

•

•

•

nebula> CREATE USER user1 WITH PASSWORD 'nebula';

nebula> SHOW USERS;

+---------+-------------------------------+

| Account | IP Whitelist |

+---------+-------------------------------+

| "root" | "" |

| "user1" | "" |

+---------+-------------------------------+

•

GRANT ROLE <role_type> ON <space_name> TO <user_name>;

•

nebula> GRANT ROLE USER ON basketballplayer TO user1;

8.1.2 User management

- 432/804 - 2023 Vesoft Inc.

REVOKE ROLE

Users with the GOD role or the ADMIN role can run REVOKE ROLE to revoke the built-in role of a user in a graph space. For more

information about NebulaGraph built-in roles, see Roles and privileges.

Syntax

Example

DESCRIBE USER

Users can run DESCRIBE USER to list the roles for a specified user.

Syntax

Example

SHOW ROLES

Users can run SHOW ROLES to list the roles in a graph space.

Syntax

Example

CHANGE PASSWORD

Users can run CHANGE PASSWORD to set a new password for a user. The old password is needed when setting a new one.

Syntax

Example

•

REVOKE ROLE <role_type> ON <space_name> FROM <user_name>;

•

nebula> REVOKE ROLE USER ON basketballplayer FROM user1;

•

DESCRIBE USER <user_name>;

DESC USER <user_name>;

•

nebula> DESCRIBE USER user1;

+---------+--------------------+

| role | space |

+---------+--------------------+

| "ADMIN" | "basketballplayer" |

+---------+--------------------+

•

SHOW ROLES IN <space_name>;

•

nebula> SHOW ROLES IN basketballplayer;

+---------+-----------+

| Account | Role Type |

+---------+-----------+

| "user1" | "ADMIN" |

+---------+-----------+

•

CHANGE PASSWORD <user_name> FROM '<old_password>' TO '<new_password>';

•

nebula> CHANGE PASSWORD user1 FROM 'nebula' TO 'nebula123';

8.1.2 User management

- 433/804 - 2023 Vesoft Inc.

ALTER USER

The root user with the GOD role can run ALTER USER to set a new password. The old password is not needed when altering the

user.

Syntax

- Example

DROP USER

The root user with the GOD role can run DROP USER to remove a user.

Removing a user does not close the current session of the user, and the user role still takes effect in the session until the session is

closed.

Syntax

Example

SHOW USERS

The root user with the GOD role can run SHOW USERS to list all the users.

Syntax

Example

•

ALTER USER <user_name> WITH PASSWORD '<password>';

nebula> ALTER USER user2 WITH PASSWORD 'nebula';

Note

•

DROP USER [IF EXISTS] <user_name>;

•

nebula> DROP USER user1;

•

SHOW USERS;

•

nebula> SHOW USERS;

+---------+-----------------+

| Account | IP Whitelist |

+---------+-----------------+

| "root" | "" |

| "user1" | "" |

| "user2" | "192.168.10.10" |

+---------+-----------------+

Last update: November 3, 2023

8.1.2 User management

- 434/804 - 2023 Vesoft Inc.

8.1.3 Roles and privileges

A role is a collection of privileges. You can assign a role to a user for access control.

Built-in roles

NebulaGraph does not support custom roles, but it has multiple built-in roles:

GOD

GOD is the original role with all privileges not limited to graph spaces. It is similar to root in Linux and administrator in

Windows.

When the Meta Service is initialized, the one and only GOD role user root is automatically created with the password nebula .

Modify the password for root timely for security.

When the --enable_authorize parameter in the nebula-graphd.conf file (the default directory is /usr/local/nebula/etc/) is set to true :

One cluster can only have one user with the GOD role. This user can manage all graph spaces in a cluster.

Manual authorization of the God role is not supported. Only the root user with the default God role can be used.

ADMIN

An ADMIN role can read and write both the Schema and the data in a specific graph space.

An ADMIN role of a graph space can grant DBA, USER, and GUEST roles in the graph space to other users.

Only roles lower than ADMIN can be authorized to other users.

DBA

A DBA role can read and write both the Schema and the data in a specific graph space.

A DBA role of a graph space CANNOT grant roles to other users.

USER

A USER role can read and write data in a specific graph space.

The Schema information is read-only to the USER roles in a graph space.

GUEST

A GUEST role can only read the Schema and the data in a specific graph space.

NebulaGraph does not support custom roles. Users can only use the default built-in roles.

A user can have only one role in a graph space. For authenticated users, see User management.

•

•

•

Caution

•

•

•

•

•

•

Note

•

•

•

•

•

•

•

•

Note

•

•

8.1.3 Roles and privileges

- 435/804 - 2023 Vesoft Inc.

Role privileges and allowed nGQL

The privileges of roles and the nGQL statements that each role can use are listed as follows.

The results of SHOW operations are limited to the role of a user. For example, all users can run SHOW SPACES , but the results only include

the graph spaces that the users have privileges.

Only the GOD role can run SHOW USERS and SHOW SNAPSHOTS .

Privilege God Admin DBA User Guest Allowed nGQL

Read

space

Y Y Y Y Y USE , DESCRIBE SPACE

Read

schema

Y Y Y Y Y DESCRIBE TAG , DESCRIBE EDGE , DESCRIBE TAG INDEX ,

DESCRIBE EDGE INDEX

Write

schema

Y Y Y Y CREATE TAG , ALTER TAG , CREATE EDGE , ALTER EDGE ,

DROP TAG , DELETE TAG , DROP EDGE , CREATE TAG INDEX ,

CREATE EDGE INDEX , DROP TAG INDEX , DROP EDGE INDEX

Write user Y CREATE USER , DROP USER , ALTER USER

Write role Y Y GRANT , REVOKE

Read data Y Y Y Y Y GO , SET , PIPE , MATCH , ASSIGNMENT , LOOKUP , YIELD ,

ORDER BY , FETCH VERTICES , Find , FETCH EDGES , FIND

PATH , LIMIT , GROUP BY , RETURN

Write data Y Y Y Y INSERT VERTEX , UPDATE VERTEX , INSERT EDGE , UPDATE

EDGE , DELETE VERTEX , DELETE EDGES , DELETE TAG

Show

operations

Y Y Y Y Y SHOW , CHANGE PASSWORD

Job Y Y Y Y SUBMIT JOB COMPACT , SUBMIT JOB FLUSH , SUBMIT JOB

STATS , STOP JOB , RECOVER JOB , BUILD TAG INDEX ,

BUILD EDGE INDEX , INGEST , DOWNLOAD

Write

space

Y CREATE SPACE , DROP SPACE , CREATE SNAPSHOT , DROP

SNAPSHOT , BALANCE , CONFIG

Caution

•

•

Last update: October 25, 2023

8.1.3 Roles and privileges

- 436/804 - 2023 Vesoft Inc.

8.2 SSL encryption

NebulaGraph supports SSL encrypted transfers between the Client, Graph Service, Meta Service, and Storage Service, and this

topic describes how to set up SSL encryption.

8.2.1 Precaution

Enabling SSL encryption will slightly affect the performance, such as causing operation latency.

8.2.2 Certificate modes

To use SSL encryption, SSL certificates are required. NebulaGraph supports two certificate modes.

Self-signed certificate mode

A certificate that is generated by the server itself and signed by itself. In the self-signed certificate mode, the server needs to

generate its own SSL certificate and key, and then use its own private key to sign the certificate. It is suitable for building

secure communications for systems and applications within a LAN.

CA-signed certificate mode

A certificate granted by a trusted third-party Certificate Authority (CA). In the CA signed certificate mode, the server needs to

apply for an SSL certificate from a trusted CA and ensure the authenticity and trustworthiness of the certificate through the

auditing and signing of the certificate authority center. It is suitable for public network environment, especially for websites, e-

commerce and other occasions that need to protect user information security.

8.2.3 Authentication policies

Policies for the NebulaGraph community edition.

•

•

Scene TLS

External device access to Graph Modify the Graph configuration file to add the following parameters: --

enable_graph_ssl = true --ca_path=xxxxxx --cert_path=xxxxxx --key_path=xxxxxx

Graph access Meta In the Graph/Meta configuration file, add the following parameters: --

enable_meta_ssl = true --ca_path=xxxxxx --cert_path=xxxxxx --key_path=xxxxxx

Graph access StorageMeta access

Storage

In the Graph/Meta/Storage configuration file, add the following parameters: --

enable_storage_ssl = true --ca_path=xxxxxx --cert_path=xxxxxx --key_path=xxxxxx

Graph access Meta/StorageMeta access

Storage

In the Graph/Meta/Storage configuration file, add the following parameters: --

enable_meta_ssl = true --enable_storage_ssl = true --ca_path=xxxxxx --cert_path=xxxxxx --

key_path=xxxxxx

External device access to GraphGraph

access Meta/StorageMeta access Storage

In the Graph/Meta/Storage configuration file, add the following parameters: --

enable_ssl = true --ca_path=xxxxxx --cert_path=xxxxxx --key_path=xxxxxx

8.2 SSL encryption

- 437/804 - 2023 Vesoft Inc.

The parameters are described below.

8.2.4 Example of TLS

For example, using self-signed certificates and TLS for data transfers between the client NebulaGraph Python, the Graph service,

the Meta service, and the Storage service. You need to set up all three Graph/Meta/Storage configuration files as follows:

When the changes are complete, restart these services to make the configuration take effect.

To connect to the Graph service using NebulaGraph Python, you need to set up a secure socket and add a trusted CA. For code

examples, see nebula-test-run.py.

Parameter Default

value

Description

cert_path - The path to the SSL public key certificate. This certificate is usually a .pem or .crt file,

which is used to prove the identity of the server side, and contains information such as

the public key, certificate owner, digital signature, and so on.

key_path - The path to the SSL key. The SSL key is usually a .key file.

password_path - (Optional) The path to the password file for the SSL key. Some SSL keys are encrypted

and require a corresponding password to decrypt. We need to store the password in a

separate file and use this parameter to specify the path to the password file.

ca_path - The path to the SSL root certificate. The root certificate is a special SSL certificate that

is considered the highest level in the SSL trust chain and is used to validate and

authorize other SSL certificates.

enable_ssl false Whether to enable SSL encryption in all services. only.

enable_graph_ssl false Whether to enable SSL encryption in the Graph service only.

enable_meta_ssl false Whether to enable SSL encryption in the Meta service only.

enable_storage_ssl false Whether to enable SSL encryption in the Storage service only.

1.

--enable_ssl=true

--ca_path=xxxxxx

--cert_path=xxxxxx

--key_path=xxxxxx

2.

3.

Last update: October 25, 2023

8.2.4 Example of TLS

- 438/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/release-3.6/tests/nebula-test-run.py

9. Backup and restore

9.1 NebulaGraph BR Community

9.1.1 What is Backup & Restore

Backup & Restore (BR for short) is a Command-Line Interface (CLI) tool to back up data of graph spaces of NebulaGraph and to

restore data from the backup files.

Features

The BR has the following features. It supports:

Backing up and restoring data in a one-click operation.

Restoring data in the following backup file types:

Local Disk (SSD or HDD). It is recommend to use local disk in test environment only.

Amazon S3 compatible interface, such as Alibaba Cloud OSS, MinIO,Ceph RGW, etc.

Backing up and restoring the entire NebulaGraph cluster.

Backing up data of specified graph spaces (experimental).

Limitations

Supports NebulaGraph v3.x only.

Supports full backup, but not incremental backup.

Currently, NebulaGraph Listener and full-text indexes do not support backup.

If you back up data to the local disk, the backup files will be saved in the local path of each server. You can also mount the NFS

on your host to restore the backup data to a different host.

Restoration requires that the number of the storage servers in the original cluster is the same as that of the storage servers in

the target cluster and storage server IPs must be the same. Restoring the specified space will clear all the remaining spaces in

the cluster.

During the backup process, both DDL and DML statements in any specified graph spaces are blocked. We recommend that you

do the operation within the low peak period of the business, for example, from 2:00 AM to 5:00 AM.

During the restoration process, there is a time when NebulaGraph stops running.

Using BR in a container-based NebulaGraph cluster is not supported.

How to use BR

To use the BR, follow these steps:

Install BR.

Use BR to back up data.

Use BR to restore data from backup files.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

Last update: November 3, 2023

9. Backup and restore

- 439/804 - 2023 Vesoft Inc.

9.1.2 Install BR

This topic introduces the installation of BR in bare-metal deployment scenarios.

Notes

To use the BR (Community Edition) tool, you need to install the NebulaGraph Agent service, which is taken as a daemon for each

machine in the cluster that starts and stops the NebulaGraph service, and uploads and downloads backup files. The BR

(Community Edition) tool and the Agent plug-in are installed as described below.

Version compatibility

Install BR with a binary file

Install BR.

Change the binary file name to br .

Grand execute permission to BR.

Run ./br version to check BR version.

Install BR with the source code

Before compiling the BR, do a check of these:

Go 1.14.x or a later version is installed.

make is installed.

To compile the BR, follow these steps:

Clone the nebula-br repository to your machine.

Change to the br directory.

Compile the BR.

NebulaGraph BR Agent

3.5.x ~ 3.6.0 3.6.0 3.6.x ~ 3.7.0

3.3.0 ~ 3.4.x 3.3.0 0.2.0 ~ 3.4.0

3.0.x ~ 3.2.x 0.6.1 0.1.0 ~ 0.2.0

1.

wget https://github.com/vesoft-inc/nebula-br/releases/download/v3.6.0/br-3.6.0-linux-amd64

2.

sudo mv br-3.6.0-linux-amd64 br

3.

sudo chmod +x br

4.

[nebula-br]$./br version

Nebula Backup And Restore Utility Tool,V-3.6.0

•

•

1.

git clone https://github.com/vesoft-inc/nebula-br.git

2.

cd nebula-br

3.

make

9.1.2 Install BR

- 440/804 - 2023 Vesoft Inc.

https://github.com/golang/go

Users can enter bin/br version on the command line. If the following results are returned, the BR is compiled successfully.

Install Agent

NebulaGraph Agent is installed as a binary file in each machine and serves the BR tool with the RPC protocol.

In each machine, follow these steps:

Install Agent.

Rename the Agent file to agent .

Add execute permission to Agent.

Start Agent.

Before starting Agent, make sure that the Meta service has been started and Agent has read and write access to the corresponding

NebulaGraph cluster directory and backup directory.

--agent : The IP address and port number of Agent.

--meta : The IP address and access port of any Meta service in the cluster.

--ratelimit : (Optional) Limits the speed of file uploads and downloads to prevent bandwidth from being filled up and making other

services unavailable. Unit: Bytes.

For example:

The IP address format for --agent should be the same as that of Meta and Storage services set in the configuration files. That is, use the

real IP addresses or use 127.0.0.1 . Otherwise Agent does not run.

Log into NebulaGraph and then run the following command to view the status of Agent.

FAQ

THE ERROR `E_LIST_CLUSTER_NO_AGENT_FAILURE

If you encounter E_LIST_CLUSTER_NO_AGENT_FAILURE error, it may be due to the Agent service is not started or the Agent service is not

registered to Meta service. First, execute SHOW HOSTS AGENT to check the status of the Agent service on all nodes in the cluster, when

[nebula-br]$ bin/br version

NebulaGraph Backup And Restore Utility Tool,V-3.6.0

1.

wget https://github.com/vesoft-inc/nebula-agent/releases/download/v3.7.0/agent-3.7.0-linux-amd64

2.

sudo mv agent-3.7.0-linux-amd64 agent

3.

sudo chmod +x agent

4.

Note

sudo nohup ./agent --agent="<agent_node_ip>:8888" --meta="<metad_node_ip>:9559" --ratelimit=<file_size_bt> > nebula_agent.log 2>&1 &

•

•

•

sudo nohup ./agent --agent="192.168.8.129:8888" --meta="192.168.8.129:9559" --ratelimit=1048576 > nebula_agent.log 2>&1 &

Caution

5.

nebula> SHOW HOSTS AGENT;

+-----------------+------+----------+---------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-----------------+------+----------+---------+--------------+---------+

| "192.168.8.129" | 8888 | "ONLINE" | "AGENT" | "96646b8" | |

+-----------------+------+----------+---------+--------------+---------+

9.1.2 Install BR

- 441/804 - 2023 Vesoft Inc.

the status shows OFFLINE , it means the registration of Agent failed, then check whether the value of the --meta option in the

command to start the Agent service is correct.

Last update: February 2, 2024

9.1.2 Install BR

- 442/804 - 2023 Vesoft Inc.

9.1.3 Use BR to back up data

After the BR is installed, you can back up data of the entire graph space. This topic introduces how to use the BR to back up

data.

Prerequisites

To back up data with the BR, do a check of these:

Install BR and Agent and run Agent on each host in the cluster.

The NebulaGraph services are running.

If you store the backup files locally, create a directory with the same absolute path on the meta servers, the storage servers,

and the BR machine for the backup files and get the absolute path. Make sure the account has write privileges for this

directory.

In the production environment, we recommend that you mount Network File System (NFS) storage to the meta servers, the

storage servers, and the BR machine for local backup, or use Amazon S3 or Alibaba Cloud OSS for remote backup. When you

restore the data from local files, you must manually move these backup files to a specified directory, which causes redundant data

and troubles. For more information, see Restore data from backup files.

Procedure

In the BR installation directory (the default path of the compiled BR is ./bin/br), run the following command to perform a full

backup for the entire cluster.

Make sure that the local path where the backup file is stored exists.

•

•

•

Warning

Note

$./br backup full --meta <ip_address> --storage <storage_path>

9.1.3 Use BR to back up data

- 443/804 - 2023 Vesoft Inc.

For example:

Run the following command to perform a full backup for the entire cluster whose meta service address is 192.168.8.129:9559 , and

save the backup file to /home/nebula/backup/ .

If there are multiple metad addresses, you can use any one of them.

If you back up data to a local disk, only the data of the leader metad is backed up by default. So if there are multiple metad

processes, you need to manually copy the directory of the leader metad (path <storage_path>/meta) and overwrite the corresponding

directory of other follower meatd processes.

Run the following command to perform a full backup for the entire cluster whose meta service address is 192.168.8.129:9559 , and

save the backup file to backup in the br-test bucket of the object storage service compatible with S3 protocol.

The parameters are as follows.

•

Caution

Caution

$./br backup full --meta "192.168.8.129:9559" --storage "local:///home/nebula/backup/"

•

$./br backup full --meta "192.168.8.129:9559" --s3.endpoint "http://192.168.8.129:9000" --storage="s3://br-test/backup/" --s3.access_key=minioadmin --s3.secret_key=minioadmin --

s3.region=default

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

--debug - No None Checks for more log information.

--log string No "br.log" Specifies detailed log path for restoration and backup.

--meta string Yes None The IP address and port of the meta service.

--space string Yes None (Experimental feature) Specifies the names of the spaces to

be backed up. All spaces will be backed up if not specified.

Multiple spaces can be specified, and format is --spaces

nba_01 --spaces nba_02 .

--storage string Yes None The target storage URL of BR backup data. The format is:

\<Schema>://\<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--

s3.access_key

string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--

s3.secret_key

string No None Sets SecretKey for AccessKey ID.

9.1.3 Use BR to back up data

- 444/804 - 2023 Vesoft Inc.

Next to do

After the backup files are generated, you can use the BR to restore them for NebulaGraph. For more information, see Use BR to

restore data.

Last update: November 3, 2023

9.1.3 Use BR to back up data

- 445/804 - 2023 Vesoft Inc.

9.1.4 Use BR to restore data

If you use the BR to back up data, you can use it to restore the data to NebulaGraph. This topic introduces how to use the BR to

restore data from backup files.

During the restoration process, the data on the target NebulaGraph cluster is removed and then is replaced with the data from the

backup files. If necessary, back up the data on the target cluster.

The restoration process is performed OFFLINE.

Prerequisites

Install BR and Agent and run Agent on each host in the cluster.

No application is connected to the target NebulaGraph cluster.

Make sure that the target and the source NebulaGraph clusters have the same topology, which means that they have exactly

the same number of hosts. The number of data folders for each host is consistently distributed.

Caution

Caution

•

•

•

9.1.4 Use BR to restore data

- 446/804 - 2023 Vesoft Inc.

Procedures

In the BR installation directory (the default path of the compiled BR is ./br), run the following command to perform a full backup

for the entire cluster.

9.1.4 Use BR to restore data

- 447/804 - 2023 Vesoft Inc.

Users can use the following command to list the existing backup information:

For example, run the following command to list the backup information in the local /home/nebula/backup path.

Or, you can run the following command to list the backup information stored in S3 URL s3://192.168.8.129:9000/br-test/backup .

Run the following command to restore data.

For example, run the following command to upload the backup files from the local /home/nebula/backup/ to the cluster where the meta

service's address is 192.168.8.129:9559 .

Or, you can run the following command to upload the backup files from the S3 URL s3://192.168.8.129:9000/br-test/backup .

If the following information is returned, the data is restored successfully.

If your new cluster hosts' IPs are not all the same as the backup cluster, after restoration, you should run add hosts to add the Storage

host IPs in the new cluster one by one.

1.

$./br show --storage <storage_path>

$./br show --storage "local:///home/nebula/backup"

+----------------------------+---------------------+------------------------+-------------+------------+

| NAME | CREATE TIME | SPACES | FULL BACKUP | ALL SPACES |

+----------------------------+---------------------+------------------------+-------------+------------+

| BACKUP_2022_02_10_07_40_41 | 2022-02-10 07:40:41 | basketballplayer | true | true |

| BACKUP_2022_02_11_08_26_43 | 2022-02-11 08:26:47 | basketballplayer,foesa | true | true |

+----------------------------+---------------------+------------------------+-------------+------------+

$./br show --s3.endpoint "http://192.168.8.129:9000" --storage="s3://br-test/backup/" --s3.access_key=minioadmin --s3.secret_key=minioadmin --s3.region=default

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

-debug - No None Checks for more log information.

-log string No "br.log" Specifies detailed log path for restoration and backup.

--storage string Yes None The target storage URL of BR backup data. The format

is: <Schema>://<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--s3.access_key string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--s3.secret_key string No None Sets SecretKey for AccessKey ID.

2.

$./br restore full --meta <ip_address> --storage <storage_path> --name <backup_name>

$./br restore full --meta "192.168.8.129:9559" --storage "local:///home/nebula/backup/" --name BACKUP_2021_12_08_18_38_08

$./br restore full --meta "192.168.8.129:9559" --s3.endpoint "http://192.168.8.129:9000" --storage="s3://br-test/backup/" --s3.access_key=minioadmin --s3.secret_key=minioadmin --

s3.region="default" --name BACKUP_2021_12_08_18_38_08

Restore succeed.

Caution

9.1.4 Use BR to restore data

- 448/804 - 2023 Vesoft Inc.

The parameters are as follows.

Run the following command to clean up temporary files if any error occurred during backup. It will clean the files in cluster and

external storage. You could also use it to clean up old backups files in external storage.

The parameters are as follows.

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

-debug - No None Checks for more log information.

-log string No "br.log" Specifies detailed log path for restoration and backup.

-meta string Yes None The IP address and port of the meta service.

-name string Yes None The name of backup.

--storage string Yes None The target storage URL of BR backup data. The format

is: \<Schema>://\<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--s3.access_key string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--s3.secret_key string No None Sets SecretKey for AccessKey ID.

3.

$./br cleanup --meta <ip_address> --storage <storage_path> --name <backup_name>

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

-debug - No None Checks for more log information.

-log string No "br.log" Specifies detailed log path for restoration and backup.

-meta string Yes None The IP address and port of the meta service.

-name string Yes None The name of backup.

--storage string Yes None The target storage URL of BR backup data. The format

is: \<Schema>://\<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--s3.access_key string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--s3.secret_key string No None Sets SecretKey for AccessKey ID.

9.1.4 Use BR to restore data

- 449/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

9.1.4 Use BR to restore data

- 450/804 - 2023 Vesoft Inc.

9.2 Backup and restore data with snapshots

NebulaGraph supports using snapshots to back up and restore data. When data loss or misoperation occurs, the data will be

restored through the snapshot.

9.2.1 Prerequisites

NebulaGraph authentication is disabled by default. In this case, all users can use the snapshot feature.

If authentication is enabled, only the GOD role user can use the snapshot feature. For more information about roles, see Roles

and privileges.

9.2.2 Precautions

To prevent data loss, create a snapshot as soon as the system structure changes, for example, after operations such as ADD HOST ,

DROP HOST , CREATE SPACE , DROP SPACE , and BALANCE are performed.

NebulaGraph cannot automatically delete the invalid files created by a failed snapshot task. You have to manually delete them

by using DROP SNAPSHOT .

Customizing the storage path for snapshots is not supported for now.

9.2.3 Create snapshots

Run CREATE SNAPSHOT to create a snapshot for all the graph spaces based on the current time for NebulaGraph. Creating a snapshot

for a specific graph space is not supported yet.

If the creation fails, refer to the later section to delete the corrupted snapshot and then recreate the snapshot.

9.2.4 View snapshots

To view all existing snapshots, run SHOW SNAPSHOTS .

The parameters in the return information are described as follows.

•

•

•

Note

nebula> CREATE SNAPSHOT;

nebula> SHOW SNAPSHOTS;

+--------------------------------+---------+------------------+

| Name | Status | Hosts |

+--------------------------------+---------+------------------+

| "SNAPSHOT_2021_03_09_08_43_12" | "VALID" | "127.0.0.1:9779" |

| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |

+--------------------------------+---------+------------------+

Parameter Description

Name The name of the snapshot directory. The prefix SNAPSHOT indicates that the file is a snapshot file, and the

suffix indicates the time the snapshot was created (UTC).

Status The status of the snapshot. VALID indicates that the creation succeeded, while INVALID indicates that it failed.

Hosts The IPs (or hostnames) and ports of all Storage servers at the time the snapshot was created.

9.2 Backup and restore data with snapshots

- 451/804 - 2023 Vesoft Inc.

Snapshot path

Snapshots are stored in the path specified by the data_path parameter in the Meta and Storage configuration files. When a

snapshot is created, the checkpoints directory is checked in the datastore path of the leader Meta service and all Storage services

for the existence, and if it is not there, it is automatically created. The newly created snapshot is stored as a subdirectory within

the checkpoints directory. For example, SNAPSHOT_2021_03_09_08_43_12 . The suffix 2021_03_09_08_43_12 is generated automatically based on

the creation time (UTC).

To fast locate the path where the snapshots are stored, you can use the Linux command find in the datastore path. For example:

9.2.5 Delete snapshots

To delete a snapshot with the given name, run DROP SNAPSHOT .

Example:

Deleting the only snapshot within the checkpoints directory also deletes the checkpoints directory.

9.2.6 Restore data with snapshots

When you restore data with snapshots, make sure that the graph spaces backed up in the snapshot have not been dropped.

Otherwise, the data of the graph spaces cannot be restored.

$ cd /usr/local/nebula-graph-ent-3.6.0/data

$ find |grep 'SNAPSHOT_2021_03_09_08_43_12'

./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12

./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12/data

./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12/data/000081.sst

...

DROP SNAPSHOT <snapshot_name>;

nebula> DROP SNAPSHOT SNAPSHOT_2021_03_09_08_43_12;

nebula> SHOW SNAPSHOTS;

+--------------------------------+---------+------------------+

| Name | Status | Hosts |

+--------------------------------+---------+------------------+

| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |

+--------------------------------+---------+------------------+

Note

Warning

9.2.5 Delete snapshots

- 452/804 - 2023 Vesoft Inc.

Currently, there is no command to restore data with snapshots. You need to manually copy the snapshot file to the corresponding

folder, or you can make it by using a shell script. The logic implements as follows:

After the snapshot is created, the checkpoints directory is generated in the installation directory of the leader Meta service and all

Storage services, and saves the created snapshot. Taking this topic as an example, when there are two graph spaces, the snapshots

created are saved in /usr/local/nebula/data/meta/nebula/0/checkpoints , /usr/local/nebula/data/storage/ nebula/3/checkpoints

and /usr/local/nebula/data/storage/nebula/4/checkpoints .

To restore the lost data through snapshots, you can take a snapshot at an appropriate time, copy the folders data and wal in the

corresponding snapshot directory to its parent directory (at the same level with checkpoints) to overwrite the previous data and wal ,

and then restart the cluster.

The data and wal directories of all Meta services should be overwritten at the same time. Otherwise, the new leader Meta service will

use the latest Meta data after a cluster is restarted.

1.

$ ls /usr/local/nebula/data/meta/nebula/0/checkpoints/

SNAPSHOT_2021_03_09_09_10_52

$ ls /usr/local/nebula/data/storage/nebula/3/checkpoints/

SNAPSHOT_2021_03_09_09_10_52

$ ls /usr/local/nebula/data/storage/nebula/4/checkpoints/

SNAPSHOT_2021_03_09_09_10_52

2.

Warning

Last update: November 22, 2023

9.2.6 Restore data with snapshots

- 453/804 - 2023 Vesoft Inc.

10. Synchronize and migrate

10.1 BALANCE syntax

We can submit tasks to load balance Storage services in NebulaGraph. For more information about storage load balancing and

examples, see Storage load balance.

For other job management commands, see Job manager and the JOB statements.

The syntax for load balance is described as follows.

For details about how to view, stop, and restart a job, see Job manager and the JOB statements.

Note

Syntax Description

SUBMIT JOB BALANCE

LEADER

Starts a job to balance the distribution of all the storage leaders in all graph spaces. It returns the

job ID.

Last update: October 25, 2023

10. Synchronize and migrate

- 454/804 - 2023 Vesoft Inc.

11. Import and export

11.1 Import tools

There are many ways to write NebulaGraph 3.6.0:

Import with the command -f: This method imports a small number of prepared nGQL files, which is suitable to prepare for a

small amount of manual test data.

Import with Studio: This method uses a browser to import multiple CSV files of this machine. A single file cannot exceed 100

MB, and its format is limited.

Import with Importer: This method imports multiple CSV files on a single machine with unlimited size and flexible format.

Suitable for scenarios with less than one billion records of data.

Import with Exchange: This method imports from various distribution sources, such as Neo4j, Hive, MySQL, etc., which

requires a Spark cluster. Suitable for scenarios with more than one billion records of data.

Read and write APIs with Spark-connector/Flink-connector: This method requires you to write a small amount of code to make

use of the APIs provided by Spark/Flink connector.

Import with C++/GO/Java/Python SDK: This method imports in the way of writing programs, which requires certain

programming and tuning skills.

The following figure shows the positions of these ways:

11.1.1 Export tools

Read and write APIs with Spark-connector/Flink-connector: This method requires you to write a small amount of code to make

use of the APIs provided by Spark/Flink connector.

Export the data in database to a CSV file or another graph space (different NebulaGraph database clusters are supported)

using the export function of the Exchange.

•

•

•

•

•

•

•

•

11. Import and export

- 455/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/write-choice.png
https://docs-cdn.nebula-graph.com.cn/figures/write-choice.png

The export function is exclusively available in the Enterprise Edition. If you require access to this version, please contact us.

Enterpriseonly

Last update: February 18, 2024

11.1.1 Export tools

- 456/804 - 2023 Vesoft Inc.

mailto:inquiry@vesoft.com

11.2 NebulaGraph Importer

NebulaGraph Importer (Importer) is a standalone tool for importing data from CSV files into NebulaGraph. Importer can read

and batch import CSV file data from multiple data sources, and also supports batch update and delete operations.

11.2.1 Features

Support multiple data sources, including local, S3, OSS, HDFS, FTP, SFTP, and GCS.

Support importing data from CSV format files. A single file can contain multiple tags, multiple edge types or a mix of both.

Support filtering the data from source.

Support batch operation, including insert, update, delete.

Support connecting to multiple Graph services simultaneously for importing and dynamic load balancing.

Support reconnect or retry after failure.

Support displaying statistics in multiple dimensions, including import time, import percentage, etc. Support for printing

statistics in Console or logs.

Support SSL.

11.2.2 Advantage

Lightweight and fast: no complex environment can be used, fast data import.

Flexible filtering: You can flexibly filter CSV data through configuration files.

11.2.3 Version compatibility

The version correspondence between NebulaGraph and NebulaGraph Importer is as follows.

Importer 4.0.0 has redone the Importer for improved performance, but the configuration file is not compatible with older versions. It

is recommended to use the new version of Importer.

11.2.4 Release note

Release

•

•

•

•

•

•

•

•

•

•

NebulaGraph version NebulaGraph Importer version

3.x.x 3.x.x, 4.x.x

2.x.x 2.x.x, 3.x.x

Note

11.2 NebulaGraph Importer

- 457/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer/releases/tag/v4.1.0

11.2.5 Prerequisites

Before using NebulaGraph Importer, make sure:

NebulaGraph service has been deployed. The deployment method is as follows:

Deploy NebulaGraph with Docker Compose

Install NebulaGraph with RPM or DEB package

Install NebulaGraph by compiling the source code

Schema is created in NebulaGraph, including space, Tag and Edge type, or set by parameter manager.hooks.before.statements .

11.2.6 Steps

Prepare the CSV file to be imported and configure the YAML file to use the tool to batch write data into NebulaGraph.

For details about the YAML configuration file, see Configuration File Description at the end of topic.

Download binary package and run

Download the executable binary package.

The file installation path based on the RPM/DEB package is /usr/bin/nebula-importer .

Under the directory where the binary file is located, run the following command to start importing data.

Source code compile and run

Compiling the source code requires deploying a Golang environment. For details, see Build Go environment.

Clone repository.

Use the correct branch. Different branches have different RPC protocols.

Access the directory nebula-importer .

Compile the source code.

Start the service.

•

•

•

•

•

Note

1.

Note

2.

./<binary_file_name> --config <yaml_config_file_path>

1.

git clone -b release-4.1 https://github.com/vesoft-inc/nebula-importer.git

Note

2.

cd nebula-importer

3.

make build

4.

./bin/nebula-importer --config <yaml_config_file_path>

11.2.5 Prerequisites

- 458/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer/releases/tag/v4.1.0
https://github.com/vesoft-inc/nebula-importer/blob/release-4.1/docs/golang-install-en.md

Run in Docker mode

Instead of installing the Go locale locally, you can use Docker to pull the image of the NebulaGraph Importer and mount the local

configuration file and CSV data file into the container. The command is as follows:

<config_file> : The absolute path to the YAML configuration file.

<data_dir> : The absolute path to the CSV data file. If the file is not local, ignore this parameter.

<version> : NebulaGraph 3.x Please fill in 'v3'.

A relative path is recommended. If you use a local absolute path, check that the path maps to the path in the Docker.

Example:

11.2.7 Configuration File Description

Various example configuration files are available within the Github of the NebulaGraph Importer. The configuration files are used

to describe information about the files to be imported, NebulaGraph server information, etc. The following section describes the

fields within the configuration file in categories.

If users download a binary package, create the configuration file manually.

Client configuration

Client configuration stores the configuration associated with the client's connection to the NebulaGraph.

The example configuration is as follows:

docker pull vesoft/nebula-importer:<version>

docker run --rm -ti \

 --network=host \

 -v <config_file>:<config_file> \

 -v <data_dir>:<data_dir> \

 vesoft/nebula-importer:<version> \

 --config <config_file>

•

•

•

Note

docker pull vesoft/nebula-importer:v4

docker run --rm -ti \

 --network=host \

 -v /home/user/config.yaml:/home/user/config.yaml \

 -v /home/user/data:/home/user/data \

 vesoft/nebula-importer:v4 \

 --config /home/user/config.yaml

Note

client:

 version: v3

 address: "192.168.1.100:9669,192.168.1.101:9669"

 user: root

 password: nebula

 ssl:

 enable: true

 certPath: "/home/xxx/cert/importer.crt"

 keyPath: "/home/xxx/cert/importer.key"

 caPath: "/home/xxx/cert/root.crt"

 insecureSkipVerify: false

 concurrencyPerAddress: 10

 reconnectInitialInterval: 1s

11.2.7 Configuration File Description

- 459/804 - 2023 Vesoft Inc.

https://hub.docker.com/r/vesoft/nebula-importer
https://github.com/vesoft-inc/nebula-importer/tree/release-4.1/examples

Manager configuration

Manager configuration is a human-controlled configuration after connecting to the database.

The example configuration is as follows:

 retry: 3

 retryInitialInterval: 1s

Parameter Default

value

Required Description

client.version v3 Yes Specifies the major version of the NebulaGraph.

Currently only v3 is supported.

client.address "127.0.0.1:9669" Yes Specifies the address of the NebulaGraph. Multiple

addresses are separated by commas.

client.user root No NebulaGraph user name.

client.password nebula No The password for the NebulaGraph user name.

client.ssl.enable false No Specifies whether to enable SSL authentication.

client.ssl.certPath - No Specifies the storage path for the SSL public key

certificate.This parameter is required when SSL

authentication is enabled.

client.ssl.keyPath - No S pecifies the storage path for the SSL key.This

parameter is required when SSL authentication is

enabled.

client.ssl.caPath - No Specifies the storage path for the CA root

certificate.This parameter is required when SSL

authentication is enabled.

client.ssl.insecureSkipVerify false No Specifies whether the client skips verifying the server's

certificate chain and hostname. If set to true , any

certificate chain and hostname provided by the server

is accepted.

client.concurrencyPerAddress 10 No The number of concurrent client connections for a

single graph service.

client.retryInitialInterval 1s No Reconnect interval time.

client.retry 3 No The number of retries for failed execution of the nGQL

statement.

client.retryInitialInterval 1s No Retry interval time.

manager:

 spaceName: basic_string_examples

 batch: 128

 readerConcurrency: 50

 importerConcurrency: 512

 statsInterval: 10s

 hooks:

 before:

 - statements:

 - UPDATE CONFIGS storage:wal_ttl=3600;

 - UPDATE CONFIGS storage:rocksdb_column_family_options = { disable_auto_compactions = true };

 - statements:

 - |

 DROP SPACE IF EXISTS basic_string_examples;

 CREATE SPACE IF NOT EXISTS basic_string_examples(partition_num=5, replica_factor=1, vid_type=int);

 USE basic_string_examples;

 wait: 10s

 after:

 - statements:

 - |

11.2.7 Configuration File Description

- 460/804 - 2023 Vesoft Inc.

Log configuration

Log configuration is the logging-related configuration.

The example configuration is as follows:

Source configuration

The Source configuration requires the configuration of data source information, data processing methods, and Schema mapping.

The example configuration is as follows:

 UPDATE CONFIGS storage:wal_ttl=86400;

 UPDATE CONFIGS storage:rocksdb_column_family_options = { disable_auto_compactions = false };

Parameter Default

value

Required Description

manager.spaceName - Yes Specifies the NebulaGraph space to import

the data into. Do not support importing

multiple map spaces at the same time.

manager.batch 128 No The batch size for executing statements

(global configuration).

Setting the batch size individually for a

data source can using the parameter

sources.batch below.

manager.readerConcurrency 50 No The number of concurrent reads of the data

source by the reader.

manager.importerConcurrency 512 No The number of concurrent nGQL statements

generated to be executed, and then will call

the client to execute these nGQL

statements.

manager.statsInterval 10s No The time interval for printing statistical

information

manager.hooks.before.[].statements - No The command to execute in the graph space

before importing.

manager.hooks.before.[].wait - No The wait time after statements are executed.

manager.hooks.after.[].statements - No The commands to execute in the graph

space after importing.

manager.hooks.after.[].wait - No The wait time after statements are executed.

log:

 level: INFO

 console: true

 files:

 - logs/nebula-importer.log

Parameter Default

value

Required Description

log.level INFO No Specifies the log level. Optional values are DEBUG , INFO , WARN ,

ERROR , PANIC , FATAL .

log.console true No Whether to print the logs to console synchronously when storing

logs.

log.files - No The log file path. The log directory must exist.

11.2.7 Configuration File Description

- 461/804 - 2023 Vesoft Inc.

sources:

 - path: ./person.csv # Required. Specifies the path where the data files are stored. If a relative path is used, the path and current configuration file directory are spliced. Wildcard

filename is also supported, for example: ./follower-*.csv, please make sure that all matching files with the same schema.

- s3: # AWS S3

endpoint: endpoint # Optional. The endpoint of S3 service, can be omitted if using AWS S3.

region: us-east-1 # Required. The region of S3 service.

bucket: gdelt-open-data # Required. The bucket of file in S3 service.

key: events/20190918.export.csv # Required. The object key of file in S3 service.

accessKeyID: "" # Optional. The access key of S3 service. If it is public data, no need to configure.

accessKeySecret: "" # Optional. The secret key of S3 service. If it is public data, no need to configure.

- oss:

endpoint: https://oss-cn-hangzhou.aliyuncs.com # Required. The endpoint of OSS service.

bucket: bucketName # Required. The bucket of file in OSS service.

key: objectKey # Required. The object key of file in OSS service.

accessKeyID: accessKey # Required. The access key of OSS service.

accessKeySecret: secretKey # Required. The secret key of OSS service.

- ftp:

host: 192.168.0.10 # Required. The host of FTP service.

port: 21 # Required. The port of FTP service.

user: user # Required. The user of FTP service.

password: password # Required. The password of FTP service.

path: "/events/20190918.export.csv" # Required. The path of file in the FTP service.

- sftp:

host: 192.168.0.10 # Required. The host of SFTP service.

port: 22 # Required. The port of SFTP service.

user: user # Required. The user of SFTP service.

password: password # Optional. The password of SFTP service.

keyFile: keyFile # Optional. The ssh key file path of SFTP service.

keyData: keyData $ Optional. The ssh key file content of SFTP service.

passphrase: passphrase # Optional. The ssh key passphrase of SFTP service.

path: "/events/20190918.export.csv" # Required. The path of file in the SFTP service.

- hdfs:

address: "127.0.0.1:8020" # Required. The address of HDFS service.

user: "hdfs" # Optional. The user of HDFS service.

servicePrincipalName: <Kerberos Service Principal Name> # Optional. The name of the Kerberos service instance for the HDFS service when Kerberos authentication is enabled.

krb5ConfigFile: <Kerberos config file> # Optional. The path to the Kerberos configuration file for the HDFS service when Kerberos authentication is enabled. Defaults to `/etc/

krb5.conf`.

ccacheFile: <Kerberos ccache file> # Optional. The path to the Kerberos ccache file for the HDFS service when Kerberos authentication is enabled.

keyTabFile: <Kerberos keytab file> # Optional. The path to the Kerberos keytab file for the HDFS service when Kerberos authentication is enabled.

password: <Kerberos password> # Optional. The Kerberos password for the HDFS service when Kerberos authentication is enabled.

dataTransferProtection: <Kerberos Data Transfer Protection> # Optional. The type of transport encryption when Kerberos authentication is enabled. Optional values are

`authentication`, `integrity`, `privacy`.

disablePAFXFAST: false # Optional. Whether to disable the use of PA_FX_FAST for clients.

path: "/events/20190918.export.csv" # Required. The path to the file in the HDFS service. Wildcard filenames are also supported, e.g. `/events/*.export.csv`, make sure all

matching files have the same schema.

- gcs: # Google Cloud Storage

bucket: chicago-crime-sample # Required. The name of the bucket in the GCS service.

key: stats/000000000000.csv # Required. The path to the file in the GCS service.

withoutAuthentication: false # Optional. Whether to anonymize access. Defaults to false, which means access with credentials.

When using credentials access, one of the credentialsFile and credentialsJSON parameters is sufficient.

credentialsFile: "/path/to/your/credentials/file" # Optional. The path to the credentials file for the GCS service.

credentialsJSON: '{ # Optional. The JSON content of the credentials for the GCS service.

"type": "service_account",

"project_id": "your-project-id",

"private_key_id": "key-id",

"private_key": "-----BEGIN PRIVATE KEY-----\nxxxxx\n-----END PRIVATE KEY-----\n",

"client_email": "your-client@your-project-id.iam.gserviceaccount.com",

"client_id": "client-id",

"auth_uri": "https://accounts.google.com/o/oauth2/auth",

"token_uri": "https://oauth2.googleapis.com/token",

"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",

"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/your-client%40your-project-id.iam.gserviceaccount.com",

"universe_domain": "googleapis.com"

}'

 batch: 256

 csv:

 delimiter: "|"

 withHeader: false

 lazyQuotes: false

 tags:

 - name: Person

mode: INSERT

filter:

expr: Record[1] == "XXX"

 id:

 type: "STRING"

 function: "hash"

index: 0

 concatItems:

 - person_

 - 0

 - _id

 props:

 - name: "firstName"

 type: "STRING"

 index: 1

 - name: "lastName"

 type: "STRING"

 index: 2

 - name: "gender"

 type: "STRING"

 index: 3

 nullable: true

 defaultValue: female

11.2.7 Configuration File Description

- 462/804 - 2023 Vesoft Inc.

 - name: "birthday"

 type: "DATE"

 index: 4

 nullable: true

 nullValue: _NULL_

 - name: "creationDate"

 type: "DATETIME"

 index: 5

 - name: "locationIP"

 type: "STRING"

 index: 6

 - name: "browserUsed"

 type: "STRING"

 index: 7

 - path: ./knows.csv

 batch: 256

 edges:

 - name: KNOWS # person_knows_person

mode: INSERT

filter:

expr: Record[1] == "XXX"

 src:

 id:

 type: "STRING"

 concatItems:

 - person_

 - 0

 - _id

 dst:

 id:

 type: "STRING"

 concatItems:

 - person_

 - 1

 - _id

 props:

 - name: "creationDate"

 type: "DATETIME"

 index: 2

 nullable: true

 nullValue: _NULL_

 defaultValue: 0000-00-00T00:00:00

11.2.7 Configuration File Description

- 463/804 - 2023 Vesoft Inc.

The configuration mainly includes the following parts:

Specify the data source information.

Specifies the batch size for executing statements.

Specifies the CSV file format information.

Specifies the schema mapping for Tag.

Specifies the schema mapping for Edge type.

•

•

•

•

•

11.2.7 Configuration File Description

- 464/804 - 2023 Vesoft Inc.

Parameter Default

value

Required Description

sources.path sources.s3 sources.oss sources.ftp sources.sftp sources.hdfs - No Specify data source information, such as local file, HDFS, and S3. Only one source can be configured for the

source . Configure multiple sources in multiple source .See the comments in the example for configuration

items for different data sources.

sources.batch 256 No The batch size for executing statements when importing this data source. The priority is higher than

manager.batch .

sources.csv.delimiter , No Specifies the delimiter for the CSV file. Only 1-character string separators are supported. Special characters

like tabs (\t) and hexadecimal values (e.g., 0x03 or Ctrl+C) must be properly escaped and enclosed in double

quotes, such as "\t" for tabs and "\x03" or "\u0003" for hexadecimal values, instead of using single quotes.

For details on escaping special characters in yaml format, see Escaped Characters.

sources.csv.withHeader false No Whether to ignore the first record in the CSV file.

sources.csv.lazyQuotes false No Whether to allow lazy quotes. If lazyQuotes is true, a quote may appear in an unquoted field and a non-

doubled quote may appear in a quoted field.

sources.tags.name - Yes The tag name.

sources.tags.mode INSERT No Batch operation types, including insert, update and delete. Optional values are INSERT , UPDATE and DELETE .

sources.tags.filter.expr - No Filter the data and only import if the filter conditions are met. Supported comparison characters are == , !

= , < , > , <= and >= . Logical operators supported are not (!) , and (&&) and or (||). For example

(Record[0] == "Mahinda" or Record[0] == "Michael") and Record[3] == "male" .

sources.tags.id.type STRING No The type of the VID.

sources.tags.id.function - No Functions to generate the VID. Currently, only function hash are supported.

sources.tags.id.index - No The column number corresponding to the VID in the data file. If sources.tags.id.concatItems is not configured,

this parameter must be configured.

sources.tags.id.concatItems - No Used to concatenate two or more arrays, the concatenated items can be string , int or mixed. string stands

for a constant, int for an index column. If this parameter is set, the sources.tags.id.index parameter will not

take effect.

sources.tags.ignoreExistedIndex true No Whether to enable IGNORE_EXISTED_INDEX , that is, do not update index after insertion vertex.

sources.tags.props.name - Yes The tag property name, which must match the Tag property in the database.

sources.tags.props.type STRING No Property data type, supporting BOOL , INT , FLOAT , DOUBLE , STRING , TIME , TIMESTAMP , DATE , DATETIME , GEOGRAPHY ,

GEOGRAPHY(POINT) , GEOGRAPHY(LINESTRING) and GEOGRAPHY(POLYGON) .

sources.tags.props.index - Yes The property corresponds to the column number in the data file.

sources.tags.props.nullable false No Whether this prop property can be NULL , optional values is true or false .

sources.tags.props.nullValue - No Ignored when nullable is false . The value used to determine whether it is a NULL . The property is set to NULL

when the value is equal to nullValue .

sources.tags.props.alternativeIndices - No Ignored when nullable is false . The property is fetched from records according to the indices in order until

not equal to nullValue .

sources.tags.props.defaultValue - No Ignored when nullable is false . The property default value, when all the values obtained by index and

alternativeIndices are nullValue .

sources.edges.name - Yes The edge type name.

sources.edges.mode INSERT No Batch operation types, including insert, update and delete. Optional values are INSERT , UPDATE and DELETE .

sources.edges.filter.expr - No Filter the data and only import if the filter conditions are met. Supported comparison characters are == , !

= , < , > , <= and >= . Logical operators supported are not (!) , and (&&) and or (||). For example

(Record[0] == "Mahinda" or Record[0] == "Michael") and Record[3] == "male" .

sources.edges.src.id.type STRING No The data type of the VID at the starting vertex on the edge.

11.2.7 Configuration File Description

- 465/804 - 2023 Vesoft Inc.

https://yaml.org/spec/1.2.2/#escaped-characters

The sequence numbers of the columns in the CSV file start from 0, that is, the sequence numbers of the first column are 0, and the

sequence numbers of the second column are 1.

Parameter Default

value

Required Description

sources.edges.src.id.index - Yes The column number in the data file corresponding to the VID at the starting vertex on the edge.

sources.edges.dst.id.type STRING No The data type of the VID at the destination vertex on the edge.

sources.edges.dst.id.index - Yes The column number in the data file corresponding to the VID at the destination vertex on the edge.

sources.edges.rank.index - No The column number in the data file corresponding to the rank on the edge.

sources.edges.ignoreExistedIndex true No Whether to enable IGNORE_EXISTED_INDEX , that is, do not update index after insertion vertex.

sources.edges.props.name - No The edge type property name, which must match the Tag property in the database.

sources.edges.props.type STRING No Property data type, supporting BOOL , INT , FLOAT , DOUBLE , STRING , TIME , TIMESTAMP , DATE , DATETIME , GEOGRAPHY ,

GEOGRAPHY(POINT) , GEOGRAPHY(LINESTRING) and GEOGRAPHY(POLYGON) .

sources.edges.props.index - No The property corresponds to the column number in the data file.

sources.edges.props.nullable - No Whether this prop property can be NULL , optional values is true or false .

sources.edges.props.nullValue - No Ignored when nullable is false . The value used to determine whether it is a NULL . The property is set to NULL

when the value is equal to nullValue .

sources.edges.props.defaultValue - No Ignored when nullable is false . The property default value, when all the values obtained by index and

alternativeIndices are nullValue .

Note

Last update: October 25, 2023

11.2.7 Configuration File Description

- 466/804 - 2023 Vesoft Inc.

11.3 NebulaGraph Exchange

11.3.1 Introduction

What is NebulaGraph Exchange

NebulaGraph Exchange (Exchange) is an Apache Spark™ application for bulk migration of cluster data to NebulaGraph in a

distributed environment, supporting batch and streaming data migration in a variety of formats.

Exchange consists of Reader, Processor, and Writer. After Reader reads data from different sources and returns a DataFrame, the

Processor iterates through each row of the DataFrame and obtains the corresponding value based on the mapping between

fields in the configuration file. After iterating through the number of rows in the specified batch, Writer writes the captured data

to the NebulaGraph at once. The following figure illustrates the process by which Exchange completes the data conversion and

migration.

EDITIONS

Exchange has two editions, the Community Edition and the Enterprise Edition. The Community Edition is open source developed

on GitHub. The Enterprise Edition supports not only the functions of the Community Edition but also adds additional features.

For details, see Comparisons.

11.3 NebulaGraph Exchange

- 467/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange
https://docs-cdn.nebula-graph.com.cn/figures/ex-ug-003.png
https://docs-cdn.nebula-graph.com.cn/figures/ex-ug-003.png
https://github.com/vesoft-inc/nebula-exchange
https://nebula-graph.com.cn/pricing/

SCENARIOS

Exchange applies to the following scenarios:

Streaming data from Kafka and Pulsar platforms, such as log files, online shopping data, activities of game players, information

on social websites, financial transactions or geospatial services, and telemetry data from connected devices or instruments in

the data center, are required to be converted into the vertex or edge data of the property graph and import them into the

NebulaGraph database.

Batch data, such as data from a time period, needs to be read from a relational database (such as MySQL) or a distributed file

system (such as HDFS), converted into vertex or edge data for a property graph, and imported into the NebulaGraph database.

A large volume of data needs to be generated into SST files that NebulaGraph can recognize and then imported into the

NebulaGraph database.

The data saved in NebulaGraph needs to be exported.

Exporting the data saved in NebulaGraph is supported by Exchange Enterprise Edition only.

ADVANTAGES

Exchange has the following advantages:

High adaptability: It supports importing data into the NebulaGraph database in a variety of formats or from a variety of

sources, making it easy to migrate data.

SST import: It supports converting data from different sources into SST files for data import.

SSL encryption: It supports establishing the SSL encryption between Exchange and NebulaGraph to ensure data security.

Resumable data import: It supports resumable data import to save time and improve data import efficiency.

Resumable data import is currently supported when migrating Neo4j data only.

Asynchronous operation: An insert statement is generated in the source data and sent to the Graph service. Then the insert

operation is performed.

Great flexibility: It supports importing multiple Tags and Edge types at the same time. Different Tags and Edge types can be

from different data sources or in different formats.

Statistics: It uses the accumulator in Apache Spark™ to count the number of successful and failed insert operations.

Easy to use: It adopts the Human-Optimized Config Object Notation (HOCON) configuration file format and has an object-

oriented style, which is easy to understand and operate.

VERSION COMPATIBILITY

Exchange supports Spark versions 2.2.x, 2.4.x, and 3.x.x, which are named nebula-exchange_spark_2.2 , nebula-exchange_spark_2.4 , and

nebula-exchange_spark_3.0 for different Spark versions.

•

•

•

•

Enterpriseonly

•

•

•

•

Note

•

•

•

•

11.3.1 Introduction

- 468/804 - 2023 Vesoft Inc.

The correspondence between the NebulaGraph Exchange version (the JAR version), the NebulaGraph core version and the Spark

version is as follows.

Exchange version NebulaGraph version Spark version

nebula-exchange_spark_3.0-3.0-SNAPSHOT.jar nightly 3.3.x、3.2.x、3.1.x、3.0.x

nebula-exchange_spark_2.4-3.0-SNAPSHOT.jar nightly 2.4.x

nebula-exchange_spark_2.2-3.0-SNAPSHOT.jar nightly 2.2.x

nebula-exchange_spark_3.0-3.4.0.jar 3.x.x 3.3.x、3.2.x、3.1.x、3.0.x

nebula-exchange_spark_2.4-3.4.0.jar 3.x.x 2.4.x

nebula-exchange_spark_2.2-3.4.0.jar 3.x.x 2.2.x

nebula-exchange_spark_3.0-3.3.0.jar 3.x.x 3.3.x、3.2.x、3.1.x、3.0.x

nebula-exchange_spark_2.4-3.3.0.jar 3.x.x 2.4.x

nebula-exchange_spark_2.2-3.3.0.jar 3.x.x 2.2.x

nebula-exchange_spark_3.0-3.0.0.jar 3.x.x 3.3.x、3.2.x、3.1.x、3.0.x

nebula-exchange_spark_2.4-3.0.0.jar 3.x.x 2.4.x

nebula-exchange_spark_2.2-3.0.0.jar 3.x.x 2.2.x

nebula-exchange-2.6.3.jar 2.6.1、2.6.0 2.4.x

nebula-exchange-2.6.2.jar 2.6.1、2.6.0 2.4.x

nebula-exchange-2.6.1.jar 2.6.1、2.6.0 2.4.x

nebula-exchange-2.6.0.jar 2.6.1、2.6.0 2.4.x

nebula-exchange-2.5.2.jar 2.5.1、2.5.0 2.4.x

nebula-exchange-2.5.1.jar 2.5.1、2.5.0 2.4.x

nebula-exchange-2.5.0.jar 2.5.1、2.5.0 2.4.x

nebula-exchange-2.1.0.jar 2.0.1、2.0.0 2.4.x

nebula-exchange-2.0.1.jar 2.0.1、2.0.0 2.4.x

nebula-exchange-2.0.0.jar 2.0.1、2.0.0 2.4.x

11.3.1 Introduction

- 469/804 - 2023 Vesoft Inc.

DATA SOURCE

Exchange 3.6.1 supports converting data from the following formats or sources into vertexes and edges that NebulaGraph can

recognize, and then importing them into NebulaGraph in the form of nGQL statements:

Data stored in HDFS or locally:

Apache Parquet

Apache ORC

JSON

CSV

Apache HBase™

Data repository:

Hive

MaxCompute

Graph database: Neo4j (Client version 2.4.5-M1)

Relational database:

MySQL

PostgreSQL

Oracle

Column database: ClickHouse

Stream processing software platform: Apache Kafka®

Publish/Subscribe messaging platform: Apache Pulsar 2.4.5

JDBC

In addition to importing data as nGQL statements, Exchange supports generating SST files for data sources and then importing

SST files via Console.

RELEASE NOTE

Release

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: October 25, 2023

11.3.1 Introduction

- 470/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/releases/tag/v3.6.1

Limitations

This topic describes some of the limitations of using Exchange 3.x.

ENVIRONMENT

Exchange 3.x supports the following operating systems:

CentOS 7

macOS

SOFTWARE DEPENDENCIES

To ensure the healthy operation of Exchange, ensure that the following software has been installed on the machine:

Java version 1.8

Scala version 2.10.7, 2.11.12, or 2.12.10

Apache Spark. The requirements for Spark versions when using Exchange to export data from data sources are as follows. In

the following table, Y means that the corresponding Spark version is supported, and N means not supported.

Use the correct Exchange JAR file based on the Spark version. For example, for Spark version 2.4, use nebula-

exchange_spark_2.4-3.6.1.jar.

Hadoop Distributed File System (HDFS) needs to be deployed in the following scenarios:

Migrate HDFS data

Generate SST files

•

•

•

•

•

Note

Data source Spark 2.2 Spark 2.4 Spark 3

CSV file Y N Y

JSON file Y Y Y

ORC file Y Y Y

Parquet file Y Y Y

HBase Y Y Y

MySQL Y Y Y

PostgreSQL Y Y Y

Oracle Y Y Y

ClickHouse Y Y Y

Neo4j N Y N

Hive Y Y Y

MaxCompute N Y N

Pulsar N Y Untested

Kafka N Y Untested

NebulaGraph N Y N

•

•

11.3.1 Introduction

- 471/804 - 2023 Vesoft Inc.

Last update: October 25, 2023

11.3.1 Introduction

- 472/804 - 2023 Vesoft Inc.

11.3.2 Get Exchange

This topic introduces how to get the JAR file of NebulaGraph Exchange.

Download the JAR file directly

The JAR file of Exchange Community Edition can be downloaded directly.

To download Exchange Enterprise Edition, contact us.

Get the JAR file by compiling the source code

You can get the JAR file of Exchange Community Edition by compiling the source code. The following introduces how to compile

the source code of Exchange.

You can get Exchange Enterprise Edition in NebulaGraph Enterprise Edition Package only.

PREREQUISITES

Install Maven.

Install the correct version of Apache Spark. Exporting data from different sources requires different Spark versions. For more

information, see Software dependencies.

Steps

Clone the repository nebula-exchange in the / directory.

Switch to the directory nebula-exchange .

Package NebulaGraph Exchange. Run the following command based on the Spark version:

For Spark 2.2：

For Spark 2.4：

For Spark 3.0：

After the compilation is successful, you can find the nebula-exchange_spark_x.x-release-3.6.jar file in the nebula-exchange_spark_x.x/target/

directory. x.x indicates the Spark version, for example, 2.4 .

Enterpriseonly

•

•

1.

git clone -b release-3.6 https://github.com/vesoft-inc/nebula-exchange.git

2.

cd nebula-exchange

3.

•

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true \

-pl nebula-exchange_spark_2.2 -am -Pscala-2.11 -Pspark-2.2

•

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true \

-pl nebula-exchange_spark_2.4 -am -Pscala-2.11 -Pspark-2.4

•

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true \

-pl nebula-exchange_spark_3.0 -am -Pscala-2.12 -Pspark-3.0

11.3.2 Get Exchange

- 473/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/releases
mailto:inquiry@vesoft.com
https://maven.apache.org/download.cgi

The JAR file version changes with the release of the NebulaGraph Java Client. Users can view the latest version on the Releases

page.

When migrating data, you can refer to configuration file target/classes/application.conf .

FAILED TO DOWNLOAD THE DEPENDENCY PACKAGE

If downloading dependencies fails when compiling:

Check the network settings and ensure that the network is normal.

Modify the mirror part of Maven installation directory libexec/conf/settings.xml :

Note

•

•

<mirror>

 <id>alimaven</id>

 <mirrorOf>central</mirrorOf>

 <name>aliyun maven</name>

 <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>

</mirror>

Last update: December 14, 2023

11.3.2 Get Exchange

- 474/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/releases
https://github.com/vesoft-inc/nebula-java/releases
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf

11.3.3 Exchange configurations

Options for import

After editing the configuration file, run the following commands to import specified source data into the NebulaGraph database.

IMPORT DATA

If the value of the properties contains Chinese characters, the encoding error may appear. Please add the following options when

submitting the Spark task:

The following table lists command parameters.

For more Spark parameter configurations, see Spark Configuration.

The version number of a JAR file is subject to the name of the JAR file that is actually compiled.

If users use the yarn mode to submit a job, see the following command, especially the two '--conf' commands in the example.

<spark_install_path>/bin/spark-submit --master "spark://HOST:PORT" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.x.y.jar_path> -c <application.conf_path>

Note

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8

Parameter Required Default

value

Description

--class Yes - Specify the main class of the driver.

--master Yes - Specify the URL of the master process in a Spark cluster. For more

information, see master-urls. Optional values are: local : Local Mode. Run

Spark applications on a single thread. Suitable for importing small data

sets in a test environment. yarn : Run Spark applications on a YARN cluster.

Suitable for importing large data sets in a production environment. spark://

HOST:PORT : Connect to the specified Spark standalone cluster. mesos://

HOST:PORT : Connect to the specified Mesos cluster. k8s://HOST:PORT : Connect to

the specified Kubernetes cluster.

-c / --config Yes - Specify the path of the configuration file.

-h / --hive No false Specify whether importing Hive data is supported.

-D / --dry No false Specify whether to check the format of the configuration file. This

parameter is used to check the format of the configuration file only, it does

not check the validity of tags and edges configurations and does not import

data. Don't add this parameter if you need to import data.

-r / --reload No - Specify the path of the reload file that needs to be reloaded.

Note

•

•

$SPARK_HOME/bin/spark-submit --master yarn \

--class com.vesoft.nebula.exchange.Exchange \

--files application.conf \

--conf spark.driver.extraClassPath=./ \

--conf spark.executor.extraClassPath=./ \

nebula-exchange-3.6.1.jar \

-c application.conf

11.3.3 Exchange configurations

- 475/804 - 2023 Vesoft Inc.

https://spark.apache.org/docs/latest/submitting-applications.html#master-urls
https://spark.apache.org/docs/latest/configuration.html#runtime-environment
https://spark-reference-doc-cn.readthedocs.io/zh_CN/latest/deploy-guide/running-on-yarn.html

IMPORT THE RELOAD FILE

If some data fails to be imported during the import, the failed data will be stored in the reload file. Use the parameter -r to

import the data in reload file.

If the import still fails, go to Official Forum for consultation.

<spark_install_path>/bin/spark-submit --master "spark://HOST:PORT" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.x.y.jar_path> -c <application.conf_path> -r

"<reload_file_path>"

Last update: December 18, 2023

11.3.3 Exchange configurations

- 476/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions

Parameters in the configuration file

This topic describes how to automatically generate a template configuration file when users use NebulaGraph Exchange, and

introduces the configuration file application.conf .

GENERATE TEMPLATE CONFIGURATION FILE AUTOMATICALLY

Specify the data source to be imported with the following command to get the template configuration file corresponding to the

data source.

Example:

CONFIGURATION INSTRUCTIONS

Before configuring the application.conf file, it is recommended to copy the file name application.conf and then edit the file name

according to the file type of a data source. For example, change the file name to csv_application.conf if the file type of the data

source is CSV.

The application.conf file contains the following content types:

Spark configurations

Hive configurations (optional)

NebulaGraph configurations

Vertex configurations

Edge configurations

Spark configurations

This topic lists only some Spark parameters. For more information, see Spark Configuration.

java -cp <exchange_jar_package> com.vesoft.exchange.common.GenerateConfigTemplate -s <source_type> -p <config_file_save_path>

java -cp nebula-exchange_spark_2.4-3.0-SNAPSHOT.jar com.vesoft.exchange.common.GenerateConfigTemplate -s csv -p /home/nebula/csv_application.conf

•

•

•

•

•

Parameter Type Default

value

Required Description

spark.app.name string - No The drive name in Spark.

spark.driver.cores int 1 No The number of CPU cores used by a driver, only

applicable to a cluster mode.

spark.driver.maxResultSize string 1G No The total size limit (in bytes) of the serialized

results of all partitions in a single Spark operation

(such as collect). The minimum value is 1M, and 0

means unlimited.

spark.executor.memory string 1G No The amount of memory used by a Spark driver

which can be specified in units, such as 512M or

1G.

spark.cores.max int 16 No The maximum number of CPU cores of

applications requested across clusters (rather

than from each node) when a driver runs in a

coarse-grained sharing mode on a standalone

cluster or a Mesos cluster. The default value is

spark.deploy.defaultCores on a Spark standalone

cluster manager or the value of the infinite

parameter (all available cores) on Mesos.

11.3.3 Exchange configurations

- 477/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf
https://spark.apache.org/docs/latest/configuration.html#application-properties

Hive configurations (optional)

Users only need to configure parameters for connecting to Hive if Spark and Hive are deployed in different clusters. Otherwise,

please ignore the following configurations.

Parameter Type Default value Required Description

hive.warehouse string - Yes The warehouse path in HDFS.

Enclose the path in double quotes

and start with hdfs:// .

hive.connectionURL string - Yes The URL of a JDBC connection.

For example, "jdbc:mysql://

127.0.0.1:3306/hive_spark?

characterEncoding=UTF-8" .

hive.connectionDriverName string "com.mysql.jdbc.Driver" Yes The driver name.

hive.connectionUserName list[string] - Yes The username for connections.

hive.connectionPassword list[string] - Yes The account password.

11.3.3 Exchange configurations

- 478/804 - 2023 Vesoft Inc.

NebulaGraph configurations

11.3.3 Exchange configurations

- 479/804 - 2023 Vesoft Inc.

Parameter Type Default value Required Description

nebula.address.graph list[string] ["127.0.0.1:9669"] Yes The addresses of all Graph services,

including IPs and ports, separated by

commas (,). Example:

["ip1:port1","ip2:port2","ip3:port3"] .

nebula.address.meta list[string] ["127.0.0.1:9559"] Yes The addresses of all Meta services,

including IPs and ports, separated by

commas (,). Example:

["ip1:port1","ip2:port2","ip3:port3"] .

nebula.user string - Yes The username with write permissions for

NebulaGraph.

nebula.pswd string - Yes The account password.

nebula.space string - Yes The name of the graph space where data

needs to be imported.

nebula.ssl.enable.graph bool false Yes Enables the SSL encryption between

Exchange and Graph services. If the

value is true , the SSL encryption is

enabled and the following SSL

parameters take effect. If Exchange is

run on a multi-machine cluster, you need

to store the corresponding files in the

same path on each machine when setting

the following SSL-related paths.

nebula.ssl.sign string ca Yes Specifies the SSL sign. Optional values

are ca and self .

nebula.ssl.ca.param.caCrtFilePath string Specifies the

storage path of

the CA

certificate. It

takes effect

when the value

of

nebula.ssl.sign is

ca .

nebula.ssl.ca.param.crtFilePath string "/path/

crtFilePath"

Yes Specifies the storage path of the CRT

certificate. It takes effect when the value

of nebula.ssl.sign is ca .

nebula.ssl.ca.param.keyFilePath string "/path/

keyFilePath"

Yes Specifies the storage path of the key file.

It takes effect when the value of

nebula.ssl.sign is ca .

nebula.ssl.self.param.crtFilePath string "/path/

crtFilePath"

Yes Specifies the storage path of the CRT

certificate. It takes effect when the value

of nebula.ssl.sign is self .

nebula.ssl.self.param.keyFilePath string "/path/

keyFilePath"

Yes Specifies the storage path of the key file.

It takes effect when the value of

nebula.ssl.sign is self .

nebula.ssl.self.param.password string "nebula" Yes Specifies the storage path of the

password. It takes effect when the value

of nebula.ssl.sign is self .

nebula.path.local string "/tmp" No

11.3.3 Exchange configurations

- 480/804 - 2023 Vesoft Inc.

https://en.wikipedia.org/wiki/Transport_Layer_Security

NebulaGraph doesn't support vertices without tags by default. To import vertices without tags, enable vertices without tags in the

NebulaGraph cluster and then add parameter nebula.enableTagless to the Exchange configuration with the value true . For example:

Vertex configurations

For different data sources, the vertex configurations are different. There are many general parameters and some specific

parameters. General parameters and specific parameters of different data sources need to be configured when users configure

vertices.

Parameter Type Default value Required Description

The local SST file path which needs to be

set when users import SST files.

nebula.path.remote string "/sst" No The remote SST file path which needs to

be set when users import SST files.

nebula.path.hdfs.namenode string "hdfs://name_node:

9000"

No The NameNode path which needs to be

set when users import SST files.

nebula.connection.timeout int 3000 No The timeout set for Thrift connections.

Unit: ms.

nebula.connection.retry int 3 No Retries set for Thrift connections.

nebula.execution.retry int 3 No Retries set for executing nGQL

statements.

nebula.error.max int 32 No The maximum number of failures during

the import process. When the number of

failures reaches the maximum, the Spark

job submitted will stop automatically .

nebula.error.output string /tmp/errors No The path to output error logs. Failed

nGQL statement executions are saved in

the error log.

nebula.rate.limit int 1024 No The limit on the number of tokens in the

token bucket when importing data.

nebula.rate.timeout int 1000 No The timeout period for getting tokens

from a token bucket. Unit: milliseconds.

Note

nebula: {

 address:{

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 user: root

 pswd: nebula

 space: test

 enableTagless: true

 }

11.3.3 Exchange configurations

- 481/804 - 2023 Vesoft Inc.

General parameters

11.3.3 Exchange configurations

- 482/804 - 2023 Vesoft Inc.

Parameter Type Default

value

Required Description

tags.name string - Yes The tag name defined in NebulaGraph.

tags.type.source string - Yes Specify a data source. For example, csv .

tags.type.sink string client Yes Specify an import method. Optional values

are client and SST .

tags.writeMode string INSERT No Types of batch operations on data, including

batch inserts, updates, and deletes. Optional

values are INSERT , UPDATE , DELETE .

tags.deleteEdge string false No Whether or not to delete the related

incoming and outgoing edges of the vertices

when performing a batch delete operation.

This parameter takes effect when

tags.writeMode is DELETE .

tags.fields list[string] - Yes The header or column name of the column

corresponding to properties. If there is a

header or a column name, please use that

name directly. If a CSV file does not have a

header, use the form of [_c0, _c1, _c2] to

represent the first column, the second

column, the third column, and so on.

tags.nebula.fields list[string] - Yes Property names defined in NebulaGraph, the

order of which must correspond to

tags.fields . For example, [_c1, _c2]

corresponds to [name, age] , which means that

values in the second column are the values of

the property name , and values in the third

column are the values of the property age .

tags.vertex.field string - Yes The column of vertex IDs. For example, when

a CSV file has no header, users can use _c0 to

indicate values in the first column are vertex

IDs.

tags.vertex.udf.separator string - No Support merging multiple columns by custom

rules. This parameter specifies the join

character.

tags.vertex.udf.oldColNames list - No Support merging multiple columns by custom

rules. This parameter specifies the names of

the columns to be merged. Multiple columns

are separated by commas.

tags.vertex.udf.newColName string - No Support merging multiple columns by custom

rules. This parameter specifies the new

column name.

tags.vertex.prefix string - No Add the specified prefix to the VID. For

example, if the VID is 12345 , adding the

prefix tag1 will result in tag1_12345 . The

underscore cannot be modified.

tags.vertex.policy string - No Supports only the value hash . Performs

hashing operations on VIDs of type string.

tags.batch int 256 Yes The maximum number of vertices written

into NebulaGraph in a single batch.

11.3.3 Exchange configurations

- 483/804 - 2023 Vesoft Inc.

Specific parameters of Parquet/JSON/ORC data sources

Specific parameters of CSV data sources

Specific parameters of Hive data sources

Specific parameters of MaxCompute data sources

Parameter Type Default

value

Required Description

tags.partition int 32 Yes The number of partitions to be created when

the data is written to NebulaGraph. If

tags.partition ≤ 1 , the number of partitions to

be created in NebulaGraph is the same as

that in the data source.

Parameter Type Default

value

Required Description

tags.path string - Yes The path of vertex data files in HDFS. Enclose the

path in double quotes and start with hdfs:// .

Parameter Type Default

value

Required Description

tags.path string - Yes The path of vertex data files in HDFS. Enclose the path in

double quotes and start with hdfs:// .

tags.separator string , Yes The separator. The default value is a comma (,). For special

characters, such as the control character ^A , you can use

ASCII octal \001 or UNICODE encoded hexadecimal \u0001 ,

for the control character ^B , use ASCII octal \002 or

UNICODE encoded hexadecimal \u0002 , for the control

character ^C , use ASCII octal \003 or UNICODE encoded

hexadecimal \u0003 .

tags.header bool true Yes Whether the file has a header.

Parameter Type Default

value

Required Description

tags.exec string - Yes The statement to query data sources. For

example, select name,age from mooc.users .

Parameter Type Default

value

Required Description

tags.table string - Yes The table name of the MaxCompute.

tags.project string - Yes The project name of the MaxCompute.

tags.odpsUrl string - Yes The odpsUrl of the MaxCompute service. For

more information about odpsUrl, see Endpoints.

tags.tunnelUrl string - Yes The tunnelUrl of the MaxCompute service. For

more information about tunnelUrl, see Endpoints.

tags.accessKeyId string - Yes The accessKeyId of the MaxCompute service.

tags.accessKeySecret string - Yes The accessKeySecret of the MaxCompute service.

tags.partitionSpec string - No Partition descriptions of MaxCompute tables.

tags.sentence string - No Statements to query data sources. The table name

in the SQL statement is the same as the value of

the table above.

11.3.3 Exchange configurations

- 484/804 - 2023 Vesoft Inc.

https://www.alibabacloud.com/help/doc-detail/34951.html
https://www.alibabacloud.com/help/doc-detail/34951.html

Specific parameters of Neo4j data sources

Specific parameters of MySQL/PostgreSQL data sources

Specific parameters of Oracle data sources

Parameter Type Default value Required Description

tags.exec string - Yes Statements to query data sources. For

example: match (n:label) return n.neo4j-field-0 .

tags.server string "bolt://

127.0.0.1:7687"

Yes The server address of Neo4j.

tags.user string - Yes The Neo4j username with read permissions.

tags.password string - Yes The account password.

tags.database string - Yes The name of the database where source data

is saved in Neo4j.

tags.check_point_path string /tmp/test No The directory set to import progress

information, which is used for resuming

transfers. If not set, the resuming transfer is

disabled.

Parameter Type Default

value

Required Description

tags.host string - Yes The MySQL/PostgreSQL server address.

tags.port string - Yes The MySQL/PostgreSQL server port.

tags.database string - Yes The database name.

tags.table string - Yes The name of a table used as a data source.

tags.user string - Yes The MySQL/PostgreSQL username with read

permissions.

tags.password string - Yes The account password.

tags.sentence string - Yes Statements to query data sources. For example:

"select teamid, name from team order by teamid" .

Parameter Type Default

value

Required Description

tags.url string - Yes The Oracle server address.

tags.driver string - Yes The Oracle driver address.

tags.user string - Yes The Oracle username with read permissions.

tags.password string - Yes The account password.

tags.table string - Yes The name of a table used as a data source.

tags.sentence string - Yes Statements to query data sources. For example:

"select playerid, name, age from player" .

11.3.3 Exchange configurations

- 485/804 - 2023 Vesoft Inc.

Specific parameters of ClickHouse data sources

Specific parameters of Hbase data sources

Specific parameters of Pulsar data sources

Specific parameters of Kafka data sources

Parameter Type Default

value

Required Description

tags.url string - Yes The JDBC URL of ClickHouse.

tags.user string - Yes The ClickHouse username with read

permissions.

tags.password string - Yes The account password.

tags.numPartition string - Yes The number of ClickHouse partitions.

tags.sentence string - Yes Statements to query data sources.

Parameter Type Default

value

Required Description

tags.host string 127.0.0.1 Yes The Hbase server address.

tags.port string 2181 Yes The Hbase server port.

tags.table string - Yes The name of a table used as a data

source.

tags.columnFamily string - Yes The column family to which a table

belongs.

Parameter Type Default

value

Required Description

tags.service string "pulsar://

localhost:

6650"

Yes The Pulsar server address.

tags.admin string "http://

localhost:

8081"

Yes The admin URL used to connect pulsar.

tags.options.<topic|topics|

topicsPattern>

string - Yes Options offered by Pulsar, which can be

configured by choosing one from topic ,

topics , and topicsPattern .

tags.interval.seconds int 10 Yes The interval for reading messages. Unit:

seconds.

Parameter Type Default

value

Required Description

tags.service string - Yes The Kafka server address.

tags.topic string - Yes The message type.

tags.interval.seconds int 10 Yes The interval for reading messages. Unit:

seconds.

11.3.3 Exchange configurations

- 486/804 - 2023 Vesoft Inc.

Specific parameters for generating SST files

Edge configurations

For different data sources, configurations of edges are also different. There are general parameters and some specific

parameters. General parameters and specific parameters of different data sources need to be configured when users configure

edges.

For the specific parameters of different data sources for edge configurations, please refer to the introduction of specific

parameters of different data sources above, and pay attention to distinguishing tags and edges.

Parameter Type Default

value

Required Description

tags.path string - Yes The path of the source file specified to generate

SST files.

tags.repartitionWithNebula bool true No Whether to repartition data based on the

number of partitions of graph spaces in

NebulaGraph when generating the SST file.

Enabling this function can reduce the time

required to DOWNLOAD and INGEST SST files.

11.3.3 Exchange configurations

- 487/804 - 2023 Vesoft Inc.

General parameters

Parameter Type Default

value

Required Description

edges.name string - Yes The edge type name defined in NebulaGraph.

edges.type.source string - Yes The data source of edges. For example, csv .

edges.type.sink string client Yes The method specified to import data. Optional

values are client and SST .

edges.writeMode string INSERT No Types of batch operations on data, including batch

inserts, updates, and deletes. Optional values are

INSERT , UPDATE , DELETE .

edges.fields list[string] - Yes The header or column name of the column

corresponding to properties. If there is a header or

column name, please use that name directly. If a

CSV file does not have a header, use the form of

[_c0, _c1, _c2] to represent the first column, the

second column, the third column, and so on.

edges.nebula.fields list[string] - Yes Edge names defined in NebulaGraph, the order of

which must correspond to edges.fields . For

example, [_c2, _c3] corresponds to [start_year,

end_year] , which means that values in the third

column are the values of the start year, and values

in the fourth column are the values of the end year.

edges.source.field string - Yes The column of source vertices of edges. For

example, _c0 indicates a value in the first column

that is used as the source vertex of an edge.

edges.source.prefix string - No Add the specified prefix to the VID. For example, if

the VID is 12345 , adding the prefix tag1 will result in

tag1_12345 . The underscore cannot be modified.

edges.source.policy string - No Supports only the value hash . Performs hashing

operations on VIDs of type string.

edges.target.field string - Yes The column of destination vertices of edges. For

example, _c0 indicates a value in the first column

that is used as the destination vertex of an edge.

edges.target.prefix string - No Add the specified prefix to the VID. For example, if

the VID is 12345 , adding the prefix tag1 will result in

tag1_12345 . The underscore cannot be modified.

edges.target.policy string - No Supports only the value hash . Performs hashing

operations on VIDs of type string.

edges.ranking int - No The column of rank values. If not specified, all rank

values are 0 by default.

edges.batch int 256 Yes The maximum number of edges written into

NebulaGraph in a single batch.

edges.partition int 32 Yes The number of partitions to be created when the

data is written to NebulaGraph. If

edges.partition ≤ 1 , the number of partitions to be

created in NebulaGraph is the same as that in the

data source.

11.3.3 Exchange configurations

- 488/804 - 2023 Vesoft Inc.

Specific parameters for generating SST files

Parameter Type Default

value

Required Description

edges.path string - Yes The path of the source file specified to generate

SST files.

edges.repartitionWithNebula bool true No Whether to repartition data based on the

number of partitions of graph spaces in

NebulaGraph when generating the SST file.

Enabling this function can reduce the time

required to DOWNLOAD and INGEST SST files.

Last update: December 7, 2023

11.3.3 Exchange configurations

- 489/804 - 2023 Vesoft Inc.

11.3.4 Use NebulaGraph Exchange

Import data from CSV files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local CSV files.

DATA SET

This topic takes the basketballplayer dataset as an example.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running normally.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 490/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Process CSV files

Confirm the following information:

Process CSV files to meet Schema requirements.

Exchange supports uploading CSV files with or without headers.

Obtain the CSV file storage path.

Step 3: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set CSV data source configuration. In this example,

the copied file is called csv_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

Note

2.

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

11.3.4 Use NebulaGraph Exchange

- 491/804 - 2023 Vesoft Inc.

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".

 path: "hdfs://192.168.*.*:9000/data/vertex_player.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has headers, use the actual column names.

 fields: [_c1, _c2]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The value of vertex must be the same as the column names in the above fields or csv.fields.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 vertex: {

 field:_c0

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

11.3.4 Use NebulaGraph Exchange

- 492/804 - 2023 Vesoft Inc.

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: csv

 sink: client

 }

 path: "hdfs://192.168.*.*:9000/data/vertex_team.csv"

 fields: [_c1]

 nebula.fields: [name]

 vertex: {

 field:_c0

 }

 separator: ","

 header: false

 batch: 256

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".

 path: "hdfs://192.168.*.*:9000/data/edge_follow.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has headers, use the actual column names.

 fields: [_c2]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be the same as the column names in the above fields or csv.fields.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 source: {

 field: _c0

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: _c1

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # Specify a column as the source of the rank (optional).

 #ranking: rank

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

11.3.4 Use NebulaGraph Exchange

- 493/804 - 2023 Vesoft Inc.

Step 4: Import data into NebulaGraph

Run the following command to import CSV data into NebulaGraph. For descriptions of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 5: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 6: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 header: false

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: csv

 sink: client

 }

 path: "hdfs://192.168.*.*:9000/data/edge_serve.csv"

 fields: [_c2,_c3]

 nebula.fields: [start_year, end_year]

 source: {

 field: _c0

 }

 target: {

 field: _c1

 }

 separator: ","

 header: false

 batch: 256

 partition: 32

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <csv_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/csv_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 494/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from JSON files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local JSON files.

DATA SET

This topic takes the basketballplayer dataset as an example. Some sample data are as follows:

player

team

follow

serve

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

•

{"id":"player100","age":42,"name":"Tim Duncan"}

{"id":"player101","age":36,"name":"Tony Parker"}

{"id":"player102","age":33,"name":"LaMarcus Aldridge"}

{"id":"player103","age":32,"name":"Rudy Gay"}

...

•

{"id":"team200","name":"Warriors"}

{"id":"team201","name":"Nuggets"}

...

•

{"src":"player100","dst":"player101","degree":95}

{"src":"player101","dst":"player102","degree":90}

...

•

{"src":"player100","dst":"team204","start_year":"1997","end_year":"2016"}

{"src":"player101","dst":"team204","start_year":"1999","end_year":"2018"}

...

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 495/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Process JSON files

Confirm the following information:

Process JSON files to meet Schema requirements.

Obtain the JSON file storage path.

•

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

11.3.4 Use NebulaGraph Exchange

- 496/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Step 3: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set JSON data source configuration. In this example,

the copied file is called json_application.conf . For details on each configuration item, see Parameters in the configuration file.

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to JSON.

 source: json

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the JSON file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".

 path: "hdfs://192.168.*.*:9000/data/vertex_player.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The value of vertex must be the same as that in the JSON file.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 vertex: {

 field:id

 # udf:{

11.3.4 Use NebulaGraph Exchange

- 497/804 - 2023 Vesoft Inc.

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

{

 name: team

 type: {

 source: json

 sink: client

 }

 path: "hdfs://192.168.*.*:9000/data/vertex_team.json"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field:id

 }

 batch: 256

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to JSON.

 source: json

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the JSON file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".

 path: "hdfs://192.168.*.*:9000/data/edge_follow.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be the same as that in the JSON file.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 source: {

 field: src

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

11.3.4 Use NebulaGraph Exchange

- 498/804 - 2023 Vesoft Inc.

Step 4: Import data into NebulaGraph

Run the following command to import JSON data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 5: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 6: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: json

 sink: client

 }

 path: "hdfs://192.168.*.*:9000/data/edge_serve.json"

 fields: [start_year,end_year]

 nebula.fields: [start_year, end_year]

 source: {

 field: src

 }

 target: {

 field: dst

 }

 batch: 256

 partition: 32

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <json_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-echange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/json_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 499/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from ORC files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local ORC files.

DATA SET

This topic takes the basketballplayer dataset as an example.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 500/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Process ORC files

Confirm the following information:

Process ORC files to meet Schema requirements.

Obtain the ORC file storage path.

Step 3: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set ORC data source configuration. In this example,

the copied file is called orc_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

11.3.4 Use NebulaGraph Exchange

- 501/804 - 2023 Vesoft Inc.

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 name: player

 type: {

 # Specify the data source file format to ORC.

 source: orc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the ORC file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".

 path: "hdfs://192.168.*.*:9000/data/vertex_player.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [age,name]

 # Specify the property names defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 # The value of vertex must be consistent with the field in the ORC file.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 vertex: {

 field:id

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag team.

 {

 name: team

 type: {

 source: orc

 sink: client

 }

 path: "hdfs://192.168.*.*:9000/data/vertex_team.orc"

 fields: [name]

11.3.4 Use NebulaGraph Exchange

- 502/804 - 2023 Vesoft Inc.

 nebula.fields: [name]

 vertex: {

 field:id

 }

 batch: 256

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to ORC.

 source: orc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the ORC file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".

 path: "hdfs://192.168.*.*:9000/data/edge_follow.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [degree]

 # Specify the property names defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be consistent with the field in the ORC file.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 source: {

 field: src

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge type serve.

 {

 name: serve

 type: {

 source: orc

 sink: client

 }

 path: "hdfs://192.168.*.*:9000/data/edge_serve.orc"

 fields: [start_year,end_year]

 nebula.fields: [start_year, end_year]

 source: {

 field: src

 }

 target: {

11.3.4 Use NebulaGraph Exchange

- 503/804 - 2023 Vesoft Inc.

Step 4: Import data into NebulaGraph

Run the following command to import ORC data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 5: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 6: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 field: dst

 }

 batch: 256

 partition: 32

 }

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <orc_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/orc_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 504/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from Parquet files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local Parquet files.

DATA SET

This topic takes the basketballplayer dataset as an example.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 505/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Process Parquet files

Confirm the following information:

Process Parquet files to meet Schema requirements.

Obtain the Parquet file storage path.

Step 3: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set Parquet data source configuration. In this

example, the copied file is called parquet_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

11.3.4 Use NebulaGraph Exchange

- 506/804 - 2023 Vesoft Inc.

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Parquet.

 source: parquet

 # Specifies how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the Parquet file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".

 path: "hdfs://192.168.*.13:9000/data/vertex_player.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [age,name]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 # The value of vertex must be consistent with the field in the Parquet file.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 vertex: {

 field:id

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag team.

 {

 name: team

 type: {

 source: parquet

 sink: client

11.3.4 Use NebulaGraph Exchange

- 507/804 - 2023 Vesoft Inc.

 }

 path: "hdfs://192.168.11.13:9000/data/vertex_team.parquet"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field:id

 }

 batch: 256

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Parquet.

 source: parquet

 # Specifies how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the Parquet file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".

 path: "hdfs://192.168.11.13:9000/data/edge_follow.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [degree]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The values of vertex must be consistent with the fields in the Parquet file.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 source: {

 field: src

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge type serve.

 {

 name: serve

 type: {

 source: parquet

 sink: client

 }

 path: "hdfs://192.168.11.13:9000/data/edge_serve.parquet"

 fields: [start_year,end_year]

 nebula.fields: [start_year, end_year]

 source: {

 field: src

11.3.4 Use NebulaGraph Exchange

- 508/804 - 2023 Vesoft Inc.

Step 4: Import data into NebulaGraph

Run the following command to import Parquet data into NebulaGraph. For a description of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 5: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 6: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 }

 target: {

 field: dst

 }

 batch: 256

 partition: 32

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <parquet_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/parquet_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 509/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from HBase

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HBase.

DATA SET

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in HBase. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

HBase: 2.2.7

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

hbase(main):002:0> scan "player"

ROW COLUMN+CELL

 player100 column=cf:age, timestamp=1618881347530, value=42

 player100 column=cf:name, timestamp=1618881354604, value=Tim Duncan

 player101 column=cf:age, timestamp=1618881369124, value=36

 player101 column=cf:name, timestamp=1618881379102, value=Tony Parker

 player102 column=cf:age, timestamp=1618881386987, value=33

 player102 column=cf:name, timestamp=1618881393370, value=LaMarcus Aldridge

 player103 column=cf:age, timestamp=1618881402002, value=32

 player103 column=cf:name, timestamp=1618881407882, value=Rudy Gay

 ...

hbase(main):003:0> scan "team"

ROW COLUMN+CELL

 team200 column=cf:name, timestamp=1618881445563, value=Warriors

 team201 column=cf:name, timestamp=1618881453636, value=Nuggets

 ...

hbase(main):004:0> scan "follow"

ROW COLUMN+CELL

 player100 column=cf:degree, timestamp=1618881804853, value=95

 player100 column=cf:dst_player, timestamp=1618881791522, value=player101

 player101 column=cf:degree, timestamp=1618881824685, value=90

 player101 column=cf:dst_player, timestamp=1618881816042, value=player102

 ...

hbase(main):005:0> scan "serve"

ROW COLUMN+CELL

 player100 column=cf:end_year, timestamp=1618881899333, value=2016

 player100 column=cf:start_year, timestamp=1618881890117, value=1997

 player100 column=cf:teamid, timestamp=1618881875739, value=team204

 ...

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 510/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set HBase data source configuration. In this

example, the copied file is called hbase_application.conf . For details on each configuration item, see Parameters in the configuration

file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

11.3.4 Use NebulaGraph Exchange

- 511/804 - 2023 Vesoft Inc.

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set information about Tag player.

 # If you want to set RowKey as the data source, enter rowkey and the actual column name of the column family.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to HBase.

 source: hbase

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"player"

 columnFamily:"cf"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # For example, if rowkey is the source of the VID, enter rowkey.

 vertex:{

 field:rowkey

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # Number of pieces of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set Tag Team information.

 {

 name: team

 type: {

 source: hbase

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"team"

 columnFamily:"cf"

 fields: [name]

 nebula.fields: [name]

 vertex:{

 field:rowkey

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

11.3.4 Use NebulaGraph Exchange

- 512/804 - 2023 Vesoft Inc.

 type: {

 # Specify the data source file format to HBase.

 source: hbase

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"follow"

 columnFamily:"cf"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source:{

 field:rowkey

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target:{

 field:dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: hbase

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"serve"

 columnFamily:"cf"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source:{

 field:rowkey

 }

 target:{

 field:teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 256

 partition: 32

 }

]

}

11.3.4 Use NebulaGraph Exchange

- 513/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import HBase data into NebulaGraph. For descriptions of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <hbase_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/hbase_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 514/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from MySQL/PostgreSQL

This topic provides an example of how to use Exchange to export MySQL data and import to NebulaGraph. It also applies to

exporting data from PostgreSQL into NebulaGraph.

DATA SET

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in MySQL. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

MySQL: 8.0.23

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

mysql> desc player;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| playerid | varchar(30) | YES | | NULL | |

| age | int | YES | | NULL | |

| name | varchar(30) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

mysql> desc team;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| teamid | varchar(30) | YES | | NULL | |

| name | varchar(30) | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

mysql> desc follow;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| src_player | varchar(30) | YES | | NULL | |

| dst_player | varchar(30) | YES | | NULL | |

| degree | int | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

mysql> desc serve;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| playerid | varchar(30) | YES | | NULL | |

| teamid | varchar(30) | YES | | NULL | |

| start_year | int | YES | | NULL | |

| end_year | int | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 515/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

mysql-connector-java-xxx.jar has been downloaded and placed in the directory SPARK_HOME/jars of Spark.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

PRECAUTIONS

nebula-exchange_spark_2.2 supports only single table queries, not multi-table queries.

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set MySQL data source configuration. In this case,

the copied file is called mysql_application.conf . For details on each configuration item, see Parameters in the configuration file.

•

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

11.3.4 Use NebulaGraph Exchange

- 516/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/
https://mvnrepository.com/artifact/mysql/mysql-connector-java

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to MySQL.

 source: mysql

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:3306

 user:"test"

 password:"123456"

 database:"basketball"

 # Scanning a single table to read data.

 # nebula-exchange_spark_2.2 must configure this parameter. Sentence is not supported.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as sentence.

 table:"basketball.player"

 # Use query statement to read data.

 # This parameter is not supported by nebula-exchange_spark_2.2.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as table. Multi-table queries are supported.

 # sentence: "select * from people, player, team"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 vertex: {

 field:playerid

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

11.3.4 Use NebulaGraph Exchange

- 517/804 - 2023 Vesoft Inc.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: mysql

 sink: client

 }

 host:192.168.*.*

 port:3306

 database:"basketball"

 table:"team"

 user:"test"

 password:"123456"

 sentence:"select teamid, name from team order by teamid;"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to MySQL.

 source: mysql

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:3306

 user:"test"

 password:"123456"

 database:"basketball"

 # Scanning a single table to read data.

 # nebula-exchange_spark_2.2 must configure this parameter. Sentence is not supported.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as sentence.

 table:"basketball.follow"

 # Use query statement to read data.

 # This parameter is not supported by nebula-exchange_spark_2.2.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as table. Multi-table queries are supported.

 # sentence: "select * from follow, serve"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source: {

 field: src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst_player

 # udf:{

11.3.4 Use NebulaGraph Exchange

- 518/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import MySQL data into NebulaGraph. For a description of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: mysql

 sink: client

 }

 host:192.168.*.*

 port:3306

 database:"basketball"

 table:"serve"

 user:"test"

 password:"123456"

 sentence:"select playerid,teamid,start_year,end_year from serve order by playerid;"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: playerid

 }

 target: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <mysql_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/mysql_application.conf

LOOKUP ON player YIELD id(vertex);

11.3.4 Use NebulaGraph Exchange

- 519/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 520/804 - 2023 Vesoft Inc.

Import data from Oracle

This topic provides an example of how to use Exchange to export Oracle data and import to NebulaGraph.

DATA SET

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in Oracle. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

oracle> desc player;

+-----------+-------+---------------+

| Column | Null | Type |

+-----------+-------+---------------+

| PLAYERID | - | VARCHAR2(30) |

| NAME | - | VARCHAR2(30) |

| AGE | - | NUMBER |

+-----------+-------+---------------+

oracle> desc team;

+-----------+-------+---------------+

| Column | Null | Type |

+-----------+-------+---------------+

| TEAMID | - | VARCHAR2(30) |

| NAME | - | VARCHAR2(30) |

+-----------+-------+---------------+

oracle> desc follow;

+-------------+-------+---------------+

| Column | Null | Type |

+-------------+-------+---------------+

| SRC_PLAYER | - | VARCHAR2(30) |

| DST_PLAYER | - | VARCHAR2(30) |

| DEGREE | - | NUMBER |

+-------------+-------+---------------+

oracle> desc serve;

+------------+-------+---------------+

| Column | Null | Type |

+------------+-------+---------------+

| PLAYERID | - | VARCHAR2(30) |

| TEAMID | - | VARCHAR2(30) |

| START_YEAR | - | NUMBER |

| END_YEAR | - | NUMBER |

+------------+-------+---------------+

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 521/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

PRECAUTIONS

nebula-exchange_spark_2.2 supports only single table queries, not multi-table queries.

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set Oracle data source configuration. In this case,

the copied file is called oracle_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

11.3.4 Use NebulaGraph Exchange

- 522/804 - 2023 Vesoft Inc.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Oracle.

 source: oracle

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 url:"jdbc:oracle:thin:@host:1521:basketball"

 driver: "oracle.jdbc.driver.OracleDriver"

 user: "root"

 password: "123456"

 # Scanning a single table to read data.

 # nebula-exchange_spark_2.2 must configure this parameter. Sentence is not supported.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as sentence.

 table:"basketball.player"

 # Use query statement to read data.

 # This parameter is not supported by nebula-exchange_spark_2.2.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as table. Multi-table queries are supported.

 # sentence: "select * from people, player, team"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 vertex: {

 field:playerid

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: oracle

 sink: client

 }

 url:"jdbc:oracle:thin:@host:1521:basketball"

 driver: "oracle.jdbc.driver.OracleDriver"

 user: "root"

 password: "123456"

 table: "basketball.team"

 sentence: "select teamid, name from team"

 fields: [name]

 nebula.fields: [name]

11.3.4 Use NebulaGraph Exchange

- 523/804 - 2023 Vesoft Inc.

 vertex: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Oracle.

 source: oracle

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 url:"jdbc:oracle:thin:@host:1521:basketball"

 driver: "oracle.jdbc.driver.OracleDriver"

 user: "root"

 password: "123456"

 # Scanning a single table to read data.

 # nebula-exchange_spark_2.2 must configure this parameter. Sentence is not supported.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as sentence.

 table:"basketball.follow"

 # Use query statement to read data.

 # This parameter is not supported by nebula-exchange_spark_2.2.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as table. Multi-table queries are supported.

 # sentence: "select * from follow, serve"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source: {

 field: src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: oracle

 sink: client

 }

11.3.4 Use NebulaGraph Exchange

- 524/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import Oracle data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 url:"jdbc:oracle:thin:@host:1521:basketball"

 driver: "oracle.jdbc.driver.OracleDriver"

 user: "root"

 password: "123456"

 table: "basketball.serve"

 sentence: "select playerid, teamid, start_year, end_year from serve"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: playerid

 }

 target: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <oracle_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/oracle_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 525/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from ClickHouse

This topic provides an example of how to use Exchange to import data stored on ClickHouse into NebulaGraph.

DATA SET

This topic takes the basketballplayer dataset as an example.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

ClickHouse: docker deployment yandex/clickhouse-server tag: latest(2021.07.01)

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 526/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set ClickHouse data source configuration. In this

example, the copied file is called clickhouse_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

11.3.4 Use NebulaGraph Exchange

- 527/804 - 2023 Vesoft Inc.

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 name: player

 type: {

 # Specify the data source file format to ClickHouse.

 source: clickhouse

 # Specify how to import the data of vertexes into NebulaGraph: Client or SST.

 sink: client

 }

 # JDBC URL of ClickHouse

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 # The number of ClickHouse partitions

 numPartition:"5"

 sentence:"select * from player"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [name,age]

 nebula.fields: [name,age]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 vertex: {

 field:playerid

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: clickhouse

 sink: client

 }

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 numPartition:"5"

 sentence:"select * from team"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field:teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

11.3.4 Use NebulaGraph Exchange

- 528/804 - 2023 Vesoft Inc.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to ClickHouse.

 source: clickhouse

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # JDBC URL of ClickHouse

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 # The number of ClickHouse partitions.

 numPartition:"5"

 sentence:"select * from follow"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertexes.

 source: {

 field:src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # In target, use a column in the follow table as the source of the edge's destination vertexes.

 target: {

 field:dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: clickhouse

 sink: client

 }

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 numPartition:"5"

 sentence:"select * from serve"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field:playerid

 }

 target: {

 field:teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

11.3.4 Use NebulaGraph Exchange

- 529/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import ClickHouse data into NebulaGraph. For descriptions of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <clickhouse_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/clickhouse_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 530/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from Neo4j

This topic provides an example of how to use Exchange to import NebulaGraph data stored in Neo4j.

IMPLEMENTATION METHOD

Exchange uses Neo4j Driver 4.0.1 to read Neo4j data. Before batch export, you need to write Cypher statements that are

automatically executed based on labels and relationship types and the number of Spark partitions in the configuration file to

improve data export performance.

When Exchange reads Neo4j data, it needs to do the following:

The Reader in Exchange replaces the statement following the Cypher RETURN statement in the exec part of the configuration file with

COUNT(*) , and executes this statement to get the total amount of data, then calculates the starting offset and size of each partition

based on the number of Spark partitions.

(Optional) If the user has configured the check_point_path directory, Reader reads the files in the directory. In the transferring state,

Reader calculates the offset and size that each Spark partition should have.

In each Spark partition, the Reader in Exchange adds different SKIP and LIMIT statements to the Cypher statement and calls the

Neo4j Driver for parallel execution to distribute data to different Spark partitions.

The Reader finally processes the returned data into a DataFrame.

At this point, Exchange has finished exporting the Neo4j data. The data is then written in parallel to the NebulaGraph database.

The whole process is illustrated below.

DATA SET

This topic takes the basketballplayer dataset as an example.

1.

2.

3.

4.

11.3.4 Use NebulaGraph Exchange

- 531/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/ex-ug-002.png
https://docs-cdn.nebula-graph.com.cn/figures/ex-ug-002.png
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU：Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

CPU cores: 14

Memory: 251 GB

Spark: Stand-alone, 2.4.6 pre-build for Hadoop 2.7

Neo4j: 3.5.20 Community Edition

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with NebulaGraph write permission.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

11.3.4 Use NebulaGraph Exchange

- 532/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

For more information, see Quick start workflow.

Step 2: Configuring source data

To speed up the export of Neo4j data, create indexes for the corresponding properties in the Neo4j database. For more

information, refer to the Neo4j manual.

Step 3: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set Neo4j data source configuration. In this example,

the copied file is called neo4j_application.conf . For details on each configuration item, see Parameters in the configuration file.

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 user: root

 pswd: nebula

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player

 {

 name: player

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 # bolt 3 does not support multiple databases, do not configure database names. 4 and above can configure database names.

 # database:neo4j

 exec: "match (n:player) return n.id as id, n.age as age, n.name as name"

 fields: [age,name]

 nebula.fields: [age,name]

 vertex: {

 field:id

 # udf:{

 # separator:"_"

11.3.4 Use NebulaGraph Exchange

- 533/804 - 2023 Vesoft Inc.

https://neo4j.com/docs/cypher-manual/current/query-tuning/indexes/

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

 # Set the information about the Tag Team

 {

 name: team

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 database:neo4j

 exec: "match (n:team) return n.id as id,n.name as name"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field:id

 }

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow

 {

 name: follow

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 # bolt 3 does not support multiple databases, do not configure database names. 4 and above can configure database names.

 # database:neo4j

 exec: "match (a:player)-[r:follow]->(b:player) return a.id as src, b.id as dst, r.degree as degree order by id(r)"

 fields: [degree]

 nebula.fields: [degree]

 source: {

 field: src

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

 # Set the information about the Edge Type serve

 {

11.3.4 Use NebulaGraph Exchange

- 534/804 - 2023 Vesoft Inc.

Exec configuration

When configuring either the tags.exec or edges.exec parameters, you need to fill in the Cypher query. To prevent loss of data during

import, it is strongly recommended to include ORDER BY clause in Cypher queries. Meanwhile, in order to improve data import

efficiency, it is better to select indexed properties for ordering. If there is no index, users can also observe the default order and

select the appropriate properties for ordering to improve efficiency. If the pattern of the default order cannot be found, users can

order them by the ID of the vertex or relationship and set the partition to a small value to reduce the ordering pressure of Neo4j.

Using the ORDER BY clause lengthens the data import time.

Exchange needs to execute different SKIP and LIMIT Cypher statements on different Spark partitions, so SKIP and LIMIT clauses

cannot be included in the Cypher statements corresponding to tags.exec and edges.exec .

tags.vertex or edges.vertex configuration

NebulaGraph uses ID as the unique primary key when creating vertexes and edges, overwriting the data in that primary key if it

already exists. So, if a Neo4j property value is given as the NebulaGraph'S ID and the value is duplicated in Neo4j, duplicate IDs

will be generated. One and only one of their corresponding data will be stored in the NebulaGraph, and the others will be

overwritten. Because the data import process is concurrently writing data to NebulaGraph, the final saved data is not guaranteed

to be the latest data in Neo4j.

check_point_path configuration

If breakpoint transfers are enabled, to avoid data loss, the state of the database should not change between the breakpoint and

the transfer. For example, data cannot be added or deleted, and the partition quantity configuration should not be changed.

Step 4: Import data into NebulaGraph

Run the following command to import Neo4j data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

 name: serve

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 database:neo4j

 exec: "match (a:player)-[r:serve]->(b:team) return a.id as src, b.id as dst, r.start_year as start_year, r.end_year as end_year order by id(r)"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: src

 }

 target: {

 field: dst

 }

 #ranking: rank

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

]

}

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <neo4j_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/neo4j_application.conf

11.3.4 Use NebulaGraph Exchange

- 535/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 5: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 6: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

LOOKUP ON player YIELD id(vertex);

Last update: October 25, 2023

11.3.4 Use NebulaGraph Exchange

- 536/804 - 2023 Vesoft Inc.

Import data from Hive

This topic provides an example of how to use Exchange to import NebulaGraph data stored in Hive.

DATA SET

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in Hive. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

The Hive data type bigint corresponds to the NebulaGraph int .

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Hive: 2.3.7, Hive Metastore database is MySQL 8.0.22

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

scala> spark.sql("describe basketball.player").show

+--------+---------+-------+

|col_name|data_type|comment|

+--------+---------+-------+

|playerid| string| null|

| age| bigint| null|

| name| string| null|

+--------+---------+-------+

scala> spark.sql("describe basketball.team").show

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

| teamid| string| null|

| name| string| null|

+----------+---------+-------+

scala> spark.sql("describe basketball.follow").show

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

|src_player| string| null|

|dst_player| string| null|

| degree| bigint| null|

+----------+---------+-------+

scala> spark.sql("describe basketball.serve").show

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

| playerid| string| null|

| teamid| string| null|

|start_year| bigint| null|

| end_year| bigint| null|

+----------+---------+-------+

Note

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 537/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hive Metastore database (MySQL in this example) has been started.

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Use Spark SQL to confirm Hive SQL statements

After the Spark-shell environment is started, run the following statements to ensure that Spark can read data in Hive.

The following is the result read from the table basketball.player .

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

scala> sql("select playerid, age, name from basketball.player").show

scala> sql("select teamid, name from basketball.team").show

scala> sql("select src_player, dst_player, degree from basketball.follow").show

scala> sql("select playerid, teamid, start_year, end_year from basketball.serve").show

+---------+----+-----------------+

| playerid| age| name|

+---------+----+-----------------+

|player100| 42| Tim Duncan|

11.3.4 Use NebulaGraph Exchange

- 538/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Step 3: Modify configuration file

After Exchange is compiled, copy the conf file target/classes/application.conf to set Hive data source configuration. In this example,

the copied file is called hive_application.conf . For details on each configuration item, see Parameters in the configuration file.

|player101| 36| Tony Parker|

|player102| 33|LaMarcus Aldridge|

|player103| 32| Rudy Gay|

|player104| 32| Marco Belinelli|

+---------+----+-----------------+

...

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # If Spark and Hive are deployed in different clusters, you need to configure the parameters for connecting to Hive. Otherwise, skip these configurations.

 #hive: {

 # waredir: "hdfs://NAMENODE_IP:9000/apps/svr/hive-xxx/warehouse/"

 # connectionURL: "jdbc:mysql://your_ip:3306/hive_spark?characterEncoding=UTF-8"

 # connectionDriverName: "com.mysql.jdbc.Driver"

 # connectionUserName: "user"

 # connectionPassword: "password"

 #}

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Hive.

 source: hive

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Set the SQL statement to read the data of player table in basketball database.

 exec: "select playerid, age, name from basketball.player"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

11.3.4 Use NebulaGraph Exchange

- 539/804 - 2023 Vesoft Inc.

 vertex:{

 field:playerid

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: hive

 sink: client

 }

 exec: "select teamid, name from basketball.team"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Hive.

 source: hive

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Set the SQL statement to read the data of follow table in the basketball database.

 exec: "select src_player, dst_player, degree from basketball.follow"

 # Specify the column names in the follow table in Fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's starting vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source: {

 field: src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

11.3.4 Use NebulaGraph Exchange

- 540/804 - 2023 Vesoft Inc.

Step 4: Import data into NebulaGraph

Run the following command to import Hive data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 5: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 6: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: hive

 sink: client

 }

 exec: "select playerid, teamid, start_year, end_year from basketball.serve"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: playerid

 }

 target: {

 field: teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <hive_application.conf_path> -h

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/hive_application.conf -h

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 541/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from MaxCompute

This topic provides an example of how to use Exchange to import NebulaGraph data stored in MaxCompute.

DATA SET

This topic takes the basketballplayer dataset as an example.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

MaxCompute: Alibaba Cloud official version

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 542/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set MaxCompute data source configuration. In this

example, the copied file is called maxcompute_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

11.3.4 Use NebulaGraph Exchange

- 543/804 - 2023 Vesoft Inc.

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 name: player

 type: {

 # Specify the data source file format to MaxCompute.

 source: maxcompute

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Table name of MaxCompute.

 table:player

 # Project name of MaxCompute.

 project:project

 # OdpsUrl and tunnelUrl for the MaxCompute service.

 # The address is https://help.aliyun.com/document_detail/34951.html.

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 # AccessKeyId and accessKeySecret of the MaxCompute service.

 accessKeyId:xxx

 accessKeySecret:xxx

 # Partition description of the MaxCompute table. This configuration is optional.

 partitionSpec:"dt='partition1'"

 # Ensure that the table name in the SQL statement is the same as the value of the table above. This configuration is optional.

 sentence:"select id, name, age, playerid from player where id < 10"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields:[name, age]

 nebula.fields:[name, age]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 vertex:{

 field: playerid

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: maxcompute

 sink: client

 }

 table:team

 project:project

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 accessKeyId:xxx

 accessKeySecret:xxx

 partitionSpec:"dt='partition1'"

 sentence:"select id, name, teamid from team where id < 10"

11.3.4 Use NebulaGraph Exchange

- 544/804 - 2023 Vesoft Inc.

 fields:[name]

 nebula.fields:[name]

 vertex:{

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type:{

 # Specify the data source file format to MaxCompute.

 source:maxcompute

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink:client

 }

 # Table name of MaxCompute.

 table:follow

 # Project name of MaxCompute.

 project:project

 # OdpsUrl and tunnelUrl for MaxCompute service.

 # The address is https://help.aliyun.com/document_detail/34951.html.

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 # AccessKeyId and accessKeySecret of the MaxCompute service.

 accessKeyId:xxx

 accessKeySecret:xxx

 # Partition description of the MaxCompute table. This configuration is optional.

 partitionSpec:"dt='partition1'"

 # Ensure that the table name in the SQL statement is the same as the value of the table above. This configuration is optional.

 sentence:"select * from follow"

 # Specify the column names in the follow table in Fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields:[degree]

 nebula.fields:[degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 source:{

 field: src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 target:{

 field: dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition:10

 # The number of data written to NebulaGraph in a single batch.

 batch:10

 }

11.3.4 Use NebulaGraph Exchange

- 545/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import MaxCompute data into NebulaGraph. For a description of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 # Set the information about the Edge Type serve.

 {

 name: serve

 type:{

 source:maxcompute

 sink:client

 }

 table:serve

 project:project

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 accessKeyId:xxx

 accessKeySecret:xxx

 partitionSpec:"dt='partition1'"

 sentence:"select * from serve"

 fields:[start_year,end_year]

 nebula.fields:[start_year,end_year]

 source:{

 field: playerid

 }

 target:{

 field: teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 partition:10

 batch:10

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <maxcompute_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/maxcompute_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 546/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from Pulsar

This topic provides an example of how to use Exchange to import NebulaGraph data stored in Pulsar.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Pulsar service has been installed and started.

PRECAUTIONS

Only client mode is supported when importing Pulsar data, i.e. the value of parameters tags.type.sink and edges.type.sink is

client .

When importing Pulsar data, do not use Exchange version 3.4.0, which adds caching of imported data and does not support

streaming data import. Use Exchange versions 3.0.0, 3.3.0, or 3.5.0.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 547/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set Pulsar data source configuration. In this example,

the copied file is called pulsar_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

11.3.4 Use NebulaGraph Exchange

- 548/804 - 2023 Vesoft Inc.

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertices

 tags: [

 # Set the information about the Tag player.

 {

 # The corresponding Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Pulsar.

 source: pulsar

 # Specify how to import the data into NebulaGraph. Only client is supported.

 sink: client

 }

 # The address of the Pulsar server.

 service: "pulsar://127.0.0.1:6650"

 # admin.url of pulsar.

 admin: "http://127.0.0.1:8081"

 # The Pulsar option can be configured from topic, topics or topicsPattern.

 options: {

 topics: "topic1,topic2"

 }

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 vertex:{

 field:playerid

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: pulsar

 sink: client

 }

 service: "pulsar://127.0.0.1:6650"

 admin: "http://127.0.0.1:8081"

 options: {

 topics: "topic1,topic2"

 }

 fields: [name]

 nebula.fields: [name]

 vertex:{

 field:teamid

 }

 batch: 10

 partition: 10

 interval.seconds: 10

 }

]

11.3.4 Use NebulaGraph Exchange

- 549/804 - 2023 Vesoft Inc.

 # Processing edges

 edges: [

 # Set the information about Edge Type follow

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Pulsar.

 source: pulsar

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph. Only client is supported.

 sink: client

 }

 # The address of the Pulsar server.

 service: "pulsar://127.0.0.1:6650"

 # admin.url of pulsar.

 admin: "http://127.0.0.1:8081"

 # The Pulsar option can be configured from topic, topics or topicsPattern.

 options: {

 topics: "topic1,topic2"

 }

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source:{

 field:src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target:{

 field:dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 }

 # Set the information about the Edge Type serve

 {

 name: serve

 type: {

 source: Pulsar

 sink: client

 }

 service: "pulsar://127.0.0.1:6650"

 admin: "http://127.0.0.1:8081"

 options: {

 topics: "topic1,topic2"

 }

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source:{

 field:playerid

 }

11.3.4 Use NebulaGraph Exchange

- 550/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import Pulsar data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 target:{

 field:teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 10

 partition: 10

 interval.seconds: 10

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <pulsar_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/pulsar_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 551/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from Kafka

This topic provides a simple guide to importing Data stored on Kafka into NebulaGraph using Exchange.

Please use Exchange 3.5.0/3.3.0/3.0.0 when importing Kafka data. In version 3.4.0, caching of imported data was added, and

streaming data import is not supported.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

The following JAR files have been downloaded and placed in the directory SPARK_HOME/jars of Spark:

spark-streaming-kafka_xxx.jar

spark-sql-kafka-0-10_xxx.jar

kafka-clients-xxx.jar

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Kafka service has been installed and started.

PRECAUTIONS

Only client mode is supported when importing Kafka data, i.e. the value of parameters tags.type.sink and edges.type.sink is

client .

When importing Kafka data, do not use Exchange version 3.4.0, which adds caching of imported data and does not support

streaming data import. Use Exchange versions 3.0.0, 3.3.0, or 3.5.0.

Compatibility

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 552/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/
https://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka
https://mvnrepository.com/artifact/org.apache.spark/spark-sql-kafka-0-10
https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

If some data is stored in Kafka's value field, you need to modify the source code, get the value from Kafka, parse the value through

the from_JSON function, and return it as a Dataframe.

After Exchange is compiled, copy the conf file target/classes/application.conf to set Kafka data source configuration. In this example,

the copied file is called kafka_application.conf . For details on each configuration item, see Parameters in the configuration file.

When importing Kafka data, a configuration file can only handle one tag or edge type. If there are multiple tag or edge types, you

need to create multiple configuration files.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

Note

Note

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

11.3.4 Use NebulaGraph Exchange

- 553/804 - 2023 Vesoft Inc.

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The corresponding Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Kafka.

 source: kafka

 # Specify how to import the data into NebulaGraph. Only client is supported.

 sink: client

 }

 # Kafka server address.

 service: "127.0.0.1:9092"

 # Message category.

 topic: "topic_name1"

 # Kafka data has a fixed domain name: key, value, topic, partition, offset, timestamp, timestampType.

 # If multiple fields need to be specified after Spark reads as DataFrame, separate them with commas.

 # Specify the field name in fields. For example, use key for name in NebulaGraph and value for age in Nebula, as shown in the following.

 fields: [key,value]

 nebula.fields: [name,age]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The key is the same as the value above, indicating that key is used as both VID and property name.

 vertex:{

 field:key

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 # The consumer offsets. The default value is latest. Optional value are latest and earliest.

 startingOffsets: latest

 # Flow control, with a rate limit on the maximum offset processed per trigger interval, may not be configured.

 # maxOffsetsPerTrigger:10000

 }

]

 # Processing edges

11.3.4 Use NebulaGraph Exchange

- 554/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import Kafka data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

 #edges: [

 # # Set the information about the Edge Type follow.

 # {

 # # The corresponding Edge Type name in NebulaGraph.

 # name: follow

 # type: {

 # # Specify the data source file format to Kafka.

 # source: kafka

 # # Specify how to import the Edge type data into NebulaGraph.

 # # Specify how to import the data into NebulaGraph. Only client is supported.

 # sink: client

 # }

 # # Kafka server address.

 # service: "127.0.0.1:9092"

 # # Message category.

 # topic: "topic_name3"

 # # Kafka data has a fixed domain name: key, value, topic, partition, offset, timestamp, timestampType.

 # # If multiple fields need to be specified after Spark reads as DataFrame, separate them with commas.

 # # Specify the field name in fields. For example, use key for degree in Nebula, as shown in the following.

 # fields: [key]

 # nebula.fields: [degree]

 # # In source, use a column in the topic as the source of the edge's source vertex.

 # # In target, use a column in the topic as the source of the edge's destination vertex.

 # source:{

 # field:timestamp

 # # udf:{

 # # separator:"_"

 # # oldColNames:[field-0,field-1,field-2]

 # # newColName:new-field

 # # }

 # # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # # prefix:"tag1"

 # # Performs hashing operations on VIDs of type string.

 # # policy:hash

 # }

 # target:{

 # field:offset

 # # udf:{

 # # separator:"_"

 # # oldColNames:[field-0,field-1,field-2]

 # # newColName:new-field

 # # }

 # # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # # prefix:"tag1"

 # # Performs hashing operations on VIDs of type string.

 # # policy:hash

 # }

 # # (Optional) Specify a column as the source of the rank.

 # #ranking: rank

 # # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 # #writeMode: INSERT

 # # The number of data written to NebulaGraph in a single batch.

 # batch: 10

 # # The number of partitions to be created when the data is written to NebulaGraph.

 # partition: 10

 # # The interval for message reading. Unit: second.

 # interval.seconds: 10

 # # The consumer offsets. The default value is latest. Optional value are latest and earliest.

 # startingOffsets: latest

 # # Flow control, with a rate limit on the maximum offset processed per trigger interval, may not be configured.

 # # maxOffsetsPerTrigger:10000

 # }

 #]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <kafka_application.conf_path>

Note

11.3.4 Use NebulaGraph Exchange

- 555/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/kafka_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 556/804 - 2023 Vesoft Inc.

Import data from general JDBC

JDBC data refers to the data of various databases accessed through the JDBC interface. This topic provides an example of how to

use Exchange to export MySQL data and import to NebulaGraph.

DATA SET

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in MySQL. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

MySQL: 8.0.23

NebulaGraph: 3.6.0. Deploy NebulaGraph with Docker Compose.

mysql> desc player;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| playerid | int | YES | | NULL | |

| age | int | YES | | NULL | |

| name | varchar(30) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

mysql> desc team;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| teamid | int | YES | | NULL | |

| name | varchar(30) | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

mysql> desc follow;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| src_player | int | YES | | NULL | |

| dst_player | int | YES | | NULL | |

| degree | int | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

mysql> desc serve;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| playerid | int | YES | | NULL | |

| teamid | int | YES | | NULL | |

| start_year | int | YES | | NULL | |

| end_year | int | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

•

•

•

•

•

•

11.3.4 Use NebulaGraph Exchange

- 557/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

PRECAUTIONS

nebula-exchange_spark_2.2 supports only single table queries, not multi-table queries.

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set JDBC data source configuration. In this case, the

copied file is called jdbc_application.conf . For details on each configuration item, see Parameters in the configuration file.

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

11.3.4 Use NebulaGraph Exchange

- 558/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to JDBC.

 source: jdbc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # URL of the JDBC data source. The example is MySql database.

 url:"jdbc:mysql://127.0.0.1:3306/basketball?useUnicode=true&characterEncoding=utf-8"

 # JDBC driver

 driver:"com.mysql.cj.jdbc.Driver"

 # Database user name and password

 user:"root"

 password:"12345"

 # Scanning a single table to read data.

 # nebula-exchange_spark_2.2 must configure this parameter, and can additionally configure sentence.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as sentence.

 table:"basketball.player"

 # Use query statement to read data.

 # nebula-exchange_spark_2.2 can configure this parameter. Multi-table queries are not supported. Only the table name needs to be written after from. The form `db.table` is not

supported.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as table. Multi-table queries are supported.

 # sentence:"select playerid, age, name from player, team order by playerid"

 # (optional)Multiple connections read parameters. See https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html

 partitionColumn:playerid # optional. Must be a numeric, date, or timestamp column from the table in question.

 lowerBound:1 # optional

 upperBound:5 # optional

 numPartitions:5 # optional

 fetchSize:2 # The JDBC fetch size, which determines how many rows to fetch per round trip.

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 vertex: {

 field:playerid

 # udf:{

11.3.4 Use NebulaGraph Exchange

- 559/804 - 2023 Vesoft Inc.

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # Whether or not to delete the related incoming and outgoing edges of the vertices when performing a batch delete operation. This parameter takes effect when `writeMode` is `DELETE`.

 #deleteEdge: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: jdbc

 sink: client

 }

 url:"jdbc:mysql://127.0.0.1:3306/basketball?useUnicode=true&characterEncoding=utf-8"

 driver:"com.mysql.cj.jdbc.Driver"

 user:root

 password:"12345"

 table:team

 sentence:"select teamid, name from team order by teamid"

 partitionColumn:teamid

 lowerBound:1

 upperBound:5

 numPartitions:5

 fetchSize:2

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to JDBC.

 source: jdbc

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 url:"jdbc:mysql://127.0.0.1:3306/basketball?useUnicode=true&characterEncoding=utf-8"

 driver:"com.mysql.cj.jdbc.Driver"

 user:root

 password:"12345"

 # Scanning a single table to read data.

 # nebula-exchange_spark_2.2 must configure this parameter, and can additionally configure sentence.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as sentence.

 table:"basketball.follow"

 # Use query statement to read data.

 # nebula-exchange_spark_2.2 can configure this parameter. Multi-table queries are not supported. Only the table name needs to be written after from. The form `db.table` is not

supported.

 # nebula-exchange_spark_2.4 and nebula-exchange_spark_3.0 can configure this parameter, but not at the same time as table. Multi-table queries are supported.

 # sentence:"select src_player,dst_player,degree from follow order by src_player"

 partitionColumn:src_player

 lowerBound:1

 upperBound:5

 numPartitions:5

 fetchSize:2

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

11.3.4 Use NebulaGraph Exchange

- 560/804 - 2023 Vesoft Inc.

Step 3: Import data into NebulaGraph

Run the following command to import general JDBC data into NebulaGraph. For a description of the parameters, see Options for

import.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source: {

 field: src_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: dst_player

 # udf:{

 # separator:"_"

 # oldColNames:[field-0,field-1,field-2]

 # newColName:new-field

 # }

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: jdbc

 sink: client

 }

 url:"jdbc:mysql://127.0.0.1:3306/basketball?useUnicode=true&characterEncoding=utf-8"

 driver:"com.mysql.cj.jdbc.Driver"

 user:root

 password:"12345"

 table:serve

 sentence:"select playerid,teamid,start_year,end_year from serve order by playerid"

 partitionColumn:playerid

 lowerBound:1

 upperBound:5

 numPartitions:5

 fetchSize:2

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: playerid

 }

 target: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c <jdbc_application.conf_path>

11.3.4 Use NebulaGraph Exchange

- 561/804 - 2023 Vesoft Inc.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

Step 4: (optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 5: (optional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.6.1.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/jdbc_application.conf

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 562/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Import data from SST files

This topic provides an example of how to generate the data from the data source into an SST (Sorted String Table) file and save it

on HDFS, and then import it into NebulaGraph. The sample data source is a CSV file.

PRECAUTIONS

The SST file can be imported only in Linux.

The default value of the property is not supported.

BACKGROUND INFORMATION

Exchange supports two data import modes:

Import the data from the data source directly into NebulaGraph as nGQL statements.

Generate the SST file from the data source, and use Console to import the SST file into NebulaGraph.

The following describes the scenarios, implementation methods, prerequisites, and steps for generating an SST file and

importing data.

SCENARIOS

Suitable for online services, because the generation almost does not affect services (just reads the Schema), and the import

speed is fast.

Although the import speed is fast, write operations in the corresponding space are blocked during the import period (about 10

seconds). Therefore, you are advised to import data in off-peak hours.

Suitable for scenarios with a large amount of data from data sources for its fast import speed.

IMPLEMENTATION METHODS

The underlying code in NebulaGraph uses RocksDB as the key-value storage engine. RocksDB is a storage engine based on the

hard disk, providing a series of APIs for creating and importing SST files to help quickly import massive data.

The SST file is an internal file containing an arbitrarily long set of ordered key-value pairs for efficient storage of large amounts

of key-value data. The entire process of generating SST files is mainly done by Exchange Reader, sstProcessor, and sstWriter. The

whole data processing steps are as follows:

Reader reads data from the data source.

sstProcessor generates the SST file from the NebulaGraph's Schema information and uploads it to the HDFS. For details about the

format of the SST file, see Data Storage Format.

sstWriter opens a file and inserts data. When generating SST files, keys must be written in sequence.

After the SST file is generated, RocksDB imports the SST file into NebulaGraph using the IngestExternalFile() method. For example:

When the IngestExternalFile() method is called, RocksDB copies the file to the data directory by default and blocks the RocksDB

write operation. If the key range in the SST file overwrites the Memtable key range, flush the Memtable to the hard disk. After

placing the SST file in an optimal location in the LSM tree, assign a global serial number to the file and turn on the write operation.

•

•

•

•

•

Caution

•

1.

2.

3.

4.

IngestExternalFileOptions ifo;

Import two SST files

Status s = db_->IngestExternalFile({"/home/usr/file1.sst", "/home/usr/file2.sst"}, ifo);

if (!s.ok()) {

 printf("Error while adding file %s and %s, Error %s\n",

 file_path1.c_str(), file_path2.c_str(), s.ToString().c_str());

 return 1;

}

11.3.4 Use NebulaGraph Exchange

- 563/804 - 2023 Vesoft Inc.

DATA SET

This topic takes the basketballplayer dataset as an example.

ENVIRONMENT

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.6.0.

PREREQUISITES

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

--ws_storage_http_port in the Meta service configuration file is the same as --ws_http_port in the Storage service configuration file.

For example, 19779 .

--ws_meta_http_port in the Graph service configuration file is the same as --ws_http_port in the Meta service configuration file. For

example, 19559 .

The information about the Schema, including names and properties of Tags and Edge types, and more.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

JDK 1.8 or the later version has been installed and the environment variable JAVA_HOME has been configured.

The Hadoop service has been installed and started.

To generate SST files of other data sources, see documents of the corresponding data source and check the prerequisites.

To generate SST files only, users do not need to install the Hadoop service on the machine where the Storage service is deployed.

To delete the SST file after the ingest (data import) operation, add the configuration -- move_Files =true to the Storage Service

configuration file.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Note

•

•

•

11.3.4 Use NebulaGraph Exchange

- 564/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEPS

Step 1: Create the Schema in NebulaGraph

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

Step 2: Process CSV files

Confirm the following information:

Process CSV files to meet Schema requirements.

Exchange supports uploading CSV files with or without headers.

Obtain the CSV file storage path.

Step 3: Modify configuration files

After Exchange is compiled, copy the conf file target/classes/application.conf to set SST data source configuration. In this example,

the copied file is called sst_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

Note

2.

{

 # Spark configuration

 spark: {

 app: {

 name: NebulaGraph Exchange 3.6.1

 }

 master:local

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

11.3.4 Use NebulaGraph Exchange

- 565/804 - 2023 Vesoft Inc.

 memory:1G

 }

 cores:{

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 graph:["192.8.168.XXX:9669"]

 # the address of any of the meta services.

 # if your NebulaGraph server is in virtual network like k8s, please config the leader address of meta.

 meta:["192.8.168.XXX:9559"]

 }

 user: root

 pswd: nebula

 space: basketballplayer

 # SST file configuration

 path:{

 # The local directory that temporarily stores generated SST files

 local:"/tmp"

 # The path for storing the SST file in the HDFS

 remote:"/sst"

 # The NameNode address of HDFS, for example, "hdfs://<ip/hostname>:<port>"

 hdfs.namenode: "hdfs://*.*.*.*:9000"

 }

 # The connection parameters of clients

 connection: {

 # The timeout duration of socket connection and execution. Unit: milliseconds.

 timeout: 30000

 }

 error: {

 # The maximum number of failures that will exit the application.

 max: 32

 # Failed import jobs are logged in the output path.

 output: /tmp/errors

 }

 # Use Google's RateLimiter to limit requests to NebulaGraph.

 rate: {

 # Steady throughput of RateLimiter.

 limit: 1024

 # Get the allowed timeout duration from RateLimiter. Unit: milliseconds.

 timeout: 1000

 }

 }

 # Processing vertices

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: sst

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://<ip/hostname>:port/xx/xx.csv".

 path: "hdfs://*.*.*.*:9000/dataset/vertex_player.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has a header, use the actual column name.

 fields: [_c1, _c2]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in NebulaGraph.

 # The value of vertex must be consistent with the column name in the above fields or csv.fields.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 vertex: {

 field:_c0

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # The delimiter specified. The default value is comma.

11.3.4 Use NebulaGraph Exchange

- 566/804 - 2023 Vesoft Inc.

 separator: ","

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 # Whether to repartition data based on the number of partitions of graph spaces in NebulaGraph when generating the SST file.

 repartitionWithNebula: false

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: csv

 sink: sst

 }

 path: "hdfs://*.*.*.*:9000/dataset/vertex_team.csv"

 fields: [_c1]

 nebula.fields: [name]

 vertex: {

 field:_c0

 }

 separator: ","

 header: false

 batch: 256

 partition: 32

 repartitionWithNebula: false

 }

 # If more vertices need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: sst

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://<ip/hostname>:port/xx/xx.csv".

 path: "hdfs://*.*.*.*:9000/dataset/edge_follow.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has a header, use the actual column name.

 fields: [_c2]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertices.

 # The value of vertex must be consistent with the column name in the above fields or csv.fields.

 # Currently, NebulaGraph 3.6.0 supports only strings or integers of VID.

 source: {

 field: _c0

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 target: {

 field: _c1

 # Add the specified prefix to the VID. For example, if the VID is `12345`, adding the prefix `tag1` will result in `tag1_12345`. The underscore cannot be modified.

 # prefix:"tag1"

 # Performs hashing operations on VIDs of type string.

 # policy:hash

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

11.3.4 Use NebulaGraph Exchange

- 567/804 - 2023 Vesoft Inc.

Step 4: Generate the SST file

Run the following command to generate the SST file from the CSV source file. For a description of the parameters, see Options

for import.

When generating SST files, the shuffle operation of Spark will be involved. Note that the configuration of spark.sql.shuffle.partition

should be added when you submit the command.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

After the task is complete, you can view the generated SST file in the /sst directory (specified by the nebula.path.remote parameter)

on HDFS.

If you modify the Schema, such as rebuilding the graph space, modifying the Tag, or modifying the Edge type, you need to

regenerate the SST file because the SST file verifies the space ID, Tag ID, and Edge ID.

 # Batch operation types, including INSERT, UPDATE, and DELETE. defaults to INSERT.

 #writeMode: INSERT

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of partitions to be created when the data is written to NebulaGraph.

 partition: 32

 # Whether to repartition data based on the number of partitions of graph spaces in NebulaGraph when generating the SST file.

 repartitionWithNebula: false

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: csv

 sink: sst

 }

 path: "hdfs://*.*.*.*:9000/dataset/edge_serve.csv"

 fields: [_c2,_c3]

 nebula.fields: [start_year, end_year]

 source: {

 field: _c0

 }

 target: {

 field: _c1

 }

 separator: ","

 header: false

 batch: 256

 partition: 32

 repartitionWithNebula: false

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --conf spark.sql.shuffle.partition=<shuffle_concurrency> --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.6.1.jar_path> -c

<sst_application.conf_path>

Note

Note

${SPARK_HOME}/bin/spark-submit --master "local" --conf spark.sql.shuffle.partition=200 --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-

exchange-3.6.1.jar -c /root/nebula-exchange/nebula-exchange/target/classes/sst_application.conf

Note

11.3.4 Use NebulaGraph Exchange

- 568/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Step 5: Import the SST file

Confirm the following information before importing:

Confirm that the Hadoop service has been deployed on all the machines where the Storage service is deployed, and configure

HADOOP_HOME and JAVA_HOME .

The --ws_storage_http_port in the Meta service configuration file (add it manually if it does not exist) is the same as the --ws_http_port in

the Storage service configuration file. For example, both are 19779 .

The --ws_meta_http_port in the Graph service configuration file (add it manually if it does not exist) is the same as the --ws_http_port in

the Meta service configuration file. For example, both are 19559 .

Connect to the NebulaGraph database using the client tool and import the SST file as follows:

Run the following command to select the graph space you created earlier.

Run the following command to download the SST file:

For example:

Run the following command to import the SST file:

To download the SST file again, delete the download folder in the space ID in the data/storage/nebula directory in the NebulaGraph

installation path, and then download the SST file again. If the space has multiple copies, the download folder needs to be deleted on all

machines where the copies are saved.

If there is a problem with the import and re-importing is required, re-execute SUBMIT JOB INGEST; .

Step 6: (Optional) Validate data

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, NebulaGraph Studio).

For example:

Users can also run the SHOW STATS command to view statistics.

Step 7: (Conditional) Rebuild indexes in NebulaGraph

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

Note

•

•

•

1.

nebula> USE basketballplayer;

2.

nebula> SUBMIT JOB DOWNLOAD HDFS "hdfs://<hadoop_address>:<hadoop_port>/<sst_file_path>";

nebula> SUBMIT JOB DOWNLOAD HDFS "hdfs://*.*.*.*:9000/sst";

3.

nebula> SUBMIT JOB INGEST;

Note

•

•

LOOKUP ON player YIELD id(vertex);

Last update: November 7, 2023

11.3.4 Use NebulaGraph Exchange

- 569/804 - 2023 Vesoft Inc.

11.3.5 Exchange FAQ

Compilation

Q: SOME PACKAGES NOT IN CENTRAL REPOSITORY FAILED TO DOWNLOAD, ERROR: COULD NOT RESOLVE DEPENDENCIES FOR PROJECT XXX

Please check the mirror part of Maven installation directory libexec/conf/settings.xml :

Check whether the value of mirrorOf is configured to * . If it is, change it to central or *,!SparkPackagesRepo,!bintray-streamnative-maven .

Reason: There are two dependency packages in Exchange's pom.xml that are not in Maven's central repository. pom.xml configures

the repository address for these two dependencies. If the mirrorOf value for the mirror address configured in Maven is * , all

dependencies will be downloaded from the Central repository, causing the download to fail.

Q: UNABLE TO DOWNLOAD SNAPSHOT PACKAGES WHEN COMPILING EXCHANGE

Problem description: The system reports Could not find artifact com.vesoft:client:jar:xxx-SNAPSHOT when compiling.

Cause: There is no local Maven repository for storing or downloading SNAPSHOT packages. The default central repository in

Maven only stores official releases, not development versions (SNAPSHOT).

Solution: Add the following configuration in the profiles scope of Maven's setting.xml file:

Execution

Q: ERROR: JAVA.LANG.CLASSNOTFOUNDEXCEPTION: COM.VESOFT.NEBULA.EXCHANGE.EXCHANGE

To submit a task in Yarn-Cluster mode, run the following command, especially the two '--conf' commands in the example.

Q: ERROR: METHOD NAME XXX NOT FOUND

Generally, the port configuration is incorrect. Check the port configuration of the Meta service, Graph service, and Storage

service.

Q: ERROR: NOSUCHMETHOD, METHODNOTFOUND (EXCEPTION IN THREAD "MAIN" JAVA.LANG.NOSUCHMETHODERROR , ETC)

Most errors are caused by JAR package conflicts or version conflicts. Check whether the version of the error reporting service is

the same as that used in Exchange, especially Spark, Scala, and Hive.

<mirror>

 <id>alimaven</id>

 <mirrorOf>central</mirrorOf>

 <name>aliyun maven</name>

 <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>

</mirror>

 <profile>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>snapshots</id>

 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

$SPARK_HOME/bin/spark-submit --class com.vesoft.nebula.exchange.Exchange \

--master yarn-cluster \

--files application.conf \

--conf spark.driver.extraClassPath=./ \

--conf spark.executor.extraClassPath=./ \

nebula-exchange-3.0.0.jar \

-c application.conf

11.3.5 Exchange FAQ

- 570/804 - 2023 Vesoft Inc.

Q: WHEN EXCHANGE IMPORTS HIVE DATA, ERROR: EXCEPTION IN THREAD "MAIN" ORG.APACHE.SPARK.SQL.ANALYSISEXCEPTION: TABLE OR VIEW NOT FOUND

Check whether the -h parameter is omitted in the command for submitting the Exchange task and whether the table and

database are correct, and run the user-configured exec statement in spark-SQL to verify the correctness of the exec statement.

Q: RUN ERROR: COM.FACEBOOK.THRIFT.PROTOCOL.TPROTOCOLEXCEPTION: EXPECTED PROTOCOL ID XXX

Check that the NebulaGraph service port is configured correctly.

For source, RPM, or DEB installations, configure the port number corresponding to --port in the configuration file for each

service.

For docker installation, configure the docker mapped port number as follows:

Execute docker-compose ps in the nebula-docker-compose directory, for example:

Check the Ports column to find the docker mapped port number, for example:

- The port number available for Graph service is 9669.

- The port number for Meta service are 33167, 33168, 33164.

- The port number for Storage service are 33183, 33177, 33185.

Q: ERROR: EXCEPTION IN THREAD "MAIN" COM.FACEBOOK.THRIFT.PROTOCOL.TPROTOCOLEXCEPTION: THE FIELD 'CODE' HAS BEEN ASSIGNED THE INVALID VALUE -4

Check whether the version of Exchange is the same as that of NebulaGraph. For more information, see Limitations.

Q: HOW TO CORRECT THE ENCODING ERROR WHEN IMPORTING DATA IN A SPARK ENVIRONMENT?

It may happen if the property value of the data contains Chinese characters. The solution is to add the following options before

the JAR package path in the import command:

Namely:

In YARN, use the following command:

•

•

$ docker-compose ps

 Name Command State Ports

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:33205->19669/tcp, 0.0.0.0:33204->19670/tcp, 0.0.0.0:9669->9669/tcp

nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33165->19559/tcp, 0.0.0.0:33162->19560/tcp, 0.0.0.0:33167->9559/tcp, 9560/tcp

nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33166->19559/tcp, 0.0.0.0:33163->19560/tcp, 0.0.0.0:33168->9559/tcp, 9560/tcp

nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33161->19559/tcp, 0.0.0.0:33160->19560/tcp, 0.0.0.0:33164->9559/tcp, 9560/tcp

nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33180->19779/tcp, 0.0.0.0:33178->19780/tcp, 9777/tcp, 9778/tcp, 0.0.0.0:33183->9779/tcp, 9780/

tcp

nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33175->19779/tcp, 0.0.0.0:33172->19780/tcp, 9777/tcp, 9778/tcp, 0.0.0.0:33177->9779/tcp, 9780/

tcp

nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33184->19779/tcp, 0.0.0.0:33181->19780/tcp, 9777/tcp, 9778/tcp, 0.0.0.0:33185->9779/tcp, 9780/

tcp

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8

<spark_install_path>/bin/spark-submit --master "local" \

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8 \

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8 \

--class com.vesoft.nebula.exchange.Exchange \

<nebula-exchange-3.x.y.jar_path> -c <application.conf_path>

<spark_install_path>/bin/spark-submit \

--class com.vesoft.nebula.exchange.Exchange \

--master yarn-cluster \

--files <application.conf_path> \

--conf spark.driver.extraClassPath=./ \

--conf spark.executor.extraClassPath=./ \

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8 \

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8 \

<nebula-exchange-3.x.y.jar_path> \

-c application.conf

11.3.5 Exchange FAQ

- 571/804 - 2023 Vesoft Inc.

Q: ORG.ROCKSDB.ROCKSDBEXCEPTION: WHILE OPEN A FILE FOR APPENDING: /PATH/SST/1-XXX.SST: NO SUCH FILE OR DIRECTORY

Solution:

Check if /path exists. If not, or if the path is set incorrectly, create or correct it.

Check if Spark's current user on each machine has the operation permission on /path . If not, grant the permission.

Configuration

Q: WHICH CONFIGURATION FIELDS WILL AFFECT IMPORT PERFORMANCE?

batch: The number of data contained in each nGQL statement sent to the NebulaGraph service.

partition: The number of partitions to be created when the data is written to NebulaGraph, indicating the number of

concurrent data imports.

nebula.rate: Get a token from the token bucket before sending a request to NebulaGraph.

- limit: Represents the size of the token bucket.

- timeout: Represents the timeout period for obtaining the token.

The values of these four parameters can be adjusted appropriately according to the machine performance. If the leader of the

Storage service changes during the import process, you can adjust the values of these four parameters to reduce the import

speed.

Others

Q: WHICH VERSIONS OF NEBULAGRAPH ARE SUPPORTED BY EXCHANGE?

See Limitations.

Q: WHAT IS THE RELATIONSHIP BETWEEN EXCHANGE AND SPARK WRITER?

Exchange is the Spark application developed based on Spark Writer. Both are suitable for bulk migration of cluster data to

NebulaGraph in a distributed environment, but later maintenance work will be focused on Exchange. Compared with Spark

Writer, Exchange has the following improvements:

It supports more abundant data sources, such as MySQL, Neo4j, Hive, HBase, Kafka, Pulsar, etc.

It fixed some problems of Spark Writer. For example, when Spark reads data from HDFS, the default source data is String,

which may be different from the NebulaGraph's Schema. So Exchange adds automatic data type matching and type

conversion. When the data type in the NebulaGraph's Schema is non-String (e.g. double), Exchange converts the source data

of String type to the corresponding type.

1.

2.

•

•

•

•

•

Last update: December 18, 2023

11.3.5 Exchange FAQ

- 572/804 - 2023 Vesoft Inc.

12. Connectors

12.1 NebulaGraph Spark Connector

NebulaGraph Spark Connector is a Spark connector application for reading and writing NebulaGraph data in Spark standard

format. NebulaGraph Spark Connector consists of two parts: Reader and Writer.

Reader

Provides a Spark SQL interface. This interface can be used to read NebulaGraph data. It reads one vertex or edge type data at

a time and assemble the result into a Spark DataFrame.

Writer

Provides a Spark SQL interface. This interface can be used to write DataFrames into NebulaGraph in a row-by-row or batch-

import way.

For more information, see NebulaGraph Spark Connector.

12.1.1 Version compatibility

The correspondence between the NebulaGraph Spark Connector version, the NebulaGraph core version and the Spark version is

as follows.

•

•

Spark Connector version NebulaGraph version Spark version

nebula-spark-connector_3.0-3.0-SNAPSHOT.jar nightly 3.x

nebula-spark-connector_2.2-3.0-SNAPSHOT.jar nightly 2.2.x

nebula-spark-connector-3.0-SNAPSHOT.jar nightly 2.4.x

nebula-spark-connector_3.0-3.6.0.jar 3.x 3.x

nebula-spark-connector_2.2-3.6.0.jar 3.x 2.2.x

nebula-spark-connector-3.6.0.jar 3.x 2.4.x

nebula-spark-connector_2.2-3.4.0.jar 3.x 2.2.x

nebula-spark-connector-3.4.0.jar 3.x 2.4.x

nebula-spark-connector_2.2-3.3.0.jar 3.x 2.2.x

nebula-spark-connector-3.3.0.jar 3.x 2.4.x

nebula-spark-connector-3.0.0.jar 3.x 2.4.x

nebula-spark-connector-2.6.1.jar 2.6.0, 2.6.1 2.4.x

nebula-spark-connector-2.6.0.jar 2.6.0, 2.6.1 2.4.x

nebula-spark-connector-2.5.1.jar 2.5.0, 2.5.1 2.4.x

nebula-spark-connector-2.5.0.jar 2.5.0, 2.5.1 2.4.x

nebula-spark-connector-2.1.0.jar 2.0.0, 2.0.1 2.4.x

nebula-spark-connector-2.0.1.jar 2.0.0, 2.0.1 2.4.x

nebula-spark-connector-2.0.0.jar 2.0.0, 2.0.1 2.4.x

12. Connectors

- 573/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-spark-connector/blob/release-3.6/README_CN.md

12.1.2 Use cases

NebulaGraph Spark Connector applies to the following scenarios:

Read data from NebulaGraph for analysis and computation.

Write data back to NebulaGraph after analysis and computation.

Migrate the data of NebulaGraph.

Graph computing with NebulaGraph Algorithm.

12.1.3 Benefits

The features of NebulaGraph Spark Connector 3.6.0 are as follows:

Supports multiple connection settings, such as timeout period, number of connection retries, number of execution retries, etc.

Supports multiple settings for data writing, such as setting the corresponding column as vertex ID, starting vertex ID,

destination vertex ID or attributes.

Supports non-attribute reading and full attribute reading.

Supports reading NebulaGraph data into VertexRDD and EdgeRDD, and supports non-Long vertex IDs.

Unifies the extended data source of SparkSQL, and uses DataSourceV2 to extend NebulaGraph data.

Three write modes, insert , update and delete , are supported. insert mode will insert (overwrite) data, update mode will only

update existing data, and delete mode will only delete data.

12.1.4 Release note

Release

12.1.5 Get NebulaGraph Spark Connector

Compile and package

Clone repository nebula-spark-connector .

Enter the nebula-spark-connector directory.

Compile and package. The procedure varies with Spark versions.

Spark of the corresponding version has been installed.

- Spark 2.4

- Spark 2.2

- Spark 3.x

•

•

•

•

•

•

•

•

•

•

1.

$ git clone -b release-3.6 https://github.com/vesoft-inc/nebula-spark-connector.git

2.

3.

Note

```bash

$ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true -pl nebula-spark-connector -am -Pscala-2.11 -Pspark-2.4

```

```bash

$ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true -pl nebula-spark-connector_2.2 -am -Pscala-2.11 -Pspark-2.2

```

12.1.2 Use cases

- 574/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-spark-connector/releases/tag/v3.6.0

After compilation, a file similar to nebula-spark-connector-3.6.0-SHANPSHOT.jar is generated in the directory target of the folder.

Download maven remote repository

Download

12.1.6 How to use

When using NebulaGraph Spark Connector to reading and writing NebulaGraph data, You can refer to the following code.

nebula() receives two configuration parameters, including connection configuration and read-write configuration.

If the value of the properties contains Chinese characters, the encoding error may appear. Please add the following options when

submitting the Spark task:

Reading data from NebulaGraph

```bash

$ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true -pl nebula-spark-connector_3.0 -am -Pscala-2.12 -Pspark-3.0

```

Read vertex and edge data from NebulaGraph.

spark.read.nebula().loadVerticesToDF()

spark.read.nebula().loadEdgesToDF()

Write dataframe data into NebulaGraph as vertex and edges.

dataframe.write.nebula().writeVertices()

dataframe.write.nebula().writeEdges()

Note

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8

val config = NebulaConnectionConfig

 .builder()

 .withMetaAddress("127.0.0.1:9559")

 .withConenctionRetry(2)

 .withExecuteRetry(2)

 .withTimeout(6000)

 .build()

val nebulaReadVertexConfig: ReadNebulaConfig = ReadNebulaConfig

 .builder()

 .withSpace("test")

 .withLabel("person")

 .withNoColumn(false)

 .withReturnCols(List("birthday"))

 .withLimit(10)

 .withPartitionNum(10)

 .build()

val vertex = spark.read.nebula(config, nebulaReadVertexConfig).loadVerticesToDF()

val nebulaReadEdgeConfig: ReadNebulaConfig = ReadNebulaConfig

 .builder()

 .withSpace("test")

 .withLabel("knows")

 .withNoColumn(false)

 .withReturnCols(List("degree"))

 .withLimit(10)

 .withPartitionNum(10)

12.1.6 How to use

- 575/804 - 2023 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-spark-connector/

NebulaConnectionConfig is the configuration for connecting to NebulaGraph, as described below.

ReadNebulaConfig is the configuration to read NebulaGraph data, as described below.

Write data into NebulaGraph

The values of columns in a dataframe are automatically written to NebulaGraph as property values.

 .build()

val edge = spark.read.nebula(config, nebulaReadEdgeConfig).loadEdgesToDF()

•

Parameter Required Description

withMetaAddress Yes Specifies the IP addresses and ports of all Meta Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... . Read data is no need

to configure withGraphAddress .

withConnectionRetry No The number of retries that the NebulaGraph Java Client connected to

NebulaGraph. The default value is 1 .

withExecuteRetry No The number of retries that the NebulaGraph Java Client executed query

statements. The default value is 1 .

withTimeout No The timeout for the NebulaGraph Java Client request response. The default value is

6000 , Unit: ms.

•

Parameter Required Description

withSpace Yes NebulaGraph space name.

withLabel Yes The Tag or Edge type name within the NebulaGraph space.

withNoColumn No Whether the property is not read. The default value is false , read property. If the

value is true , the property is not read, the withReturnCols configuration is invalid.

withReturnCols No Configures the set of properties for vertex or edges to read. the format is

List(property1,property2,...) , The default value is List() , indicating that all properties

are read.

withLimit No Configure the number of rows of data read from the server by the NebulaGraph Java

Storage Client at a time. The default value is 1000 .

withPartitionNum No Configures the number of Spark partitions to read the NebulaGraph data. The default

value is 100 . This value should not exceed the number of slices in the graph space

(partition_num).

Note

val config = NebulaConnectionConfig

 .builder()

 .withMetaAddress("127.0.0.1:9559")

 .withGraphAddress("127.0.0.1:9669")

 .withConenctionRetry(2)

 .build()

val nebulaWriteVertexConfig: WriteNebulaVertexConfig = WriteNebulaVertexConfig

 .builder()

 .withSpace("test")

 .withTag("person")

 .withVidField("id")

 .withVidPolicy("hash")

 .withVidAsProp(true)

 .withUser("root")

 .withPasswd("nebula")

 .withBatch(1000)

 .build()

df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

val nebulaWriteEdgeConfig: WriteNebulaEdgeConfig = WriteNebulaEdgeConfig

 .builder()

12.1.6 How to use

- 576/804 - 2023 Vesoft Inc.

The default write mode is insert , which can be changed to update or delete via withWriteMode configuration:

 .withSpace("test")

 .withEdge("friend")

 .withSrcIdField("src")

 .withSrcPolicy(null)

 .withDstIdField("dst")

 .withDstPolicy(null)

 .withRankField("degree")

 .withSrcAsProperty(true)

 .withDstAsProperty(true)

 .withRankAsProperty(true)

 .withUser("root")

 .withPasswd("nebula")

 .withBatch(1000)

 .build()

df.write.nebula(config, nebulaWriteEdgeConfig).writeEdges()

val config = NebulaConnectionConfig

 .builder()

 .withMetaAddress("127.0.0.1:9559")

 .withGraphAddress("127.0.0.1:9669")

 .build()

val nebulaWriteVertexConfig = WriteNebulaVertexConfig

 .builder()

 .withSpace("test")

 .withTag("person")

 .withVidField("id")

 .withVidAsProp(true)

 .withBatch(1000)

 .withWriteMode(WriteMode.UPDATE)

12.1.6 How to use

- 577/804 - 2023 Vesoft Inc.

NebulaConnectionConfig is the configuration for connecting to the nebula graph, as described below.

WriteNebulaVertexConfig is the configuration of the write vertex, as described below.

 .build()

df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

•

Parameter Required Description

withMetaAddress Yes Specifies the IP addresses and ports of all Meta Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... .

withGraphAddress Yes Specifies the IP addresses and ports of Graph Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... .

withConnectionRetry No Number of retries that the NebulaGraph Java Client connected to NebulaGraph.

The default value is 1 .

•

Parameter Required Description

withSpace Yes NebulaGraph space name.

withTag Yes The Tag name that needs to be associated when a vertex is written.

withVidField Yes The column in the DataFrame as the vertex ID.

withVidPolicy No When writing the vertex ID, NebulaGraph use mapping function, supports HASH only.

No mapping is performed by default.

withVidAsProp No Whether the column in the DataFrame that is the vertex ID is also written as an

property. The default value is false . If set to true , make sure the Tag has the same

property name as VidField .

withUser No NebulaGraph username. If authentication is disabled, you do not need to configure

the username and password.

withPasswd No The password for the NebulaGraph username.

withBatch Yes The number of rows of data written at a time. The default value is 1000 .

withWriteMode No Write mode. The optional values are insert , update and delete . The default value is

insert .

withDeleteEdge No Whether to delete the related edges synchronously when deleting a vertex. The

default value is false . It takes effect when withWriteMode is delete .

12.1.6 How to use

- 578/804 - 2023 Vesoft Inc.

WriteNebulaEdgeConfig is the configuration of the write edge, as described below.
•

Parameter Required Description

withSpace Yes NebulaGraph space name.

withEdge Yes The Edge type name that needs to be associated when a edge is written.

withSrcIdField Yes The column in the DataFrame as the vertex ID.

withSrcPolicy No When writing the starting vertex ID, NebulaGraph use mapping function, supports

HASH only. No mapping is performed by default.

withDstIdField Yes The column in the DataFrame that serves as the destination vertex.

withDstPolicy No When writing the destination vertex ID, NebulaGraph use mapping function,

supports HASH only. No mapping is performed by default.

withRankField No The column in the DataFrame as the rank. Rank is not written by default.

withSrcAsProperty No Whether the column in the DataFrame that is the starting vertex is also written as

an property. The default value is false . If set to true , make sure Edge type has the

same property name as SrcIdField .

withDstAsProperty No Whether column that are destination vertex in the DataFrame are also written as

property. The default value is false . If set to true , make sure Edge type has the

same property name as DstIdField .

withRankAsProperty No Whether column in the DataFrame that is the rank is also written as property.The

default value is false . If set to true , make sure Edge type has the same property

name as RankField .

withUser No NebulaGraph username. If authentication is disabled, you do not need to configure

the username and password.

withPasswd No The password for the NebulaGraph username.

withBatch Yes The number of rows of data written at a time. The default value is 1000 .

withWriteMode No Write mode. The optional values are insert , update and delete . The default value is

insert .

Last update: April 10, 2024

12.1.6 How to use

- 579/804 - 2023 Vesoft Inc.

12.2 NebulaGraph Flink Connector

NebulaGraph Flink Connector is a connector that helps Flink users quickly access NebulaGraph. NebulaGraph Flink Connector

supports reading data from the NebulaGraph database or writing other external data to the NebulaGraph database.

For more information, see NebulaGraph Flink Connector.

12.2.1 Use cases

NebulaGraph Flink Connector applies to the following scenarios:

Read data from NebulaGraph for analysis and computation.

Write data back to NebulaGraph after analysis and computation.

Migrate the data of NebulaGraph.

12.2.2 Release note

Release

12.2.3 Version compatibility

The correspondence between the NebulaGraph Flink Connector version and the NebulaGraph core version is as follows.

12.2.4 Prerequisites

Java 8 or later is installed.

Flink 1.11.x is installed.

12.2.5 Get NebulaGraph Flink Connector

Configure Maven dependency

Add the following dependency to the Maven configuration file pom.xml to automatically obtain the Flink Connector.

•

•

•

Flink Connector version NebulaGraph version

3.0-SNAPSHOT nightly

3.5.0 3.x.x

3.3.0 3.x.x

3.0.0 3.x.x

2.6.1 2.6.0, 2.6.1

2.6.0 2.6.0, 2.6.1

2.5.0 2.5.0, 2.5.1

2.0.0 2.0.0, 2.0.1

•

•

<dependency>

 <groupId>com.vesoft</groupId>

 <artifactId>nebula-flink-connector</artifactId>

 <version>3.5.0</version>

</dependency>

12.2 NebulaGraph Flink Connector

- 580/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-flink-connector/releases/tag/v3.5.0

Compile and package

Follow the steps below to compile and package the Flink Connector.

Clone repository nebula-flink-connector .

Enter the nebula-flink-connector directory.

Compile and package.

After compilation, a file similar to nebula-flink-connector-3.5.0.jar is generated in the directory connector/target of the folder.

12.2.6 How to use

Write data into NebulaGraph

Read data from NebulaGraph

1.

$ git clone -b release-3.5 https://github.com/vesoft-inc/nebula-flink-connector.git

2.

3.

$ mvn clean package -Dmaven.test.skip=true

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

NebulaClientOptions nebulaClientOptions = new NebulaClientOptions.NebulaClientOptionsBuilder()

 .setGraphAddress("127.0.0.1:9669")

 .setMetaAddress("127.0.0.1:9559")

 .build();

NebulaGraphConnectionProvider graphConnectionProvider = new NebulaGraphConnectionProvider(nebulaClientOptions);

NebulaMetaConnectionProvider metaConnectionProvider = new NebulaMetaConnectionProvider(nebulaClientOptions);

VertexExecutionOptions executionOptions = new VertexExecutionOptions.ExecutionOptionBuilder()

 .setGraphSpace("flinkSink")

 .setTag("player")

 .setIdIndex(0)

 .setFields(Arrays.asList("name", "age"))

 .setPositions(Arrays.asList(1, 2))

 .setBatchSize(2)

 .build();

NebulaVertexBatchOutputFormat outputFormat = new NebulaVertexBatchOutputFormat(

 graphConnectionProvider, metaConnectionProvider, executionOptions);

NebulaSinkFunction<Row> nebulaSinkFunction = new NebulaSinkFunction<>(outputFormat);

DataStream<Row> dataStream = playerSource.map(row -> {

 Row record = new org.apache.flink.types.Row(row.size());

 for (int i = 0; i < row.size(); i++) {

 record.setField(i, row.get(i));

 }

 return record;

 });

dataStream.addSink(nebulaSinkFunction);

env.execute("write nebula")

NebulaClientOptions nebulaClientOptions = new NebulaClientOptions.NebulaClientOptionsBuilder()

 .setMetaAddress("127.0.0.1:9559")

 .build();

storageConnectionProvider = new NebulaStorageConnectionProvider(nebulaClientOptions);

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

env.setParallelism(1);

VertexExecutionOptions vertexExecutionOptions = new VertexExecutionOptions.ExecutionOptionBuilder()

 .setGraphSpace("flinkSource")

 .setTag("person")

 .setNoColumn(false)

 .setFields(Arrays.asList())

 .setLimit(100)

 .build();

NebulaSourceFunction sourceFunction = new NebulaSourceFunction(storageConnectionProvider)

 .setExecutionOptions(vertexExecutionOptions);

DataStreamSource<BaseTableRow> dataStreamSource = env.addSource(sourceFunction);

dataStreamSource.map(row -> {

 List<ValueWrapper> values = row.getValues();

 Row record = new Row(15);

 record.setField(0, values.get(0).asLong());

 record.setField(1, values.get(1).asString());

 record.setField(2, values.get(2).asString());

 record.setField(3, values.get(3).asLong());

 record.setField(4, values.get(4).asLong());

 record.setField(5, values.get(5).asLong());

 record.setField(6, values.get(6).asLong());

 record.setField(7, values.get(7).asDate());

12.2.6 How to use

- 581/804 - 2023 Vesoft Inc.

 record.setField(8, values.get(8).asDateTime().getUTCDateTimeStr());

 record.setField(9, values.get(9).asLong());

 record.setField(10, values.get(10).asBoolean());

 record.setField(11, values.get(11).asDouble());

 record.setField(12, values.get(12).asDouble());

 record.setField(13, values.get(13).asTime().getUTCTimeStr());

 record.setField(14, values.get(14).asGeography());

 return record;

}).print();

env.execute("NebulaStreamSource");

12.2.6 How to use

- 582/804 - 2023 Vesoft Inc.

Parameter descriptions

NebulaClientOptions is the configuration for connecting to NebulaGraph, as described below.

VertexExecutionOptions is the configuration for reading vertices from and writing vertices to NebulaGraph, as described below.

•

Parameter Type Required Description

setGraphAddress String Yes The Graph service address of NebulaGraph.

setMetaAddress String Yes The Meta service address of NebulaGraph.

•

Parameter Type Required Description

setGraphSpace String Yes The graph space name.

setTag String Yes The tag name.

setIdIndex Int Yes The subscript of the stream data field that is used as the VID when

writing data to NebulaGraph.

setFields List Yes A collection of the property names of a tag. It is used to write data to or

read data from NebulaGraph. Make sure the setNoColumn is false when

reading data; otherwise, the configuration is invalid. If this parameter is

empty, all properties are read when reading data from NebulaGraph.

setPositions List Yes A collection of the subscripts of the stream data fields. It indicates that

the corresponding field values are written to NebulaGraph as property

values. This parameter needs to correspond to setFields .

setBatchSize String No The maximum number of data records to write to NebulaGraph at a

time. The default value is 2000 .

setNoColumn String No The properties are not to be read if set to true when reading data. The

default value is false .

setLimit String No The maximum number of data records to pull at a time when reading

data. The default value is 2000 .

12.2.6 How to use

- 583/804 - 2023 Vesoft Inc.

EdgeExecutionOptions is the configuration for reading edges from and writing edges to NebulaGraph, as described below.

12.2.7 Example

Create a graph space.

Create a tag.

•

Parameter Type Required Description

setGraphSpace String Yes The graph space name.

setEdge String Yes The edge type name.

setSrcIndex Int Yes The subscript of the stream data field that is used as the VID of the

source vertex when writing data to NebulaGraph.

setDstIndex Int Yes The subscript of the stream data field that is used as the VID of the

destination vertex when writing data to NebulaGraph.

setRankIndex Int Yes The subscript of the stream data field that is used as the rank of the

edge when writing data to NebulaGraph.

setFields List Yes A collection of the property names of an edge type. It is used to write

data to or read data from NebulaGraph. Make sure the setNoColumn is

false when reading data; otherwise, the configuration is invalid. If this

parameter is empty, all properties are read when reading data from

NebulaGraph.

setPositions List Yes A collection of the subscripts of the stream data fields. It indicates that

the corresponding field values are written to NebulaGraph as property

values. This parameter needs to correspond to setFields .

setBatchSize String No The maximum number of data records to write to NebulaGraph at a

time. The default value is 2000 .

setNoColumn String No The properties are not to be read if set to true when reading data. The

default value is false .

setLimit String No The maximum number of data records to pull at a time when reading

data. The default value is 2000 .

1.

NebulaCatalog nebulaCatalog = NebulaCatalogUtils.createNebulaCatalog(

 "NebulaCatalog",

 "default",

 "root",

 "nebula",

 "127.0.0.1:9559",

 "127.0.0.1:9669");

EnvironmentSettings settings = EnvironmentSettings.newInstance()

 .inStreamingMode()

 .build();

TableEnvironment tableEnv = TableEnvironment.create(settings);

tableEnv.registerCatalog(CATALOG_NAME, nebulaCatalog);

tableEnv.useCatalog(CATALOG_NAME);

String createDataBase = "CREATE DATABASE IF NOT EXISTS `db1`"

 + " COMMENT 'space 1'"

 + " WITH ("

 + " 'partition_num' = '100',"

 + " 'replica_factor' = '3',"

 + " 'vid_type' = 'FIXED_STRING(10)'"

 + ")";

tableEnv.executeSql(createDataBase);

2.

tableEnvironment.executeSql("CREATE TABLE `person` ("

 + " vid BIGINT,"

 + " col1 STRING,"

 + " col2 STRING,"

 + " col3 BIGINT,"

 + " col4 BIGINT,"

 + " col5 BIGINT,"

 + " col6 BIGINT,"

12.2.7 Example

- 584/804 - 2023 Vesoft Inc.

Create an edge type.

Queries the data of an edge type and inserts it into another edge type.

 + " col7 DATE,"

 + " col8 TIMESTAMP,"

 + " col9 BIGINT,"

 + " col10 BOOLEAN,"

 + " col11 DOUBLE,"

 + " col12 DOUBLE,"

 + " col13 TIME,"

 + " col14 STRING"

 + ") WITH ("

 + " 'connector' = 'nebula',"

 + " 'meta-address' = '127.0.0.1:9559',"

 + " 'graph-address' = '127.0.0.1:9669',"

 + " 'username' = 'root',"

 + " 'password' = 'nebula',"

 + " 'data-type' = 'vertex',"

 + " 'graph-space' = 'flink_test',"

 + " 'label-name' = 'person'"

 + ")"

);

3.

tableEnvironment.executeSql("CREATE TABLE `friend` ("

 + " sid BIGINT,"

 + " did BIGINT,"

 + " rid BIGINT,"

 + " col1 STRING,"

 + " col2 STRING,"

 + " col3 BIGINT,"

 + " col4 BIGINT,"

 + " col5 BIGINT,"

 + " col6 BIGINT,"

 + " col7 DATE,"

 + " col8 TIMESTAMP,"

 + " col9 BIGINT,"

 + " col10 BOOLEAN,"

 + " col11 DOUBLE,"

 + " col12 DOUBLE,"

 + " col13 TIME,"

 + " col14 STRING"

 + ") WITH ("

 + " 'connector' = 'nebula',"

 + " 'meta-address' = '127.0.0.1:9559',"

 + " 'graph-address' = '127.0.0.1:9669',"

 + " 'username' = 'root',"

 + " 'password' = 'nebula',"

 + " 'graph-space' = 'flink_test',"

 + " 'label-name' = 'friend',"

 + " 'data-type'='edge',"

 + " 'src-id-index'='0',"

 + " 'dst-id-index'='1',"

 + " 'rank-id-index'='2'"

 + ")"

);

4.

Table table = tableEnvironment.sqlQuery("SELECT * FROM `friend`");

table.executeInsert("`friend_sink`").await();

Last update: April 10, 2024

12.2.7 Example

- 585/804 - 2023 Vesoft Inc.

13. Best practices

13.1 Compaction

This topic gives some information about compaction.

In NebulaGraph, Compaction is the most important background process and has an important effect on performance.

Compaction reads the data that is written on the hard disk, then re-organizes the data structure and the indexes, and then writes

back to the hard disk. The read performance can increase by times after compaction. Thus, to get high read performance, trigger

compaction (full compaction) manually when writing a large amount of data into Nebula Graph.

Note that compaction leads to long-time hard disk IO. We suggest that users do compaction during off-peak hours (for example, early

morning).

NebulaGraph has two types of compaction : automatic compaction and full compaction .

13.1.1 Automatic compaction

Automatic compaction is automatically triggered when the system reads data, writes data, or the system restarts. The read

performance can increase in a short time. Automatic compaction is enabled by default. But once triggered during peak hours, it

can cause unexpected IO occupancy that has an unwanted effect on the performance.

13.1.2 Full compaction

Full compaction enables large-scale background operations for a graph space such as merging files, deleting the data expired by

TTL. This operation needs to be initiated manually. Use the following statements to enable full compaction :

We recommend you to do the full compaction during off-peak hours because full compaction has a lot of IO operations.

The preceding statement returns the job ID. To show the compaction progress, use the following statement:

Note

Note

nebula> USE <your_graph_space>;

nebula> SUBMIT JOB COMPACT;

nebula> SHOW JOB <job_id>;

13. Best practices

- 586/804 - 2023 Vesoft Inc.

13.1.3 Operation suggestions

These are some operation suggestions to keep Nebula Graph performing well.

After data import is done, run SUBMIT JOB COMPACT .

Run SUBMIT JOB COMPACT periodically during off-peak hours (e.g. early morning).

To control the write traffic limitation for compactions , set the following parameter in the nebula-storaged.conf configuration file.

This parameter limits the rate of all writes including normal writes and compaction writes.

13.1.4 FAQ

"Where are the logs related to Compaction stored?"

By default, the logs are stored under the LOG file in the /usr/local/nebula/data/storage/nebula/{1}/data/ directory, or similar to LOG.old.

1625797988509303 . You can find the following content.

If the number of L0 files is large, the read performance will be greatly affected and compaction can be triggered.

"Can I do full compactions for multiple graph spaces at the same time?"

Yes, you can. But the IO is much larger at this time and the efficiency may be affected.

"How much time does it take for full compactions ?"

When rocksdb_rate_limit is set to 20 , you can estimate the full compaction time by dividing the hard disk usage by the

rocksdb_rate_limit . If you do not set the rocksdb_rate_limit value, the empirical value is around 50 MB/s.

"Can I modify --rocksdb_rate_limit dynamically?"

No, you cannot.

"Can I stop a full compaction after it starts?"

No, you cannot. When you start a full compaction, you have to wait till it is done. This is the limitation of RocksDB.

•

•

•

Note

Limit the write rate to 20MB/s.

--rocksdb_rate_limit=20 (in MB/s)

** Compaction Stats [default] **

Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop

--

 L0 2/0 2.46 KB 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.53 0.51 2 0.264 0 0

 Sum 2/0 2.46 KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.53 0.51 2 0.264 0 0

 Int 0/0 0.00 KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0 0.000 0 0

Last update: November 3, 2023

13.1.3 Operation suggestions

- 587/804 - 2023 Vesoft Inc.

13.2 Storage load balance

You can use the SUBMIT JOB BALANCE statement to balance the distribution of partitions and Raft leaders, or clear some Storage

servers for easy maintenance. For details, see SUBMIT JOB BALANCE.

The BALANCE commands migrate data and balance the distribution of partitions by creating and executing a set of subtasks. DO NOT

stop any machine in the cluster or change its IP address until all the subtasks finish. Otherwise, the follow-up subtasks fail.

13.2.1 Balance leader distribution

To balance the raft leaders, run SUBMIT JOB BALANCE LEADER . It will start a job to balance the distribution of all the storage leaders in

all graph spaces.

Example

Run SHOW HOSTS to check the balance result.

During leader partition replica switching in NebulaGraph, the leader replicas will be temporarily prohibited from being written to

until the switch is completed. If there are a large number of write requests during the switching period, it will result in a request

error (Storage Error E_RPC_FAILURE). See FAQ for error handling methods.

You can set the value of raft_heartbeat_interval_secs in the Storage configuration file to control the timeout period for leader replica

switching. For more information on the configuration file, see Storage configuration file.

Danger

nebula> SUBMIT JOB BALANCE LEADER;

nebula> SHOW HOSTS;

+------------------+------+----------+--------------+-----------------------------------+------------------------+----------------------+

| Host | Port | Status | Leader count | Leader distribution | Partition distribution | Version |

+------------------+------+----------+--------------+-----------------------------------+------------------------+----------------------+

| "192.168.10.101" | 9779 | "ONLINE" | 8 | "basketballplayer:3" | "basketballplayer:8" | "3.6.0" |

| "192.168.10.102" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:8" | "3.6.0" |

| "192.168.10.103" | 9779 | "ONLINE" | 0 | "basketballplayer:2" | "basketballplayer:7" | "3.6.0" |

| "192.168.10.104" | 9779 | "ONLINE" | 0 | "basketballplayer:2" | "basketballplayer:7" | "3.6.0" |

| "192.168.10.105" | 9779 | "ONLINE" | 0 | "basketballplayer:2" | "basketballplayer:7" | "3.6.0" |

+------------------+------+----------+--------------+-----------------------------------+------------------------+----------------------+

Caution

Last update: October 25, 2023

13.2 Storage load balance

- 588/804 - 2023 Vesoft Inc.

13.3 Graph data modeling suggestions

This topic provides general suggestions for modeling data in NebulaGraph.

The following suggestions may not apply to some special scenarios. In these cases, find help in the NebulaGraph community.

13.3.1 Model for performance

There is no perfect method to model in Nebula Graph. Graph modeling depends on the questions that you want to know from the

data. Your data drives your graph model. Graph data modeling is intuitive and convenient. Create your data model based on your

business model. Test your model and gradually optimize it to fit your business. To get better performance, you can change or re-

design your model multiple times.

Design and evaluate the most important queries

Usually, various types of queries are validated in test scenarios to assess the overall capabilities of the system. However, in most

production scenarios, there are not many types of frequently used queries. You can optimize the data model based on key queries

selected according to the Pareto (80/20) principle.

Full-graph scanning avoidance

Graph traversal can be performed after one or more vertices/edges are located through property indexes or VIDs. But for some

query patterns, such as subgraph and path query patterns, the source vertex or edge of the traversal cannot be located through

property indexes or VIDs. These queries find all the subgraphs that satisfy the query pattern by scanning the whole graph space

which will have poor query performance. NebulaGraph does not implement indexing for the graph structures of subgraphs or

paths.

No predefined bonds between Tags and Edge types

Define the bonds between Tags and Edge types in the application, not NebulaGraph. There are no statements that could get the

bonds between Tags and Edge types.

Tags/Edge types predefine a set of properties

While creating Tags or Edge types, you need to define a set of properties. Properties are part of the NebulaGraph Schema.

Control changes in the business model and the data model

Changes here refer to changes in business models and data models (meta-information), not changes in the data itself.

Some graph databases are designed to be Schema-free, so their data modeling, including the modeling of the graph topology and

properties, can be very flexible. Properties can be re-modeled to graph topology, and vice versa. Such systems are often

specifically optimized for graph topology access.

NebulaGraph 3.6.0 is a strong-Schema (row storage) system, which means that the business model should not change frequently.

For example, the property Schema should not change. It is similar to avoiding ALTER TABLE in MySQL.

On the contrary, vertices and their edges can be added or deleted at low costs. Thus, the easy-to-change part of the business

model should be transformed to vertices or edges, rather than properties.

For example, in a business model, people have relatively fixed properties such as age, gender, and name. But their contact, place

of visit, trade account, and login device are often changing. The former is suitable for modeling as properties and the latter as

vertices or edges.

Note

13.3 Graph data modeling suggestions

- 589/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions

Set temporary properties through self-loop edges

As a strong Schema system, NebulaGraph does not support List-type properties. And using ALTER TAG costs too much. If you need

to add some temporary properties or List-type properties to a vertex, you can first create an edge type with the required

properties, and then insert one or more edges that direct to the vertex itself. The figure is as follows.

To retrieve temporary properties of vertices, fetch from self-loop edges. For example:

Operations on loops are not encapsulated with any syntactic sugars and you can use them just like those on normal edges.

About dangling edges

A dangling edge is an edge that only connects to a single vertex and only one part of the edge connects to the vertex.

In NebulaGraph 3.6.0, dangling edges may appear in the following two cases.

Insert edges with INSERT EDGE statement before the source vertex or the destination vertex exists.

Delete vertices with DELETE VERTEX statement and the WITH EDGE option is not used. At this time, the system does not delete the

related outgoing and incoming edges of the vertices. There will be dangling edges by default.

Dangling edges may appear in NebulaGraph 3.6.0 as the design allow it to exist. And there is no MERGE statement like

openCypher has. The existence of dangling edges depends entirely on the application level. You can use GO and LOOKUP

statements to find a dangling edge, but cannot use the MATCH statement to find a dangling edge.

Examples:

//Create the edge type and insert the loop property.

nebula> CREATE EDGE IF NOT EXISTS temp(tmp int);

nebula> INSERT EDGE temp(tmp) VALUES "player100"->"player100"@1:(1);

nebula> INSERT EDGE temp(tmp) VALUES "player100"->"player100"@2:(2);

nebula> INSERT EDGE temp(tmp) VALUES "player100"->"player100"@3:(3);

//After the data is inserted, you can query the loop property by general query statements, for example:

nebula> GO FROM "player100" OVER temp YIELD properties(edge).tmp;

+----------------------+

| properties(EDGE).tmp |

+----------------------+

| 1 |

| 2 |

| 3 |

+----------------------+

//If you want the results to be returned in the form of a List, you can use a function, for example:

nebula> MATCH (v1:player)-[e:temp]->() return collect(e.tmp);

+----------------+

| collect(e.tmp) |

+----------------+

| [1, 2, 3] |

+----------------+

1.

2.

// Insert an edge that connects two vertices which do not exist in the graph. The source vertex's ID is '11'. The destination vertex's ID is'13'.

nebula> CREATE EDGE IF NOT EXISTS e1 (name string, age int);

nebula> INSERT EDGE e1 (name, age) VALUES "11"->"13":("n1", 1);

13.3.1 Model for performance

- 590/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/loop-property.png
https://docs-cdn.nebula-graph.com.cn/figures/loop-property.png

Breadth-first traversal over depth-first traversal

NebulaGraph has lower performance for depth-first traversal based on the Graph topology, and better performance for

breadth-first traversal and obtaining properties. For example, if model A contains properties "name", "age", and "eye color", it

is recommended to create a tag person and add properties name , age , and eye_color to it. If you create a tag eye_color and an

edge type has , and then create an edge to represent the eye color owned by the person, the traversal performance will not be

high.

The performance of finding an edge by an edge property is close to that of finding a vertex by a vertex property. For some

databases, it is recommended to re-model edge properties as those of the intermediate vertices. For example, model the

pattern (src)-[edge {P1, P2}]->(dst) as (src)-[edge1]->(i_node {P1, P2})-[edge2]->(dst) . With NebulaGraph 3.6.0, you can use (src)-[edge

{P1, P2}]->(dst) directly to decrease the depth of the traversal and increase the performance.

Edge directions

To query in the opposite direction of an edge, use the following syntax:

(dst)<-[edge]-(src) or GO FROM dst REVERSELY .

If you do not care about the directions or want to query against both directions, use the following syntax:

(src)-[edge]-(dst) or GO FROM src BIDIRECT .

Therefore, there is no need to insert the same edge redundantly in the reversed direction.

Set tag properties appropriately

Put a group of properties that are on the same level into the same tag. Different groups represent different concepts.

Use indexes correctly

Using property indexes helps find VIDs through properties, but can lead to great performance reduction. Only use an index when

you need to find vertices or edges through their properties.

Design VIDs appropriately

See VID.

// Query using the `GO` statement

nebula> GO FROM "11" over e1 YIELD properties(edge);

+----------------------+

| properties(EDGE) |

+----------------------+

| {age: 1, name: "n1"} |

+----------------------+

// Query using the `LOOKUP` statement

nebula> LOOKUP ON e1 YIELD EDGE AS r;

+---+

| r |

+---+

| [:e2 "11"->"13" @0 {age: 1, name: "n1"}] |

+---+

// Query using the `MATCH` statement

nebula> MATCH ()-[e:e1]->() RETURN e;

+---+

| e |

+---+

+---+

Empty set (time spent 3153/3573 us)

•

•

13.3.1 Model for performance

- 591/804 - 2023 Vesoft Inc.

Long texts

Do not use long texts to create edge properties. Edge properties are stored twice and long texts lead to greater write

amplification. For how edges properties are stored, see Storage architecture. It is recommended to store long texts in HBase or

Elasticsearch and store its address in NebulaGraph.

13.3.2 Dynamic graphs (sequence graphs) are not supported

In some scenarios, graphs need to have the time information to describe how the structure of the entire graph changes over

time.
1

The Rank field on Edges in NebulaGraph 3.6.0 can be used to store time in int64, but no field on vertices can do this because if

you store the time information as property values, it will be covered by new insertion. Thus NebulaGraph does not support

sequence graphs.

13.3.3 Free graph data modeling tools

arrows.app

https://blog.twitter.com/engineering/en_us/topics/insights/2021/temporal-graph-networks 1.

Last update: October 25, 2023

13.3.2 Dynamic graphs (sequence graphs) are not supported

- 592/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/sequence.png
https://docs-cdn.nebula-graph.com.cn/figures/sequence.png
https://arrows.app/

13.4 System design suggestions

13.4.1 QPS or low-latency first

NebulaGraph 3.6.0 is good at handling small requests with high concurrency. In such scenarios, the whole graph is huge,

containing maybe trillions of vertices or edges, but the subgraphs accessed by each request are not large (containing millions

of vertices or edges), and the latency of a single request is low. The concurrent number of such requests, i.e., the QPS, can be

huge.

On the other hand, in interactive analysis scenarios, the request concurrency is usually not high, but the subgraphs accessed

by each request are large, with thousands of millions of vertices or edges. To lower the latency of big requests in such

scenarios, you can split big requests into multiple small requests in the application, and concurrently send them to multiple

graphd processes. This can decrease the memory used by each graphd process as well. Besides, you can use NebulaGraph

Algorithm for such scenarios.

13.4.2 Data transmission and optimization

Read/write balance. NebulaGraph fits into OLTP scenarios with balanced read/write, i.e., concurrent write and read. It is not

suitable for OLAP scenarios that usually need to write once and read many times.

Select different write methods. For large batches of data writing, use SST files. For small batches of data writing, use INSERT .

Run COMPACTION and BALANCE jobs to optimize data format and storage distribution at the right time.

NebulaGraph 3.6.0 does not support transactions and isolation in the relational database and is closer to NoSQL.

13.4.3 Query preheating and data preheating

Preheat on the application side:

The Grapd process does not support pre-compiling queries and generating corresponding query plans, nor can it cache

previous query results.

The Storagd process does not support preheating data. Only the LSM-Tree and BloomFilter of RocksDB are loaded into

memory at startup.

Once accessed, vertices and edges are cached respectively in two types of LRU cache of the Storage Service.

•

•

•

•

•

•

•

•

•

Last update: October 25, 2023

13.4 System design suggestions

- 593/804 - 2023 Vesoft Inc.

13.5 Execution plan

NebulaGraph 3.6.0 applies rule-based execution plans. Users cannot change execution plans, pre-compile queries (and

corresponding plan cache), or accelerate queries by specifying indexes.

To view the execution plan and executive summary, see EXPLAIN and PROFILE.

Last update: October 25, 2023

13.5 Execution plan

- 594/804 - 2023 Vesoft Inc.

13.6 Processing super vertices

13.6.1 Principle introduction

In graph theory, a super vertex, also known as a dense vertex, is a vertex with an extremely high number of adjacent edges. The

edges can be outgoing or incoming.

Super vertices are very common because of the power-law distribution. For example, popular leaders in social networks (Internet

celebrities), top stocks in the stock market, Big Four in the banking system, hubs in transportation networks, websites with high

clicking rates on the Internet, and best sellers in E-commerce.

In NebulaGraph 3.6.0, a vertex and its properties form a key-value pair , with its VID and other meta information as the key . Its Out-

Edge Key-Value and In-Edge Key-Value are stored in the same partition in the form of LSM-trees in hard disks and caches.

Therefore, directed traversals from this vertex and directed traversals ending at this vertex both involve either

a large number of sequential IO scans (ideally, after Compaction or a large number of random IO (frequent writes to the vertex and its

ingoing and outgoing edges).

As a rule of thumb, a vertex is considered dense when the number of its edges exceeds 10,000. Some special cases require

additional consideration.

In NebulaGraph 3.6.0, there is not any data structure to store the out/in degree for each vertex. Therefore, there is no direct method

to know whether it is a super vertex or not. You can try to use Spark to count the degrees periodically.

Indexes for duplicate properties

In a property graph, there is another class of cases similar to super vertices: a property has a very high duplication rate, i.e.,

many vertices with the same tag but different VIDs have identical property and property values.

Property indexes in NebulaGraph 3.6.0 are designed to reuse the functionality of RocksDB in the Storage Service, in which case

indexes are modeled as keys with the same prefix . If the lookup of a property fails to hit the cache, it is processed as a random seek

and a sequential prefix scan on the hard disk to find the corresponding VID. After that, the graph is usually traversed from this

vertex, so that another random read and sequential scan for the corresponding key-value of this vertex will be triggered. The

higher the duplication rate, the larger the scan range.

For more information about property indexes, see How indexing works in NebulaGraph.

Usually, special design and processing are required when the number of duplicate property values exceeds 10,000.

Suggested solutions

SOLUTIONS AT THE DATABASE END

Truncation: Only return a certain number (a threshold) of edges, and do not return other edges exceeding this threshold.

Compact: Reorganize the order of data in RocksDB to reduce random reads and increase sequential reads.

Note

1.

2.

13.6 Processing super vertices

- 595/804 - 2023 Vesoft Inc.

https://nebula-graph.io/posts/how-indexing-works-in-nebula-graph/

SOLUTIONS AT THE APPLICATION END

Break up some of the super vertices according to their business significance:

Delete multiple edges and merge them into one.

For example, in the transfer scenario (Account_A)-[TRANSFER]->(Account_B) , each transfer record is modeled as an edge between

account A and account B, then there may be tens of thousands of transfer records between (Account_A) and (Account_B) .

In such scenarios, merge obsolete transfer details on a daily, weekly, or monthly basis. That is, batch-delete old edges and

replace them with a small number of edges representing monthly total and times . And keep the transfer details of the latest

month.

Split an edge into multiple edges of different types.

For example, in the (Airport)<-[DEPART]-(Flight) scenario, the departure of each flight is modeled as an edge between a flight and

an airport. Departures from a big airport might be enormous.

According to different airlines, divide the DEPART edge type into finer edge types, such as DEPART_CEAIR , DEPART_CSAIR , etc. Specify

the departing airline in queries (graph traversal).

Split vertices.

For example, in the loan network (person)-[BORROW]->(bank) , large bank A will have a very large number of loans and borrowers.

In such scenarios, you can split the large vertex A into connected sub-vertices A1, A2, and A3.

A1, A2, and A3 can either be three real branches of bank A, such as Beijing branch, Shanghai branch, and Zhejiang branch, or

three virtual branches set up according to certain rules, such as A1: 1-1000, A2: 1001-10000 and A3: 10000+ according to the number

of loans. In this way, any operation on A is converted into three separate operations on A1, A2, and A3.

•

•

•

(Person1)-[BORROW]->(BankA1), (Person2)-[BORROW]->(BankA2), (Person2)-[BORROW]->(BankA3);

(BankA1)-[BELONGS_TO]->(BankA), (BankA2)-[BELONGS_TO]->(BankA), (BankA3)-[BELONGS_TO]->(BankA).

Last update: November 3, 2023

13.6.1 Principle introduction

- 596/804 - 2023 Vesoft Inc.

13.7 Enable AutoFDO for NebulaGraph

The AutoFDO can analyze the performance of an optimized program and use the program's performance information to guide the

compiler to re-optimize the program. This document will help you to enable the AutoFDO for NebulaGraph.

More information about the AutoFDO, please refer AutoFDO Wiki.

13.7.1 Resource Preparations

Install Dependencies

Install perf

Install autofdo tool

Or you can compile the autofdo tool from source.

NebulaGraph Binary with Debug Version

For how to build NebulaGraph from source, please refer to the official document: Install NebulaGraph by compiling the source

code. In the configure step, replace CMAKE_BUILD_TYPE=Release with CMAKE_BUILD_TYPE=RelWithDebInfo as below:

13.7.2 Prepare Test Data

In our test environment, we use NebulaGraph Bench to prepare the test data and collect the profile data by running the

FindShortestPath, Go1Step, Go2Step, Go3Step, InsertPersonScenario 5 scenarios.

You can use your TopN queries in your production environment to collect the profile data, the performance can gain more in your

environment.

13.7.3 Prepare Profile Data

Collect Perf Data For AutoFdo Tool

After the test data preparation work done. Collect the perf data for different scenarios. Get the pid of storaged , graphd , metad .

Start the perf record for nebula-graphd and nebula-storaged.

•

sudo apt-get update

sudo apt-get install -y linux-tools-common \

linux-tools-generic \

linux-tools-`uname -r`

•

sudo apt-get update

sudo apt-get install -y autofdo

$ cmake -DCMAKE_INSTALL_PREFIX=/usr/local/nebula -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=RelWithDebInfo ..

Note

1.

$ nebula.service status all

[INFO] nebula-metad: Running as 305422, Listening on 9559

[INFO] nebula-graphd: Running as 305516, Listening on 9669

[INFO] nebula-storaged: Running as 305707, Listening on 9779

2.

perf record -p 305516,305707 -b -e br_inst_retired.near_taken:pp -o ~/FindShortestPath.data

13.7 Enable AutoFDO for NebulaGraph

- 597/804 - 2023 Vesoft Inc.

https://gcc.gnu.org/wiki/AutoFDO
https://github.com/google/autofdo.git
https://docs.nebula-graph.io/3.3.0/4.deployment-and-installation/2.compile-and-install-nebula-graph/1.install-nebula-graph-by-compiling-the-source-code/
https://docs.nebula-graph.io/3.3.0/4.deployment-and-installation/2.compile-and-install-nebula-graph/1.install-nebula-graph-by-compiling-the-source-code/
https://github.com/nebula-contrib/NebulaGraph-Bench

Because the nebula-metad service contribution percent is small compared with nebula-graphd and nebula-storaged services. To reduce effort,

we didn't collect the perf data for nebula-metad service.

Start the benchmark test for FindShortestPath scenario.

After the benchmark finished, end the perf record by Ctrl + c.

Repeat above steps to collect corresponding profile data for the rest Go1Step, Go2Step, Go3Step and InsertPersonScenario

scenarios.

Create Gcov File

Repeat for Go1Step, Go2Step, Go3Step and InsertPersonScenario scenarios.

Merge the Profile Data

You will get a merged profile which is named fbdata.afdo after that.

13.7.4 Recompile GraphNebula Binary with the Merged Profile

Recompile the GraphNebula Binary by passing the profile with compile option -fauto-profile .

When you use multiple fbdata.afdo to compile multiple times, please remember to make clean before re-compile, baucase only change

the fbdata.afdo will not trigger re-compile.

Note

3.

cd NebulaGraph-Bench

python3 run.py stress run -s benchmark -scenario find_path.FindShortestPath -a localhost:9669 --args='-u 100 -i 100000'

4.

5.

create_gcov --binary=$NEBULA_HOME/bin/nebula-storaged \

--profile=~/FindShortestPath.data \

--gcov=~/FindShortestPath-storaged.gcov \

-gcov_version=1

create_gcov --binary=$NEBULA_HOME/bin/nebula-graphd \

--profile=~/FindShortestPath.data \

--gcov=~/FindShortestPath-graphd.gcov \

-gcov_version=1

profile_merger ~/FindShortestPath-graphd.gcov \

~/FindShortestPath-storaged.gcov \

~/go1step-storaged.gcov \

~/go1step-graphd.gcov \

~/go2step-storaged.gcov \

~/go2step-graphd.gcov \

~/go3step-storaged.gcov \

~/go3step-master-graphd.gcov \

~/InsertPersonScenario-storaged.gcov \

~/InsertPersonScenario-graphd.gcov

diff --git a/cmake/nebula/GeneralCompilerConfig.cmake b/cmake/nebula/GeneralCompilerConfig.cmake

@@ -20,6 +20,8 @@ add_compile_options(-Wshadow)

 add_compile_options(-Wnon-virtual-dtor)

 add_compile_options(-Woverloaded-virtual)

 add_compile_options(-Wignored-qualifiers)

+add_compile_options(-fauto-profile=~/fbdata.afdo)

Note

13.7.4 Recompile GraphNebula Binary with the Merged Profile

- 598/804 - 2023 Vesoft Inc.

13.7.5 Performance Test Result

Hardware & Software Environment

Key Value

CPU Processor# 2

Sockets 2

NUMA 2

CPU Type Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz

Cores per Processor 40C80T

Cache L1 data: 48KB L1 i: 32KB L2: 1.25MB per physical core L3: shared 60MB per processor

Memory Micron DDR4 3200MT/s 16GB16Micron DDR4 3200MT/s 16GB16

SSD Disk INTEL SSDPE2KE016T8

SSD R/W Sequential 3200 MB/s (read) / 2100 MB/s(write)

Nebula Version master with commit id 51d84a4ed7d2a032a337e3b996c927e3bc5d1415

Kernel 4.18.0-408.el8.x86_64

13.7.5 Performance Test Result

- 599/804 - 2023 Vesoft Inc.

Test Results

13.7.5 Performance Test Result

- 600/804 - 2023 Vesoft Inc.

Scenario Average

Latency(LiB)

Default

Binary

Optimized

Binary

with

AutoFDO

P95

Latency

(LiB)

Default

Binary

Optimized

Binary

with

AutoFDO

FindShortestPath 1 8072.52 7260.10 1 22102.00 19108.00

2 8034.32 7218.59 2 22060.85 19006.00

3 8079.27 7257.24 3 22147.00 19053.00

4 8087.66 7221.39 4 22143.00 19050.00

5 8044.77 7239.85 5 22181.00 19055.00

STDDEVP 20.57 17.34 STDDEVP 41.41 32.36

Mean 8063.71 7239.43 Mean 22126.77 19054.40

STDDEVP/

Mean

0.26% 0.24% STDDEVP/

Mean

0.19% 0.17%

Opt/Default 100.00% 10.22% Opt/

Default

100.00% 13.89%

Go1Step 1 422.53 418.37 1 838.00 850.00

2 432.37 402.44 2 866.00 815.00

3 437.45 407.98 3 874.00 836.00

4 429.16 408.38 4 858.00 838.00

5 446.38 411.32 5 901.00 837.00

STDDEVP 8.02 5.20 STDDEVP 20.63 11.30

Mean 433.58 409.70 Mean 867.40 835.20

STDDEVP/

Mean

1.85% 1.27% STDDEVP/

Mean

2.38% 1.35%

Opt/Default 100.00% 5.51% Opt/

Default

100.00% 3.71%

Go2Step 1 2989.93 2824.29 1 10202.00 9656.95

2 2957.22 2834.55 2 10129.00 9632.40

3 2962.74 2818.62 3 10168.40 9624.70

4 2992.39 2817.27 4 10285.10 9647.50

5 2934.85 2834.91 5 10025.00 9699.65

STDDEVP 21.53 7.57 STDDEVP 85.62 26.25

Mean 2967.43 2825.93 Mean 10161.90 9652.24

STDDEVP/

Mean

0.73% 0.27% STDDEVP/

Mean

0.84% 0.27%

Opt/Default 100.00% 4.77% Opt/

Default

100.00% 5.02%

Go3Step 1 93551.97 89406.96 1 371359.55 345433.50

2 92418.43 89977.25 2 368868.00 352375.20

3 92587.67 90339.25 3 365390.15 356198.55

13.7.5 Performance Test Result

- 601/804 - 2023 Vesoft Inc.

Scenario Average

Latency(LiB)

Default

Binary

Optimized

Binary

with

AutoFDO

P95

Latency

(LiB)

Default

Binary

Optimized

Binary

with

AutoFDO

4 93371.64 92458.95 4 373578.15 365177.75

5 94046.05 89943.44 5 373392.25 352576.00

STDDEVP 609.07 1059.54 STDDEVP 3077.38 6437.52

Mean 93195.15 90425.17 Mean 370517.62 354352.20

STDDEVP/

Mean

0.65% 1.17% STDDEVP/

Mean

0.83% 1.82%

Opt/Default 100.00% 2.97% Opt/

Default

100.00% 4.36%

InsertPerson 1 2022.86 1937.36 1 2689.00 2633.45

2 1966.05 1935.41 2 2620.45 2555.00

3 1985.25 1953.58 3 2546.00 2593.00

4 2026.73 1887.28 4 2564.00 2394.00

5 2007.55 1964.41 5 2676.00 2581.00

STDDEVP 23.02 26.42 STDDEVP 57.45 82.62

Mean 2001.69 1935.61 Mean 2619.09 2551.29

STDDEVP/

Mean

1.15% 1.37% STDDEVP/

Mean

2.19% 3.24%

Opt/Default 100.00% 3.30% Opt/

Default

100.00% 2.59%

Last update: October 25, 2023

13.7.5 Performance Test Result

- 602/804 - 2023 Vesoft Inc.

13.8 Best practices

NebulaGraph is used in a variety of industries. This topic presents a few best practices for using NebulaGraph. For more best

practices, see Blog.

13.8.1 Scenarios

Use cases

User review

Performance

13.8.2 Kernel

What is a graph database and what are its use cases - Definition, examples & trends

NebulaGraph Source Code Explained: Variable-Length Pattern Matching

Adding a Test Case for NebulaGraph

BDD-Based Integration Testing Framework for NebulaGraph: Part Ⅰ

BDD-Based Integration Testing Framework for NebulaGraph: Part II

Understanding Subgraph in NebulaGraph

Full-Text Indexing in NebulaGraph

13.8.3 Ecosystem tool

Validating Import Performance of NebulaGraph Importer

Ecosystem Tools: NebulaGraph Dashboard for Monitoring

Visualizing Graph Data with NebulaGraph Explorer

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: October 25, 2023

13.8 Best practices

- 603/804 - 2023 Vesoft Inc.

https://nebula-graph.io/posts/
https://nebula-graph.io/tags/use-cases/
https://nebula-graph.io/tags/user-review/
https://nebula-graph.io/tags/performance/
https://nebula-graph.io/posts/what-is-a-graph-database
https://nebula-graph.io/posts/nebula-graph-source-code-reading-06/
https://nebula-graph.io/posts/add-test-case-nebula-graph/
https://nebula-graph.io/posts/bdd-testing-practice/
https://nebula-graph.io/posts/bdd-testing-practice-volume-2/
https://nebula-graph.io/posts/nebula-graph-subgraph-introduction/
https://nebula-graph.io/posts/how-fulltext-index-works/
https://nebula-graph.io/posts/nebula-importer-practice/
https://nebula-graph.io/posts/what-is-nebula-dashboard/
https://nebula-graph.io/posts/what-is-nebula-explorer/

14. Clients

14.1 Clients overview

NebulaGraph supports multiple types of clients for users to connect to and manage the NebulaGraph database.

NebulaGraph Console: the native CLI client

NebulaGraph CPP: the NebulaGraph client for C++

NebulaGraph Java: the NebulaGraph client for Java

NebulaGraph Python: the NebulaGraph client for Python

NebulaGraph Go: the NebulaGraph client for Golang

Only the following classes are thread-safe:

NebulaPool and SessionPool in NebulaGraph Java

ConnectionPool and SessionPool in NebulaGraph Go

•

•

•

•

•

Note

•

•

Last update: April 15, 2024

14. Clients

- 604/804 - 2023 Vesoft Inc.

14.2 NebulaGraph Console

NebulaGraph Console is a native CLI client for NebulaGraph. It can be used to connect a NebulaGraph cluster and execute

queries. It also supports special commands to manage parameters, export query results, import test datasets, etc.

14.2.1 Compatibility with NebulaGraph

See github.

14.2.2 Obtain NebulaGraph Console

You can obtain NebulaGraph Console in the following ways:

Download the binary file from the GitHub releases page.

Compile the source code to obtain the binary file. For more information, see Install from source code.

14.2.3 NebulaGraph Console functions

Connect to NebulaGraph

To connect to NebulaGraph with the nebula-console file, use the following syntax:

path_of_console indicates the storage path of the NebulaGraph Console binary file.

When two-way authentication is required after SSL encryption is enabled, you need to specify SSL-related parameters when

connecting.

For example:

Direct link to NebulaGraph

Enable SSL encryption and require two-way authentication

•

•

<path_of_console> -addr <ip> -port <port> -u <username> -p <password>

•

•

•

./nebula-console -addr 192.168.8.100 -port 9669 -u root -p nebula

•

./nebula-console -addr 192.168.8.100 -port 9669 -u root -p nebula -enable_ssl -ssl_root_ca_path /home/xxx/cert/root.crt -ssl_cert_path /home/xxx/cert/client.crt -ssl_private_key_path /

home/xxx/cert/client.key

14.2 NebulaGraph Console

- 605/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/release-3.6#compatibility-matrix
https://github.com/vesoft-inc/nebula-console/releases
https://github.com/vesoft-inc/nebula-console#from-source-code

Parameter descriptions are as follows:

For information on more parameters, see the project repository.

Manage parameters

You can save parameters for parameterized queries.

Parameter Description

-h/-help Shows the help menu.

-addr/-address Sets the IP or hostname of the Graph service. The default address is 127.0.0.1.

-P/-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your NebulaGraph account. Before enabling authentication, you can use any

existing username. The default username is root .

-p/-password Sets the password of your NebulaGraph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is millisecond. The default value is

120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds.

The connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection

succeeds. The result will be returned and the connection stops then.

-enable_ssl Enables SSL encryption when connecting to NebulaGraph.

-ssl_root_ca_path Sets the storage path of the certification authority file.

-ssl_cert_path Sets the storage path of the certificate file.

-ssl_private_key_path Sets the storage path of the private key file.

-

ssl_insecure_skip_verify

Specifies whether the client skips verifying the server's certificate chain and hostname. The default

is false . If set to true , any certificate chain and hostname provided by the server is accepted.

14.2.3 NebulaGraph Console functions

- 606/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/release-3.6

Setting a parameter as a VID in a query is not supported.

Parameters are not supported in SAMPLE clauses.

Parameters are deleted when their sessions are released.

The command to save a parameter is as follows:

The example is as follows:

The command to view the saved parameters is as follows:

The command to view the specified parameters is as follows:

The command to delete a specified parameter is as follows:

Export query results

Export query results, which can be saved as a CSV file, DOT file, and a format of Profile or Explain.

Note

•

•

•

•

nebula> :param <param_name> => <param_value>;

nebula> :param p1 => "Tim Duncan";

nebula> MATCH (v:player{name:$p1})-[:follow]->(n) RETURN v,n;

+--+---+

| v | n |

+--+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("player101" :player{age: 36, name: "Tony Parker"}) |

+--+---+

nebula> :param p2 => {"a":3,"b":false,"c":"Tim Duncan"};

nebula> RETURN $p2.b AS b;

+-------+

| b |

+-------+

| false |

+-------+

•

nebula> :params;

•

nebula> :params <param_name>;

•

nebula> :param <param_name> =>;

14.2.3 NebulaGraph Console functions

- 607/804 - 2023 Vesoft Inc.

The exported file is stored in the working directory, i.e., what the linux command pwd shows.

This command only works for the next query statement.

You can copy the contents of the DOT file and paste them in GraphvizOnline to generate a visualized execution plan.

The command to export a csv file is as follows:

The command to export a DOT file is as follows:

The example is as follows:

The command to export a PROFILE or EXPLAIN format is as follows:

or

The text file output by the above command is the preferred way to report issues in GitHub and execution plans in forums, and for

graph query tuning because it has more information and is more readable than a screenshot or CSV file in Studio.

The example is as follows:

Import a testing dataset

The testing dataset is named basketballplayer . To view details about the schema and data, use the corresponding SHOW command.

The command to import a testing dataset is as follows:

Run a command multiple times

To run a command multiple times, use the following command:

The example is as follows:

Note

•

•

•

•

nebula> :CSV <file_name.csv>;

•

nebula> :dot <file_name.dot>

nebula> :dot a.dot

nebula> PROFILE FORMAT="dot" GO FROM "player100" OVER follow;

•

nebula> :profile <file_name>;

nebula> :explain <file_name>;

Note

nebula> :profile profile.log

nebula> PROFILE GO FROM "player102" OVER serve YIELD dst(edge);

nebula> :profile profile.dot

nebula> PROFILE FORMAT="dot" GO FROM "player102" OVER serve YIELD dst(edge);

nebula> :explain explain.log

nebula> EXPLAIN GO FROM "player102" OVER serve YIELD dst(edge);

nebula> :play basketballplayer

nebula> :repeat N

14.2.3 NebulaGraph Console functions

- 608/804 - 2023 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

Sleep

This command will make NebulaGraph Console sleep for N seconds. The schema is altered in an async way and takes effect in

the next heartbeat cycle. Therefore, this command is usually used when altering schema. The command is as follows:

Disconnect NebulaGraph Console from NebulaGraph

You can use :EXIT or :QUIT to disconnect from NebulaGraph. For convenience, NebulaGraph Console supports using these

commands in lower case without the colon (":"), such as quit .

The example is as follows:

nebula> :repeat 3

nebula> GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

Got 2 rows (time spent 2602/3214 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

Got 2 rows (time spent 583/849 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

Got 2 rows (time spent 496/671 us)

Fri, 20 Aug 2021 06:36:05 UTC

Executed 3 times, (total time spent 3681/4734 us), (average time spent 1227/1578 us)

nebula> :sleep N

nebula> :QUIT

Bye root!

Last update: November 22, 2023

14.2.3 NebulaGraph Console functions

- 609/804 - 2023 Vesoft Inc.

14.3 NebulaGraph CPP

NebulaGraph CPP is a C++ client for connecting to and managing the NebulaGraph database.

14.3.1 Prerequisites

You have installed C++ and GCC 4.8 or later versions.

14.3.2 Compatibility with NebulaGraph

See github.

14.3.3 Install NebulaGraph CPP

This document describes how to install NebulaGraph CPP with the source code.

Prerequisites

You have prepared the correct resources.

You have installed C++ and GCC version is: {10.1.0 | 9.3.0 | 9.2.0 | 9.1.0 | 8.3.0 | 7.5.0 | 7.1.0}. For details, see the

gcc_preset_versions parameter.

Steps

Clone the NebulaGraph CPP source code to the host.

(Recommended) To install a specific version of NebulaGraph CPP, use the Git option --branch to specify the branch. For example, to

install v3.4.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

Change the working directory to nebula-cpp .

Create a directory named build and change the working directory to it.

Generate the makefile file with CMake.

The default installation path is /usr/local/nebula . To modify it, add the -DCMAKE_INSTALL_PREFIX=<installation_path> option while running the

following command.

•

•

1.

•

$ git clone --branch release-3.4 https://github.com/vesoft-inc/nebula-cpp.git

•

$ git clone https://github.com/vesoft-inc/nebula-cpp.git

2.

$ cd nebula-cpp

3.

$ mkdir build && cd build

4.

Note

$ cmake -DCMAKE_BUILD_TYPE=Release ..

14.3 NebulaGraph CPP

- 610/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/tree/release-3.4
https://github.com/vesoft-inc/nebula-cpp/tree/release-3.4
https://github.com/vesoft-inc/nebula-cpp/blob/v3.4.0/third-party/install-third-party.sh
https://github.com/vesoft-inc/nebula-cpp/blob/v3.4.0/third-party/install-third-party.sh

If G++ does not support C++ 11, add the option -DDISABLE_CXX11_ABI=ON .

Compile NebulaGraph CPP.

To speed up the compiling, use the -j option to set a concurrent number N . It should be \(\min(\text{CPU core number},

\frac{\text{the memory size(GB)}}{2})\).

Install NebulaGraph CPP.

Update the dynamic link library.

14.3.4 Use NebulaGraph CPP

Compile the CPP file to an executable file, then you can use it. The following steps take using SessionExample.cpp for example.

Use the example code to create the SessionExample.cpp file.

Run the following command to compile the file.

library_folder_path : The storage path of the NebulaGraph dynamic libraries. The default path is /usr/local/nebula/lib64 .

include_folder_path : The storage of the NebulaGraph header files. The default path is /usr/local/nebula/include .

For example:

14.3.5 API reference

Click here to check the classes and functions provided by the CPP Client.

14.3.6 Core of the example code

Nebula CPP clients provide both Session Pool and Connection Pool methods to connect to NebulaGraph. Using the Connection

Pool method requires users to manage session instances by themselves.

Session Pool

For more details about all the code, see SessionPoolExample.

Connection Pool

For more details about all the code, see SessionExample.

Note

5.

$ make -j{N}

6.

$ sudo make install

7.

$ sudo ldconfig

1.

2.

$ LIBRARY_PATH=<library_folder_path>:$LIBRARY_PATH g++ -std=c++11 SessionExample.cpp -I<include_folder_path> -lnebula_graph_client -o session_example

•

•

$ LIBRARY_PATH=/usr/local/nebula/lib64:$LIBRARY_PATH g++ -std=c++11 SessionExample.cpp -I/usr/local/nebula/include -lnebula_graph_client -o session_example

•

•

Last update: January 22, 2024

14.3.4 Use NebulaGraph CPP

- 611/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/blob/master/examples/SessionExample.cpp
https://vesoft-inc.github.io/nebula-cpp/release-3.4/annotated.html
https://github.com/vesoft-inc/nebula-cpp/blob/release-3.4/examples/SessionPoolExample.cpp
https://github.com/vesoft-inc/nebula-cpp/blob/release-3.4/examples/SessionExample.cpp

14.4 NebulaGraph Java

NebulaGraph Java is a Java client for connecting to and managing the NebulaGraph database.

14.4.1 Prerequisites

You have installed Java 8.0 or later versions.

14.4.2 Compatibility with NebulaGraph

See github.

14.4.3 Download NebulaGraph Java

(Recommended) To install a specific version of NebulaGraph Java, use the Git option --branch to specify the branch. For

example, to install v3.6.1, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

14.4.4 Use NebulaGraph Java

We recommend that each thread use one session. If multiple threads use the same session, the performance will be reduced.

When importing a Maven project with tools such as IDEA, set the following dependency in pom.xml .

3.0.0-SNAPSHOT indicates the daily development version that may have unknown issues. We recommend that you replace 3.0.0-SNAPSHOT

with a released version number to use a table version.

If you cannot download the dependency for the daily development version, set the following content in pom.xml . Released versions

have no such issue.

If there is no Maven to manage the project, manually download the JAR file to install NebulaGraph Java.

•

$ git clone --branch release-3.6 https://github.com/vesoft-inc/nebula-java.git

•

$ git clone https://github.com/vesoft-inc/nebula-java.git

Note

Note

<dependency>

 <groupId>com.vesoft</groupId>

 <artifactId>client</artifactId>

 <version>3.0.0-SNAPSHOT</version>

</dependency>

<repositories>

 <repository>

 <id>snapshots</id>

 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>

 </repository>

</repositories>

14.4 NebulaGraph Java

- 612/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/tree/release-3.6
https://github.com/vesoft-inc/nebula-java/tree/release-3.6
https://repo1.maven.org/maven2/com/vesoft/

14.4.5 API reference

Click here to check the classes and functions provided by the Java Client.

14.4.6 Core of the example code

The NebulaGraph Java client provides both Connection Pool and Session Pool modes, using Connection Pool requires the user to

manage session instances.

Session Pool

For all the code, see GraphSessionPoolExample.

Connection Pool

For all the code, see GraphClientExample.

•

•

Last update: January 9, 2024

14.4.5 API reference

- 613/804 - 2023 Vesoft Inc.

https://vesoft-inc.github.io/nebula-java/release-3.6/annotated.html
https://github.com/vesoft-inc/nebula-java/blob/release-3.6/examples/src/main/java/com/vesoft/nebula/examples/GraphSessionPoolExample.java
https://github.com/vesoft-inc/nebula-java/blob/release-3.6/examples/src/main/java/com/vesoft/nebula/examples/GraphClientExample.java

14.5 NebulaGraph Python

NebulaGraph Python is a Python client for connecting to and managing the NebulaGraph database.

14.5.1 Prerequisites

You have installed Python 3.6 or later versions.

14.5.2 Compatibility with NebulaGraph

See github.

14.5.3 Install NebulaGraph Python

Install NebulaGraph Python with pip

Install NebulaGraph Python from the source code

Clone the NebulaGraph Python source code to the host.

(Recommended) To install a specific version of NebulaGraph Python, use the Git option --branch to specify the branch. For example,

to install v3.4.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

Change the working directory to nebula-python.

Run the following command to install NebulaGraph Python.

14.5.4 API reference

Click here to check the classes and functions provided by the Python Client.

14.5.5 Core of the example code

NebulaGraph Python clients provides Connection Pool and Session Pool methods to connect to NebulaGraph. Using the

Connection Pool method requires users to manage sessions by themselves.

Session Pool

For details about all the code, see SessinPoolExample.py.

For limitations of using the Session Pool method, see Example of using session pool.

Connection Pool

For details about all the code, see Example.

$ pip install nebula3-python==<version>

1.

•

$ git clone --branch release-3.4 https://github.com/vesoft-inc/nebula-python.git

•

$ git clone https://github.com/vesoft-inc/nebula-python.git

2.

$ cd nebula-python

3.

$ pip install .

•

•

14.5 NebulaGraph Python

- 614/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-python/tree/release-3.4
https://github.com/vesoft-inc/nebula-python/tree/release-3.4
https://vesoft-inc.github.io/nebula-python/release-3.4/annotated.html
https://github.com/vesoft-inc/nebula-python/blob/release-3.4/example/SessinPoolExample.py
https://github.com/vesoft-inc/nebula-python/blob/release-3.4/README.md#example-of-using-session-pool
https://github.com/vesoft-inc/nebula-python/tree/release-3.4/example

Last update: January 9, 2024

14.5.5 Core of the example code

- 615/804 - 2023 Vesoft Inc.

14.6 NebulaGraph Go

NebulaGraph Go is a Golang client for connecting to and managing the NebulaGraph database.

14.6.1 Prerequisites

You have installed Golang 1.13 or later versions.

14.6.2 Compatibility with NebulaGraph

See github.

14.6.3 Download NebulaGraph Go

(Recommended) To install a specific version of NebulaGraph Go, use the Git option --branch to specify the branch. For example,

to install v3.7.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

14.6.4 Install or update

Run the following command to install or update NebulaGraph Go:

14.6.5 API reference

Click here to check the functions and types provided by the GO Client.

14.6.6 Core of the example code

The NebulaGraph GO client provides both Connection Pool and Session Pool, using Connection Pool requires the user to manage

the session instances.

Session Pool

For details about all the code, see session_pool_example.go.

For limitations of using Session Pool, see Usage example.

Connection Pool

For all the code, see graph_client_basic_example and graph_client_goroutines_example.

•

$ git clone --branch release-3.7 https://github.com/vesoft-inc/nebula-go.git

•

$ git clone https://github.com/vesoft-inc/nebula-go.git

$ go get -u -v github.com/vesoft-inc/nebula-go/v3@v3.7.0

•

•

Last update: February 1, 2024

14.6 NebulaGraph Go

- 616/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-go/tree/release-3.7
https://github.com/vesoft-inc/nebula-go/tree/release-3.7
https://pkg.go.dev/github.com/vesoft-inc/nebula-go/v3@v3.7.0#section-documentation
https://github.com/vesoft-inc/nebula-go/blob/release-3.7/examples/session_pool_example/session_pool_example.go
https://github.com/vesoft-inc/nebula-go/blob/release-3.7/README.md#usage-example
https://github.com/vesoft-inc/nebula-go/blob/release-3.7/examples/basic_example/graph_client_basic_example.go
https://github.com/vesoft-inc/nebula-go/blob/release-3.7/examples/gorountines_example/graph_client_goroutines_example.go

14.7 Community contributed clients

You can use the following clients developed by community users to connect to and manage NebulaGraph:

NebulaGraph Rust

NebulaGraph PHP

NebulaGraph Node

NebulaGraph .NET

•

•

•

•

Last update: April 15, 2024

14.7 Community contributed clients

- 617/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-rust
https://github.com/nebula-contrib/nebula-php
https://github.com/nebula-contrib/nebula-node
https://github.com/nebula-contrib/nebula-net

15. Studio

15.1 About NebulaGraph Studio

15.1.1 What is NebulaGraph Studio

NebulaGraph Studio (Studio in short) is a browser-based visualization tool to manage NebulaGraph. It provides you with a

graphical user interface to manipulate graph schemas, import data, and run nGQL statements to retrieve data. With Studio, you

can quickly become a graph exploration expert from scratch. You can view the latest source code in the NebulaGraph GitHub

repository, see nebula-studio for details.

You can also try some functions online in Studio.

Deployment

In addition to deploying Studio with RPM-based, DEB-based, or Tar-based packages, or with Docker, you can also deploy Studio

with Helm in the Kubernetes cluster. For more information, see Deploy Studio.

The functions of the above four deployment methods are the same and may be restricted when using Studio. For more

information, see Limitations.

Features

Studio can easily manage NebulaGraph data, with the following functions:

On the Schema page, you can use the graphical user interface to create the space, Tag, Edge Type, Index, and view the

statistics on the graph. It helps you quickly get started with NebulaGraph.

On the Import page, you can operate batch import of vertex and edge data with clicks, and view a real-time import log.

On the Console page, you can run nGQL statements and read the results in a human-friendly way.

Scenarios

You can use Studio in one of these scenarios:

You have a dataset, and you want to explore and analyze data in a visualized way. You can use Docker Compose to deploy

NebulaGraph and then use Studio to explore or analyze data in a visualized way.

You are a beginner of nGQL (NebulaGraph Query Language) and you prefer to use a GUI rather than a command-line interface

(CLI) to learn the language.

Authentication

Authentication is not enabled in NebulaGraph by default. Users can log into Studio with the root account and any password.

When NebulaGraph enables authentication, users can only sign into Studio with the specified account. For more information, see

Authentication.

Note

•

•

•

•

•

15. Studio

- 618/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-studio
https://playground.nebula-graph.io/explorer

Version compatibility

The Studio version is released independently of the NebulaGraph core. The correspondence between the versions of Studio and the

NebulaGraph core, as shown in the table below.

Check updates

Studio is in development. Users can view the latest releases features through Changelog.

To view the Changelog, on the upper-right corner of the page, click the version and then New version.

Note

NebulaGraph version Studio version

3.6.0 3.8.0, 3.7.0

3.5.0 3.7.0

3.4.0 ~ 3.4.1 3.7.0、3.6.0、3.5.1、3.5.0

3.3.0 3.5.1、3.5.0

3.0.0 ～ 3.2.0 3.4.1、3.4.0

3.1.0 3.3.2

3.0.0 3.2.x

2.6.x 3.1.x

2.6.x 3.1.x

2.0 & 2.0.1 2.x

1.x 1.x

Last update: November 3, 2023

15.1.1 What is NebulaGraph Studio

- 619/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-001-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-001-en.png

15.1.2 Limitations

This topic introduces the limitations of Studio.

Architecture

For now, Studio v3.x supports x86_64 architecture only.

Upload data

Only CSV files without headers can be uploaded, but no limitations are applied to the size and store period for a single file. The

maximum data volume depends on the storage capacity of your machine.

Data backup

For now, only supports exporting query results in CSV format on Console, and other data backup methods are not supported.

nGQL statements

On the Console page of Docker-based and RPM-based Studio v3.x, all the nGQL syntaxes except these are supported:

USE <space_name> : You cannot run such a statement on the Console page to choose a graph space. As an alternative, you can click

a graph space name in the drop-down list of Current Graph Space.

You cannot use line breaks (\). As an alternative, you can use the Enter key to split a line.

Browser

We recommend that you use the latest version of Chrome to get access to Studio. Otherwise, some features may not work

properly.

•

•

Last update: October 25, 2023

15.1.2 Limitations

- 620/804 - 2023 Vesoft Inc.

15.2 Deploy and connect

15.2.1 Deploy Studio

This topic describes how to deploy Studio locally by RPM, DEB, tar package and Docker.

RPM-based Studio

PREREQUISITES

Before you deploy RPM-based Studio, you must confirm that:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

The Linux distribution is CentOS, install lsof .

Before the installation starts, the following ports are not occupied.

INSTALL

Select and download the RPM package according to your needs. It is recommended to select the latest version. Common links are

as follows:

Use sudo rpm -i <rpm_name> to install RPM package.

For example, install Studio 3.8.0, use the following command. The default installation path is /usr/local/nebula-graph-studio .

You can also install it to the specified path using the following command:

When the screen returns the following message, it means that the PRM-based Studio has been successfully started.

When Studio is started, use http://<ip address>:7001 to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

•

•

•

Port Description

7001 Web service provided by Studio.

1.

Installation package Checksum NebulaGraph version

nebula-graph-studio-3.8.0.x86_64.rpm nebula-graph-studio-3.8.0.x86_64.rpm.sha256 3.6.0

2.

$ sudo rpm -i nebula-graph-studio-3.8.0.x86_64.rpm

$ sudo rpm -i nebula-graph-studio-3.8.0.x86_64.rpm --prefix=<path>

Start installing NebulaGraph Studio now...

NebulaGraph Studio has been installed.

NebulaGraph Studio started automatically.

3.

15.2 Deploy and connect

- 621/804 - 2023 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.8.0/nebula-graph-studio-3.8.0.x86_64.rpm
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.8.0/nebula-graph-studio-3.8.0.x86_64.rpm.sha256

UNINSTALL

You can uninstall Studio using the following command:

If these lines are returned, PRM-based Studio has been uninstalled.

EXCEPTION HANDLING

If the automatic start fails during the installation process or you want to manually start or stop the service, use the following

command:

Start the service manually

Stop the service manually

If you encounter an error bind EADDRINUSE 0.0.0.0:7001 when starting the service, you can use the following command to check port

7001 usage.

If the port is occupied and the process on that port cannot be terminated, you can modify the startup port within the studio

configuration and restart the service.

$ sudo rpm -e nebula-graph-studio-3.8.0.x86_64

NebulaGraph Studio removed, bye~

•

$ bash /usr/local/nebula-graph-studio/scripts/rpm/start.sh

•

$ bash /usr/local/nebula-graph-studio/scripts/rpm/stop.sh

$ lsof -i:7001

//Modify the studio service configuration. The default path to the configuration file is `/usr/local/nebula-graph-studio`.

$ vi etc/studio-api.yam

//Modify this port number and change it to any

Port: 7001

//Restart service

$ systemctl restart nebula-graph-studio.service

15.2.1 Deploy Studio

- 622/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png

DEB-based Studio

PREREQUISITES

Before you deploy DEB-based Studio, you must do a check of these:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

The Linux distribution is Ubuntu.

Before the installation starts, the following ports are not occupied.

The path /usr/lib/systemd/system exists in the system. If not, create it manually.

INSTALL

Select and download the DEB package according to your needs. It is recommended to select the latest version. Common links are

as follows:

Use sudo dpkg -i <deb_name> to install DEB package.

For example, install Studio 3.8.0, use the following command:

When Studio is started, use http://<ip address>:7001 to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

UNINSTALL

You can uninstall Studio using the following command:

•

•

•

Port Description

7001 Web service provided by Studio

•

1.

Installation package Checksum NebulaGraph version

nebula-graph-studio-3.8.0.x86_64.deb nebula-graph-studio-3.8.0.x86_64.deb.sha256 3.6.0

2.

$ sudo dpkg -i nebula-graph-studio-3.8.0.x86_64.deb

3.

$ sudo dpkg -r nebula-graph-studio

15.2.1 Deploy Studio

- 623/804 - 2023 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.8.0/nebula-graph-studio-3.8.0.x86_64.deb
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.8.0/nebula-graph-studio-3.8.0.x86_64.deb.sha256
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png

tar-based Studio

PREREQUISITES

Before you deploy tar-based Studio, you must do a check of these:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

Before the installation starts, the following ports are not occupied.

INSTALL AND DEPLOY

Select and download the tar package according to your needs. It is recommended to select the latest version. Common links are as

follows:

Use tar -xvf to decompress the tar package.

Deploy and start nebula-graph-studio.

When Studio is started, use http://<ip address>:7001 to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

STOP SERVICE

You can use kill pid to stop the service:

•

•

Port Description

7001 Web service provided by Studio

1.

Installation package Studio version

nebula-graph-studio-3.8.0.x86_64.tar.gz 3.8.0

2.

$ tar -xvf nebula-graph-studio-3.8.0.x86_64.tar.gz

3.

$ cd nebula-graph-studio

$./server

4.

$ kill $(lsof -t -i :7001) #stop nebula-graph-studio

15.2.1 Deploy Studio

- 624/804 - 2023 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.8.0/nebula-graph-studio-3.8.0.x86_64.tar.gz
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png

Docker-based Studio

PREREQUISITES

Before you deploy Docker-based Studio, you must do a check of these:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

On the machine where Studio will run, Docker Compose is installed and started. For more information, see Docker Compose

Documentation.

Before the installation starts, the following ports are not occupied.

•

•

•

Port Description

7001 Web service provided by Studio

15.2.1 Deploy Studio

- 625/804 - 2023 Vesoft Inc.

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

PROCEDURE

To deploy and start Docker-based Studio, run the following commands. Here we use NebulaGraph v3.6.0 for demonstration:

Download the configuration files for the deployment.

Create the nebula-graph-studio-3.8.0 directory and decompress the installation package to the directory.

Change to the nebula-graph-studio-3.8.0 directory.

Pull the Docker image of Studio.

Build and start Docker-based Studio. In this command, -d is to run the containers in the background.

If these lines are returned, Docker-based Studio v3.x is deployed and started.

When Docker-based Studio is started, use http://<ip address>:7001 to get access to Studio.

Run ifconfig or ipconfig to get the IP address of the machine where Docker-based Studio is running. On the machine running Docker-

based Studio, you can use http://localhost:7001 to get access to Studio.

If you can see the Config Server page on the browser, Docker-based Studio is started successfully.

1.

Installation package NebulaGraph version

nebula-graph-studio-3.8.0.tar.gz 3.6.0

2.

$ mkdir nebula-graph-studio-3.8.0 -zxvf nebula-graph-studio-3.8.0.gz -C nebula-graph-studio-3.8.0

3.

$ cd nebula-graph-studio-3.8.0

4.

$ docker-compose pull

5.

$ docker-compose up -d

Creating docker_web_1 ... done

6.

Note

15.2.1 Deploy Studio

- 626/804 - 2023 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.8.0/nebula-graph-studio-3.8.0.tar.gz
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png

Helm-based Studio

This section describes how to deploy Studio with Helm.

PREREQUISITES

Before installing Studio, you need to install the following software and ensure the correct version of the software:

INSTALL

Use Git to clone the source code of Studio to the host.

Make the nebula-studio directory the current working directory.

bash

 $ cd nebula-studio

Assume using release name: my-studio , installed Studio in Helm Chart.

The configuration parameters of the Helm Chart are described below.

When Studio is started, use http://<node_address>:30070/ to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

Software Requirement

Kubernetes >= 1.14

Helm >= 3.2.0

1.

$ git clone https://github.com/vesoft-inc/nebula-studio.git

2.

3.

$ helm upgrade --install my-studio --set service.type=NodePort --set service.port=30070 deployment/helm

Parameter Default value Description

replicaCount 0 The number of replicas for Deployment.

image.nebulaStudio.name vesoft/nebula-graph-

studio

The image name of nebula-graph-studio.

image.nebulaStudio.version v3.8.0 The image version of nebula-graph-studio.

service.type ClusterIP The service type, which should be one of NodePort , ClusterIP , and

LoadBalancer .

service.port 7001 The expose port for nebula-graph-studio's web.

service.nodePort 32701 The proxy port for accessing nebula-studio outside kubernetes

cluster.

resources.nebulaStudio {} The resource limits/requests for nebula-studio.

persistent.storageClassName "" The name of storageClass. The default value will be used if not

specified.

persistent.size 5Gi The persistent volume size.

4.

15.2.1 Deploy Studio

- 627/804 - 2023 Vesoft Inc.

https://kubernetes.io
https://helm.sh

UNINSTALL

Next to do

On the Config Server page, connect Docker-based Studio to NebulaGraph. For more information, see Connect to NebulaGraph.

 $ helm uninstall my-studio

Last update: February 27, 2024

15.2.1 Deploy Studio

- 628/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png

15.2.2 Connect to NebulaGraph

After successfully launching Studio, you need to configure to connect to NebulaGraph. This topic describes how Studio connects

to the NebulaGraph database.

Prerequisites

Before connecting to the NebulaGraph database, you need to confirm the following information:

The NebulaGraph services and Studio are started. For more information, see Deploy Studio.

You have the local IP address and the port used by the Graph service of NebulaGraph. The default port is 9669 .

You have a NebulaGraph account and its password.

•

•

•

15.2.2 Connect to NebulaGraph

- 629/804 - 2023 Vesoft Inc.

Procedure

To connect Studio to NebulaGraph, follow these steps:

Type http://<ip_address>:7001 in the address bar of your browser.

The following login page shows that Studio starts successfully.

On the Config Server page of Studio, configure these fields:

Graphd IP address: Enter the IP address of the Graph service of NebulaGraph. For example, 192.168.10.100 .

When NebulaGraph and Studio are deployed on the same machine, you must enter the IP address of the machine, instead of 127.0.0.1

or localhost .

When connecting to a NebulaGraph database on a new browser tab, a new session will overwrite the sessions of the old tab. If you

need to log in to multiple NebulaGraph databases simultaneously, you can use a different browser or non-trace mode.

Port: The port of the Graph service. The default port is 9669 .

Username and Password: Fill in the log in account according to the authentication settings of NebulaGraph.

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and no account information has been created, you can only log in as GOD role and use root and nebula

as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their accounts

and passwords.

After the configuration, click the Connect button.

One session continues for up to 30 minutes. If you do not operate Studio within 30 minutes, the active session will time out and you

must connect to NebulaGraph again.

1.

2.

•

Note

•

•

•

•

•

•

•

3.

Note

15.2.2 Connect to NebulaGraph

- 630/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_login_230912_en.png

A welcome page is displayed on the first login, showing the relevant functions according to the usage process, and the test

datasets can be automatically downloaded and imported.

To visit the welcome page, click .

Next to do

When Studio is successfully connected to NebulaGraph, you can do these operations:

Create a schema on the Console page or on the Schema page.

Batch import data on the Import page.

Execute nGQL statements on the Console page.

Design the schema visually on the Schema drafting page.

The permissions of an account determine the operations that can be performed. For details, see Roles and privileges.

LOG OUT

If you want to reconnect to NebulaGraph, you can log out and reconfigure the database.

Click the user profile picture in the upper right corner, and choose Log out.

•

•

•

•

Note

Last update: October 25, 2023

15.2.2 Connect to NebulaGraph

- 631/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/navbar-help.png
https://docs-cdn.nebula-graph.com.cn/figures/navbar-help.png

15.3 Quick start

15.3.1 Design a schema

To manipulate graph data in NebulaGraph with Studio, you must have a graph schema. This article introduces how to design a

graph schema for NebulaGraph.

A graph schema for NebulaGraph must have these essential elements:

Tags (namely vertex types) and their properties.

Edge types and their properties.

In this article, you can install the sample data set basketballplayer and use it to explore a pre-designed schema.

This table gives all the essential elements of the schema.

This figure shows the relationship (serve/follow) between a player and a team.

•

•

Element Name Property name

(Data type)

Description

Tag player - name (string)

- age (int)

Represents the player.

Tag team - name (string) Represents the team.

Edge type serve - start_year (int)

- end_year (int)

Represent the players behavior.

This behavior connects the player to the team, and the

direction is from player to team.

Edge type follow - degree (int) Represent the players behavior.

This behavior connects the player to the player, and the

direction is from a player to a player.

15.3 Quick start

- 632/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-013-cn.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-013-cn.png

Last update: October 25, 2023

15.3.1 Design a schema

- 633/804 - 2023 Vesoft Inc.

15.3.2 Create a schema

To batch import data into NebulaGraph, you must have a graph schema. You can create a schema on the Console page or on the

Schema page of Studio.

Users can use nebula-console to create a schema. For more information, see NebulaGraph Manual and Get started with

NebulaGraph.

Users can use the Schema drafting function to design schema visually. For more information, see Schema drafting.

Prerequisites

To create a graph schema on Studio, you must do a check of these:

Studio is connected to NebulaGraph.

Your account has the privilege of GOD, ADMIN, or DBA.

The schema is designed.

A graph space is created.

If no graph space exists and your account has the GOD privilege, you can create a graph space on the Console page. For more

information, see CREATE SPACE.

Create a schema with Schema

Create tags. For more information, see Operate tags.

Create edge types. For more information, see Operate edge types.

Create a schema with Console

In the toolbar, click the Console tab.

In the Current Graph Space field, choose a graph space name. In this example, basketballplayer is used.

Note

•

•

•

•

•

•

Note

1.

2.

1.

2.

15.3.2 Create a schema

- 634/804 - 2023 Vesoft Inc.

In the input box, enter these statements one by one and click the button Run.

If the preceding statements are executed successfully, the schema is created. You can run the statements as follows to view the

schema.

If the schema is created successfully, in the result window, you can see the definition of the tags and edge types.

Next to do

When a schema is created, you can import data.

3.

// To create a tag named "player", with two property

nebula> CREATE TAG player(name string, age int);

// To create a tag named "team", with one property

nebula> CREATE TAG team(name string);

// To create an edge type named "follow", with one properties

nebula> CREATE EDGE follow(degree int);

// To create an edge type named "serve", with two properties

nebula> CREATE EDGE serve(start_year int, end_year int);

// To list all the tags in the current graph space

nebula> SHOW TAGS;

// To list all the edge types in the current graph space

nebula> SHOW EDGES;

// To view the definition of the tags and edge types

DESCRIBE TAG player;

DESCRIBE TAG team;

DESCRIBE EDGE follow;

DESCRIBE EDGE serve;

Last update: October 25, 2023

15.3.2 Create a schema

- 635/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-009-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-009-en.png

15.3.3 Import data

Studio supports importing data in CSV format into NebulaGraph through an interface.

Prerequisites

To batch import data, do a check of these:

The schema has been created in NebulaGraph.

The CSV files meet the demands of the schema.

The account has GOD, ADMIN, or DBA permissions. For details, see Built-in Roles.

Entry

In the top navigation bar, click .

Importing data is divided into 2 parts, creating a new data source and creating an import task, which will be described in detail

next.

Create a new data source

Click New Data Source in the upper right corner of the page to set the data source and its related settings. Currently, 3 types of

data sources are supported.

When uploading a local CSV file, you can select more than one CSV file at one time.

After adding a data source, you can click Data Source Management at the top of the page and switch tabs to view the details of

different types of data sources, and you can also edit or delete data sources.

Create an import task

Click New Import at the top left corner of the page to complete the following settings:

•

•

•

Type of data

source

Description

Cloud storage Add cloud storage as the CSV file source, which only supports cloud services compatible with the

Amazon S3 interface.

SFTP Add SFTP as the CSV file source.

Local file Upload a local CSV file. The file size can not exceed 200 MB, please put the files exceeding the limit into

other types of data sources.

Note

•

•

1.

15.3.3 Import data

- 636/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-download.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-download.png

Users can also click Import Template to download the sample configuration file example.yaml , configure it and then upload the

configuration file. Configure in the same way as NebulaGraph Importer.

Space: The name of the graph space where the data needs to be imported.

Task Name: automatically generated by default, can be modified.

(optional)More configuration: You can customize the concurrency, batch size, retry times, read concurrency, and import

concurrency.

Map Tags:

Click Add Tag, and then select the tag within the added tags below.

Click Add source file, select Data Source Type and File Path in Data source file, find the file you need to import, and then

click Add.

In the preview page, set the file separator and whether to carry the table header, and then click Confirm.

Select the corresponding column for VID in VID Columns. You can select multiple columns to be merged into a VID, and you can

also add a prefix or suffix to the VID.

Select the corresponding column for the attribute in the properties box. For properties that can be NULL or have DEFAULT set, you can

leave the corresponding column unspecified.

Repeat steps 2 to 5 to import all the data files of the Tag selected.

Repeat steps 1 to 6 to import all Tag data.

Map Edges: Same operation as map tags.

Caution

•

•

•

•

a.

b.

c.

d.

e.

f.

g.

•

15.3.3 Import data

- 637/804 - 2023 Vesoft Inc.

After completing the settings, click Import, enter the password for the NebulaGraph account, and confirm.

After the import task is created, you can view the progress of the import task in the Import Data tab, which supports operations

such as filtering tasks based on graph space, editing the task, viewing logs, downloading logs, reimporting, downloading

configuration files, and deleting tasks.

Next

After completing the data import, users can access the Console page.

2.

Last update: November 3, 2023

15.3.3 Import data

- 638/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/explorer_import_230830.png
https://docs-cdn.nebula-graph.com.cn/figures/explorer_import_230830.png

15.3.4 Console

Studio console interface is shown as follows.

15.3.4 Console

- 639/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-015-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-015-en.png

The following table lists various functions on the console interface.

number function descriptions

1 toolbar Click the Console tab to enter the console page.

2 select a space Select a space in the Current Graph Space list.

descriptions: Studio does not support running the USE <space_name> statements directly

in the input box.

3 favorites

Click the button to expand the favorites, click one of the statements, and the

input box will automatically enter the statement.

4 history list

Click button representing the statement record. In the statement running record

list, click one of the statements, and the statement will be automatically entered in the

input box. The list provides the record of the last 15 statements.

5 clean input box

Click button to clear the content entered in the input box.

6 run

After inputting the nGQL statement in the input box, click button to indicate the

operation to start running the statement.

7 custom

parameters

display

Click the button to expand the custom parameters for parameterized query. For

details, see Manage parameters.

8 input box

After inputting the nGQL statements, click the button to run the statement. You

can input multiple statements and run them at the same time by using the separator

; , and also use the symbol // to add comments.

9 statement

running status

After running the nGQL statement, the statement running status is displayed. If the

statement runs successfully, the statement is displayed in green. If the statement fails,

the statement is displayed in red.

10 add to favorites

Click the button to save the statement as a favorite, the button for the favorite

statement is colored in yellow exhibit.

11 export CSV file

or PNG file

After running the nGQL statement to return the result, when the result is in Table

window, click the button to export as a CSV file. Switch to the Graph window

and click the button to save the results as a CSV file or PNG image export.

12 expand/hide

execution results Click the button to hide the result or click button to expand the result.

13 close execution

results Click the button to close the result returned by this nGQL statement.

14 Table window Display the result from running nGQL statement. If the statement returns results, the

window displays the results in a table.

15 Graph window Display the result from running nGQL statement. If the statement returns the

complete vertex-edge result, the window displays the result as a graph . Click the

button on the right to view the overview panel.

Last update: October 25, 2023

15.3.4 Console

- 640/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-save.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-save.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-history.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-history.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-clear.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-clear.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-play.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-play.png
https://docs-cdn.nebula-graph.com.cn/figures/down.png
https://docs-cdn.nebula-graph.com.cn/figures/down.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-play.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-play.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-save.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-save.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-download.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-download.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-download.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-download.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-up.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-up.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-down.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-down.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-close.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-close.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-back.png
https://docs-cdn.nebula-graph.com.cn/figures/studio-btn-back.png

15.3.5 Use Schema

Manage graph spaces

When Studio is connected to NebulaGraph, you can create or delete a graph space. You can use the Console page or the

Schema page to do these operations. This article only introduces how to use the Schema page to operate graph spaces in

NebulaGraph.

PREREQUISITES

To operate a graph space on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

Your account has the authority of GOD. It means that:

If the authentication is enabled in NebulaGraph, you can use root and any password to sign in to Studio.

If the authentication is disabled in NebulaGraph, you must use root and its password to sign in to Studio.

CREATE A GRAPH SPACE

In the toolbar, click the Schema tab.

In the Graph Space List page, click Create Space, do these settings:

Name: Specify a name to the new graph space. In this example, basketballplayer is used. The name must be unique in the database.

Vid Type: The data types of VIDs are restricted to FIXED_STRING(<N>) or INT64 . A graph space can only select one VID type. In this

example, FIXED_STRING(32) is used. For more information, see VID.

Comment: Enter the description for graph space. The maximum length is 256 bytes. By default, there will be no comments on a

space. But in this example, Statistics of basketball players is used.

Optional Parameters: Set the values of partition_num and replica_factor respectively. In this example, these parameters are set to

100 and 1 respectively. For more information, see CREATE SPACE syntax.

In the Equivalent to the following nGQL statement panel, you can see the statement equivalent to the preceding settings.

Confirm the settings and then click the + Create button. If the graph space is created successfully, you can see it on the graph

space list.

•

•

•

•

1.

2.

•

•

•

•

CREATE SPACE basketballplayer (partition_num = 100, replica_factor = 1, vid_type = FIXED_STRING(32)) COMMENT = "Statistics of basketball players"

3.

15.3.5 Use Schema

- 641/804 - 2023 Vesoft Inc.

15.3.5 Use Schema

- 642/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-006-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-006-en.png

DELETE A GRAPH SPACE

Deleting the space will delete all the data in it, and the deleted data cannot be restored if it is not backed up.

In the toolbar, click the Schema tab.

In the Graph Space List, find the space you want to be deleted, and click Delete Graph Space in the Operation column.

On the dialog box, confirm the information and then click OK.

NEXT TO DO

After a graph space is created, you can create or edit a schema, including:

Operate tags

Operate edge types

Operate indexes

Danger

1.

2.

3.

•

•

•

Last update: October 25, 2023

15.3.5 Use Schema

- 643/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-007-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-007-en.png

Manage tags

After a graph space is created in NebulaGraph, you can create tags. With Studio, you can use the Console page or the Schema

page to create, retrieve, update, or delete tags. This topic introduces how to use the Schema page to operate tags in a graph

space only.

PREREQUISITES

To operate a tag on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

A graph space is created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE A TAG

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab and click the + Create button.

On the Create page, do these settings:

Name: Specify an appropriate name for the tag. In this example, course is specified.

Comment (Optional): Enter the description for tag.

Define Properties (Optional): If necessary, click + Add Property to do these settings:

Enter a property name.

Select a data type.

Select whether to allow null values..

(Optional) Enter the default value.

(Optional) Enter the description.

Set TTL (Time To Live) (Optional): If no index is set for the tag, you can set the TTL configuration: In the upper left corner of the

Set TTL panel, click the check box to expand the panel, and configure TTL_COL and TTL_ DURATION (in seconds). For more information

about both parameters, see TTL configuration.

When the preceding settings are completed, in the Equivalent to the following nGQL statement panel, you can see the nGQL

statement equivalent to these settings.

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

6.

15.3.5 Use Schema

- 644/804 - 2023 Vesoft Inc.

Confirm the settings and then click the + Create button.

When the tag is created successfully, the Define Properties panel shows all its properties on the list.

EDIT A TAG

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab, find a tag and then click the button in the Operations column.

7.

1.

2.

3.

4.

15.3.5 Use Schema

- 645/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-008-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-008-en.png
https://docs-cdn.nebula-graph.com.cn/figures/Setup.png
https://docs-cdn.nebula-graph.com.cn/figures/Setup.png

On the Edit page, do these operations:

To edit a Comment: Click Edit on the right of Comment .

To edit a property: On the Define Properties panel, find a property, click Edit, and then change the data type or the default value.

To delete a property: On the Define Properties panel, find a property, click Delete.

To add more properties: On the Define Properties panel, click the Add Property button to add a new property.

To set the TTL configuration: In the upper left corner of the Set TTL panel, click the check box and then set TTL.

To delete the TTL configuration: When the Set TTL panel is expanded, in the upper left corner of the panel, click the check box to

delete the configuration.

To edit the TTL configuration: On the Set TTL panel, click Edit and then change the configuration of TTL_COL and TTL_DURATION (in

seconds).

For the problem of the coexistence of TTL and index, see TTL.

DELETE A TAG

Confirm the impact before deleting the tag. The deleted data cannot be restored if it is not backup.

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab, find an tag and then click the button in the Operations column.

Click OK to confirm delete a tag in the pop-up dialog box.

NEXT TO DO

After the tag is created, you can use the Console page to insert vertex data one by one manually or use the Import page to bulk

import vertex data.

5.

•

•

•

•

•

•

•

Note

Danger

1.

2.

3.

4.

5.

Last update: April 7, 2024

15.3.5 Use Schema

- 646/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/alert-delete.png
https://docs-cdn.nebula-graph.com.cn/figures/alert-delete.png

Manage edge types

After a graph space is created in NebulaGraph, you can create edge types. With Studio, you can choose to use the Console page

or the Schema page to create, retrieve, update, or delete edge types. This topic introduces how to use the Schema page to

operate edge types in a graph space only.

PREREQUISITES

To operate an edge type on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

A graph space is created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE AN EDGE TYPE

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Edge Type tab and click the + Create button.

On the Create Edge Type page, do these settings:

Name: Specify an appropriate name for the edge type. In this example, serve is used.

Comment (Optional): Enter the description for edge type.

Define Properties (Optional): If necessary, click + Add Property to do these settings:

Enter a property name.

Select a data type.

Select whether to allow null values..

(Optional) Enter the default value.

(Optional) Enter the description.

Set TTL (Time To Live) (Optional): If no index is set for the edge type, you can set the TTL configuration: In the upper left corner

of the Set TTL panel, click the check box to expand the panel, and configure TTL_COL and TTL_ DURATION (in seconds). For more

information about both parameters, see TTL configuration.

When the preceding settings are completed, in the Equivalent to the following nGQL statement panel, you can see the nGQL

statement equivalent to these settings.

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

6.

15.3.5 Use Schema

- 647/804 - 2023 Vesoft Inc.

Confirm the settings and then click the + Create button.

When the edge type is created successfully, the Define Properties panel shows all its properties on the list.

EDIT AN EDGE TYPE

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Edge Type tab, find an edge type and then click the button in the Operations column.

7.

1.

2.

3.

4.

15.3.5 Use Schema

- 648/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-004-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-004-en.png
https://docs-cdn.nebula-graph.com.cn/figures/Setup.png
https://docs-cdn.nebula-graph.com.cn/figures/Setup.png

On the Edit page, do these operations:

To edit a comment: Click Edit on the right of Comment .

To edit a property: On the Define Properties panel, find a property, click Edit, and then change the data type or the default value.

To delete a property: On the Define Properties panel, find a property, click Delete.

To add more properties: On the Define Properties panel, click the Add Property button to add a new property.

To set the TTL configuration: In the upper left corner of the Set TTL panel, click the check box and then set TTL.

To delete the TTL configuration: When the Set TTL panel is expanded, in the upper left corner of the panel, click the check box to

delete the configuration.

To edit the TTL configuration: On the Set TTL panel, click Edit and then change the configuration of TTL_COL and TTL_DURATION (in

seconds).

For information about the coexistence problem of TTL and index, see TTL.

DELETE AN EDGE TYPE

Confirm the impact before deleting the Edge type. The deleted data cannot be restored if it is not backup.

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Edge Type tab, find an edge type and then click the button in the Operations column.

Click OK to confirm in the pop-up dialog box.

NEXT TO DO

After the edge type is created, you can use the Console page to insert edge data one by one manually or use the Import page to

bulk import edge data.

5.

•

•

•

•

•

•

•

Note

Danger

1.

2.

3.

4.

5.

Last update: April 7, 2024

15.3.5 Use Schema

- 649/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/alert-delete.png
https://docs-cdn.nebula-graph.com.cn/figures/alert-delete.png

Manage indexes

You can create an index for a Tag and/or an Edge type. An index lets traversal start from vertices or edges with the same

property and it can make a query more efficient. With Studio, you can use the Console page or the Schema page to create,

retrieve, and delete indexes. This topic introduces how to use the Schema page to operate an index only.

You can create an index when a Tag or an Edge Type is created. But an index can decrease the write speed during data import. We

recommend that you import data firstly and then create and rebuild an index. For more information, see Index overview.

PREREQUISITES

To operate an index on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

A graph Space, Tags, and Edge Types are created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE AN INDEX

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab and then click the + Create button.

On the Create page, do these settings:

Index Type: Choose to create an index for a tag or for an edge type. In this example, Edge Type is chosen.

Associated tag name: Choose a tag name or an edge type name. In this example, follow is chosen.

Index Name: Specify a name for the new index. In this example, follow_index is used.

Comment (Optional): Enter the description for index.

Indexed Properties (Optional): Click Add property, and then, in the dialog box, choose a property. If necessary, repeat this step

to choose more properties. You can drag the properties to sort them. In this example, degree is chosen.

The order of the indexed properties has an effect on the result of the LOOKUP statement. For more information, see nGQL Manual.

When the settings are done, the Equivalent to the following nGQL statement panel shows the statement equivalent to the

settings.

Note

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

Note

6.

15.3.5 Use Schema

- 650/804 - 2023 Vesoft Inc.

Confirm the settings and then click the + Create button. When an index is created, the index list shows the new index.

VIEW INDEXES

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab, in the upper left corner, choose an index type, Tag or Edge Type.

In the list, find an index and click its row. All its details are shown in the expanded row.

REBUILD INDEXES

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab, in the upper left corner, choose an index type, Tag or Edge Type.

Click the Index tab, find an index and then click the button Rebuild in the Operations column.

For more Information, see REBUILD INDEX.

7.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Note

15.3.5 Use Schema

- 651/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/st-ug-005-en.png
https://docs-cdn.nebula-graph.com.cn/figures/st-ug-005-en.png

DELETE AN INDEX

To delete an index on Schema, follow these steps:

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab, find an index and then click the button in the Operations column.

Click OK to confirm in the pop-up dialog box.

1.

2.

3.

4.

5.

Last update: October 25, 2023

15.3.5 Use Schema

- 652/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/alert-delete.png
https://docs-cdn.nebula-graph.com.cn/figures/alert-delete.png

View Schema

Users can visually view schemas in NebulaGraph Studio.

STEPS

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

Click View Schema tab and click the Get Schema button.

OTHER OPERATIONS

In the Graph Space List page, find a graph space and then perform the following operations in the Operations column:

View Schema DDL: Displays schema creation statements for the graph space, including graph spaces, tags, edge types, and

indexes.

Clone Graph Space: Clones the schema of the graph space to a new graph space.

Delete Graph pace: Deletes the graph space, including the schema and all vertices and edges.

1.

2.

3.

•

•

•

Last update: October 25, 2023

15.3.5 Use Schema

- 653/804 - 2023 Vesoft Inc.

15.3.6 Schema drafting

Studio supports the schema drafting function. Users can design their schemas on the canvas to visually display the relationships

between vertices and edges, and apply the schema to a specified graph space after the design is completed.

Features

Design schema visually.

Applies schema to a specified graph space.

Export the schema as a PNG image.

Entry

At the top navigation bar, click .

Design schema

The following steps take designing the schema of the basketballplayer dataset as an example to demonstrate how to use the

schema drafting function.

At the upper left corner of the page, click New.

Create a tag by selecting the appropriate color tag under the canvas. You can hold down the left button and drag the tag into the

canvas.

Click the tag. On the right side of the page, you need to fill in the name of the tag as player , and add two properties name and age .

Create a tag again. The name of the tag is team , and the property is name .

Connect from the anchor point of the tag player to the anchor point of the tag team . Click the generated edge, fill in the name of the

edge type as serve , and add two properties start_year and end_year .

Connect from an anchor point of the tag player to another one of its own. Click the generated edge, fill in the name of the edge type

as follow , and add a property degree .

After the design is complete, click at the top of the page to change the name of the draft, and then click at the top right

corner to save the draft.

•

•

•

1.

2.

3.

4.

5.

6.

7.

15.3.6 Schema drafting

- 654/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/sketch_cion_221018.png
https://docs-cdn.nebula-graph.com.cn/figures/sketch_cion_221018.png
https://docs-cdn.nebula-graph.com.cn/figures/setup-220916.png
https://docs-cdn.nebula-graph.com.cn/figures/setup-220916.png
https://docs-cdn.nebula-graph.com.cn/figures/workflow-saveAs-220623.png
https://docs-cdn.nebula-graph.com.cn/figures/workflow-saveAs-220623.png

Apply schema

Select the draft that you want to import from the Draft list on the left side of the page, and then click Apply to Space at the

upper right corner.

Import the schema to a new or existing space, and click Confirm.

For more information about the parameters for creating a graph space, see CREATE SPACE.

If the same schema exists in the graph space, the import operation fails, and the system prompts you to modify the name or change the

graph space.

Modify schema

Select the schema draft that you want to modify from the Draft list on the left side of the page. Click at the upper right

corner after the modification.

The graph space to which the schema has been applied will not be modified synchronously.

Delete schema

Select the schema draft that you want to delete from the Draft list on the left side of the page, click X at the upper right corner

of the thumbnail, and confirm to delete it.

1.

2.

Note

•

•

Note

15.3.6 Schema drafting

- 655/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/std_draft_230913_en.png
https://docs-cdn.nebula-graph.com.cn/figures/std_draft_230913_en.png
https://docs-cdn.nebula-graph.com.cn/figures/workflow-saveAs-220623.png
https://docs-cdn.nebula-graph.com.cn/figures/workflow-saveAs-220623.png

Export Schema

Click at the upper right corner to export the schema as a PNG image.

Last update: October 25, 2023

15.3.6 Schema drafting

- 656/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/explorer-btn-output.png
https://docs-cdn.nebula-graph.com.cn/figures/explorer-btn-output.png

15.4 Troubleshooting

15.4.1 Connecting to the database error

Problem description

According to the connect Studio operation, it prompts failed.

Possible causes and solutions

You can troubleshoot the problem by following the steps below.

STEP1: CONFIRM THAT THE FORMAT OF THE HOST FIELD IS CORRECT

You must fill in the IP address (graph_server_ip) and port of the NebulaGraph database Graph service. If no changes are made, the

port defaults to 9669 . Even if NebulaGraph and Studio are deployed on the current machine, you must use the local IP address

instead of 127.0.0.1 , localhost or 0.0.0.0 .

STEP2: CONFIRM THAT THE USERNAME AND PASSWORD ARE CORRECT

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their accounts

and passwords.

STEP3: CONFIRM THAT NEBULAGRAPH SERVICE IS NORMAL

Check NebulaGraph service status. Regarding the operation of viewing services:

If you compile and deploy NebulaGraph on a Linux server, refer to the NebulaGraph service.

If you use NebulaGraph deployed by Docker Compose and RPM, refer to the NebulaGraph service status and ports.

If the NebulaGraph service is normal, proceed to Step 4 to continue troubleshooting. Otherwise, please restart NebulaGraph

service.

If you used docker-compose up -d to satrt NebulaGraph before, you must run the docker-compose down to stop NebulaGraph.

STEP4: CONFIRM THE NETWORK CONNECTION OF THE GRAPH SERVICE IS NORMAL

Run a command (for example, telnet 9669) on the Studio machine to confirm whether NebulaGraph's Graph service network

connection is normal.

If the connection fails, check according to the following steps:

If Studio and NebulaGraph are on the same machine, check if the port is exposed.

If Studio and NebulaGraph are not on the same machine, check the network configuration of the NebulaGraph server, such as

firewall, gateway, and port.

If you cannot connect to the NebulaGraph service after troubleshooting with the above steps, please go to the NebulaGraph

forum for consultation.

•

•

Note

•

•

Last update: November 3, 2023

15.4 Troubleshooting

- 657/804 - 2023 Vesoft Inc.

https://discuss.nebula-graph.io
https://discuss.nebula-graph.io

15.4.2 Cannot access to Studio

Problem description

I follow the document description and visit 127.0.0.1:7001 or 0.0.0.0:7001 after starting Studio, why can’t I open the page?

Possible causes and solutions

You can troubleshoot the problem by following the steps below.

STEP1: CONFIRM SYSTEM ARCHITECTURE

It is necessary to confirm whether the machine where the Studio service is deployed is of x86_64 architecture. Currently, Studio

only supports x86_64 architecture.

STEP2: CHECK IF THE STUDIO SERVICE STARTS NORMALLY

For Studio deployed with RPM or DEB packages, use systemctl status nebula-graph-studio to see the running status.

For Studio deployed with tar package, use sudo lsof -i:7001 to check port status.

For Studio deployed with docker, use docker-compose ps to see the running status. Run docker-compose ps to check if the service has

started normally.

If the service is normal, the return result is as follows. Among them, the State column should all be displayed as Up .

If the above result is not returned, stop Studio and restart it first. For details, refer to Deploy Studio.

!!! note

STEP3: CONFIRM ADDRESS

If Studio and the browser are on the same machine, users can use localhost:7001 , 127.0.0.1:7001 or 0.0.0.0:7001 in the browser to

access Studio.

If Studio and the browser are not on the same machine, you must enter <studio_server_ip>:7001 in the browser. Among them,

studio_server_ip refers to the IP address of the machine where the Studio service is deployed.

STEP4: CONFIRM NETWORK CONNECTION

Run curl <studio_server_ip>:7001 -I to confirm if it is normal. If it returns HTTP/1.1 200 OK , it means that the network is connected

normally.

If the connection is refused, check according to the following steps:

If the connection fails, check according to the following steps:

If Studio and NebulaGraph are on the same machine, check if the port is exposed.

If Studio and NebulaGraph are not on the same machine, check the network configuration of the NebulaGraph server, such as

firewall, gateway, and port.

If you cannot connect to the NebulaGraph service after troubleshooting with the above steps, please go to the NebulaGraph

forum for consultation.

•

•

•

 Name Command State Ports

--

nebula-web-docker_client_1 ./nebula-go-api Up 0.0.0.0:32782->8080/tcp

nebula-web-docker_importer_1 nebula-importer --port=569 ... Up 0.0.0.0:32783->5699/tcp

nebula-web-docker_nginx_1 /docker-entrypoint.sh ngin ... Up 0.0.0.0:7001->7001/tcp, 80/tcp

nebula-web-docker_web_1 docker-entrypoint.sh npm r ... Up 0.0.0.0:32784->7001/tcp

 If you used `docker-compose up -d` to satrt NebulaGraph before, you must run the `docker-compose down` to stop NebulaGraph.

•

•

15.4.2 Cannot access to Studio

- 658/804 - 2023 Vesoft Inc.

https://discuss.nebula-graph.io
https://discuss.nebula-graph.io

Last update: October 25, 2023

15.4.2 Cannot access to Studio

- 659/804 - 2023 Vesoft Inc.

15.4.3 FAQ

If you find that a function cannot be used, it is recommended to troubleshoot the problem according to the following steps:

Confirm that NebulaGraph is the latest version. If you use Docker Compose to deploy the NebulaGraph database, it is recommended

to run docker-compose pull && docker-compose up -d to pull the latest Docker image and start the container.

Confirm that Studio is the latest version. For more information, refer to check updates.

Search the nebula forum, nebula and nebula-studio projects on the GitHub to confirm if there are already similar problems.

If none of the above steps solve the problem, you can submit a problem on the forum.

Why can't I use a function?

1.

2.

3.

4.

Last update: October 25, 2023

15.4.3 FAQ

- 660/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions
https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula-studio

16. Dashboard (Community)

16.1 What is NebulaGraph Dashboard Community Edition

NebulaGraph Dashboard Community Edition (Dashboard for short) is a visualization tool that monitors the status of machines

and services in NebulaGraph clusters.

Dashboard Enterprise Edition adds features such as visual cluster creation, batch import of clusters, fast scaling, etc. For more

information, see Pricing.

16.1.1 Features

Dashboard monitors:

The status of all the machines in clusters, including CPU, memory, load, disk, and network.

The information of all the services in clusters, including the IP addresses, versions, and monitoring metrics (such as the

number of queries, the latency of queries, the latency of heartbeats, and so on).

The information of clusters, including the information of services, partitions, configurations, and long-term tasks.

Set how often the metrics page refreshes.

16.1.2 Scenarios

You can use Dashboard in one of the following scenarios:

You want to monitor key metrics conveniently and quickly, and present multiple key information of the business to ensure the

business operates normally.

You want to monitor clusters from multiple dimensions (such as the time, aggregate rules, and metrics).

After a failure occurs, you need to review it and confirm its occurrence time and unexpected phenomena.

16.1.3 Precautions

The monitoring data will be retained for 14 days by default, that is, only the monitoring data within the last 14 days can be

queried.

The monitoring service is supported by Prometheus. The update frequency and retention intervals can be modified. For details, see

Prometheus.

Enterpriseonly

•

•

•

•

•

•

•

Note

16. Dashboard (Community)

- 661/804 - 2023 Vesoft Inc.

https://nebula-graph.io/pricing/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

16.1.4 Version compatibility

The version correspondence between NebulaGraph and Dashboard Community Edition is as follows.

16.1.5 Release note

Release

NebulaGraph version Dashboard version

3.6.0 3.4.0

3.5.x 3.4.0

3.4.0 ~ 3.4.1 3.4.0、3.2.0

3.3.0 3.2.0

2.5.0 ~ 3.2.0 3.1.0

2.5.x ~ 3.1.0 1.1.1

2.0.1~2.5.1 1.0.2

2.0.1~2.5.1 1.0.1

Last update: November 6, 2023

16.1.4 Version compatibility

- 662/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-dashboard/releases/tag/v3.4.0

16.2 Deploy Dashboard Community Edition

This topic will describe how to deploy NebulaGraph Dashboard in detail.

To download and compile the latest source code of Dashboard, follow the instructions on the nebula dashboard GitHub page.

16.2.1 Prerequisites

Before you deploy Dashboard, you must confirm that:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

Before the installation starts, the following ports are not occupied.

9200

9100

9090

8090

7003

The node-exporter is installed on the machines to be monitored. For details on installation, see Prometheus document.

16.2.2 Steps

Download the tar packagenebula-dashboard-3.4.0.x86_64.tar.gz as needed.

Run tar -xvf nebula-dashboard-3.4.0.x86_64.tar.gz to decompress the installation package.

Modify the config.yaml file in nebula-dashboard .

The configuration file contains the configurations of four dependent services and configurations of clusters. The descriptions of the

dependent services are as follows.

The descriptions of the configuration file are as follows.

•

•

•

•

•

•

•

•

1.

2.

3.

Service Default

port

Description

nebula-http-

gateway

8090 Provides HTTP ports for cluster services to execute nGQL statements to interact with the

NebulaGraph database.

nebula-stats-

exporter

9200 Collects the performance metrics in the cluster, including the IP addresses, versions, and

monitoring metrics (such as the number of queries, the latency of queries, the latency of

heartbeats, and so on).

node-exporter 9100 Collects the source information of nodes in the cluster, including the CPU, memory, load,

disk, and network.

prometheus 9090 The time series database that stores monitoring data.

port: 7003 # Web service port.

gateway:

 ip: hostIP # The IP of the machine where the Dashboard is deployed.

 port: 8090

 https: false # Whether to enable HTTPS.

 runmode: dev # Program running mode, including dev, test, and prod. It is used to distinguish between different running environments generally.

stats-exporter:

 ip: hostIP # The IP of the machine where the Dashboard is deployed.

 nebulaPort: 9200

 https: false # Whether to enable HTTPS.

node-exporter:

 - ip: nebulaHostIP_1 # The IP of the machine where the NebulaGraph is deployed.

 port: 9100

 https: false # Whether to enable HTTPS.

- ip: nebulaHostIP_2

16.2 Deploy Dashboard Community Edition

- 663/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-dashboard
https://prometheus.io/docs/guides/node-exporter/
https://oss-cdn.nebula-graph.com.cn/nebula-graph-dashboard/3.4.0/nebula-dashboard-3.4.0.x86_64.tar.gz

Run ./dashboard.service start all to start the services.

Deploy Dashboard with Docker Compose

If you are deploying Dashboard using docker, you should also modify the configuration file config.yaml , and then run docker-compose

up -d to start the container.

If you change the port number in config.yaml , the port number in docker-compose.yaml needs to be consistent as well.

Run docker-compose stop to stop the container.

16.2.3 Manage services in Dashboard

You can use the dashboard.service script to start, restart, stop, and check the Dashboard services.

port: 9100

https: false

prometheus:

 ip: hostIP # The IP of the machine where the Dashboard is deployed.

 prometheusPort: 9090

 https: false # Whether to enable HTTPS.

 scrape_interval: 5s # The interval for collecting the monitoring data, which is 1 minute by default.

 evaluation_interval: 5s # The interval for running alert rules, which is 1 minute by default.

Cluster node info

nebula-cluster:

 name: 'default' # Cluster name

 metad:

 - name: metad0

 endpointIP: nebulaMetadIP # The IP of the machine where the Meta service is deployed.

 port: 9559

 endpointPort: 19559

 # - name: metad1

 # endpointIP: nebulaMetadIP

 # port: 9559

 # endpointPort: 19559

 graphd:

 - name: graphd0

 endpointIP: nebulaGraphdIP # The IP of the machine where the Graph service is deployed.

 port: 9669

 endpointPort: 19669

 # - name: graphd1

 # endpointIP: nebulaGraphdIP

 # port: 9669

 # endpointPort: 19669

 storaged:

 - name: storaged0

 endpointIP: nebulaStoragedIP # The IP of the machine where the Storage service is deployed.

 port: 9779

 endpointPort: 19779

 # - name: storaged1

 # endpointIP: nebulaStoragedIP

 # port: 9779

 # endpointPort: 19779

4.

Note

16.2.3 Manage services in Dashboard

- 664/804 - 2023 Vesoft Inc.

To view the Dashboard version, run the command ./dashboard.service -version .

16.2.4 Next to do

Connect to Dashboard

sudo <dashboard_path>/dashboard.service

[-v] [-h]

<start|restart|stop|status> <prometheus|webserver|exporter|gateway|all>

Parameter Description

dashboard_path Dashboard installation path.

-v Display detailed debugging information.

-h Display help information.

start Start the target services.

restart Restart the target services.

stop Stop the target services.

status Check the status of the target services.

prometheus Set the prometheus service as the target service.

webserver Set the webserver Service as the target service.

exporter Set the exporter Service as the target service.

gateway Set the gateway Service as the target service.

all Set all the Dashboard services as the target services.

Note

Last update: October 25, 2023

16.2.4 Next to do

- 665/804 - 2023 Vesoft Inc.

16.3 Connect Dashboard

After Dashboard is deployed, you can log in and use Dashboard on the browser.

16.3.1 Prerequisites

The Dashboard services are started. For more information, see Deploy Dashboard.

We recommend you to use the Chrome browser of the version above 89. Otherwise, there may be compatibility issues.

16.3.2 Procedures

Confirm the IP address of the machine where the Dashboard service is installed. Enter <IP>:7003 in the browser to open the login

page.

Enter the username and the passwords of the NebulaGraph database.

If authentication is enabled, you can log in with the created accounts.

If authentication is not enabled, you can only log in using root as the username and random characters as the password.

To enable authentication, see Authentication.

Select the NebulaGraph version to be used.

Click Login.

•

•

1.

2.

•

•

3.

4.

Last update: October 25, 2023

16.3 Connect Dashboard

- 666/804 - 2023 Vesoft Inc.

16.4 Dashboard

NebulaGraph Dashboard consists of three parts: Machine, Service, and Management. This topic will describe them in detail.

16.4.1 Overview

16.4.2 Machine

Click Machine->Overview to enter the machine overview page.

16.4 Dashboard

- 667/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/c_dash_overview_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/c_dash_overview_230912_en.png

On this page, you can view the variation of CPU, Memory, Load, Disk, and Network In/Out quickly.

By default, you can view the monitoring data for a maximum of 14 days. You can also select a time range or quickly select the

latest 1 hour, 6 hours, 12 hours, 1 day, 3 days, 7 days, or 14 days.

By default, you can view the monitoring data of all the instances in clusters. You can select the instances you want to view in

the instance box.

By default, the monitoring information page will not be updated automatically. You can set the update frequency of the

monitoring information page globally or click the button to update the page manually.

To set a base line, click the button.

To view the detailed monitoring information, click the button. In this example, select Load for details. The figure is as

follows.

You can set the monitoring time range, instance, update frequency and base line.

You can search for or select the target metric. For details about monitoring metrics, see Metrics.

You can temporarily hide nodes that you do not need to view.

You can click the button to view the detailed monitoring information.

16.4.3 Service

Click Service->Overview to enter the service overview page.

On this page, you can view the information of Graph, Meta, and Storage services quickly. In the upper right corner, the number

of normal services and abnormal services will be displayed.

•

•

•

•

•

•

•

•

•

16.4.3 Service

- 668/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/refresh-220616.png
https://docs-cdn.nebula-graph.com.cn/figures/refresh-220616.png
https://docs-cdn.nebula-graph.com.cn/figures/Setup.png
https://docs-cdn.nebula-graph.com.cn/figures/Setup.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png
https://docs-cdn.nebula-graph.com.cn/figures/c_dash_load_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/c_dash_load_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png

In the Service page, only two monitoring metrics can be set for each service, which can be adjusted by clicking the Set up button.

By default, you can view the monitoring data for a maximum of 14 days. You can also select a time range or quickly select the

latest 1 hour, 6 hours, 12 hours, 1 day, 3 days, 7 days, or 14 days.

By default, you can view the monitoring data of all the instances in clusters. You can select the instances you want to view in

the instance box.

By default, the monitoring information page will not be updated automatically. You can set the update frequency of the

monitoring information page globally or click the button to update the page manually.

You can view the status of all the services in a cluster.

To view the detailed monitoring information, click the button. In this example, select Graph for details. The figure is as

follows.

You can set the monitoring time range, instance, update frequency, period, aggregation and base line.

You can search for or select the target metric. For details of monitoring metrics, see Monitor parameter.

You can temporarily hide nodes that you do not need to view.

You can click the button to view the detailed monitoring information.

The Graph service supports a set of space-level metrics. For more information, see the following section Graph space.

Note

•

•

•

•

•

•

•

•

•

•

16.4.3 Service

- 669/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/refresh-220616.png
https://docs-cdn.nebula-graph.com.cn/figures/refresh-220616.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png
https://docs-cdn.nebula-graph.com.cn/figures/c_dash_graph_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/c_dash_graph_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png
https://docs-cdn.nebula-graph.com.cn/figures/watch.png

Graph space

Before using graph space metrics, you need to set enable_space_level_metrics to true in the Graph service. For details, see [Graph

Service configuration](../5.configurations-and-logs/1.configurations/3.graph-config.md.

If a graph space name contains special characters, the corresponding metric data of that graph space may not be displayed.

The service monitoring page can also monitor graph space level metrics. Only when the behavior of a graph space metric is

triggered, you can specify the graph space to view information about the corresponding graph space metric.

Space graph metrics record the information of different graph spaces separately. Currently, only the Graph service supports a set

of space-level metrics.

For information about the space graph metrics, see Graph space.

16.4.4 Management

Overview info

On the Overview Info page, you can see the information of the NebulaGraph cluster, including Storage leader distribution,

Storage service details, versions and hosts information of each NebulaGraph service, and partition distribution and details.

Note

Space-level metric incompatibility

16.4.4 Management

- 670/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/space_level_metrics.png
https://docs-cdn.nebula-graph.com.cn/figures/space_level_metrics.png

STORAGE LEADER DISTRIBUTION

In this section, the number of Leaders and the Leader distribution will be shown.

Click the Balance Leader button in the upper right corner to distribute Leaders evenly and quickly in the NebulaGraph

cluster. For details about the Leader, see Storage Service.

Click Detail in the upper right corner to view the details of the Leader distribution.

VERSION

In this section, the version and host information of each NebulaGraph service will be shown. Click Detail in the upper right

corner to view the details of the version and host information.

SERVICE INFORMATION

In this section, the information on Storage services will be shown. The parameter description is as follows:

Click Detail in the upper right corner to view the details of the Storage service information.

PARTITION DISTRIBUTION

Select the specified graph space in the upper left corner, you can view the distribution of partitions in the specified graph space.

You can see the IP addresses and ports of all Storage services in the cluster, and the number of partitions in each Storage

service.

•

•

Parameter Description

Host The IP address of the host.

Port The port of the host.

Status The host status.

Git Info Sha The commit ID of the current version.

Leader Count The number of Leaders.

Partition Distribution The distribution of partitions.

Leader Distribution The distribution of Leaders.

16.4.4 Management

- 671/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/c_dash_info_230912_en.png
https://docs-cdn.nebula-graph.com.cn/figures/c_dash_info_230912_en.png

Click Detail in the upper right corner to view more details.

PARTITION INFORMATION

In this section, the information on partitions will be shown. Before viewing the partition information, you need to select a graph

space in the upper left corner. The parameter description is as follows:

Click Detail in the upper right corner to view details. You can also enter the partition ID into the input box in the upper right

corner of the details page to filter the shown data.

Config

It shows the configuration of the NebulaGraph service. NebulaGraph Dashboard Community Edition does not support online

modification of configurations for now.

16.4.5 Others

In the lower left corner of the page, you can:

Sign out

Switch between Chinese and English

View the current Dashboard release

View the user manual and forum

Fold the sidebar

Parameter Description

Partition ID The ID of the partition.

Leader The IP address and port of the leader.

Peers The IP addresses and ports of all the replicas.

Losts The IP addresses and ports of faulty replicas.

•

•

•

•

•

Last update: October 25, 2023

16.4.5 Others

- 672/804 - 2023 Vesoft Inc.

16.5 Metrics

This topic will describe the monitoring metrics in NebulaGraph Dashboard.

16.5.1 Machine

All the machine metrics listed below are for the Linux operating system.

The default unit in Disk and Network is byte. The unit will change with the data magnitude as the page displays. For example, when

the flow is less than 1 KB/s, the unit will be Bytes/s.

For versions of Dashboard Community Edition greater than v1.0.2, the memory occupied by Buff and Cache will not be counted in

the memory usage.

CPU

Memory

Load

Note

•

•

•

Parameter Description

cpu_utilization The percentage of used CPU.

cpu_idle The percentage of idled CPU.

cpu_wait The percentage of CPU waiting for IO operations.

cpu_user The percentage of CPU used by users.

cpu_system The percentage of CPU used by the system.

Parameter Description

memory_utilization The percentage of used memory.

memory_used The memory space used (not including caches).

memory_free The memory space available.

Parameter Description

load_1m The average load of the system in the last 1 minute.

load_5m The average load of the system in the last 5 minutes.

load_15m The average load of the system in the last 15 minutes.

16.5 Metrics

- 673/804 - 2023 Vesoft Inc.

Disk

Network

16.5.2 Service

Period

The period is the time range of counting metrics. It currently supports 5 seconds, 60 seconds, 600 seconds, and 3600 seconds,

which respectively represent the last 5 seconds, the last 1 minute, the last 10 minutes, and the last 1 hour.

Metric methods

Dashboard collects the following metrics from the NebulaGraph core, but only shows the metrics that are important to it.

Parameter Description

disk_used_percentage The disk utilization percentage.

disk_used The disk space used.

disk_free The disk space available.

disk_readbytes The number of bytes that the system reads in the disk per second.

disk_writebytes The number of bytes that the system writes in the disk per second.

disk_readiops The number of read queries that the disk receives per second.

disk_writeiops The number of write queries that the disk receives per second.

inode_utilization The percentage of used inode.

Parameter Description

network_in_rate The number of bytes that the network card receives per second.

network_out_rate The number of bytes that the network card sends out per second.

network_in_errs The number of wrong bytes that the network card receives per second.

network_out_errs The number of wrong bytes that the network card sends out per second.

network_in_packets The number of data packages that the network card receives per second.

network_out_packets The number of data packages that the network card sends out per second.

Parameter Description

rate The average rate of operations per second in a period.

sum The sum of operations in the period.

avg The average latency in the cycle.

P75 The 75th percentile latency.

P95 The 95th percentile latency.

P99 The 99th percentile latency.

P999 The 99.9th percentile latency.

Note

16.5.2 Service

- 674/804 - 2023 Vesoft Inc.

Graph

Parameter Description

num_active_queries The number of changes in the number of active queries.

Formula: The number of started queries minus the number of finished queries

within a specified time.

num_active_sessions The number of changes in the number of active sessions.

Formula: The number of logged in sessions minus the number of logged out

sessions within a specified time.

For example, when querying num_active_sessions.sum.5 , if there were 10 sessions

logged in and 30 sessions logged out in the last 5 seconds, the value of this metric

is -20 (10-30).

num_aggregate_executors The number of executions for the Aggregation operator.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions_out_of_max_allowed The number of sessions that failed to authenticate logins because the value of the

parameter FLAG_OUT_OF_MAX_ALLOWED_CONNECTIONS was exceeded.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_indexscan_executors The number of executions for index scan operators.

num_killed_queries The number of killed queries.

num_opened_sessions The number of sessions connected to the server.

num_queries The number of queries.

num_query_errors_leader_changes The number of the raft leader changes due to query errors.

num_query_errors The number of query errors.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

num_sentences The number of statements received by the Graphd service.

num_slow_queries The number of slow queries.

num_sort_executors The number of executions for the Sort operator.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The latency of queries.

slow_query_latency_us The latency of slow queries.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

resp_part_completeness The completeness of the partial success. You need to set accept_partial_success to

true in the graph configuration first.

16.5.2 Service

- 675/804 - 2023 Vesoft Inc.

Meta

Parameter Description

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

heartbeat_latency_us The latency of heartbeats.

num_heartbeats The number of heartbeats.

num_raft_votes The number of votes in Raft.

transfer_leader_latency_us The latency of transferring the raft leader.

num_agent_heartbeats The number of heartbeats for the AgentHBProcessor.

agent_heartbeat_latency_us The latency of the AgentHBProcessor.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_send_snapshot The number of times that Raft sends snapshots to other nodes.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

append_wal_latency_us The Raft write latency for a single WAL.

num_grant_votes The number of times that Raft votes for other nodes.

num_start_elect The number of times that Raft starts an election.

16.5.2 Service

- 676/804 - 2023 Vesoft Inc.

Storage

16.5.2 Service

- 677/804 - 2023 Vesoft Inc.

Parameter Description

add_edges_latency_us The latency of adding edges.

add_vertices_latency_us The latency of adding vertices.

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

delete_edges_latency_us The latency of deleting edges.

delete_vertices_latency_us The latency of deleting vertices.

get_neighbors_latency_us The latency of querying neighbor vertices.

get_dst_by_src_latency_us The latency of querying the destination vertex by the source vertex.

num_get_prop The number of executions for the GetPropProcessor.

num_get_neighbors_errors The number of execution errors for the GetNeighborsProcessor.

num_get_dst_by_src_errors The number of execution errors for the GetDstBySrcProcessor.

get_prop_latency_us The latency of executions for the GetPropProcessor.

num_edges_deleted The number of deleted edges.

num_edges_inserted The number of inserted edges.

num_raft_votes The number of votes in Raft.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Storage service sent to the Meta service.

num_rpc_sent_to_metad The number of RPC requests that the Storaged service sent to the Metad service.

num_tags_deleted The number of deleted tags.

num_vertices_deleted The number of deleted vertices.

num_vertices_inserted The number of inserted vertices.

transfer_leader_latency_us The latency of transferring the raft leader.

lookup_latency_us The latency of executions for the LookupProcessor.

num_lookup_errors The number of execution errors for the LookupProcessor.

num_scan_vertex The number of executions for the ScanVertexProcessor.

num_scan_vertex_errors The number of execution errors for the ScanVertexProcessor.

update_edge_latency_us The latency of executions for the UpdateEdgeProcessor.

num_update_vertex The number of executions for the UpdateVertexProcessor.

num_update_vertex_errors The number of execution errors for the UpdateVertexProcessor.

kv_get_latency_us The latency of executions for the Getprocessor.

kv_put_latency_us The latency of executions for the PutProcessor.

kv_remove_latency_us The latency of executions for the RemoveProcessor.

num_kv_get_errors The number of execution errors for the GetProcessor.

num_kv_get The number of executions for the GetProcessor.

num_kv_put_errors The number of execution errors for the PutProcessor.

num_kv_put The number of executions for the PutProcessor.

16.5.2 Service

- 678/804 - 2023 Vesoft Inc.

Parameter Description

num_kv_remove_errors The number of execution errors for the RemoveProcessor.

num_kv_remove The number of executions for the RemoveProcessor.

forward_tranx_latency_us The latency of transmission.

scan_edge_latency_us The latency of executions for the ScanEdgeProcessor.

num_scan_edge_errors The number of execution errors for the ScanEdgeProcessor.

num_scan_edge The number of executions for the ScanEdgeProcessor.

scan_vertex_latency_us The latency of executions for the ScanVertexProcessor.

num_add_edges The number of times that edges are added.

num_add_edges_errors The number of errors when adding edges.

num_add_vertices The number of times that vertices are added.

num_start_elect The number of times that Raft starts an election.

num_add_vertices_errors The number of errors when adding vertices.

num_delete_vertices_errors The number of errors when deleting vertices.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

num_grant_votes The number of times that Raft votes for other nodes.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_delete_tags The number of times that tags are deleted.

num_delete_tags_errors The number of errors when deleting tags.

num_delete_edges The number of edge deletions.

num_delete_edges_errors The number of errors when deleting edges

num_send_snapshot The number of times that snapshots are sent.

update_vertex_latency_us The latency of executions for the UpdateVertexProcessor.

append_wal_latency_us The Raft write latency for a single WAL.

num_update_edge The number of executions for the UpdateEdgeProcessor.

delete_tags_latency_us The latency of deleting tags.

num_update_edge_errors The number of execution errors for the UpdateEdgeProcessor.

num_get_neighbors The number of executions for the GetNeighborsProcessor.

num_get_dst_by_src The number of executions for the GetDstBySrcProcessor.

num_get_prop_errors The number of execution errors for the GetPropProcessor.

num_delete_vertices The number of times that vertices are deleted.

num_lookup The number of executions for the LookupProcessor.

num_sync_data The number of times the Storage service synchronizes data from the Drainer.

num_sync_data_errors The number of errors that occur when the Storage service synchronizes data from the Drainer.

sync_data_latency_us The latency of the Storage service synchronizing data from the Drainer.

16.5.2 Service

- 679/804 - 2023 Vesoft Inc.

Graph space

Space-level metrics are created dynamically, so that only when the behavior is triggered in the graph space, the corresponding

metric is created and can be queried by the user.

Note

Parameter Description

num_active_queries The number of queries currently being executed.

num_queries The number of queries.

num_sentences The number of statements received by the Graphd service.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The latency of queries.

num_slow_queries The number of slow queries.

num_query_errors The number of query errors.

num_query_errors_leader_changes The number of raft leader changes due to query errors.

num_killed_queries The number of killed queries.

num_aggregate_executors The number of executions for the Aggregation operator.

num_sort_executors The number of executions for the Sort operator.

num_indexscan_executors The number of executions for index scan operators.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_opened_sessions The number of sessions connected to the server.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

slow_query_latency_us The latency of slow queries.

Last update: October 25, 2023

16.5.2 Service

- 680/804 - 2023 Vesoft Inc.

17. NebulaGraph Operator

17.1 What is NebulaGraph Operator

17.1.1 Concept

NebulaGraph Operator is a tool to automate the deployment, operation, and maintenance of NebulaGraph clusters on

Kubernetes. Building upon the excellent scalability mechanism of Kubernetes, NebulaGraph introduced its operation and

maintenance knowledge into the Kubernetes system, which makes NebulaGraph a real cloud-native graph database.

17.1.2 How it works

For resource types that do not exist within Kubernetes, you can register them by adding custom API objects. The common way is

to use the CustomResourceDefinition.

NebulaGraph Operator abstracts the deployment management of NebulaGraph clusters as a CRD. By combining multiple built-in

API objects including StatefulSet, Service, and ConfigMap, the routine management and maintenance of a NebulaGraph cluster

are coded as a control loop in the Kubernetes system. When a CR instance is submitted, NebulaGraph Operator drives database

clusters to the final state according to the control process.

17.1.3 Features

The following features are already available in NebulaGraph Operator:

Cluster deployment and deletion: NebulaGraph Operator simplifies the process of deploying and uninstalling clusters for

users. NebulaGraph Operator allows you to quickly create, update, or delete a NebulaGraph cluster by simply providing the

corresponding CR file. For more information, see Install NebulaGraph Clusters.

Cluster Upgrade: NebulaGraph Operator supports cluster upgrading from version 3.5.0 to version 3.6.0.

Self-Healing: NebulaGraph Operator calls interfaces provided by NebulaGraph clusters to dynamically sense cluster service

status. Once an exception is detected, NebulaGraph Operator performs fault tolerance. For more information, see Self-Healing.

Balance Scheduling: Based on the scheduler extension interface, the scheduler provided by NebulaGraph Operator evenly

distributes Pods in a NebulaGraph cluster across all nodes.

•

•

•

•

17. NebulaGraph Operator

- 681/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://kubernetes.io
https://docs-cdn.nebula-graph.com.cn/figures/operator_map_2022-09-08_18-55-18.png
https://docs-cdn.nebula-graph.com.cn/figures/operator_map_2022-09-08_18-55-18.png
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

17.1.4 Limitations

Version limitations

NebulaGraph Operator does not support the v1.x version of NebulaGraph. NebulaGraph Operator version and the corresponding

NebulaGraph version are as follows:

The 1.x version NebulaGraph Operator is not compatible with NebulaGraph of version below v3.x.

Starting from NebulaGraph Operator 0.9.0, logs and data are stored separately. Using NebulaGraph Operator 0.9.0 or later versions

to manage a NebulaGraph 2.5.x cluster created with Operator 0.8.0 can cause compatibility issues. You can backup the data of the

NebulaGraph 2.5.x cluster and then create a 2.6.x cluster with Operator 0.9.0.

17.1.5 Release note

Release

NebulaGraph NebulaGraph Operator

3.5.x ~ 3.6.0 1.5.0 ~ 1.7.x

3.0.0 ~ 3.4.1 1.3.0, 1.4.0 ~ 1.4.2

3.0.0 ~ 3.3.x 1.0.0, 1.1.0, 1.2.0

2.5.x ~ 2.6.x 0.9.0

2.5.x 0.8.0

Legacy version compatibility

•

•

Last update: November 16, 2023

17.1.4 Limitations

- 682/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/releases/tag/v1.8.0

17.2 Getting started

17.2.1 Install NebulaGraph Operator

You can deploy NebulaGraph Operator with Helm.

Background

NebulaGraph Operator automates the management of NebulaGraph clusters, and eliminates the need for you to install, scale,

upgrade, and uninstall NebulaGraph clusters, which lightens the burden on managing different application versions.

Prerequisites

Before installing NebulaGraph Operator, you need to install the following software and ensure the correct version of the software

:

If using a role-based access control policy, you need to enable RBAC (optional).

CoreDNS is a flexible and scalable DNS server that is installed for Pods in NebulaGraph clusters.

Steps

Add the NebulaGraph Operator Helm repository.

Update information of available charts locally from repositories.

For more information about helm repo , see Helm Repo.

Create a namespace for NebulaGraph Operator.

For example, run the following command to create a namespace named nebula-operator-system .

All the resources of NebulaGraph Operator are deployed in this namespace.

Install NebulaGraph Operator.

For example, the command to install NebulaGraph Operator of version 1.8.0 is as follows.

Software Requirement

Kubernetes >= 1.18

Helm >= 3.2.0

CoreDNS >= 1.6.0

Note

•

•

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update

3.

kubectl create namespace <namespace_name>

kubectl create namespace nebula-operator-system

4.

helm install nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> --version=${chart_version}

helm install nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=1.8.0

17.2 Getting started

- 683/804 - 2023 Vesoft Inc.

https://helm.sh/
https://kubernetes.io
https://helm.sh
https://github.com/coredns/coredns
https://kubernetes.io/docs/admin/authorization/rbac
https://coredns.io/
https://github.com/coredns/helm
https://helm.sh/docs/helm/helm_repo/

1.8.0 is the version of the nebula-operator chart. When not specifying --version , the latest version of the nebula-operator chart is

used by default.

Run helm search repo -l nebula-operator to see chart versions.

You can customize the configuration items of the NebulaGraph Operator chart before running the installation command. For more

information, see Customize installation defaults.

View the information about the default-created CRD.

Output:

What's next

Create a NebulaGraph cluster

5.

kubectl get crd

NAME CREATED AT

nebulaautoscalers.autoscaling.nebula-graph.io 2023-11-01T04:16:51Z

nebulaclusters.apps.nebula-graph.io 2023-10-12T07:55:32Z

nebularestores.apps.nebula-graph.io 2023-02-04T23:01:00Z

Last update: November 15, 2023

17.2.1 Install NebulaGraph Operator

- 684/804 - 2023 Vesoft Inc.

17.2.2 Create a NebulaGraph cluster

This topic introduces how to create a NebulaGraph cluster with the following two methods:

Create a NebulaGraph cluster with Helm

Create a NebulaGraph cluster with Kubectl

Prerequisites

NebulaGraph Operator is installed.

A StorageClass is created.

Create a NebulaGraph cluster with Helm

The 1.x version NebulaGraph Operator is not compatible with NebulaGraph of version below v3.x.

Add the NebulaGraph Operator Helm repository.

Update information of available charts locally from chart repositories.

Set environment variables to your desired values.

Create a namespace for your NebulaGraph cluster (If you have created one, skip this step).

Apply the variables to the Helm chart to create a NebulaGraph cluster.

Create a NebulaGraph cluster with Kubectl

The 1.x version NebulaGraph Operator is not compatible with NebulaGraph of version below v3.x.

•

•

•

•

Legacy version compatibility

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update

3.

export NEBULA_CLUSTER_NAME=nebula # The desired NebulaGraph cluster name.

export NEBULA_CLUSTER_NAMESPACE=nebula # The desired namespace where your NebulaGraph cluster locates.

export STORAGE_CLASS_NAME=fast-disks # The name of the StorageClass that has been created.

4.

kubectl create namespace "${NEBULA_CLUSTER_NAMESPACE}"

5.

helm install "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \

 --set nameOverride="${NEBULA_CLUSTER_NAME}" \

 --set nebula.storageClassName="${STORAGE_CLASS_NAME}" \

 # Specify the version of the NebulaGraph cluster.

 --set nebula.version=v3.6.0 \

 # Specify the version of the nebula-cluster chart. If not specified, the latest version of the chart is installed by default.

 # Run 'helm search repo nebula-operator/nebula-cluster' to view the available versions of the chart.

 --version=1.8.0 \

 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \

Legacy version compatibility

17.2.2 Create a NebulaGraph cluster

- 685/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/concepts/storage/storage-classes/

The following example shows how to create a NebulaGraph cluster by creating a cluster named nebula .

17.2.2 Create a NebulaGraph cluster

- 686/804 - 2023 Vesoft Inc.

Create a namespace, for example, nebula . If not specified, the default namespace is used.

Define the cluster configuration file nebulacluster.yaml .

For more information about the other parameters, see Install NebulaGraph clusters.

Create a NebulaGraph cluster.

1.

kubectl create namespace nebula

2.

Expand to see an example configuration for the cluster

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

 namespace: default

spec:

 topologySpreadConstraints:

 - topologyKey: "kubernetes.io/hostname"

 whenUnsatisfiable: "ScheduleAnyway"

 graphd:

 # Container image for the Graph service.

 image: vesoft/nebula-graphd

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 # Storage class name for storing Graph service logs.

 storageClassName: local-sc

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

 imagePullPolicy: Always

 metad:

 # Container image for the Meta service.

 image: vesoft/nebula-metad

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

 reference:

 name: statefulsets.apps

 version: v1

 schedulerName: default-scheduler

 storaged:

 # Container image for the Storage service.

 image: vesoft/nebula-storaged

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 dataVolumeClaims:

 - resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

3.

kubectl create -f nebulacluster.yaml

17.2.2 Create a NebulaGraph cluster

- 687/804 - 2023 Vesoft Inc.

Output:

Check the status of the NebulaGraph cluster.

Output:

What's next

Connect to a cluster

nebulacluster.apps.nebula-graph.io/nebula created

4.

kubectl get nc nebula

NAME READY GRAPHD-DESIRED GRAPHD-READY METAD-DESIRED METAD-READY STORAGED-DESIRED STORAGED-READY AGE

nebula True 1 1 1 1 1 1 86s

Last update: November 15, 2023

17.2.2 Create a NebulaGraph cluster

- 688/804 - 2023 Vesoft Inc.

17.2.3 Connect to a NebulaGraph cluster

After creating a NebulaGraph cluster with NebulaGraph Operator on Kubernetes, you can connect to NebulaGraph databases

from within the cluster and outside the cluster.

Prerequisites

A NebulaGraph cluster is created on Kubernetes. For more information, see Create a NebulaGraph cluster.

17.2.3 Connect to a NebulaGraph cluster

- 689/804 - 2023 Vesoft Inc.

Connect to NebulaGraph databases from within a NebulaGraph cluster

You can create a ClusterIP type Service to provide an access point to the NebulaGraph database for other Pods within the cluster.

By using the Service's IP and the Graph service's port number (9669), you can connect to the NebulaGraph database. For more

information, see ClusterIP.

17.2.3 Connect to a NebulaGraph cluster

- 690/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/concepts/services-networking/service/

Create a file named graphd-clusterip-service.yaml . The file contents are as follows:

NebulaGraph uses port 9669 by default. 19669 is the HTTP port of the Graph service in a NebulaGraph cluster.

targetPort is the port mapped to the database Pods, which can be customized.

Create a ClusterIP Service.

Check the IP of the Service:

Run the following command to connect to the NebulaGraph database using the IP of the <cluster-name>-graphd-svc Service above:

For example:

--image : The image for the tool NebulaGraph Console used to connect to NebulaGraph databases.

<nebula-console> : The custom Pod name.

-addr : The IP of the ClusterIP Service, used to connect to Graphd services.

-port : The port to connect to Graphd services, the default port of which is 9669 .

-u : The username of your NebulaGraph account. Before enabling authentication, you can use any existing username. The default

username is root.

-p : The password of your NebulaGraph account. Before enabling authentication, you can use any characters as the password.

A successful connection to the database is indicated if the following is returned:

You can also connect to NebulaGraph databases with Fully Qualified Domain Name (FQDN). The domain format is

<cluster-name>-graphd.<cluster-namespace>.svc.<CLUSTER_DOMAIN> . The default value of CLUSTER_DOMAIN is cluster.local .

service_port is the port to connect to Graphd services, the default port of which is 9669 .

1.

apiVersion: v1

kind: Service

metadata:

 labels:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: graphd

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 name: nebula-graphd-svc

 namespace: default

spec:

 ports:

 - name: thrift

 port: 9669

 protocol: TCP

 targetPort: 9669

 - name: http

 port: 19669

 protocol: TCP

 targetPort: 19669

 selector:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: graphd

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 type: ClusterIP # Set the type to ClusterIP.

•

•

2.

kubectl create -f graphd-clusterip-service.yaml

3.

$ kubectl get service -l app.kubernetes.io/cluster=<nebula> # <nebula> is the name of your NebulaGraph cluster.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nebula-graphd-svc ClusterIP 10.98.213.34 <none> 9669/TCP,19669/TCP,19670/TCP 23h

...

4.

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- <nebula_console_name> -addr <cluster_ip> -port <service_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- nebula-console -addr 10.98.213.34 -port 9669 -u root -p vesoft

•

•

•

•

•

•

If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- <nebula_console_name> -addr <cluster_name>-graphd-svc.default.svc.cluster.local -port <service_port> -u <username> -p

<password>

17.2.3 Connect to a NebulaGraph cluster

- 691/804 - 2023 Vesoft Inc.

If the spec.console field is set in the cluster configuration file, you can also connect to NebulaGraph databases with the following

command:

For information about the nebula-console container, see nebula-console.

Connect to NebulaGraph databases from outside a NebulaGraph cluster via NodePort

You can create a NodePort type Service to access internal cluster services from outside the cluster using any node IP and the

exposed node port. You can also utilize load balancing services provided by cloud vendors (such as Azure, AWS, etc.) by setting

the Service type to LoadBalancer . This allows external access to internal cluster services through the public IP and port of the load

balancer provided by the cloud vendor.

The Service of type NodePort forwards the front-end requests via the label selector spec.selector to Graphd pods with labels

app.kubernetes.io/cluster: <cluster-name> and app.kubernetes.io/component: graphd .

After creating a NebulaGraph cluster based on the example template, where spec.graphd.service.type=NodePort , the NebulaGraph

Operator will automatically create a NodePort type Service named <cluster-name>-graphd-svc in the same namespace. You can

directly connect to the NebulaGraph database through any node IP and the exposed node port (see step 4 below). You can also

create a custom Service according to your needs.

Note

Enter the nebula-console Pod.

kubectl exec -it nebula-console -- /bin/sh

Connect to NebulaGraph databases.

nebula-console -addr nebula-graphd-svc.default.svc.cluster.local -port 9669 -u <username> -p <password>

17.2.3 Connect to a NebulaGraph cluster

- 692/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/doc/user/nebula_console.md#nebula-console
https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/config/samples/apps_v1alpha1_nebulacluster.yaml

Steps:

17.2.3 Connect to a NebulaGraph cluster

- 693/804 - 2023 Vesoft Inc.

Create a YAML file named graphd-nodeport-service.yaml . The file contents are as follows:

NebulaGraph uses port 9669 by default. 19669 is the HTTP port of the Graph service in a NebulaGraph cluster.

The value of targetPort is the port mapped to the database Pods, which can be customized.

Run the following command to create a NodePort Service.

Check the port mapped on all of your cluster nodes.

Output:

As you see, the mapped port of NebulaGraph databases on all cluster nodes is 32236 .

Connect to NebulaGraph databases with your node IP and the node port above.

For example:

--image : The image for the tool NebulaGraph Console used to connect to NebulaGraph databases.

<nebula-console> : The custom Pod name. The above example uses nebula-console .

-addr : The IP of any node in a NebulaGraph cluster. The above example uses 192.168.8.24 .

-port : The mapped port of NebulaGraph databases on all cluster nodes. The above example uses 32236 .

-u : The username of your NebulaGraph account. Before enabling authentication, you can use any existing username. The default

username is root.

-p : The password of your NebulaGraph account. Before enabling authentication, you can use any characters as the password.

1.

apiVersion: v1

kind: Service

metadata:

 labels:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: graphd

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 name: nebula-graphd-svc-nodeport

 namespace: default

spec:

 externalTrafficPolicy: Local

 ports:

 - name: thrift

 port: 9669

 protocol: TCP

 targetPort: 9669

 - name: http

 port: 19669

 protocol: TCP

 targetPort: 19669

 selector:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: graphd

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 type: NodePort # Set the type to NodePort.

•

•

2.

kubectl create -f graphd-nodeport-service.yaml

3.

kubectl get services -l app.kubernetes.io/cluster=<nebula> # <nebula> is the name of your NebulaGraph cluster.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nebula-graphd-svc-nodeport NodePort 10.107.153.129 <none> 9669:32236/TCP,19669:31674/TCP,19670:31057/TCP 24h

...

4.

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- <nebula_console_name> -addr <node_ip> -port <node_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- nebula-console -addr 192.168.8.24 -port 32236 -u root -p vesoft

If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

•

•

•

•

•

•

17.2.3 Connect to a NebulaGraph cluster

- 694/804 - 2023 Vesoft Inc.

If the spec.console field is set in the cluster configuration file, you can also connect to NebulaGraph databases with the following

command:

For information about the nebula-console container, see nebula-console.

Connect to NebulaGraph databases from outside a NebulaGraph cluster via Ingress

When dealing with multiple pods in a cluster, managing services for each pod separately is not a good practice. Ingress is a

Kubernetes resource that provides a unified entry point for accessing multiple services. Ingress can be used to expose multiple

services under a single IP address.

Nginx Ingress is an implementation of Kubernetes Ingress. Nginx Ingress watches the Ingress resource of a Kubernetes cluster

and generates the Ingress rules into Nginx configurations that enable Nginx to forward 7 layers of traffic.

You can use Nginx Ingress to connect to a NebulaGraph cluster from outside the cluster using a combination of the host network

and DaemonSet pattern.

Due to the use of HostNetwork , Nginx Ingress pods may be scheduled on the same node (port conflicts will occur when multiple

pods try to listen on the same port on the same node). To avoid this situation, Nginx Ingress is deployed on these nodes in

DaemonSet mode (ensuring that a pod replica runs on each node in the cluster). You first need to select some nodes and label

them for the specific deployment of Nginx Ingress.

Ingress does not support TCP or UDP services. For this reason, the nginx-ingress-controller pod uses the flags --tcp-services-

configmap and --udp-services-configmap to point to an existing ConfigMap where the key refers to the external port to be used and the

value refers to the format of the service to be exposed. The format of the value is <namespace/service_name>:<service_port> .

For example, the configurations of the ConfigMap named as tcp-services is as follows:

Note

Enter the nebula-console Pod.

kubectl exec -it nebula-console -- /bin/sh

Connect to NebulaGraph databases.

nebula-console -addr <node_ip> -port <node_port> -u <username> -p <password>

apiVersion: v1

kind: ConfigMap

metadata:

 name: tcp-services

 namespace: nginx-ingress

data:

 # update

 9769: "default/nebula-graphd-svc:9669"

17.2.3 Connect to a NebulaGraph cluster

- 695/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/doc/user/nebula_console.md#nebula-console

Steps are as follows.

17.2.3 Connect to a NebulaGraph cluster

- 696/804 - 2023 Vesoft Inc.

Create a file named nginx-ingress-daemonset-hostnetwork.yaml .

Click on nginx-ingress-daemonset-hostnetwork.yaml to view the complete content of the example YAML file.

The resource objects in the YAML file above use the namespace nginx-ingress . You can run kubectl create namespace nginx-ingress to create

this namespace, or you can customize the namespace.

Label a node where the DaemonSet named nginx-ingress-controller in the above YAML file (The node used in this example is named

worker2 with an IP of 192.168.8.160) runs.

Run the following command to enable Nginx Ingress in the cluster you created.

Output:

Since the network type that is configured in Nginx Ingress is hostNetwork , after successfully deploying Nginx Ingress, with the IP

(192.168.8.160) of the node where Nginx Ingress is deployed and with the external port (9769) you define, you can access

NebulaGraph.

Use the IP address and the port configured in the preceding steps. You can connect to NebulaGraph with NebulaGraph Console.

Output:

--image : The image for the tool NebulaGraph Console used to connect to NebulaGraph databases.

<nebula-console> The custom Pod name. The above example uses nebula-console .

-addr : The IP of the node where Nginx Ingress is deployed. The above example uses 192.168.8.160 .

-port : The port used for external network access. The above example uses 9769 .

-u : The username of your NebulaGraph account. Before enabling authentication, you can use any existing username. The default

username is root.

-p : The password of your NebulaGraph account. Before enabling authentication, you can use any characters as the password.

A successful connection to the database is indicated if the following is returned:

1.

Note

2.

kubectl label node worker2 nginx-ingress=true

3.

kubectl create -f nginx-ingress-daemonset-hostnetwork.yaml

configmap/nginx-ingress-controller created

configmap/tcp-services created

serviceaccount/nginx-ingress created

serviceaccount/nginx-ingress-backend created

clusterrole.rbac.authorization.k8s.io/nginx-ingress created

clusterrolebinding.rbac.authorization.k8s.io/nginx-ingress created

role.rbac.authorization.k8s.io/nginx-ingress created

rolebinding.rbac.authorization.k8s.io/nginx-ingress created

service/nginx-ingress-controller-metrics created

service/nginx-ingress-default-backend created

service/nginx-ingress-proxy-tcp created

daemonset.apps/nginx-ingress-controller created

4.

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- <nebula_console_name> -addr <host_ip> -port <external_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v3.6.0 --restart=Never -- nebula-console -addr 192.168.8.160 -port 9769 -u root -p vesoft

•

•

•

•

•

•

If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

17.2.3 Connect to a NebulaGraph cluster

- 697/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/config/samples/nginx-ingress-daemonset-hostnetwork.yaml

If the spec.console field is set in the cluster configuration file, you can also connect to NebulaGraph databases with the following

command:

For information about the nebula-console container, see nebula-console.

Note

Enter the nebula-console Pod.

kubectl exec -it nebula-console -- /bin/sh

Connect to NebulaGraph databases.

nebula-console -addr <ingress_host_ip> -port <external_port> -u <username> -p <password>

Last update: November 21, 2023

17.2.3 Connect to a NebulaGraph cluster

- 698/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/doc/user/nebula_console.md#nebula-console

17.3 NebulaGraph Operator management

17.3.1 Customize installation defaults

This topic introduces how to customize the default configurations when installing NebulaGraph Operator.

Customizable parameters

When executing the helm install [NAME] [CHART] [flags] command to install a chart, you can specify the chart configuration. For more

information, see Customizing the Chart Before Installing.

You can view the configurable options in the nebula-operator chart configuration file. Alternatively, you can view the configurable

options through the command helm show values nebula-operator/nebula-operator , as shown below.

[root@master ~]$ helm show values nebula-operator/nebula-operator

image:

 nebulaOperator:

 image: vesoft/nebula-operator:v1.8.0

 imagePullPolicy: Always

imagePullSecrets: []

kubernetesClusterDomain: ""

controllerManager:

 create: true

 replicas: 2

 env: []

 resources:

 limits:

 cpu: 200m

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 100Mi

 verbosity: 0

 ## Additional InitContainers to initialize the pod

 # Example:

 # extraInitContainers:

 # - name: init-auth-sidecar

 # command:

 # - /bin/sh

 # - -c

 # args:

 # - cp -R /certs/* /credentials/

 # imagePullPolicy: Always

 # image: reg.vesoft-inc.com/nebula-certs:latest

 # volumeMounts:

 # - name: credentials

 # mountPath: /credentials

 extraInitContainers: []

 # sidecarContainers - add more containers to controller-manager

 # Key/Value where Key is the sidecar `- name: <Key>`

 # Example:

 # sidecarContainers:

 # webserver:

 # image: nginx

 # OR for adding netshoot to controller manager

 # sidecarContainers:

 # netshoot:

 # args:

 # - -c

 # - while true; do ping localhost; sleep 60;done

 # command:

 # - /bin/bash

 # image: nicolaka/netshoot

 # imagePullPolicy: Always

 # name: netshoot

 # resources: {}

 sidecarContainers: {}

 ## Additional controller-manager Volumes

 extraVolumes: []

 ## Additional controller-manager Volume mounts

 extraVolumeMounts: []

 securityContext: {}

 # runAsNonRoot: true

admissionWebhook:

 create: false

17.3 NebulaGraph Operator management

- 699/804 - 2023 Vesoft Inc.

https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing
https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/charts/nebula-operator/values.yaml

Part of the above parameters are described as follows:

Example

The following example shows how to enable AdmissionWebhook when you install NebulaGraph Operator (AdmissionWebhook is

disabled by default):

Check whether the specified configuration of NebulaGraph Operator is installed successfully:

 # The TCP port the Webhook server binds to. (default 9443)

 webhookBindPort: 9443

scheduler:

 create: true

 schedulerName: nebula-scheduler

 replicas: 2

 env: []

 resources:

 limits:

 cpu: 200m

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 100Mi

 verbosity: 0

 plugins:

 enabled: ["NodeZone"]

 disabled: [] # Only in-tree plugins need to be defined here

...

Parameter Default value Description

image.nebulaOperator.image vesoft/nebula-

operator:v1.8.0

The image of NebulaGraph Operator, version of which is 1.8.0.

image.nebulaOperator.imagePullPolicy IfNotPresent The image pull policy in Kubernetes.

imagePullSecrets - The image pull secret in Kubernetes. For example

imagePullSecrets[0].name="vesoft" .

kubernetesClusterDomain cluster.local The cluster domain.

controllerManager.create true Whether to enable the controller-manager component.

controllerManager.replicas 2 The number of controller-manager replicas.

controllerManager.env [] The environment variables for the controller-manager component.

controllerManager.extraInitContainers [] Runs an init container.

controllerManager.sidecarContainers {} Runs a sidecar container.

controllerManager.extraVolumes [] Sets a storage volume.

controllerManager.extraVolumeMounts [] Sets the storage volume mount path.

controllerManager.securityContext {} Configures the access and control settings for NebulaGraph

Operator.

admissionWebhook.create false Whether to enable Admission Webhook. This option is disabled. To

enable it, set the value to true and you will need to install cert-

manager. For details, see Enable admission control.

admissionWebhook.webhookBindPort 9443 The TCP port the Webhook server binds to. It is 9443 by default.

shceduler.create true Whether to enable Scheduler.

shceduler.schedulerName nebula-scheduler The name of the scheduler customized by NebulaGraph Operator.

shceduler.replicas 2 The number of nebula-scheduler replicas.

helm install nebula-operator nebula-operator/nebula-operator --namespace=<nebula-operator-system> --set admissionWebhook.create=true

17.3.1 Customize installation defaults

- 700/804 - 2023 Vesoft Inc.

https://cert-manager.io/docs/installation/helm/
https://cert-manager.io/docs/installation/helm/

Example output:

For more information about helm install , see Helm Install.

helm get values nebula-operator -n <nebula-operator-system>

USER-SUPPLIED VALUES:

admissionWebhook:

 create: true

Last update: March 6, 2024

17.3.1 Customize installation defaults

- 701/804 - 2023 Vesoft Inc.

https://helm.sh/docs/helm/helm_install/

17.3.2 Update NebulaGraph Operator

This topic introduces how to update the configuration of NebulaGraph Operator.

Steps

Update the information of available charts locally from chart repositories.

View the default values of NebulaGraph Operator.

Update NebulaGraph Operator by passing configuration parameters via --set .

--set：Overrides values using the command line. For more configurable items, see Customize installation defaults.

For example, to enable the AdmissionWebhook, run the following command:

For more information, see Helm upgrade.

Check whether the configuration of NebulaGraph Operator is updated successfully.

Example output:

1.

helm repo update

2.

helm show values nebula-operator/nebula-operator

3.

•

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=1.8.0 --set admissionWebhook.create=true

4.

helm get values nebula-operator -n nebula-operator-system

USER-SUPPLIED VALUES:

admissionWebhook:

 create: true

Last update: November 28, 2023

17.3.2 Update NebulaGraph Operator

- 702/804 - 2023 Vesoft Inc.

https://helm.sh/docs/helm/helm_upgrade/

17.3.3 Use NebulaGraph Operator to manage specific clusters

NebulaGraph Operator supports the management of multiple NebulaGraph clusters. By default, NebulaGraph Operator manages

all NebulaGraph clusters. However, you can specify the clusters managed by NebulaGraph Operator. This topic describes how to

specify the clusters managed by NebulaGraph Operator.

Application scenarios

Gray release of NebulaGraph Operator: You want to run the new Nebula Operator version on a part of the clusters first to test

and verify its performance before fully releasing it.

Manage specific clusters: You want NebulaGraph Operator to manage only specific NebulaGraph clusters.

Configurations

NebulaGraph Operator supports specifying the clusters managed by controller-manager through startup parameters. The

supported parameters are as follows:

watchNamespaces : Specifies the namespace where the NebulaGraph cluster is located. To specify multiple namespaces, separate

them with commas (,). For example, watchNamespaces=default,nebula . If this parameter is not specified, NebulaGraph Operator

manages all NebulaGraph clusters in all namespaces.

nebulaObjectSelector : Allows you to set specific labels and values to select the NebulaGraph clusters to be managed. It supports

three label operation symbols: = , == , and != . Both = and == mean that the label's value is equal to the specified value,

while != means the tag's value is not equal to the specified value. Multiple labels are separated by commas (,), and the

comma needs to be escaped with \\ . For example, nebulaObjectSelector=key1=value1\\,key2=value2 , which selects only the

NebulaGraph clusters with labels key1=value1 and key2=value2 . If this parameter is not specified, NebulaGraph Operator manages

all NebulaGraph clusters.

Examples

SPECIFY THE MANAGED CLUSTERS BY NAMESPACE

Run the following command to make NebulaGraph Operator manage only the NebulaGraph clusters in the default and nebula

namespaces. Ensure that the current Helm Chart version supports this parameter. For more information, see Update the

configuration.

SPECIFY THE MANAGED CLUSTERS BY LABEL

Run the following command to make NebulaGraph Operator manage only the NebulaGraph clusters with the labels key1=value1

and key2=value2 . Ensure that the current Helm Chart version supports this parameter. For more information, see Update the

configuration.

FAQ

HOW TO SET LABELS FOR NEBULAGRAPH CLUSTERS?

Run the following command to set a label for the NebulaGraph cluster:

For example, set the label env=test for the NebulaGraph cluster named nebula in the nebulaspace namespace:

•

•

•

•

helm upgrade nebula-operator nebula-operator/nebula-operator --set watchNamespaces=default,nebula

helm upgrade nebula-operator nebula-operator/nebula-operator --set nebulaObjectSelector=key1=value1\\,key2=value2

kubectl label nc <cluster_name> -n <namespace> <key>=<value>

kubectl label nc nebula -n nebulaspace env=test

17.3.3 Use NebulaGraph Operator to manage specific clusters

- 703/804 - 2023 Vesoft Inc.

HOW TO VIEW THE LABELS OF NEBULAGRAPH CLUSTERS?

Run the following command to view the labels of NebulaGraph clusters:

For example, view the labels of the NebulaGraph cluster named nebula in the nebulaspace namespace:

HOW TO DELETE THE LABELS OF NEBULAGRAPH CLUSTERS?

Run the following command to delete the label of NebulaGraph clusters:

For example, delete the label env=test of the NebulaGraph cluster named nebula in the nebulaspace namespace:

HOW TO VIEW THE NAMESPACE WHERE THE NEBULAGRAPH CLUSTER IS LOCATED?

Run the following command to list all namespaces where the NebulaGraph clusters are located:

kubectl get nc <cluster_name> -n <namespace> --show-labels

kubectl get nc nebula -n nebulaspace --show-labels

kubectl label nc <cluster_name> -n <namespace> <key>-

kubectl label nc nebula -n nebulaspace env-

kubectl get nc --all-namespaces

Last update: March 6, 2024

17.3.3 Use NebulaGraph Operator to manage specific clusters

- 704/804 - 2023 Vesoft Inc.

17.3.4 Upgrade NebulaGraph Operator

Does not support upgrading 0.9.0 and below version NebulaGraph Operator to 1.x.

The 1.x version NebulaGraph Operator is not compatible with NebulaGraph of version below v3.x.

Steps

View the current version of NebulaGraph Operator.

Example output:

Update the information of available charts locally from chart repositories.

View the latest version of NebulaGraph Operator.

Example output:

Upgrade NebulaGraph Operator to version 1.8.0.

For example:

Output:

Pull the latest CRD configuration file.

Legacy version compatibility

•

•

1.

helm list --all-namespaces

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

nebula-operator nebula-operator-system 3 2023-11-06 12:06:24.742397418 +0800 CST deployed nebula-operator-1.7.0 1.7.0

2.

helm repo update

3.

helm search repo nebula-operator/nebula-operator

NAME CHART VERSION APP VERSION DESCRIPTION

nebula-operator/nebula-operator 1.8.0 1.8.0 Nebula Operator Helm chart for Kubernetes

4.

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> --version=1.8.0

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=1.8.0

Release "nebula-operator" has been upgraded. Happy Helming!

NAME: nebula-operator

LAST DEPLOYED: Tue Apr 16 02:21:08 2022

NAMESPACE: nebula-operator-system

STATUS: deployed

REVISION: 3

TEST SUITE: None

NOTES:

NebulaGraph Operator installed!

5.

17.3.4 Upgrade NebulaGraph Operator

- 705/804 - 2023 Vesoft Inc.

You need to upgrade the corresponding CRD configurations after NebulaGraph Operator is upgraded. Otherwise, the creation of

NebulaGraph clusters will fail. For information about the CRD configurations, see apps.nebula-graph.io_nebulaclusters.yaml.

Pull the NebulaGraph Operator chart package.

--version : The NebulaGraph Operator version you want to upgrade to. If not specified, the latest version will be pulled.

Run tar -zxvf to unpack the charts.

For example: To unpack v1.8.0 chart to the /tmp path, run the following command:

-C /tmp : If not specified, the chart files will be unpacked to the current directory.

Apply the latest CRD configuration file in the nebula-operator directory.

Output:

Note

a.

helm pull nebula-operator/nebula-operator --version=1.8.0

•

b.

tar -zxvf nebula-operator-1.8.0.tgz -C /tmp

•

6.

kubectl apply -f crds/nebulaclusters.yaml

customresourcedefinition.apiextensions.k8s.io/nebulaclusters.apps.nebula-graph.io configured

Last update: November 28, 2023

17.3.4 Upgrade NebulaGraph Operator

- 706/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/config/crd/bases/apps.nebula-graph.io_nebulaclusters.yaml

17.3.5 Uninstall NebulaGraph Operator

This topic introduces how to uninstall NebulaGraph Operator.

Steps

Uninstall the NebulaGraph Operator chart.

View the information about the default-created CRD.

Output:

Delete CRD.

1.

helm uninstall nebula-operator --namespace=<nebula-operator-system>

2.

kubectl get crd

NAME CREATED AT

nebulaautoscalers.autoscaling.nebula-graph.io 2023-11-01T04:16:51Z

nebulaclusters.apps.nebula-graph.io 2023-10-12T07:55:32Z

nebularestores.apps.nebula-graph.io 2023-02-04T23:01:00Z

3.

kubectl delete crd nebulaclusters.apps.nebula-graph.io nebularestores.apps.nebula-graph.io nebulaautoscalers.autoscaling.nebula-graph.io

Last update: November 15, 2023

17.3.5 Uninstall NebulaGraph Operator

- 707/804 - 2023 Vesoft Inc.

17.4 Cluster administration

17.4.1 Deployment

Install a NebulaGraph cluster using NebulaGraph Operator

Using NebulaGraph Operator to install NebulaGraph clusters enables automated cluster management with automatic error

recovery. This topic covers two methods, kubectl apply and helm , for installing clusters using NebulaGraph Operator.

NebulaGraph Operator versions 1.x are not compatible with NebulaGraph versions below 3.x.

PREREQUISITES

Install NebulaGraph Operator

Create a StorageClass

USE KUBECTL APPLY

Create a namespace for storing NebulaGraph cluster-related resources. For example, create the nebula namespace.

Create a YAML configuration file nebulacluster.yaml for the cluster. For example, create a cluster named nebula .

Historical version compatibility

•

•

1.

kubectl create namespace nebula

2.

17.4 Cluster administration

- 708/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/concepts/storage/storage-classes/

Expand to view an example configuration for the nebula cluster

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

 namespace: default

spec:

 # Control the Pod scheduling strategy.

 topologySpreadConstraints:

 - topologyKey: "kubernetes.io/hostname"

 whenUnsatisfiable: "ScheduleAnyway"

 # Enable PV recycling.

 enablePVReclaim: false

 # Enable monitoring.

 exporter:

 image: vesoft/nebula-stats-exporter

 version: v3.3.0

 replicas: 1

 maxRequests: 20

 # Custom Agent image for cluster backup and restore, and log cleanup.

 agent:

 image: vesoft/nebula-agent

 version: latest

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "200m"

 memory: "256Mi"

 # Configure the image pull policy.

 imagePullPolicy: Always

 # Select the nodes for Pod scheduling.

 nodeSelector:

 nebula: cloud

 # Dependent controller name.

 reference:

 name: statefulsets.apps

 version: v1

 # Scheduler name.

 schedulerName: default-scheduler

 # Start NebulaGraph Console service for connecting to the Graph service.

 console:

 image: vesoft/nebula-console

 version: nightly

 username: "demo"

 password: "test"

 # Graph service configuration.

 graphd:

 # Used to check if the Graph service is running normally.

 # readinessProbe:

 # failureThreshold: 3

 # httpGet:

 # path: /status

 # port: 19669

 # scheme: HTTP

 # initialDelaySeconds: 40

 # periodSeconds: 10

 # successThreshold: 1

 # timeoutSeconds: 10

 # Container image for the Graph service.

 image: vesoft/nebula-graphd

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 # Storage class name for storing Graph service logs.

 storageClassName: local-sc

 # Number of replicas for the Graph service Pod.

 replicas: 1

 # Resource configuration for the Graph service.

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 # Version of the Graph service.

 version: v3.6.0

 # Custom flags configuration for the Graph service.

 config: {}

 # Meta service configuration.

 metad:

 # readinessProbe:

 # failureThreshold: 3

 # httpGet:

 # path: /status

 # port: 19559

 # scheme: HTTP

 # initialDelaySeconds: 5

 # periodSeconds: 5

 # successThreshold: 1

 # timeoutSeconds: 5

 # Container image for the Meta service.

 image: vesoft/nebula-metad

17.4.1 Deployment

- 709/804 - 2023 Vesoft Inc.

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

 # Custom flags configuration for the Meta service.

 config: {}

 # Storage service configuration.

 storaged:

 # readinessProbe:

 # failureThreshold: 3

 # httpGet:

 # path: /status

 # port: 19779

 # scheme: HTTP

 # initialDelaySeconds: 40

 # periodSeconds: 10

 # successThreshold: 1

 # timeoutSeconds: 5

 # Container image for the Storage service.

 image: vesoft/nebula-graphd

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 dataVolumeClaims:

 - resources:

 requests:

 storage: 2Gi

 storageClassName: local-sc

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

 # Custom flags configuration for the Storage service.

 config: {}

17.4.1 Deployment

- 710/804 - 2023 Vesoft Inc.

Expand to view all configurable parameters and descriptions

17.4.1 Deployment

- 711/804 - 2023 Vesoft Inc.

Parameter Default

Value

Description

metadata.name - The name of the created NebulaGraph cluster.

spec.console - Launches a Console container for connecting to the

Graph service. For configuration details, see nebula-

console.

spec.topologySpreadConstraints - Controls the scheduling strategy for Pods. For more

details, see Topology Spread Constraints. When the

value of topologyKey is kubernetes.io/zone , the value of

whenUnsatisfiable must be set to DoNotSchedule , and the

value of spec.schedulerName should be nebula-scheduler .

spec.graphd.replicas 1 The number of replicas for the Graphd service.

spec.graphd.image vesoft/

nebula-

graphd

The container image for the Graphd service.

spec.graphd.version v3.6.0 The version of the Graphd service.

spec.graphd.service Configuration for accessing the Graphd service via a

Service.

spec.graphd.logVolumeClaim.storageClassName - The storage class name for the log volume claim of

the Graphd service. When using sample configuration,

replace it with the name of the pre-created storage

class. See Storage Classes for creating a storage

class.

spec.metad.replicas 1 The number of replicas for the Metad service.

spec.metad.image vesoft/

nebula-

metad

The container image for the Metad service.

spec.metad.version v3.6.0 The version of the Metad service.

spec.metad.dataVolumeClaim.storageClassName - Storage configuration for the data disk of the Metad

service. When using sample configuration, replace it

with the name of the pre-created storage class. See

Storage Classes for creating a storage class.

spec.metad.logVolumeClaim.storageClassName - Storage configuration for the log disk of the Metad

service. When using sample configuration, replace it

with the name of the pre-created storage class. See

Storage Classes for creating a storage class.

spec.storaged.replicas 3 The number of replicas for the Storaged service.

spec.storaged.image vesoft/

nebula-

storaged

The container image for the Storaged service.

spec.storaged.version v3.6.0 The version of the Storaged service.

spec.storaged.dataVolumeClaims.resources.requests.storage - The storage size for the data disk of the Storaged

service. You can specify multiple data disks. When

specifying multiple data disks, the paths are like /usr/

local/nebula/data1 , /usr/local/nebula/data2 , and so on.

spec.storaged.dataVolumeClaims.storageClassName - Storage configuration for the data disks of the

Storaged service. When using sample configuration,

replace it with the name of the pre-created storage

17.4.1 Deployment

- 712/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/doc/user/nebula_console.md#nebula-console
https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/doc/user/nebula_console.md#nebula-console
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Create the NebulaGraph cluster.

Output:

If you don't specify the namespace using -n , it will default to the default namespace.

Check the status of the NebulaGraph cluster.

Output:

Parameter Default

Value

Description

class. See Storage Classes for creating a storage

class.

spec.storaged.logVolumeClaim.storageClassName - Storage configuration for the log disk of the Storaged

service. When using sample configuration, replace it

with the name of the pre-created storage class. See

Storage Classes for creating a storage class.

spec.<metad|storaged|graphd>.securityContext {} Defines the permission and access control for the

cluster containers to control access and execution of

container operations. For details, see SecurityContext.

spec.agent {} Configuration for the Agent service used for backup

and recovery, and log cleaning functions. If you don't

customize this configuration, the default configuration

is used.

spec.reference.name {} The name of the controller it depends on.

spec.schedulerName default-

scheduler

The name of the scheduler.

spec.imagePullPolicy Always The image pull policy for NebulaGraph images. For

more details on pull policies, please see Image pull

policy.

spec.logRotate {} Log rotation configuration. For details, see Managing

Cluster Logs.

spec.enablePVReclaim false Defines whether to automatically delete PVCs after

deleting the cluster to release data. For details, see

Reclaim PV.

spec.metad.licenseManagerURL - Configures the URL pointing to the License Manager

(LM), consisting of the access address and port

(default port 9119). For example, 192.168.8.xxx:9119 . For

the NebulaGraph Enterprise Edition only.

spec.storaged.enableAutoBalance false Whether to enable automatic balancing. For details,

see Balancing Storage Data After Scaling Out.

spec.enableBR false Defines whether to enable the BR tool. For details, see

Backup and Restore.

spec.imagePullSecrets [] Defines the Secret required to pull images from a

private repository.

3.

kubectl create -f nebulacluster.yaml -n nebula

nebulacluster.apps.nebula-graph.io/nebula created

4.

kubectl get nebulaclusters nebula -n nebula

17.4.1 Deployment

- 713/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/vesoft-inc/nebula-operator/blob/release-1.8/doc/user/security_context.md
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy

USE HELM

Add the NebulaGraph Operator Helm repository (if it's already added, run the next step directly).

Update the Helm repository to fetch the latest resources.

Set environment variables for the configuration parameters required for installing the cluster.

Create a namespace for the NebulaGraph cluster if it is not created.

NAME READY GRAPHD-DESIRED GRAPHD-READY METAD-DESIRED METAD-READY STORAGED-DESIRED STORAGED-READY AGE

nebula True 1 1 1 1 1 1 86s

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update nebula-operator

3.

export NEBULA_CLUSTER_NAME=nebula # Name of the NebulaGraph cluster.

export NEBULA_CLUSTER_NAMESPACE=nebula # Namespace for the NebulaGraph cluster.

export STORAGE_CLASS_NAME=local-sc # StorageClass for the NebulaGraph cluster.

4.

kubectl create namespace "${NEBULA_CLUSTER_NAMESPACE}"

17.4.1 Deployment

- 714/804 - 2023 Vesoft Inc.

Check the customizable configuration parameters for the nebula-cluster Helm chart of the nebula-operator when creating the cluster.

Visit nebula-cluster/values.yaml to see all the configuration parameters for the NebulaGraph cluster.

5.

•

17.4.1 Deployment

- 715/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/release-1.8/charts/nebula-cluster/values.yaml

Run the following command to view all the configurable parameters.
•

helm show values nebula-operator/nebula-cluster

17.4.1 Deployment

- 716/804 - 2023 Vesoft Inc.

Example to view all configurable parameters

nebula:

 version: v3.6.0

 imagePullPolicy: Always

 storageClassName: ""

 enablePVReclaim: false

 enableBR: false

 enableForceUpdate: false

 schedulerName: default-scheduler

 topologySpreadConstraints:

 - topologyKey: "kubernetes.io/hostname"

 whenUnsatisfiable: "ScheduleAnyway"

 logRotate: {}

 reference:

 name: statefulsets.apps

 version: v1

 graphd:

 image: vesoft/nebula-graphd

 replicas: 2

 serviceType: NodePort

 env: []

 config: {}

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "500Mi"

 logVolume:

 enable: true

 storage: "500Mi"

 podLabels: {}

 podAnnotations: {}

 securityContext: {}

 nodeSelector: {}

 tolerations: []

 affinity: {}

 readinessProbe: {}

 livenessProbe: {}

 initContainers: []

 sidecarContainers: []

 volumes: []

 volumeMounts: []

 metad:

 image: vesoft/nebula-metad

 replicas: 3

 env: []

 config: {}

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 logVolume:

 enable: true

 storage: "500Mi"

 dataVolume:

 storage: "2Gi"

 licenseManagerURL: ""

 license: {}

 podLabels: {}

 podAnnotations: {}

 securityContext: {}

 nodeSelector: {}

 tolerations: []

 affinity: {}

 readinessProbe: {}

 livenessProbe: {}

 initContainers: []

 sidecarContainers: []

 volumes: []

 volumeMounts: []

 storaged:

 image: vesoft/nebula-storaged

 replicas: 3

 env: []

 config: {}

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 logVolume:

 enable: true

 storage: "500Mi"

 dataVolumes:

 - storage: "10Gi"

 enableAutoBalance: false

 podLabels: {}

17.4.1 Deployment

- 717/804 - 2023 Vesoft Inc.

 podAnnotations: {}

 securityContext: {}

 nodeSelector: {}

 tolerations: []

 affinity: {}

 readinessProbe: {}

 livenessProbe: {}

 initContainers: []

 sidecarContainers: []

 volumes: []

 volumeMounts: []

 exporter:

 image: vesoft/nebula-stats-exporter

 version: v3.3.0

 replicas: 1

 env: []

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "200m"

 memory: "256Mi"

 podLabels: {}

 podAnnotations: {}

 securityContext: {}

 nodeSelector: {}

 tolerations: []

 affinity: {}

 readinessProbe: {}

 livenessProbe: {}

 initContainers: []

 sidecarContainers: []

 volumes: []

 volumeMounts: []

 maxRequests: 20

 agent:

 image: vesoft/nebula-agent

 version: latest

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "200m"

 memory: "256Mi"

 console:

 username: root

 password: nebula

 image: vesoft/nebula-console

 version: latest

 nodeSelector: {}

 alpineImage: ""

imagePullSecrets: []

nameOverride: ""

fullnameOverride: ""

17.4.1 Deployment

- 718/804 - 2023 Vesoft Inc.

Expand to view parameter descriptions

17.4.1 Deployment

- 719/804 - 2023 Vesoft Inc.

Parameter Default Value Description

nebula.version v3.6.0 Version of the cluster.

nebula.imagePullPolicy Always Container image pull policy. Always

means always attempting to pull the

latest image from the remote.

nebula.storageClassName "" Name of the Kubernetes storage

class for dynamic provisioning of

persistent volumes.

nebula.enablePVReclaim false Enable persistent volume reclaim.

See Reclaim PV for details.

nebula.enableBR false Enable the backup and restore

feature. See Backup and Restore

with NebulaGraph Operator for

details.

nebula.enableForceUpdate false Force update the Storage service

without transferring the leader

partition replicas. See Optimize

leader transfer in rolling updates for

details.

nebula.schedulerName default-scheduler Name of the Kubernetes scheduler.

Must be configured as nebula-scheduler

when using the Zone feature.

nebula.topologySpreadConstraints [] Control the distribution of pods in

the cluster.

nebula.logRotate {} Log rotation configuration. See

Manage cluster logs for details.

nebula.reference {"name": "statefulsets.apps", "version": "v1"} The workload referenced for a

NebulaGraph cluster.

nebula.graphd.image vesoft/nebula-graphd Container image for the Graph

service.

nebula.graphd.replicas 2 Number of replicas for the Graph

service.

nebula.graphd.serviceType NodePort Service type for the Graph service,

defining how the Graph service is

accessed. See Connect to the Cluster

for details.

nebula.graphd.env [] Container environment variables for

the Graph service.

nebula.graphd.config {} Configuration for the Graph service.

See Customize the configuration of

the NebulaGraph cluster for details.

nebula.graphd.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"500Mi"}}}

Resource limits and requests for the

Graph service.

nebula.graphd.logVolume {"logVolume": {"enable": true,"storage": "500Mi"}} Log storage configuration for the

Graph service. When enable is false ,

log volume is not used.

nebula.metad.image vesoft/nebula-metad

17.4.1 Deployment

- 720/804 - 2023 Vesoft Inc.

Parameter Default Value Description

Container image for the Meta

service.

nebula.metad.replicas 3 Number of replicas for the Meta

service.

nebula.metad.env [] Container environment variables for

the Meta service.

nebula.metad.config {} Configuration for the Meta service.

See Customize the configuration of

the NebulaGraph cluster for details.

nebula.metad.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

Resource limits and requests for the

Meta service.

nebula.metad.logVolume {"logVolume": {"enable": true,"storage": "500Mi"}} Log storage configuration for the

Meta service. When enable is false ,

log volume is not used.

nebula.metad.dataVolume {"dataVolume": {"storage": "2Gi"}} Data storage configuration for the

Meta service.

nebula.metad.licenseManagerURL "" URL for the license manager (LM) to

obtain license information. For the

NebulaGraph Enterprise Edition

only.

nebula.storaged.image vesoft/nebula-storaged Container image for the Storage

service.

nebula.storaged.replicas 3 Number of replicas for the Storage

service.

nebula.storaged.env [] Container environment variables for

the Storage service.

nebula.storaged.config {} Configuration for the Storage

service. See Customize the

configuration of the NebulaGraph

cluster for details.

nebula.storaged.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

Resource limits and requests for the

Storage service.

nebula.storaged.logVolume {"logVolume": {"enable": true,"storage": "500Mi"}} Log storage configuration for the

Storage service. When enable is

false , log volume is not used.

nebula.storaged.dataVolumes {"dataVolumes": [{"storage": "10Gi"}]} Data storage configuration for the

Storage service. Supports specifying

multiple data volumes.

nebula.storaged.enableAutoBalance false Enable automatic balancing. See

Balance storage data after scaling

out for details.

nebula.exporter.image vesoft/nebula-stats-exporter Container image for the Exporter

service.

nebula.exporter.version v3.3.0 Version of the Exporter service.

17.4.1 Deployment

- 721/804 - 2023 Vesoft Inc.

Parameter Default Value Description

nebula.exporter.replicas 1 Number of replicas for the Exporter

service.

nebula.exporter.env [] Environment variables for the

Exporter service.

nebula.exporter.resources {"resources":{"requests":

{"cpu":"100m","memory":"128Mi"},"limits":

{"cpu":"200m","memory":"256Mi"}}}

Resource limits and requests for the

Exporter service.

nebula.agent.image vesoft/nebula-agent Container image for the agent

service.

nebula.agent.version latest Version of the agent service.

nebula.agent.resources {"resources":{"requests":

{"cpu":"100m","memory":"128Mi"},"limits":

{"cpu":"200m","memory":"256Mi"}}}

Resource limits and requests for the

agent service.

nebula.console.username root Username for accessing the

NebulaGraph Console client. See

Connect to the cluster for details.

nebula.console.password nebula Password for accessing the

NebulaGraph Console client.

nebula.console.image vesoft/nebula-console Container image for the

NebulaGraph Console client.

nebula.console.version latest Version of the NebulaGraph Console

client.

nebula.alpineImage "" Alpine Linux container image used to

obtain zone information for nodes.

imagePullSecrets [] Names of secrets to pull private

images.

nameOverride "" Cluster name.

fullnameOverride "" Name of the released chart instance.

nebula.<graphd|metad|storaged|

exporter>.podLabels

{} Additional labels to be added to the

pod.

nebula.<graphd|metad|storaged|

exporter>.podAnnotations

{} Additional annotations to be added

to the pod.

nebula.<graphd|metad|storaged|

exporter>.securityContext

{} Security context for setting pod-level

security attributes, including user ID,

group ID, Linux Capabilities, etc.

nebula.<graphd|metad|storaged|

exporter>.nodeSelector

{} Label selectors for determining

which nodes to run the pod on.

nebula.<graphd|metad|storaged|

exporter>.tolerations

[] Tolerations allow a pod to be

scheduled to nodes with specific

taints.

nebula.<graphd|metad|storaged|

exporter>.affinity

{} Affinity rules for the pod, including

node affinity, pod affinity, and pod

anti-affinity.

nebula.<graphd|metad|storaged|

exporter>.readinessProbe

{} Probe to check if a container is ready

to accept service requests. When the

17.4.1 Deployment

- 722/804 - 2023 Vesoft Inc.

Create the NebulaGraph cluster.

You can use the --set flag to customize the default values of the NebulaGraph cluster configuration. For example, --set

nebula.storaged.replicas=3 sets the number of replicas for the Storage service to 3.

Check the status of NebulaGraph cluster pods.

Output:

Parameter Default Value Description

probe returns success, traffic can be

routed to the container.

nebula.<graphd|metad|storaged|

exporter>.livenessProbe

{} Probe to check if a container is still

running. If the probe fails,

Kubernetes will kill and restart the

container.

nebula.<graphd|metad|storaged|

exporter>.initContainers

[] Special containers that run before

the main application container

starts, typically used for setting up

the environment or initializing data.

nebula.<graphd|metad|storaged|

exporter>.sidecarContainers

[] Containers that run alongside the

main application container, typically

used for auxiliary tasks such as log

processing, monitoring, etc.

nebula.<graphd|metad|storaged|

exporter>.volumes

[] Storage volumes to be attached to

the service pod.

nebula.<graphd|metad|storaged|

exporter>.volumeMounts

[] Specifies where to mount the storage

volume inside the container.

6.

helm install "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \

 # Specify the version of the cluster chart. If not specified, it will install the latest version by default.

 # You can check all chart versions by running the command: helm search repo -l nebula-operator/nebula-cluster

 --version=1.8.0 \

 # Specify the namespace for the NebulaGraph cluster.

 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \

 # Customize the cluster name.

 --set nameOverride="${NEBULA_CLUSTER_NAME}" \

 --set nebula.storageClassName="${STORAGE_CLASS_NAME}" \

 # Specify the version for the NebulaGraph cluster.

 --set nebula.version=v3.6.0

7.

kubectl -n "${NEBULA_CLUSTER_NAMESPACE}" get pod -l "app.kubernetes.io/cluster=${NEBULA_CLUSTER_NAME}"

NAME READY STATUS RESTARTS AGE

nebula-exporter-854c76989c-mp725 1/1 Running 0 14h

nebula-graphd-0 1/1 Running 0 14h

nebula-graphd-1 1/1 Running 0 14h

nebula-metad-0 1/1 Running 0 14h

nebula-metad-1 1/1 Running 0 14h

nebula-metad-2 1/1 Running 0 14h

nebula-storaged-0 1/1 Running 0 14h

nebula-storaged-1 1/1 Running 0 14h

nebula-storaged-2 1/1 Running 0 14h

Last update: March 7, 2024

17.4.1 Deployment

- 723/804 - 2023 Vesoft Inc.

Upgrade NebulaGraph clusters created with NebulaGraph Operator

This topic introduces how to upgrade a NebulaGraph cluster created with NebulaGraph Operator.

The 1.x version NebulaGraph Operator is not compatible with NebulaGraph of version below v3.x.

LIMITS

Only for upgrading the NebulaGraph clusters created with NebulaGraph Operator.

Only support upgrading the NebulaGraph version from 3.5.0 to 3.6.0.

For upgrading NebulaGraph Enterprise Edition clusters, contact us.

PREREQUISITES

You have created a NebulaGraph cluster. For details, see Create a NebulaGraph cluster.

Legacy version compatibility

•

•

•

17.4.1 Deployment

- 724/804 - 2023 Vesoft Inc.

mailto:inquiry@vesoft.com

UPGRADE A NEBULAGRAPH CLUSTER WITH KUBECTL

The following steps upgrade a NebulaGraph cluster from version 3.5.0 to v3.6.0 .

Check the image version of the services in the cluster.

Output:

Edit the nebula cluster configuration to change the version value of the cluster services from 3.5.0 to v3.6.0.

Open the YAML file for the nebula cluster.

Change the value of version .

After making these changes, the YAML file should look like this:

Apply the configuration.

After saving the YAML file and exiting, Kubernetes automatically updates the cluster's configuration and starts the cluster upgrade.

After waiting for about 2 minutes, run the following command to see if the image versions of the services in the cluster have been

changed to v3.6.0.

Output:

UPGRADE A NEBULAGRAPH CLUSTER WITH HELM

Update the information of available charts locally from chart repositories.

Set environment variables to your desired values.

Upgrade a NebulaGraph cluster.

For example, upgrade a cluster to v3.6.0.

1.

kubectl get pods -l app.kubernetes.io/cluster=nebula -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

 1 vesoft/nebula-graphd:3.5.0

 1 vesoft/nebula-metad:3.5.0

 3 vesoft/nebula-storaged:3.5.0

2.

a.

kubectl edit nebulacluster nebula -n <namespace>

b.

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

spec:

 graphd:

 version: v3.6.0 // Change the value from 3.5.0 to v3.6.0.

 ...

 metad:

 version: v3.6.0 // Change the value from 3.5.0 to v3.6.0.

 ...

 storaged:

 version: v3.6.0 // Change the value from 3.5.0 to v3.6.0.

 ...

3.

4.

kubectl get pods -l app.kubernetes.io/cluster=nebula -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

 1 vesoft/nebula-graphd:v3.6.0

 1 vesoft/nebula-metad:v3.6.0

 3 vesoft/nebula-storaged:v3.6.0

1.

helm repo update

2.

export NEBULA_CLUSTER_NAME=nebula # The desired NebulaGraph cluster name.

export NEBULA_CLUSTER_NAMESPACE=nebula # The desired namespace where your NebulaGraph cluster locates.

3.

helm upgrade "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \

 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \

 --set nameOverride=${NEBULA_CLUSTER_NAME} \

 --set nebula.version=v3.6.0

17.4.1 Deployment

- 725/804 - 2023 Vesoft Inc.

The value of --set nebula.version specifies the version of the cluster you want to upgrade to.

Run the following command to check the status and version of the upgraded cluster.

Check cluster status:

Check cluster version:

ACCELERATE THE UPGRADE PROCESS

The upgrade process of a cluster is a rolling update process and can be time-consuming due to the state transition of the leader

partition replicas in the Storage service. You can configure the enableForceUpdate field in the cluster instance's YAML file to skip the

leader partition replica transfer operation, thereby accelerating the upgrade process. For more information, see Specify a rolling

update strategy.

TROUBLESHOOTING

If you encounter issues during the upgrade process, you can check the logs of the cluster service pods.

Additionally, you can inspect the cluster's status and events.

4.

$ kubectl -n "${NEBULA_CLUSTER_NAMESPACE}" get pod -l "app.kubernetes.io/cluster=${NEBULA_CLUSTER_NAME}"

NAME READY STATUS RESTARTS AGE

nebula-graphd-0 1/1 Running 0 2m

nebula-graphd-1 1/1 Running 0 2m

nebula-metad-0 1/1 Running 0 2m

nebula-metad-1 1/1 Running 0 2m

nebula-metad-2 1/1 Running 0 2m

nebula-storaged-0 1/1 Running 0 2m

nebula-storaged-1 1/1 Running 0 2m

nebula-storaged-2 1/1 Running 0 2m

$ kubectl get pods -l app.kubernetes.io/cluster=nebula -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

 1 vesoft/nebula-graphd:v3.6.0

 1 vesoft/nebula-metad:v3.6.0

 3 vesoft/nebula-storaged:v3.6.0

kubectl logs <pod-name> -n <namespace>

kubectl describe nebulaclusters <cluster-name> -n <namespace>

Last update: December 14, 2023

17.4.1 Deployment

- 726/804 - 2023 Vesoft Inc.

Delete a NebulaGraph cluster

This topic explains how to delete a NebulaGraph cluster created using NebulaGraph Operator.

USAGE LIMITATIONS

Deletion is only supported for NebulaGraph clusters created with the NebulaGraph Operator.

You cannot delete a NebulaGraph cluster that has deletion protection enabled. For more information, see Configure deletion

protection.

DELETE A NEBULAGRAPH CLUSTER USING KUBECTL

View all created clusters.

Example output:

Delete a cluster. For example, run the following command to delete a cluster named nebula2 :

Example output:

Confirm the deletion.

Example output:

DELETE A NEBULAGRAPH CLUSTER USING HELM

View all Helm releases.

Example output:

View detailed information about a Helm release. For example, to view the cluster information for a Helm release named nebula :

Example output:

•

•

1.

kubectl get nc --all-namespaces

NAMESPACE NAME READY GRAPHD-DESIRED GRAPHD-READY METAD-DESIRED METAD-READY STORAGED-DESIRED STORAGED-READY AGE

default nebula True 2 2 3 3 3 3 38h

nebula nebula2 True 1 1 1 1 1 1 2m7s

2.

kubectl delete nc nebula2 -n nebula

nebulacluster.nebula-graph.io "nebula2" deleted

3.

kubectl get nc nebula2 -n nebula

No resources found in nebula namespace.

1.

helm list --all-namespaces

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

nebula default 1 2023-11-06 20:16:07.913136377 +0800 CST deployed nebula-cluster-1.7.1 1.7.1

nebula-operator nebula-operator-system 3 2023-11-06 12:06:24.742397418 +0800 CST deployed nebula-operator-1.7.1 1.7.1

2.

helm get values nebula -n default

USER-SUPPLIED VALUES:

imagePullSecrets:

- name: secret_for_pull_image

nameOverride: nebula # The cluster name

nebula:

 graphd:

 image: reg.vesoft-inc.com/xx

 metad:

 image: reg.vesoft-inc.com/xx

 licenseManagerURL: xxx:9119

 storageClassName: local-sc

 storaged:

 image: reg.vesoft-inc.com/xx

 version: v1.8.0 # The cluster version

17.4.1 Deployment

- 727/804 - 2023 Vesoft Inc.

Uninstall a Helm release. For example, to uninstall a Helm release named nebula :

Example output:

Once the Helm release is uninstalled, NebulaGraph Operator will automatically remove all K8s resources associated with that

release.

Verify that the cluster resources are removed.

Example output:

3.

helm uninstall nebula -n default

release "nebula" uninstalled

4.

kubectl get nc nebula -n default

No resources found in default namespace.

Last update: March 6, 2024

17.4.1 Deployment

- 728/804 - 2023 Vesoft Inc.

17.4.2 Customize the configuration of the NebulaGraph cluster

The Meta, Storage, and Graph services each have their default configurations within the NebulaGraph cluster. NebulaGraph

Operator allows for the customization of these cluster service configurations. This topic describes how to update the settings of

the NebulaGraph cluster.

Configuring the parameters of the NebulaGraph cluster via Helm isn't currently supported.

Prerequisites

A cluster is created using NebulaGraph Operator. For details, see Create a NebulaGraph Cluster.

Configuration method

You can update the configurations of cluster services by customizing parameters through spec.<metad|graphd|storaged>.config .

NebulaGraph Operator loads the configurations from config into the corresponding service's ConfigMap, which is then mounted

into the service's configuration file directory (/usr/local/nebula/etc/) at the time of the service launch.

The structure of config is as follows:

For instance, when updating the Graph service's enable_authorize parameter settings, the spec.graphd.config parameter can be

specified at the time of cluster creation, or during cluster runtime.

If you need to configure config for the Meta and Storage services, add corresponding configuration items to spec.metad.config and

spec.storaged.config .

Configurable parameters

For more detailed information on the parameters that can be set under the config field, see the following:

Meta Service Configuration Parameters

Storage Service Configuration Parameters

Graph Service Configuration Parameters

Parameter updates & Pod restart rules

Configuration parameters for cluster services fall into two categories: those which require a service restart for any updates; and

those which can be dynamically updated during service runtime. For the latter type, the updates will not be saved; subsequent to

a service restart, configurations will revert to the state as shown in the configuration file.

Regarding if the configuration parameters support dynamic updates during service runtime, please verify the information within

the Whether supports runtime dynamic modifications column on each of the service configuration parameter detail pages

linked above or see Dynamic runtime flags.

Note

Config map[string]string `json:"config,omitempty"`

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

 namespace: default

spec:

 graphd:

 ...

 config: // Custom-defined parameters for the Graph service.

 "enable_authorize": "true" // Enable authorization. Default value is false.

...

•

•

•

17.4.2 Customize the configuration of the NebulaGraph cluster

- 729/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.8.0/doc/user/custom_config.md#dynamic-runtime-flags

During the update of cluster service configurations, keep the following points in mind:

If the updated parameters under config all allow for dynamic runtime updates, a service Pod restart will not be triggered

and the configuration parameter updates will not be saved.

If the updated parameters under config include one or more that don’t allow for dynamic runtime updates, a service Pod

restart will be triggered, but only updates to those parameters that don’t allow for dynamic updates will be saved.

If you wish to modify the parameter settings during cluster runtime without triggering a Pod restart, make sure that all the

parameters support dynamic updates during runtime.

Customize port configuration

The following example demonstrates how to customize the port configurations for the Meta, Storage, and Graph services.

You can add port and ws_http_port parameters to the config field in order to set custom ports. For detailed information regarding

these two parameters, see the networking configuration sections at Meta Service Configuration Parameters, Storage Service

Configuration Parameters, Graph Service Configuration Parameters.

•

•

Note

17.4.2 Customize the configuration of the NebulaGraph cluster

- 730/804 - 2023 Vesoft Inc.

After customizing the port and ws_http_port parameter settings, a Pod restart is triggered and then the updated settings take effect

after the restart.

Once the cluster is started, it is not recommended to modify the port parameter.

Note

•

•

17.4.2 Customize the configuration of the NebulaGraph cluster

- 731/804 - 2023 Vesoft Inc.

Modify the cluster configuration file.

Open the cluster configuration file.

Modify the configuration file as follows.

Add the config field to the graphd , metad , and storaged sections to customize the port configurations for the Graph, Meta, and Storage

services, respectively.

Save the changes.

Changes will be saved automatically after saving the file.

Press Esc to enter command mode.

Enter :wq to save and exit.

1.

a.

kubectl edit nc nebula

b.

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

 namespace: default

spec:

 graphd:

 config: // Custom port configuration for the Graph service.

 port: "3669"

 ws_http_port: "8080"

 resources:

 requests:

 cpu: "200m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 1

 image: vesoft/nebula-graphd

 version: v3.6.0

 metad:

 config: // Custom port configuration for the Meta service.

 ws_http_port: 8081

 resources:

 requests:

 cpu: "300m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 1

 image: vesoft/nebula-metad

 version: v3.6.0

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-path

 storaged:

 config: // Custom port configuration for the Storage service.

 ws_http_port: 8082

 resources:

 requests:

 cpu: "300m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 1

 image: vesoft/nebula-storaged

 version: v3.6.0

 dataVolumeClaims:

 - resources:

 requests:

 storage: 2Gi

 storageClassName: local-path

 enableAutoBalance: true

 reference:

 name: statefulsets.apps

 version: v1

 schedulerName: default-scheduler

 imagePullPolicy: IfNotPresent

 imagePullSecrets:

 - name: nebula-image

 enablePVReclaim: true

 topologySpreadConstraints:

 - topologyKey: kubernetes.io/hostname

 whenUnsatisfiable: "ScheduleAnyway"

2.

a.

b.

17.4.2 Customize the configuration of the NebulaGraph cluster

- 732/804 - 2023 Vesoft Inc.

Validate that the configurations have taken effect.

Example output:

As can be noticed, the Graph service's RPC daemon port is changed to 3669 (default 9669), the HTTP port to 8080 (default 19669);

the Meta service's HTTP port is changed to 8081 (default 19559); the Storage service's HTTP port is changed to 8082 (default 19779).

3.

kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nebula-graphd-headless ClusterIP None <none> 3669/TCP,8080/TCP 10m

nebula-graphd-svc ClusterIP 10.102.13.115 <none> 3669/TCP,8080/TCP 10m

nebula-metad-headless ClusterIP None <none> 9559/TCP,8081/TCP 11m

nebula-storaged-headless ClusterIP None <none> 9779/TCP,8082/TCP,9778/TCP 11m

Last update: March 6, 2024

17.4.2 Customize the configuration of the NebulaGraph cluster

- 733/804 - 2023 Vesoft Inc.

17.4.3 Storage management

Dynamically expand persistent volumes

In a Kubernetes environment, NebulaGraph's data is stored on Persistent Volumes (PVs). Dynamic volume expansion refers to

increasing the capacity of a volume without stopping the service, enabling NebulaGraph to accommodate growing data. This

topic explains how to dynamically expand the PV for NebulaGraph services in a Kubernetes environment.

After the cluster is created, you cannot dynamically increase the number of PVs while the cluster is running.

The method described in this topic is only for online volume expansion and does not support volume reduction.

BACKGROUND

In Kubernetes, a StorageClass is a resource that defines a particular storage type. It describes a class of storage, including its

provisioner, parameters, and other details. When creating a PersistentVolumeClaim (PVC) and specifying a StorageClass,

Kubernetes automatically creates a corresponding PV. The principle of dynamic volume expansion is to edit the PVC and increase

the volume's capacity. Kubernetes will then automatically expand the capacity of the PV associated with this PVC based on the

specified storageClassName in the PVC. During this process, new PVs are not created; the size of the existing PV is changed. Only

dynamic storage volumes, typically those associated with a storageClassName , support dynamic volume expansion. Additionally, the

allowVolumeExpansion field in the StorageClass must be set to true . For more details, see the Kubernetes documentation on

expanding Persistent Volume Claims.

In NebulaGraph Operator, you cannot directly edit PVC because Operator automatically creates PVC based on the configuration

in the spec.<metad|storaged>.dataVolumeClaim of the Nebula Graph cluster. Therefore, you need to modify the cluster's configuration to

update the PVC and trigger dynamic online volume expansion for the PV.

PREREQUISITES

Kubernetes version is equal to or greater than 1.18.

A StorageClass has been created in the Kubernetes environment. For details, see Expanding Persistent Volumes Claims.

Ensure the allowVolumeExpansion field in the StorageClass is set to true .

Make sure that the provisioner configured in the StorageClass supports dynamic expansion.

A NebulaGraph cluster is created in Kubernetes. For specific steps, see Create a NebulaGraph cluster.

NebulaGraph cluster Pods are in running status.

Note

•

•

•

•

•

•

•

•

17.4.3 Storage management

- 734/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims

ONLINE VOLUME EXPANSION EXAMPLE

In the following example, we assume that the StorageClass is named ebs-sc and the NebulaGraph cluster is named nebula . We will

demonstrate how to dynamically expand the PV for the Storage service.

Check the status of the Storage service Pod:

Example output:

Check the PVC and PV information for the Storage service:

Example output:

Example output:

Assuming all the above-mentioned prerequisites are met, use the following command to request an expansion of the PV for the

Storage service to 10Gi:

Example output:

After waiting for about a minute, check the expanded PVC and PV information:

Example output:

Example output:

As you can see, both the PVC and PV capacity have been expanded to 10Gi.

1.

kubectl get pod

nebula-storaged-0 1/1 Running 0 43h

2.

View PVC

kubectl get pvc

storaged-data-nebula-storaged-0 Bound pvc-36ca3871-9265-460f-b812-7e73a718xxxx 5Gi RWO ebs-sc 43h

View PV and confirm that the capacity of the PV is 5Gi

kubectl get pv

pvc-36ca3871-9265-460f-b812-xxx 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-0 ebs-sc 43h

3.

kubectl patch nc nebula --type='merge' --patch '{"spec": {"storaged": {"dataVolumeClaims":[{"resources": {"requests": {"storage": "10Gi"}}, "storageClassName": "ebs-sc"}]}}}'

nebulacluster.apps.nebula-graph.io/nebula patched

4.

kubectl get pvc

storaged-data-nebula-storaged-0 Bound pvc-36ca3871-9265-460f-b812-7e73a718xxxx 10Gi RWO ebs-sc 43h

kubectl get pv

pvc-36ca3871-9265-460f-b812-xxx 10Gi RWO Delete Bound default/storaged-data-nebula-storaged-0 ebs-sc 43h

Last update: November 15, 2023

17.4.3 Storage management

- 735/804 - 2023 Vesoft Inc.

Use Local Persistent Volumes in a NebulaGraph cluster

Local Persistent Volumes, abbreviated as Local PVs in K8s store container data directly using the node's local disk directory.

Compared with network storage, Local Persistent Volumes provide higher IOPS and lower read and write latency, which is

suitable for data-intensive applications. This topic introduces how to use Local PVs in Google Kubernetes Engine (GKE) and

Amazon Elastic Kubernetes Service (EKS) clusters, and how to enable automatic failover for Local PVs in the cloud.

While using Local Persistent Volumes can enhance performance, it's essential to note that, unlike network storage, local storage

does not support automatic backup. In the event of a node failure, all data in local storage may be lost. Therefore, the utilization

of Local Persistent Volumes involves a trade-off between service availability, data persistence, and flexibility.

PRINCIPLES

NebulaGraph Operator implements a Storage Volume Provisioner interface to automatically create and delete PV objects.

Utilizing the provisioner, you can dynamically generate Local PVs as required. Based on the PVC and StorageClass specified in

the cluster configuration file, NebulaGraph Operator automatically generates PVCs and associates them with their respective

Local PVs.

When a Local PV is initiated by the provisioner interface, the provisioner controller generates a local type PV and configures the

nodeAffinity field. This configuration ensures that Pods using the local type PV are scheduled onto specific nodes. Conversely,

when a Local PV is deleted, the provisioner controller eliminates the local type PV object and purges the node's storage

resources.

PREREQUISITES

NebulaGraph Operator is installed. For details, see Install NebulaGraph Operator.

17.4.3 Storage management

- 736/804 - 2023 Vesoft Inc.

https://cloud.google.com/kubernetes-engine?hl=en
https://aws.amazon.com/eks/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/#background

STEPS

The resources in the following examples are all created in the default namespace.

17.4.3 Storage management

- 737/804 - 2023 Vesoft Inc.

Create a node pool with local SSDs if not existing

For information about the parameters to create a node pool with local SSDs, see Create a node pool with Local SSD.

Format and mount the local SSDs using a DaemonSet.

Download the gke-daemonset-raid-disks.yaml file.

Deploy the RAID disks DaemonSet. The DaemonSet sets a RAID 0 array on all Local SSD disks and formats the device to an ext4

filesystem.

Deploy the Local PV provisioner.

Download the local-pv-provisioner.yaml file.

Run the provisioner.

In the NebulaGraph cluster configuration file, specify spec.storaged.dataVolumeClaims or spec.metad.dataVolumeClaim , and the StorageClass

needs to be configured as local-nvme . For more information about cluster configurations, see Create a NebulaGraph cluster.

After the NebulaGraph is deployed, the Local PVs are automatically created.

View the PV list.

Return:

View the detailed information of the PV.

Return:

Create a node pool with Instance Store if not existing.

For more information about parameters to cluster node pools, see Creating a managed node group.

Format and mount the local SSDs using a DaemonSet.

Download the eks-daemonset-raid-disks.yaml file.

Based on the node type created in step 1, modify the value of the nodeSelector.node.kubernetes.io/instance-type field in the eks-daemonset-

raid-disks.yaml file as needed.

Install nvme-cli.

For Ubuntu and Debian systems

For CentOS and RHEL systems

Deploy the RAID disk DaemonSet. The DaemonSet sets up a RAID 0 array on all local SSD disks and formats the devices as an

ext4 file system.

Deploy the Local PV provisioner.

Download the local-pv-provisioner.yaml file.

Run the provisioner.

In the NebulaGraph cluster configuration file, specify spec.storaged.dataVolumeClaims or spec.metad.dataVolumeClaim , and the StorageClass

needs to be configured as local-nvme . For more information about cluster configurations, see Create a NebulaGraph cluster.

View the PV list.

Return:

View the detailed information of the PV.

Return:

Use Local PV on GKE Use Local PV on EKS

1.

gcloud container node-pools create "pool-1" --cluster "gke-1" --region us-central1 --node-version "1.27.10-gke.1055000" --machine-type "n2-standard-2" --local-nvme-ssd-block count=2 --max-

surge-upgrade 1 --max-unavailable-upgrade 0 --num-nodes 1 --enable-autoscaling --min-nodes 1 --max-nodes 2

2.

a.

b.

kubectl apply -f gke-daemonset-raid-disks.yaml

3.

a.

b.

kubectl apply -f local-pv-provisioner.yaml

4.

Partial configuration of the NebulaGraph cluster

...

metad:

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-nvme

storaged:

 dataVolumeClaims:

 - resources:

 requests:

 storage: 2Gi

 storageClassName: local-nvme

...

5.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-01be9b75-9c50-4532-8695-08e11b489718 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-0 local-nvme 3m35s

pvc-09de8eb1-1225-4025-b91b-fbc0bcce670f 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-1 local-nvme 3m35s

pvc-4b2a9ffb-9000-4998-a7bb-edb825c872cb 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-2 local-nvme 3m35s

...

6.

kubectl get pv pvc-01be9b75-9c50-4532-8695-08e11b489718 -o yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 annotations:

 local.pv.provisioner/selected-node: gke-snap-test-snap-test-591403a8-xdfc

 nebula-graph.io/pod-name: nebula-storaged-0

 pv.kubernetes.io/provisioned-by: nebula-cloud.io/local-pv

 creationTimestamp: "2024-03-05T06:12:32Z"

 finalizers:

 - kubernetes.io/pv-protection

 labels:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: storaged

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 name: pvc-01be9b75-9c50-4532-8695-08e11b489718

 resourceVersion: "9999469"

 uid: ee28a4da-6026-49ac-819b-2075154b4724

spec:

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 5Gi

 claimRef:

 apiVersion: v1

 kind: PersistentVolumeClaim

 name: storaged-data-nebula-storaged-0

 namespace: default

 resourceVersion: "9996541"

 uid: 01be9b75-9c50-4532-8695-08e11b489718

 local:

 fsType: ext4

 path: /mnt/disks/raid0

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - gke-snap-test-snap-test-591403a8-xdfc

 persistentVolumeReclaimPolicy: Delete

 storageClassName: local-nvme

 volumeMode: Filesystem

status:

 phase: Bound

1.

eksctl create nodegroup --instance-types m5ad.2xlarge --nodes 3 --cluster eks-1

2.

a.

b.

 spec:

 nodeSelector:

 node.kubernetes.io/instance-type: "m5ad.2xlarge"

c.

•

sudo apt-get update

sudo apt-get install -y nvme-cli

•

sudo yum install -y nvme-cli

d.

kubectl apply -f gke-daemonset-raid-disks.yaml

3.

a.

b.

kubectl apply -f local-pv-provisioner.yaml

4.

Partial configuration of the NebulaGraph cluster

metad:

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: local-nvme

storaged:

 dataVolumeClaims:

 - resources:

 requests:

 storage: 2Gi

 storageClassName: local-nvme

5.

kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-290c15cc-a302-4463-a591-84b7217a6cd2 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-0 local-nvme 3m40s

pvc-fbb3167f-f556-4a16-ae0e-171aed0ac954 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-1 local-nvme 3m40s

pvc-6c7cfe80-0134-4573-b93e-9b259c6fcd63 5Gi RWO Delete Bound default/storaged-data-nebula-storaged-2 local-nvme 3m40s

...

6.

kubectl get pv pvc-290c15cc-a302-4463-a591-84b7217a6cd2 -o yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 annotations:

 local.pv.provisioner/selected-node: ip-192-168-77-60.ec2.internal

 nebula-graph.io/pod-name: nebula-storaged-0

 pv.kubernetes.io/provisioned-by: nebula-cloud.io/local-pv

 creationTimestamp: "2024-03-04T07:51:32Z"

 finalizers:

 - kubernetes.io/pv-protection

 labels:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: storaged

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 name: pvc-290c15cc-a302-4463-a591-84b7217a6cd2

 resourceVersion: "7932689"

 uid: 66c0a2d3-2914-43ad-93b5-6d84fb62acef

spec:

 accessModes:

 - ReadWriteOnce

 capacity:

 storage: 5Gi

 claimRef:

 apiVersion: v1

 kind: PersistentVolumeClaim

 name: storaged-data-nebula-storaged-0

 namespace: default

 resourceVersion: "7932688"

 uid: 8ecb5d96-004b-4672-bac4-1355ae15eae4

 local:

 fsType: ext4

 path: /mnt/disks/raid0

 nodeAffinity:

 required:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/hostname

 operator: In

 values:

 - ip-192-168-77-60.ec2.internal

 persistentVolumeReclaimPolicy: Delete

 storageClassName: local-nvme

 volumeMode: Filesystem

status:

 phase: Bound

17.4.3 Storage management

- 738/804 - 2023 Vesoft Inc.

https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/local-ssd-raw#1st-or-2nd-generation_1
https://raw.githubusercontent.com/vesoft-inc/nebula-operator/v1.8.0/config/samples/raid-disks/gke-daemonset-raid-disks.yaml
https://raw.githubusercontent.com/vesoft-inc/nebula-operator/v1.8.0/config/samples/local-pv-provisioner.yaml
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/add-instance-store-volumes.html
https://docs.aws.amazon.com/eks/latest/userguide/create-managed-node-group.html
https://raw.githubusercontent.com/vesoft-inc/nebula-operator/v1.8.0/config/samples/raid-disks/eks-daemonset-raid-disks.yaml
https://raw.githubusercontent.com/vesoft-inc/nebula-operator/v1.8.0/config/samples/local-pv-provisioner.yaml

FAILOVER FOR LOCAL PERSISTENT VOLUMES IN THE CLOUD

When using network storage (e.g., AWS EBS, Google Cloud Persistent Disk, Azure Disk Storage, Ceph, NFS, etc.) as a PV, the

storage resource is independent of any particular node. Therefore, the storage resource can be mounted and used by Pods

regardless of the node to which the Pods are scheduled. However, when using a local storage disk as a PV, the storage resource

can only be used by Pods on a specific node due to nodeAffinity.

The Storage service of NebulaGraph supports data redundancy, which allows you to set multiple odd-numbered partition

replicas. When a node fails, the associated partition is automatically transferred to a healthy node. However, Storage Pods using

Local Persistent Volumes cannot run on other nodes due to the node affinity setting and must wait for the node to recover. To run

on another node, the Pods must be unbound from the associated Local Persistent Volume.

NebulaGraph Operator supports automatic failover in the event of a node failure while using Local Persistent Volumes in the

cloud for elastic scaling. This is achieved by setting spec.enableAutoFailover to true in the cluster configuration file, which

automatically unbinds the Pods from the Local Persistent Volume, allowing the Pods to run on another node.

Example configuration:

...

spec:

 # Enable automatic failover for Local PV.

 enableAutoFailover: true

 # The time to wait for the Storage service to be in the `OFFLINE` status

 # before automatic failover.

 # The default value is 5 minutes.

 # If the Storage service recovers to the `ONLINE` status during this period,

 # failover will not be triggered.

 failoverPeriod: "2m"

 ...

Last update: March 6, 2024

17.4.3 Storage management

- 739/804 - 2023 Vesoft Inc.

https://kubernetes.io/blog/2018/04/13/local-persistent-volumes-beta/#creating-a-local-persistent-volume

Reclaim PVs

NebulaGraph Operator uses PVs (Persistent Volumes) and PVCs (Persistent Volume Claims) to store persistent data. If you

accidentally deletes a NebulaGraph cluster, by default, PV and PVC objects and the relevant data will be retained to ensure data

security.

You can also define the automatic deletion of PVCs to release data by setting the parameter spec.enablePVReclaim to true in the

configuration file of the cluster instance. As for whether PV will be deleted automatically after PVC is deleted, you need to

customize the PV reclaim policy. See reclaimPolicy in StorageClass and PV Reclaiming for details.

PREREQUISITES

A NebulaGraph cluster is created in Kubernetes. For specific steps, see Create a NebulaGraph cluster.

17.4.3 Storage management

- 740/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/concepts/storage/storage-classes/#reclaim-policy
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming

STEPS

The following example uses a cluster named nebula and the cluster's configuration file named nebula_cluster.yaml to show how to

set enablePVReclaim :

17.4.3 Storage management

- 741/804 - 2023 Vesoft Inc.

Run the following command to edit the nebula cluster's configuration file.

Add enablePVReclaim and set its value to true under spec .

Run kubectl apply -f nebula_cluster.yaml to push your configuration changes to the cluster.

After setting enablePVReclaim to true , the PVCs of the cluster will be deleted automatically after the cluster is deleted. If you want

to delete the PVs, you need to set the reclaim policy of the PVs to Delete .

1.

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2.

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

spec:

 enablePVReclaim: true //Set its value to true.

 graphd:

 image: vesoft/nebula-graphd

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

 imagePullPolicy: IfNotPresent

 metad:

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 image: vesoft/nebula-metad

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

 nodeSelector:

 nebula: cloud

 reference:

 name: statefulsets.apps

 version: v1

 schedulerName: default-scheduler

 storaged:

 dataVolumeClaims:

 - resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 - resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 image: vesoft/nebula-storaged

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 replicas: 3

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.6.0

...

3.

17.4.3 Storage management

- 742/804 - 2023 Vesoft Inc.

Last update: November 15, 2023

17.4.3 Storage management

- 743/804 - 2023 Vesoft Inc.

17.4.4 Manage cluster logs

Running logs of NebulaGraph cluster services (graphd, metad, storaged) are generated and stored in the /usr/local/nebula/logs

directory of each service container by default.

View logs

To view the running logs of a NebulaGraph cluster, you can use the kubectl logs command.

For example, to view the running logs of the Storage service:

Clean logs

Running logs generated by cluster services during runtime will occupy disk space. To avoid occupying too much disk space, the

NebulaGraph Operator uses a sidecar container to periodically clean and archive logs.

To facilitate log collection and management, each NebulaGraph service deploys a sidecar container responsible for collecting

logs generated by the service container and sending them to the specified log disk. The sidecar container automatically cleans

and archives logs using the logrotate tool.

In the YAML configuration file of the cluster instance, set spec.logRotate to enable log rotation and set timestamp_in_logfile_name to

false to disable the timestamp in the log file name to implement log rotation for the target service. The timestamp_in_logfile_name

parameter is configured under the spec.<graphd|metad|storaged>.config field. By default, the log rotation feature is turned off. Here is

an example of enabling log rotation for all services:

Collect logs

If you don't want to mount additional log disks to back up log files, or if you want to collect logs and send them to a log center

using services like fluent-bit, you can configure logs to be output to standard error. The Operator uses the glog tool to log to

standard error output.

Currently, NebulaGraph Operator only collects standard error logs.

// View the name of the Storage service Pod, nebula-storaged-0.

$ kubectl get pods -l app.kubernetes.io/component=storaged

NAME READY STATUS RESTARTS AGE

nebula-storaged-0 1/1 Running 0 45h

...

// Enter the container storaged of the Storage service.

$ kubectl exec -it nebula-storaged-0 -c storaged -- /bin/bash

// View the running logs of the Storage service.

$ cd /usr/local/nebula/logs

...

spec:

 graphd:

 config:

 # Whether to include a timestamp in the log file name.

 # You must set this parameter to false to enable log rotation.

 # It is set to true by default.

 "timestamp_in_logfile_name": "false"

 metad:

 config:

 "timestamp_in_logfile_name": "false"

 storaged:

 config:

 "timestamp_in_logfile_name": "false"

 logRotate: # Log rotation configuration

 # The number of times a log file is rotated before being deleted.

 # The default value is 5, and 0 means the log file will not be rotated before being deleted.

 rotate: 5

 # The log file is rotated only if it grows larger than the specified size. The default value is 200M.

 size: "200M"

Note

17.4.4 Manage cluster logs

- 744/804 - 2023 Vesoft Inc.

https://linux.die.net/man/8/logrotate
https://fluentbit.io/
https://github.com/google/glog

In the YAML configuration file of the cluster instance, you can configure logging to standard error output in the config and env

fields of each service.

...

spec:

 graphd:

 config:

 # Whether to redirect standard error to a separate output file. The default value is false, which means it is not redirected.

 redirect_stdout: "false"

 # The severity level of log content: INFO, WARNING, ERROR, and FATAL. The corresponding values are 0, 1, 2, and 3.

 stderrthreshold: "0"

 env:

 - name: GLOG_logtostderr # Write log to standard error output instead of a separate file.

 value: "1" # 1 represents writing to standard error output, and 0 represents writing to a file.

 image: vesoft/nebula-graphd

 replicas: 1

 resources:

 requests:

 cpu: 500m

 memory: 500Mi

 service:

 externalTrafficPolicy: Local

 type: NodePort

 version: v3.6.0

 metad:

 config:

 redirect_stdout: "false"

 stderrthreshold: "0"

 dataVolumeClaim:

 resources:

 requests:

 storage: 1Gi

 storageClassName: ebs-sc

 env:

 - name: GLOG_logtostderr

 value: "1"

 image: vesoft/nebula-metad

 ...

Last update: November 15, 2023

17.4.4 Manage cluster logs

- 745/804 - 2023 Vesoft Inc.

17.4.5 Security

Enable admission control

Kubernetes Admission Control is a security mechanism running as a webhook at runtime. It intercepts and modifies requests to

ensure the cluster's security. Admission webhooks involve two main operations: validation and mutation. NebulaGraph Operator

supports only validation operations and provides some default admission control rules. This topic describes NebulaGraph

Operator's default admission control rules and how to enable admission control.

PREREQUISITES

A NebulaGraph cluster is created with NebulaGrpah Operator. For detailed steps, see Create a NebulaGraph cluster.

ADMISSION CONTROL RULES

Kubernetes admission control allows you to insert custom logic or policies before Kubernetes API Server processes requests. This

mechanism can be used to implement various security policies, such as restricting a Pod's resource consumption or limiting its

access permissions. NebulaGraph Operator supports validation operations, which means it validates and intercepts requests

without making changes.

After admission control is enabled, NebulaGraph Operator implements the following admission validation control rules by

default. You cannot disable these rules:

Forbid adding additional PVs to Storage service via dataVolumeClaims .

Forbid shrinking the capacity of all service's PVCs, but allow expansion.

Forbid any secondary operation during Storage service scale-in/scale-out.

After admission control is enabled, NebulaGraph Operator allows you to add annotations to implement the following admission

validation control rules:

Clusters with the ha-mode annotation must have the minimum number of replicas as required by high availability mode:

For Graph service: At least 2 replicas are required.

For Meta service: At least 3 replicas are required.

For Storage service: At least 3 replicas are required.

High availability mode refers to the high availability of NebulaGraph cluster services. Storage and Meta services are stateful, and

the number of replicas should be an odd number due to Raft protocol requirements for data consistency. In high availability mode,

at least 3 Storage services and 3 Meta services are required. Graph services are stateless, so their number of replicas can be even

but should be at least 2.

Clusters with the delete-protection annotation cannot be deleted. For more information, see Configure deletion protection.

TLS CERTIFICATES FOR ADMISSION WEBHOOKS

To ensure secure communication and data integrity between the K8s API server and the admission webhook, this communication

is done over HTTPS by default. This means that TLS certificates are required for the admission webhook. cert-manager is a

Kubernetes certificate management controller that automates the issuance and renewal of certificates. NebulaGraph Operator

uses cert-manager to manage certificates.

Once cert-manager is installed and admission control is enabled, NebulaGraph Operator will automatically create an Issuer for

issuing the necessary certificate for the admission webhook, and a Certificate for storing the issued certificate. The issued

certificate is stored in the nebula-operator-webhook-secret Secret.

•

•

•

•

•

•

•

Note

•

17.4.5 Security

- 746/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://cert-manager.io/docs/
https://cert-manager.io/docs/concepts/issuer/
https://cert-manager.io/docs/concepts/certificate/

STEPS OF ENABLING ADMISSION CONTROL

Install cert-manager.

It is suggested to deploy the latest version of cert-manager. For details, see the official cert-manager documentation.

Modify the NebulaGraph Operator configuration file to enable admission control. Admission control is disabled by default and

needs to be enabled manually.

nebula-operator is the name of the chart repository, and nebula-operator/nebula-operator is the chart name. If the chart's namespace is not

specified, it defaults to default .

View the certificate Secret for the admission webhook.

If the output includes certificate contents, it means that the admission webhook's certificate has been successfully created.

Verify the control rules.

Verify preventing additional PVs from being added to Storage service.

Verify disallowing shrinking Storage service's PVC capacity.

Verify disallowing any secondary operation during Storage service scale-in.

Verify the minimum number of replicas in high availability mode.

Verify deletion protection. For more information, see Configure deletion protection.

1.

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.13.1/cert-manager.yaml

2.

Check the current configuration

helm show values nebula-operator/nebula-operator

Modify the configuration by setting `enableAdmissionWebhook` to `true`.

helm upgrade nebula-operator nebula-operator/nebula-operator --set enableAdmissionWebhook=true

Note

3.

kubectl get secret nebula-operator-webhook-secret -o yaml

4.

•

$ kubectl patch nc nebula --type='merge' --patch '{"spec": {"storaged": {"dataVolumeClaims":[{"resources": {"requests": {"storage": "2Gi"}}, "storageClassName": "local-path"},{"resources":

{"requests": {"storage": "3Gi"}}, "storageClassName": "fask-disks"}]}}}'

Error from server: admission webhook "nebulaclustervalidating.nebula-graph.io" deniedthe request: spec.storaged.dataVolumeClaims: Forbidden: storaged dataVolumeClaims is immutable

•

$ kubectl patch nc nebula --type='merge' --patch '{"spec": {"storaged": {"dataVolumeClaims":[{"resources": {"requests": {"storage": "1Gi"}}, "storageClassName": "fast-disks"}]}}}'

Error from server: admission webhook "nebulaclustervalidating.nebula-graph.io" denied the request: spec.storaged.dataVolumeClaims: Invalid value:

resource.Quantity{i:resource.int64Amount{value:1073741824, scale:0}, d:resource.infDecAmount{Dec:(*inf.Dec)(nil)}, s:"1Gi", Format:"BinarySI"}: data volume size can only be increased

•

$ kubectl patch nc nebula --type='merge' --patch '{"spec": {"storaged": {"replicas": 5}}}'

nebulacluster.apps.nebula-graph.io/nebula patched

$ kubectl patch nc nebula --type='merge' --patch '{"spec": {"storaged": {"replicas": 3}}}'

Error from server: admission webhook "nebulaclustervalidating.nebula-graph.io" denied the request: [spec.storaged: Forbidden: field is immutable while in ScaleOut phase,

spec.storaged.replicas: Invalid value: 3: field is immutable while not in Running phase]

•

Annotate the cluster to enable high availability mode.

$ kubectl annotate nc nebula nebula-graph.io/ha-mode=true

Verify the minimum number of the Graph service's replicas.

$ kubectl patch nc nebula --type='merge' --patch '{"spec": {"graphd": {"replicas":1}}}'

Error from server: admission webhook "nebulaclustervalidating.nebula-graph.io" denied the request: spec.graphd.replicas: Invalid value: 1: should be at least 2 in HA mode

•

Last update: March 6, 2024

17.4.5 Security

- 747/804 - 2023 Vesoft Inc.

https://cert-manager.io/docs/installation/

Configure deletion protection

NebulaGraph Operator supports deletion protection to prevent NebulaGraph clusters from being deleted by accident. This topic

describes how to configure deletion protection for a NebulaGraph cluster.

PREREQUISITES

A NebulaGraph cluster is created with NebulaGrpah Operator. For more information, see Create a NebulaGraph cluster.

Admission control is enabled on the NebulaGraph cluster. For more information, see Enable admission control.

ADD AN ANNOTATION TO ENABLE DELETION PROTECTION

Add the delete-protection annotation to the cluster.

The preceding command enables deletion protection for the nebula cluster in the nebula-test namespace.

VERIFY DELETION PROTECTION

To verify that deletion protection is enabled, run the following command:

The preceding command attempts to delete the nebula cluster in the nebula-test namespace.

Return:

REMOVE THE ANNOTATION TO DISABLE DELETION PROTECTION

Remove the delete-protection annotation from the cluster as follows:

The preceding command disables deletion protection for the nebula cluster in the nebula-test namespace.

•

•

kubectl annotate nc nebula -n nebula-test nebula-graph.io/delete-protection=true

kubectl delete nc nebula -n nebula-test

Error from server: admission webhook "nebulaclustervalidating.nebula-graph.io" denied the request: metadata.annotations[nebula-graph.io/delete-protection]: Forbidden: protected cluster

cannot be deleted

kubectl annotate nc nebula -n nebula-test nebula-graph.io/delete-protection-

Last update: March 6, 2024

17.4.5 Security

- 748/804 - 2023 Vesoft Inc.

17.4.6 HA and balancing

Self-healing

NebulaGraph Operator calls the interface provided by NebulaGraph clusters to dynamically sense cluster service status. Once an

exception is detected (for example, a component in a NebulaGraph cluster stops running), NebulaGraph Operator automatically

performs fault tolerance. This topic shows how Nebular Operator performs self-healing by simulating cluster failure of deleting

one Storage service Pod in a NebulaGraph cluster.

PREREQUISITES

Install NebulaGraph Operator

STEPS

Create a NebulaGraph cluster. For more information, see Create a NebulaGraph clusters.

Delete the Pod named <cluster_name>-storaged-2 after all pods are in the Running status.

<cluster_name> is the name of your NebulaGraph cluster.

NebulaGraph Operator automates the creation of the Pod named <cluster-name>-storaged-2 to perform self-healing.

Run the kubectl get pods command to check the status of the Pod <cluster-name>-storaged-2 .

When the status of <cluster-name>-storaged-2 is changed from ContainerCreating to Running , the self-healing is performed successfully.

1.

2.

kubectl delete pod <cluster-name>-storaged-2 --now

3.

...

nebula-cluster-storaged-1 1/1 Running 0 5d23h

nebula-cluster-storaged-2 0/1 ContainerCreating 0 1s

...

...

nebula-cluster-storaged-1 1/1 Running 0 5d23h

nebula-cluster-storaged-2 1/1 Running 0 4m2s

...

Last update: November 15, 2023

17.4.6 HA and balancing

- 749/804 - 2023 Vesoft Inc.

17.4.7 Advanced

Optimize leader transfer in rolling updates

NebulaGraph clusters use a distributed architecture to divide data into multiple logical partitions, which are typically evenly

distributed across different nodes. In distributed systems, there are usually multiple replicas of the same data. To ensure the

consistency of data across multiple replicas, NebulaGraph clusters use the Raft protocol to synchronize multiple partition

replicas. In the Raft protocol, each partition elects a leader replica, which is responsible for handling write requests, while

follower replicas handle read requests.

When a NebulaGraph cluster created by NebulaGraph Operator performs a rolling update, a storage node temporarily stops

providing services for the update. For an overview of rolling updates, see Performing a Rolling Update. If the node hosting the

leader replica stops providing services, it will result in the unavailability of read and write operations for that partition. To avoid

this situation, by default, NebulaGraph Operator transfers the leader replicas to other unaffected nodes during the rolling update

process of a NebulaGraph cluster. This way, when a storage node is being updated, the leader replicas on other nodes can

continue processing client requests, ensuring the read and write availability of the cluster.

The process of migrating all leader replicas from one storage node to the other nodes may take a long time. To better control the

rolling update duration, Operator provides a field called enableForceUpdate . When it is confirmed that there is no external access

traffic, you can set this field to true . This way, the leader replicas will not be transferred to other nodes, thereby speeding up the

rolling update process.

ROLLING UPDATE TRIGGER CONDITIONS

Operator triggers a rolling update of the NebulaGraph cluster under the following circumstances:

The version of the NebulaGraph cluster changes.

The configuration of the NebulaGraph cluster changes.

NebulaGraph cluster services are restarted.

SPECIFY A ROLLING UPDATE STRATEGY

In the YAML file for creating a cluster instance, add the spec.storaged.enableForceUpdate field and set it to true or false to control the

rolling update speed.

When enableForceUpdate is set to true , it means that the leader partition replicas are not transferred, thus speeding up the rolling

update process. Conversely, when set to false , it means that the leader replicas are transferred to other nodes to ensure the read

and write availability of the cluster. The default value is false .

When setting enableForceUpdate to true , make sure there is no traffic entering the cluster for read and write operations. This is because

this setting will force the cluster pods to be rebuilt, and during this process, data loss or client request failures may occur.

Configuration example:

•

•

•

Warning

...

spec:

...

 storaged:

 # When set to true,

 # it means that the leader partition replicas are not transferred,

 # but the cluster pods are rebuilt directly.

 enableForceUpdate: true

 ...

Last update: March 6, 2024

17.4.7 Advanced

- 750/804 - 2023 Vesoft Inc.

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/

Restart service Pods in a NebulaGraph cluster on K8s

Restarting NebulaGraph cluster service Pods is a feature in the Alpha version.

During routine maintenance, it might be necessary to restart a specific service Pod in the NebulaGraph cluster, for instance,

when the Pod's status is abnormal or to enforce a restart. Restarting a Pod essentially means restarting the service process. To

ensure high availability, NebulaGraph Operator supports gracefully restarting all Pods of the Graph, Meta, or Storage service

respectively and gracefully restarting an individual Pod of the Storage service.

PREREQUISITES

A NebulaGraph cluster is created in a K8s environment. For details, see Create a NebulaGraph cluster.

RESTART ALL PODS OF A CERTAIN SERVICE TYPE

To gracefully roll restart all Pods of a certain service type in the cluster, you can add an annotation (nebula-graph.io/restart-timestamp)

with the current time to the configuration of the StatefulSet controller of the corresponding service.

When NebulaGraph Operator detects that the StatefulSet controller of the corresponding service has the annotation nebula-

graph.io/restart-timestamp and its value is changed, it triggers the graceful rolling restart operation for all Pods of that service type

in the cluster.

In the following example, the annotation is added for all Graph services so that all Pods of these Graph services are restarted one

by one.

Note

17.4.7 Advanced

- 751/804 - 2023 Vesoft Inc.

Assume that the cluster name is nebula and the cluster resources are in the default namespace. Run the following command:

Check the name of the StatefulSet controller.

Sample output:

Get the current timestamp.

Example output:

Overwrite the timestamp annotation of the StatefulSet controller to trigger the graceful rolling restart operation.

Example output:

Observe the restart process.

Example output:

This above output shows the status of Graph service Pods during the restart process.

Verify that the StatefulSet controller annotation is updated.

Example output:

The above output indicates that the annotation of the StatefulSet controller has been updated, and all graph service Pods has

been restarted.

RESTART A SINGLE STORAGE SERVICE POD

To gracefully roll restart a single Storage service Pod, you can add an annotation (nebula-graph.io/restart-ordinal) with the value set

to the ordinal number of the Storage service Pod you want to restart. This triggers a graceful restart or state transition for that

specific Storage service Pod. The added annotation will be automatically removed after the Storage service Pod is restarted.

1.

kubectl get statefulset

NAME READY AGE

nebula-graphd 2/2 33s

nebula-metad 3/3 69s

nebula-storaged 3/3 69s

2.

date -u +%s

1700547115

3.

kubectl annotate statefulset nebula-graphd nebula-graph.io/restart-timestamp="1700547115" --overwrite

statefulset.apps/nebula-graphd annotate

4.

kubectl get pods -l app.kubernetes.io/cluster=nebula,app.kubernetes.io/component=graphd -w

NAME READY STATUS RESTARTS AGE

nebula-graphd-0 1/1 Running 0 9m37s

nebula-graphd-1 0/1 Running 0 17s

nebula-graphd-1 1/1 Running 0 20s

nebula-graphd-0 1/1 Terminating 0 9m40s

nebula-graphd-0 0/1 Terminating 0 9m41s

nebula-graphd-0 0/1 Terminating 0 9m42s

nebula-graphd-0 0/1 Terminating 0 9m42s

nebula-graphd-0 0/1 Terminating 0 9m42s

nebula-graphd-0 0/1 Pending 0 0s

nebula-graphd-0 0/1 Pending 0 0s

nebula-graphd-0 0/1 ContainerCreating 0 0s

nebula-graphd-0 0/1 Running 0 2s

5.

kubectl get statefulset nebula-graphd -o yaml | grep "nebula-graph.io/restart-timestamp"

nebula-graph.io/last-applied-configuration: '{"persistentVolumeClaimRetentionPolicy":{"whenDeleted":"Retain","whenScaled":"Retain"},"podManagementPolicy":"Parallel","replicas":

2,"revisionHistoryLimit":10,"selector":{"matchLabels":{"app.kubernetes.io/cluster":"nebula","app.kubernetes.io/component":"graphd","app.kubernetes.io/managed-by":"nebula-

operator","app.kubernetes.io/name":"nebula-graph"}},"serviceName":"nebula-graphd-headless","template":{"metadata":{"annotations":{"nebula-graph.io/cm-hash":"7c55c0e5ac74e85f","nebula-graph.io/

restart-timestamp":"1700547815"},"creationTimestamp":null,"labels":{"app.kubernetes.io/cluster":"nebula","app.kubernetes.io/component":"graphd","app.kubernetes.io/managed-by":"nebula-

operator","app.kubernetes.io/name":"nebula-graph"}},"spec":{"containers":[{"command":["/bin/sh","-ecx","exec

nebula-graph.io/restart-timestamp: "1700547115"

 nebula-graph.io/restart-timestamp: "1700547815"

17.4.7 Advanced

- 752/804 - 2023 Vesoft Inc.

In the following example, the annotation is added for the Pod with ordinal number 1 , indicating a graceful restart for the nebula-

storaged-1 Storage service Pod.

Assume that the cluster name is nebula , and the cluster resources are in the default namespace. Run the following commands:

Check the name of the StatefulSet controller.

Example output:

Get the ordinal number of the Storage service Pod.

Example output:

Add the annotation for the nebula-storaged-1 Pod to trigger a graceful restart for that specific Pod.

Example output:

Observe the restart process.

Example output:

The above output indicates that the nebula-storaged-1 Storage service Pod is successfully restarted.

After restarting a single Storage service Pod, the distribution of storage leader replicas may become unbalanced. You can execute

the BALANCE LEADER command to rebalance the distribution of leader replicas. For information about how to view the leader

distribution, see SHOW HOSTS .

1.

kubectl get statefulset

NAME READY AGE

nebula-graphd 2/2 33s

nebula-metad 3/3 69s

nebula-storaged 3/3 69s

2.

kubectl get pods -l app.kubernetes.io/cluster=nebula,app.kubernetes.io/component=storaged

NAME READY STATUS RESTARTS AGE

nebula-storaged-0 1/1 Running 0 13h

nebula-storaged-1 1/1 Running 0 13h

nebula-storaged-2 1/1 Running 0 13h

nebula-storaged-3 1/1 Running 0 13h

nebula-storaged-4 1/1 Running 0 13h

nebula-storaged-5 1/1 Running 0 13h

nebula-storaged-6 1/1 Running 0 13h

nebula-storaged-7 1/1 Running 0 13h

nebula-storaged-8 1/1 Running 0 13h

3.

kubectl annotate statefulset nebula-storaged nebula-graph.io/restart-ordinal="1"

statefulset.apps/nebula-storaged annotate

4.

kubectl get pods -l app.kubernetes.io/cluster=nebula,app.kubernetes.io/component=storaged -w

NAME READY STATUS RESTARTS AGE

nebula-storaged-0 1/1 Running 0 13h

nebula-storaged-1 1/1 Running 0 13h

nebula-storaged-2 1/1 Running 0 13h

nebula-storaged-3 1/1 Running 0 13h

nebula-storaged-4 1/1 Running 0 13h

nebula-storaged-5 1/1 Running 0 12h

nebula-storaged-6 1/1 Running 0 12h

nebula-storaged-7 1/1 Running 0 12h

nebula-storaged-8 1/1 Running 0 12h

nebula-storaged-1 1/1 Running 0 13h

nebula-storaged-1 1/1 Terminating 0 13h

nebula-storaged-1 0/1 Terminating 0 13h

nebula-storaged-1 0/1 Terminating 0 13h

nebula-storaged-1 0/1 Terminating 0 13h

nebula-storaged-1 0/1 Terminating 0 13h

nebula-storaged-1 0/1 Pending 0 0s

nebula-storaged-1 0/1 Pending 0 0s

nebula-storaged-1 0/1 ContainerCreating 0 0s

nebula-storaged-1 0/1 Running 0 1s

nebula-storaged-1 1/1 Running 0 10s

17.4.7 Advanced

- 753/804 - 2023 Vesoft Inc.

Last update: March 7, 2024

17.4.7 Advanced

- 754/804 - 2023 Vesoft Inc.

17.5 FAQ

17.5.1 Does NebulaGraph Operator support the v1.x version of NebulaGraph?

No, because the v1.x version of NebulaGraph does not support DNS, and NebulaGraph Operator requires the use of DNS.

17.5.2 Is cluster stability guaranteed if using local storage?

There is no guarantee. Using local storage means that the Pod is bound to a specific node, and NebulaGraph Operator does not

currently support failover in the event of a failure of the bound node.

17.5.3 How to ensure the stability of a cluster when scaling the cluster?

It is suggested to back up data in advance so that you can roll back data in case of failure.

17.5.4 Is the replica in the Operator docs the same as the replica in the NebulaGraph core docs?

They are different concepts. A replica in the Operator docs indicates a pod replica in K8s, while a replica in the core docs is a

replica of a NebulaGraph storage partition.

17.5.5 How to view the logs of each service in the NebulaGraph cluster?

To obtain the logs of each cluster service, you need to access the container and view the log files that are stored inside.

Steps to view the logs of each service in the NebulaGraph cluster:

To view the name of the pod where the container you want to access is located.

Replace <cluster-name> with the name of the cluster.

kubectl get pods -l app.kubernetes.io/cluster=<cluster-name>

To access the container within the pod, such as the nebula-graphd-0 container.

kubectl exec -it nebula-graphd-0 -- /bin/bash

To go to /usr/local/nebula/logs directory to view the logs.

cd /usr/local/nebula/logs

17.5 FAQ

- 755/804 - 2023 Vesoft Inc.

17.5.6 How to resolve the host not found:nebula-<metad|storaged|graphd>-0.nebula.<metad|storaged|graphd>-

headless.default.svc.cluster.local error?

This error is generally caused by a DNS resolution failure, and you need to check whether the cluster domain has been modified.

If the cluster domain has been modified, you need to modify the kubernetesClusterDomain field in the NebulaGraph Operator

configuration file accordingly. The steps for modifying the Operator configuration file are as follows:

View the Operator configuration file.

Modify the value of the kubernetesClusterDomain field to the updated cluster domain name.

is the namespace where Operator is located and is the updated domain name.

1.

[abby@master ~]$ helm show values nebula-operator/nebula-operator

image:

 nebulaOperator:

 image: vesoft/nebula-operator:v1.8.0

 imagePullPolicy: Always

 kubeRBACProxy:

 image: bitnami/kube-rbac-proxy:0.14.2

 imagePullPolicy: Always

 kubeScheduler:

 image: registry.k8s.io/kube-scheduler:v1.24.11

 imagePullPolicy: Always

imagePullSecrets: []

kubernetesClusterDomain: "" # The cluster domain name, and the default is cluster.local.

2.

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=<nebula-operator-system> --version=1.8.0 --set kubernetesClusterDomain=<cluster-domain>

Last update: November 15, 2023

17.5.6 How to resolve the host not found:nebula-<metad|storaged|graphd>-0.nebula.<metad|storaged|graphd>-headless.default.svc.cluster.local error?

- 756/804 - 2023 Vesoft Inc.

18. Graph computing

18.1 NebulaGraph Algorithm

NebulaGraph Algorithm (Algorithm) is a Spark application based on GraphX. It uses a complete algorithm tool to perform graph

computing on the data in the NebulaGraph database by submitting a Spark task. You can also programmatically use the

algorithm under the lib repository to perform graph computing on DataFrame.

18.1.1 Version compatibility

The correspondence between the NebulaGraph Algorithm release and the NebulaGraph core release is as follows.

18.1.2 Prerequisites

Before using the NebulaGraph Algorithm, users need to confirm the following information:

The NebulaGraph services have been deployed and started. For details, see NebulaGraph Installation.

The Spark version is 2.4.x.

The Scala version is 2.11.

(Optional) If users need to clone, compile, and package the latest Algorithm in Github, install Maven.

18.1.3 Limitations

Graph computing outputs vertex datasets, and the algorithm results are stored in DataFrames as the properties of vertices. You

can do further operations such as statistics and filtering according to your business requirements.

!!!

NebulaGraph NebulaGraph Algorithm

nightly 3.0-SNAPSHOT

3.0.0 ~ 3.4.x 3.x.0

2.6.x 2.6.x

2.5.0、2.5.1 2.5.0

2.0.0、2.0.1 2.1.0

•

•

•

•

Before Algorithm v3.1.0, when submitting the algorithm package directly, the data of the vertex ID must be an integer. That is, the vertex ID can be INT or String, but the data itself is an

integer.

18. Graph computing

- 757/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm
https://spark.apache.org/graphx/
https://maven.apache.org/download.cgi

18.1.4 Supported algorithms

The graph computing algorithms supported by NebulaGraph Algorithm are as follows.

18.1.4 Supported algorithms

- 758/804 - 2023 Vesoft Inc.

Algorithm Description Scenario Properties name Properties

type

PageRank The rank of

pages

Web page

ranking, key

node mining

pagerank double/

string

Louvain Louvain Community

mining,

hierarchical

clustering

louvain int/string

KCore K core Community

discovery,

financial risk

control

kcore int/string

LabelPropagation Label

propagation

Information

spreading,

advertising, and

community

discovery

lpa int/string

Hanp Label

propagation

advanced

Community

discovery,

recommendation

system

hanp int/string

ConnectedComponent Weakly

connected

component

Community

discovery, island

discovery

cc int/string

StronglyConnectedComponent Strongly

connected

component

Community

discovery

scc int/string

ShortestPath The shortest

path

Path planning,

network

planning

shortestpath string

TriangleCount Triangle

counting

Network

structure

analysis

trianglecount int/string

GraphTriangleCount Graph

triangle

counting

Network

structure and

tightness

analysis

count int

BetweennessCentrality Intermediate

centrality

Key node mining,

node influence

computing

betweenness double/

string

ClosenessCentrality Closeness

centrality

Key node mining,

node influence

computing

closeness double/

string

DegreeStatic Degree of

statistical

Graph structure

analysis

degree,inDegree,outDegree int/string

ClusteringCoefficient Aggregation

coefficient

Recommendation

system, telecom

fraud analysis

clustercoefficient double/

string

Jaccard jaccard string

18.1.4 Supported algorithms

- 759/804 - 2023 Vesoft Inc.

When writing the algorithm results into the NebulaGraph, make sure that the tag in the corresponding graph space has properties

names and data types corresponding to the table above.

18.1.5 Implementation methods

NebulaGraph Algorithm implements the graph calculating as follows:

Read the graph data of DataFrame from the NebulaGraph database using the NebulaGraph Spark Connector.

Transform the graph data of DataFrame to the GraphX graph.

Use graph algorithms provided by GraphX (such as PageRank) or self-implemented algorithms (such as Louvain).

For detailed implementation methods, see Scala file.

18.1.6 Get NebulaGraph Algorithm

Compile and package

Clone the repository nebula-algorithm .

Enter the directory nebula-algorithm .

Compile and package.

After the compilation, a similar file nebula-algorithm-3.x.x.jar is generated in the directory nebula-algorithm/target .

Download maven from the remote repository

Download address

Algorithm Description Scenario Properties name Properties

type

Jaccard

similarity

Similarity

computing,

recommendation

system

BFS Breadth-

First Search

Sequence

traversal,

shortest path

planning

bfs string

DFS Depth-First

Search

Sequence

traversal,

shortest path

planning

dfs string

Node2Vec - Graph

classification

node2vec string

Note

1.

2.

3.

1.

$ git clone -b v3.0.0 https://github.com/vesoft-inc/nebula-algorithm.git

2.

$ cd nebula-algorithm

3.

$ mvn clean package -Dgpg.skip -Dmaven.javadoc.skip=true -Dmaven.test.skip=true

18.1.5 Implementation methods

- 760/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/tree/master/nebula-algorithm/src/main/scala/com/vesoft/nebula/algorithm/lib
https://repo1.maven.org/maven2/com/vesoft/nebula-algorithm/

18.1.7 How to use

If the value of the properties contains Chinese characters, the encoding error may appear. Please add the following options when

submitting the Spark task:

Use algorithm interface (recommended)

The lib repository provides 10 common graph algorithms.

Add dependencies to the file pom.xml .

Use the algorithm (take PageRank as an example) by filling in parameters. For more examples, see example.

By default, the DataFrame that executes the algorithm sets the first column as the starting vertex, the second column as the

destination vertex, and the third column as the edge weights (not the rank in the NebulaGraph).

If your vertex IDs are Strings, see Pagerank Example for how to encoding and decoding them.

Submit the algorithm package directly

Set the Configuration file.

Note

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8

1.

<dependency>

 <groupId>com.vesoft</groupId>

 <artifactId>nebula-algorithm</artifactId>

 <version>3.0.0</version>

</dependency>

2.

Note

val prConfig = new PRConfig(5, 1.0)

val prResult = PageRankAlgo.apply(spark, data, prConfig, false)

1.

{

 # Configurations related to Spark

 spark: {

 app: {

 name: LPA

 # The number of partitions of Spark

 partitionNum:100

 }

 master:local

 }

 data: {

 # Data source. Optional values are nebula, csv, and json.

 source: csv

 # Data sink. The algorithm result will be written into this sink. Optional values are nebula, csv, and text.

 sink: nebula

 # Whether the algorithm has a weight.

 hasWeight: false

 }

 # Configurations related to NebulaGraph

 nebula: {

 # Data source. When NebulaGraph is the data source of the graph computing, the configuration of `nebula.read` is valid.

 read: {

 # The IP addresses and ports of all Meta services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".

 # To deploy NebulaGraph by using Docker Compose, fill in the port with which Docker Compose maps to the outside.

 # Check the status with `docker-compose ps`.

 metaAddress: "192.168.*.10:9559"

 # The name of the graph space in NebulaGraph.

 space: basketballplayer

 # Edge types in NebulaGraph. When there are multiple labels, the data of multiple edges will be merged.

 labels: ["serve"]

 # The property name of each edge type in NebulaGraph. This property will be used as the weight column of the algorithm. Make sure that it corresponds to the edge type.

18.1.7 How to use

- 761/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/tree/master/example/src/main/scala/com/vesoft/nebula/algorithm
https://github.com/vesoft-inc/nebula-algorithm/blob/master/example/src/main/scala/com/vesoft/nebula/algorithm/PageRankExample.scala
https://github.com/vesoft-inc/nebula-algorithm/blob/v3.0.0/nebula-algorithm/src/main/resources/application.conf

When sink: nebula is configured, it means that the algorithm results will be written back to the NebulaGraph cluster. The property

names of the tag have implicit conventions. For details, see Supported algorithms section of this topic.

 weightCols: ["start_year"]

 }

 # Data sink. When the graph computing result sinks into NebulaGraph, the configuration of `nebula.write` is valid.

 write:{

 # The IP addresses and ports of all Graph services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".

 # To deploy by using Docker Compose, fill in the port with which Docker Compose maps to the outside.

 # Check the status with `docker-compose ps`.

 graphAddress: "192.168.*.11:9669"

 # The IP addresses and ports of all Meta services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".

 # To deploy NebulaGraph by using Docker Compose, fill in the port with which Docker Compose maps to the outside.

 # Check the staus with `docker-compose ps`.

 metaAddress: "192.168.*.12:9559"

 user:root

 pswd:nebula

 # Before submitting the graph computing task, create the graph space and tag.

 # The name of the graph space in NebulaGraph.

 space:nb

 # The name of the tag in NebulaGraph. The graph computing result will be written into this tag. The property name of this tag is as follows.

 # PageRank: pagerank

 # Louvain: louvain

 # ConnectedComponent: cc

 # StronglyConnectedComponent: scc

 # LabelPropagation: lpa

 # ShortestPath: shortestpath

 # DegreeStatic: degree,inDegree,outDegree

 # KCore: kcore

 # TriangleCount: tranglecpunt

 # BetweennessCentrality: betweennedss

 tag:pagerank

 }

 }

 local: {

 # Data source. When the data source is csv or json, the configuration of `local.read` is valid.

 read:{

 filePath: "hdfs://127.0.0.1:9000/edge/work_for.csv"

 # If the CSV file has a header or it is a json file, use the header. If not, use [_c0, _c1, _c2, ..., _cn] instead.

 # The header of the source VID column.

 srcId:"_c0"

 # The header of the destination VID column.

 dstId:"_c1"

 # The header of the weight column.

 weight: "_c2"

 # Whether the csv file has a header.

 header: false

 # The delimiter in the csv file.

 delimiter:","

 }

 # Data sink. When the graph computing result sinks to the csv or text file, the configuration of `local.write` is valid.

 write:{

 resultPath:/tmp/

 }

 }

 algorithm: {

 # The algorithm to execute. Optional values are as follow:

 # pagerank, louvain, connectedcomponent, labelpropagation, shortestpaths,

 # degreestatic, kcore, stronglyconnectedcomponent, trianglecount ,

 # betweenness, graphtriangleCount.

 executeAlgo: pagerank

 # PageRank

 pagerank: {

 maxIter: 10

 resetProb: 0.15

 encodeId:false # Configure true if the VID is of string type.

 }

 # Louvain

 louvain: {

 maxIter: 20

 internalIter: 10

 tol: 0.5

 encodeId:false # Configure true if the VID is of string type.

 }

 # ...

}

}

Note

18.1.7 How to use

- 762/804 - 2023 Vesoft Inc.

Submit the graph computing task.

Example:

2.

${SPARK_HOME}/bin/spark-submit --master <mode> --class com.vesoft.nebula.algorithm.Main <nebula-algorithm-3.0.0.jar_path> -p <application.conf_path>

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.algorithm.Main /root/nebula-algorithm/target/nebula-algorithm-3.0-SNAPSHOT.jar -p /root/nebula-algorithm/src/main/

resources/application.conf

Last update: December 18, 2023

18.1.7 How to use

- 763/804 - 2023 Vesoft Inc.

19. NebulaGraph Bench

NebulaGraph Bench is a performance test tool for NebulaGraph using the LDBC data set.

19.1 Scenario

Generate test data and import NebulaGraph.

Performance testing in the NebulaGraph cluster.

19.2 Release note

Release

19.3 Test process

For detailed usage instructions, see NebulaGraph Bench.

•

•

Last update: October 25, 2023

19. NebulaGraph Bench

- 764/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench/releases/tag/v1.2.0
https://github.com/vesoft-inc/nebula-bench/blob/release-1.2/README.md

20. FAQ

This topic lists the frequently asked questions for using NebulaGraph 3.6.0. You can use the search box in the help center or the

search function of the browser to match the questions you are looking for.

If the solutions described in this topic cannot solve your problems, ask for help on the NebulaGraph forum or submit an issue on

GitHub issue.

20.1 About manual updates

20.1.1 "Why is the behavior in the manual not consistent with the system?"

NebulaGraph is still under development. Its behavior changes from time to time. Users can submit an issue to inform the team if

the manual and the system are not consistent.

If you find some errors in this topic:

Click the pencil button at the top right side of this page.

Use markdown to fix this error. Then click "Commit changes" at the bottom, which will start a Github pull request.

Sign the CLA. This pull request will be merged after the acceptance of at least two reviewers.

20.2 About legacy version compatibility

Neubla Graph 3.6.0 is not compatible with NebulaGraph 1.x nor 2.0-RC in both data formats and RPC-protocols, and vice versa.

The service process may quit if using an lower version client to connect to a higher version server.

To upgrade data formats, see Upgrade NebulaGraph to the current version. Users must upgrade all clients.

20.3 About execution errors

20.3.1 "How to resolve the error -1005:GraphMemoryExceeded: (-2600) ?"

This error is issued by the Memory Tracker when it observes that memory usage has exceeded a set threshold. This mechanism

can help avoid service processes from being terminated by the system's OOM (Out of Memory) killer. Steps to resolve:

Check memory usage: First, you need to check the memory usage during the execution of the command. If the memory usage is

indeed high, then this error might be expected.

Check the configuration of the Memory Tracker: If the memory usage is not high, check the relevant configurations of the Memory

Tracker. These include memory_tracker_untracked_reserved_memory_mb (untracked reserved memory in MB), memory_tracker_limit_ratio (memory

limit ratio), and memory_purge_enabled (whether memory purge is enabled). For the configuration of the Memory Tracker, see memory

tracker configuration.

Optimize configurations: Adjust these configurations according to the actual situation. For example, if the available memory limit is

too low, you can increase the value of memory_tracker_limit_ratio .

Note

1.

2.

3.

Compatibility

1.

2.

3.

20. FAQ

- 765/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions
https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc/nebula/issues/new

20.3.2 "How to resolve the error SemanticError: Missing yield clause. ?"

Starting with NebulaGraph 3.0.0, the statements LOOKUP , GO , and FETCH must output results with the YIELD clause. For more

information, see YIELD.

20.3.3 "How to resolve the error Host not enough! ?"

From NebulaGraph version 3.0.0, the Storage services added in the configuration files CANNOT be read or written directly. The

configuration files only register the Storage services into the Meta services. You must run the ADD HOSTS command to read and

write data on Storage servers. For more information, see Manage Storage hosts.

20.3.4 "How to resolve the error To get the property of the vertex in 'v.age', should use the format 'var.tag.prop' ?"

From NebulaGraph version 3.0.0, patterns support matching multiple tags at the same time, so you need to specify a tag name

when querying properties. The original statement RETURN variable_name.property_name is changed to RETURN

variable_name.<tag_name>.property_name .

20.3.5 "How to resolve Used memory hits the high watermark(0.800000) of total system memory. ?"

The error may be caused if the system memory usage is higher than the threshold specified by system_memory_high_watermark_ratio ,

which defaults to 0.8 . When the threshold is exceeded, an alarm is triggered and NebulaGraph stops processing queries.

Possible solutions are as follows:

Clean the system memory to make it below the threshold.

Modify the Graph configuration. Add the system_memory_high_watermark_ratio parameter to the configuration files of all Graph

servers, and set it greater than 0.8 , such as 0.9 .

However, the system_memory_high_watermark_ratio parameter is deprecated. It is recommended that you use the Memory Tracker

feature instead to limit the memory usage of Graph and Storage services. For more information, see Memory Tracker for Graph

service and Memory Tracker for Storage service.

20.3.6 "How to resolve the error Storage Error E_RPC_FAILURE ?"

The reason for this error is usually that the storaged process returns too many data back to the graphd process. Possible

solutions are as follows:

Modify configuration files: Modify the value of --storage_client_timeout_ms in the nebula-graphd.conf file to extend the connection

timeout of the Storage client. This configuration is measured in milliseconds (ms). For example, set --

storage_client_timeout_ms=60000 . If this parameter is not specified in the nebula-graphd.conf file, specify it manually. Tip: Add --

local_config=true at the beginning of the configuration file and restart the service.

Optimize the query statement: Reduce queries that scan the entire database. No matter whether LIMIT is used to limit the

number of returned results, use the GO statement to rewrite the MATCH statement (the former is optimized, while the latter is

not).

Check whether the Storaged process has OOM. (dmesg |grep nebula).

Use better SSD or memory for the Storage Server.

Retry.

20.3.7 "How to resolve the error The leader has changed. Try again later ?"

It is a known issue. Just retry 1 to N times, where N is the partition number. The reason is that the meta client needs some

heartbeats to update or errors to trigger the new leader information.

If this error occurs when logging in to NebulaGraph, you can consider using df -h to view the disk space and check whether the

local disk is full.

•

•

•

•

•

•

•

20.3.2 "How to resolve the error SemanticError: Missing yield clause.?"

- 766/804 - 2023 Vesoft Inc.

20.3.8 "How to resolve Schema not exist: xxx ?"

If the system returns Schema not exist when querying, make sure that:

Whether there is a tag or an edge type in the Schema.

Whether the name of the tag or the edge type is a keyword. If it is a keyword, enclose them with backquotes (`). For more

information, see Keywords.

20.3.9 Unable to download SNAPSHOT packages when compiling Exchange, Connectors, or Algorithm

Problem description: The system reports Could not find artifact com.vesoft:client:jar:xxx-SNAPSHOT when compiling.

Cause: There is no local Maven repository for storing or downloading SNAPSHOT packages. The default central repository in

Maven only stores official releases, not development versions (SNAPSHOTs).

Solution: Add the following configuration in the profiles scope of Maven's setting.xml file:

20.3.10 "How to resolve [ERROR (-1004)]: SyntaxError: syntax error near ?"

In most cases, a query statement requires a YIELD or a RETURN . Check your query statement to see if YIELD or RETURN is provided.

20.3.11 "How to resolve the error can’t solve the start vids from the sentence ?"

The graphd process requires start vids to begin a graph traversal. The start vids can be specified by the user. For example:

It can also be found from a property index. For example:

Otherwise, an error like can’t solve the start vids from the sentence will be returned.

20.3.12 "How to resolve the error Wrong vertex id type: 1001 ?"

Check whether the VID is INT64 or FIXED_STRING(N) set by create space . For more information, see create space.

20.3.13 "How to resolve the error The VID must be a 64-bit integer or a string fitting space vertex id length limit. ?"

Check whether the length of the VID exceeds the limitation. For more information, see create space.

•

•

 <profile>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>snapshots</id>

 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

> GO FROM ${vids} ...

> MATCH (src) WHERE id(src) == ${vids}

The "start vids" are explicitly given by ${vids}.

CREATE TAG INDEX IF NOT EXISTS i_player ON player(name(20));

REBUILD TAG INDEX i_player;

> LOOKUP ON player WHERE player.name == "abc" | ... YIELD ...

> MATCH (src) WHERE src.name == "abc" ...

The "start vids" are found from the property index "name".

20.3.8 "How to resolve Schema not exist: xxx?"

- 767/804 - 2023 Vesoft Inc.

20.3.14 "How to resolve the error edge conflict or vertex conflict ?"

NebulaGraph may return such errors when the Storage service receives multiple requests to insert or update the same vertex or

edge within milliseconds. Try the failed requests again later.

20.3.15 "How to resolve the error RPC failure in MetaClient: Connection refused ?"

The reason for this error is usually that the metad service status is unusual, or the network of the machine where the metad and

graphd services are located is disconnected. Possible solutions are as follows:

Check the metad service status on the server where the metad is located. If the service status is unusual, restart the metad

service.

Use telnet meta-ip:port to check the network status under the server that returns an error.

Check the port information in the configuration file. If the port is different from the one used when connecting, use the port in

the configuration file or modify the configuration.

20.3.16 "How to resolve the error StorageClientBase.inl:214] Request to "x.x.x.x":9779 failed:

N6apache6thrift9transport19TTransportExceptionE: Timed Out in nebula-graph.INFO ?"

The reason for this error may be that the amount of data to be queried is too large, and the storaged process has timed out.

Possible solutions are as follows:

When importing data, set Compaction manually to make read faster.

Extend the RPC connection timeout of the Graph service and the Storage service. Modify the value of --storage_client_timeout_ms

in the nebula-graphd.conf file. This configuration is measured in milliseconds (ms). The default value is 60000ms.

20.3.17 "How to resolve the error MetaClient.cpp:65] Heartbeat failed, status:Wrong cluster! in nebula-storaged.INFO , or

HBProcessor.cpp:54] Reject wrong cluster host "x.x.x.x":9771! in nebula-metad.INFO ?"

The reason for this error may be that the user has modified the IP or the port information of the metad process, or the storage

service has joined other clusters before. Possible solutions are as follows:

Delete the cluster.id file in the installation directory where the storage machine is deployed (the default installation directory

is /usr/local/nebula), and restart the storaged service.

20.3.18 "How to resolve the error

Storage Error: More than one request trying to add/update/delete one edge/vertex at he same time. ?"

The reason for this error is that the current NebulaGraph version does not support concurrent requests to the same vertex or

edge at the same time. To solve this error, re-execute your commands.

20.4 About design and functions

20.4.1 "How is the time spent value at the end of each return message calculated?"

Take the returned message of SHOW SPACES as an example:

•

•

•

•

•

nebula> SHOW SPACES;

+--------------------+

| Name |

+--------------------+

| "basketballplayer" |

20.3.14 "How to resolve the error edge conflict or vertex conflict?"

- 768/804 - 2023 Vesoft Inc.

The first number 1235 shows the time spent by the database itself, that is, the time it takes for the query engine to receive a

query from the client, fetch the data from the storage server, and perform a series of calculations.

The second number 1934 shows the time spent from the client's perspective, that is, the time it takes for the client from

sending a request, receiving a response, and displaying the result on the screen.

20.4.2 "Why does the port number of the nebula-storaged process keep showing red after connecting to NebulaGraph?"

Because the nebula-storaged process waits for nebula-metad to add the current Storage service during the startup process. The

Storage works after it receives the ready signal. Starting from NebulaGraph 3.0.0, the Meta service cannot directly read or write

data in the Storage service that you add in the configuration file. The configuration file only registers the Storage service to the

Meta service. You must run the ADD HOSTS command to enable the Meta to read and write data in the Storage service. For more

information, see Manage Storage hosts.

20.4.3 "Why is there no line separating each row in the returned result of NebulaGraph 2.6.0?"

This is caused by the release of NebulaGraph Console 2.6.0, not the change of NebulaGraph core. And it will not affect the

content of the returned data itself.

20.4.4 About dangling edges

A dangling edge is an edge that only connects to a single vertex and only one part of the edge connects to the vertex.

Dangling edges may appear in NebulaGraph 3.6.0 as the design. And there is no MERGE statements of openCypher. The guarantee

for dangling edges depends entirely on the application level. For more information, see INSERT VERTEX, DELETE VERTEX,

INSERT EDGE, DELETE EDGE.

20.4.5 "Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2 ?"

NO.

The Storage service guarantees its availability based on the Raft consensus protocol. The number of failed replicas must not

exceed half of the total replica number.

When the number of machines is 1, replica_factor can only be set to 1 .

When there are enough machines and replica_factor=2 , if one replica fails, the Storage service fails. No matter replica_factor=3 or

replica_factor=4 , if more than one replica fails, the Storage Service fails. To prevent unnecessary waste of resources, we

recommend that you set an odd replica number.

We suggest that you set replica_factor=3 for a production environment and replica_factor=1 for a test environment. Do not use an

even number.

20.4.6 "Is stopping or killing slow queries supported?"

Yes. For more information, see Kill query.

+--------------------+

Got 1 rows (time spent 1235/1934 us)

•

•

20.4.2 "Why does the port number of the nebula-storaged process keep showing red after connecting to NebulaGraph?"

- 769/804 - 2023 Vesoft Inc.

20.4.7 "Why are the query results different when using GO and MATCH to execute the same semantic query?"

The possible reasons are listed as follows.

GO statements find the dangling edges.

RETURN commands do not specify the sequence.

The dense vertex truncation limitation defined by max_edge_returned_per_vertex in the Storage service is triggered.

Using different types of paths may cause different query results.

GO statements use walk . Both vertices and edges can be repeatedly visited in graph traversal.

MATCH statements are compatible with openCypher and use trail . Only vertices can be repeatedly visited in graph traversal.

The example is as follows.

All queries that start from A with 5 hops will end at C (A->B->C->D->E->C). If it is 6 hops, the GO statement will end at D (A->B->C->D-

>E->C->D), because the edge C->D can be visited repeatedly. However, the MATCH statement returns empty, because edges cannot be

visited repeatedly.

Therefore, using GO and MATCH to execute the same semantic query may cause different query results.

For more information, see Wikipedia.

20.4.8 "How to count the vertices/edges number of each tag/edge type?"

See show-stats.

20.4.9 "How to get all the vertices/edge of each tag/edge type?"

Create and rebuild the index.

Use LOOKUP or MATCH . For example:

For more information, see INDEX , LOOKUP , and MATCH .

20.4.10 "Can non-English characters be used as identifiers, such as the names of graph spaces, tags, edge types,

properties, and indexes?"

Yes, for more information, see Keywords and reserved words.

•

•

•

•

•

•

1.

> CREATE TAG INDEX IF NOT EXISTS i_player ON player();

> REBUILD TAG INDEX IF NOT EXISTS i_player;

2.

> LOOKUP ON player;

> MATCH (n:player) RETURN n;

20.4.7 "Why are the query results different when using GO and MATCH to execute the same semantic query?"

- 770/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/path1.png
https://docs-cdn.nebula-graph.com.cn/figures/path1.png
https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path

20.4.11 "How to get the out-degree/the in-degree of a given vertex?"

The out-degree of a vertex refers to the number of edges starting from that vertex, while the in-degree refers to the number of

edges pointing to that vertex.

This is a very slow operation to get the out/in degree since no accelaration can be applied (no indices or caches). It also could be

out-of-memory when hitting a supper-node.

20.4.12 "How to quickly get the out-degree and in-degree of all vertices?"

There is no such command.

You can use NebulaGraph Algorithm.

20.5 About operation and maintenance

20.5.1 "The runtime log files are too large. How to recycle the logs?"

NebulaGraph uses glog for log printing, which does not support log recycling. You can manage runtime logs by using cron jobs or

the log management tool logrotate. For operational details, see Log recycling.

20.5.2 "How to check the NebulaGraph version?"

If the service is running: run command SHOW HOSTS META in nebula-console . See SHOW HOSTS.

If the service is not running:

Different installation methods make the method of checking the version different. The instructions are as follows:

If the service is not running, run the command ./<binary_name> --version to get the version and the Git commit IDs of the

NebulaGraph binary files. For example:

If you deploy NebulaGraph with Docker Compose

Check the version of NebulaGraph deployed by Docker Compose. The method is similar to the previous method, except that

you have to enter the container first. The commands are as follows:

If you install NebulaGraph with RPM/DEB package

Run rpm -qa |grep nebula to check the version of NebulaGraph.

20.5.3 "How to scale my cluster up/down or out/in?"

The cluster scaling function has not been officially released in the community edition. The operations involving SUBMIT JOB BALANCE DATA

REMOVE and SUBMIT JOB BALANCE DATA are experimental features in the community edition and the functionality is not stable. Before using it

in the community edition, make sure to back up your data first and set enable_experimental_feature and enable_data_balance to true in the

Graph configuration file.

nebula > MATCH (s)-[e]->() WHERE id(s) == "given" RETURN count(e); #Out-degree

nebula > MATCH (s)<-[e]-() WHERE id(s) == "given" RETURN count(e); #In-degree

$./nebula-graphd --version

•

docker exec -it nebula-docker-compose_graphd_1 bash

cd bin/

./nebula-graphd --version

•

Warning

20.4.11 "How to get the out-degree/the in-degree of a given vertex?"

- 771/804 - 2023 Vesoft Inc.

https://github.com/google/glog
https://man7.org/linux/man-pages/man8/logrotate.8.html

Increase or decrease the number of Meta, Graph, or Storage nodes

NebulaGraph 3.6.0 does not provide any commands or tools to support automatic scale out/in. You can refer to the following

steps:

Scale out and scale in metad: The metad process can not be scaled out or scale in. The process cannot be moved to a new

machine. You cannot add a new metad process to the service.

You can use the Meta transfer script tool to migrate Meta services. Note that the Meta-related settings in the configuration files of

Storage and Graph services need to be modified correspondingly.

Scale in graphd: Remove the IP of the graphd process from the code in the client. Close this graphd process.

Scale out graphd: Prepare the binary and config files of the graphd process in the new host. Modify the config files and add all

existing addresses of the metad processes. Then start the new graphd process.

Scale in storaged: See Balance remove command. After the command is finished, stop this storaged process.

Before executing this command to migrate the data in the specified Storage node, make sure that the number of other Storage

nodes is sufficient to meet the set replication factor. For example, if the replication factor is set to 3, then before executing this

command, make sure that the number of other Storage nodes is greater than or equal to 3.

If there are multiple space partitions in the Storage node to be migrated, execute this command in each space to migrate all space

partitions in the Storage node.

Scale out storaged: Prepare the binary and config files of the storaged process in the new host, modify the config files and add

all existing addresses of the metad processes. Then register the storaged process to the metad, and then start the new

storaged process. For details, see Register storaged services.

You also need to run Balance Data and Balance leader after scaling in/out storaged.

•

•

Note

•

•

•

Caution

•

•

•

20.5.3 "How to scale my cluster up/down or out/in?"

- 772/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/scripts/meta-transfer-tools.sh

Add or remove disks in the Storage nodes

Currently, Storage cannot dynamically recognize new added disks. You can add or remove disks in the Storage nodes of the

distributed cluster by following these steps:

Execute SUBMIT JOB BALANCE DATA REMOVE <ip:port> to migrate data in the Storage node with the disk to be added or removed to other

Storage nodes.

Before executing this command to migrate the data in the specified Storage node, make sure that the number of other Storage nodes is

sufficient to meet the set replication factor. For example, if the replication factor is set to 3, then before executing this command, make

sure that the number of other Storage nodes is greater than or equal to 3.

If there are multiple space partitions in the Storage node to be migrated, execute this command in each space to migrate all space

partitions in the Storage node.

Execute DROP HOSTS <ip:port> to remove the Storage node with the disk to be added or removed.

In the configuration file of all Storage nodes, configure the path of the new disk to be added or removed through --data_path , see

Storage configuration file for details.

Execute ADD HOSTS <ip:port> to re-add the Storage node with the disk to be added or removed.

As needed, execute SUBMIT JOB BALANCE DATA to evenly distribute the shards of the current space to all Storage nodes and execute

SUBMIT JOB BALANCE LEADER command to balance the leaders in all spaces. Before running the command, select a space.

20.5.4 "After changing the name of the host, the old one keeps displaying OFFLINE . What should I do?"

Hosts with the status of OFFLINE will be automatically deleted after one day.

20.5.5 "How do I view the dmp file?"

The dmp file is an error report file detailing the exit of the process and can be viewed with the gdb utility. the Coredump file is

saved in the directory of the startup binary (by default it is /usr/local/nebula) and is generated automatically when the

NebulaGraph service crashes.

Check the Core file process name, pid is usually a numeric value.

Use gdb to debug.

View the contents of the file.

For example:

1.

Caution

•

•

2.

3.

4.

5.

1.

$ file core.<pid>

2.

$ gdb <process.name> core.<pid>

3.

$(gdb) bt

$ file core.1316027

core.1316027: ELF 64-bit LSB core file, x86-64, version 1 (SYSV), SVR4-style, from '/home/workspace/fork/nebula-debug/bin/nebula-metad --flagfile /home/k', real uid: 1008, effective uid:

1008, real gid: 1008, effective gid: 1008, execfn: '/home/workspace/fork/nebula-debug/bin/nebula-metad', platform: 'x86_64'

$ gdb /home/workspace/fork/nebula-debug/bin/nebula-metad core.1316027

$(gdb) bt

#0 0x00007f9de58fecf5 in __memcpy_ssse3_back () from /lib64/libc.so.6

#1 0x0000000000eb2299 in void std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >::_M_construct<char*>(char*, char*, std::forward_iterator_tag) ()

#2 0x0000000000ef71a7 in nebula::meta::cpp2::QueryDesc::QueryDesc(nebula::meta::cpp2::QueryDesc const&) ()

...

20.5.4 "After changing the name of the host, the old one keeps displaying OFFLINE. What should I do?"

- 773/804 - 2023 Vesoft Inc.

If you are not clear about the information that dmp prints out, you can post the printout with the OS version, hardware

configuration, error logs before and after the Core file was created and actions that may have caused the error on the

NebulaGraph forum.

20.5.6 How can I set the NebulaGraph service to start automatically on boot via systemctl?

Execute systemctl enable to start the metad, graphd and storaged services.

Configure the service files for metad, graphd and storaged to set the service to pull up automatically.

The following points need to be noted when configuring the service file. - The paths of the PIDFile, ExecStart, ExecReload and

ExecStop parameters need to be the same as those on the server. - RestartSec is the length of time (in seconds) to wait before

restarting, which can be modified according to the actual situation. - (Optional) StartLimitInterval is the unlimited restart, the

default is 10 seconds if the restart exceeds 5 times, and set to 0 means unlimited restart. - (Optional) LimitNOFILE is the maximum

number of open files for the service, the default is 1024 and can be changed according to the actual situation.

Configure the service file for the metad service.

Configure the service file for the graphd service.

Configure the service file for the storaged service.

1.

[root]# systemctl enable nebula-metad.service

Created symlink from /etc/systemd/system/multi-user.target.wants/nebula-metad.service to /usr/lib/systemd/system/nebula-metad.service.

[root]# systemctl enable nebula-graphd.service

Created symlink from /etc/systemd/system/multi-user.target.wants/nebula-graphd.service to /usr/lib/systemd/system/nebula-graphd.service.

[root]# systemctl enable nebula-storaged.service

Created symlink from /etc/systemd/system/multi-user.target.wants/nebula-storaged.service to /usr/lib/systemd/system/nebula-storaged.service.

2.

Caution

$ vi /usr/lib/systemd/system/nebula-metad.service

[Unit]

Description=Nebula Graph Metad Service

After=network.target

[Service]

Type=forking

Restart=always

RestartSec=15s

PIDFile=/usr/local/nebula/pids/nebula-metad.pid

ExecStart=/usr/local/nebula/scripts/nebula.service start metad

ExecReload=/usr/local/nebula/scripts/nebula.service restart metad

ExecStop=/usr/local/nebula/scripts/nebula.service stop metad

PrivateTmp=true

StartLimitInterval=0

LimitNOFILE=1024

[Install]

WantedBy=multi-user.target

$ vi /usr/lib/systemd/system/nebula-graphd.service

[Unit]

Description=Nebula Graph Graphd Service

After=network.target

[Service]

Type=forking

Restart=always

RestartSec=15s

PIDFile=/usr/local/nebula/pids/nebula-graphd.pid

ExecStart=/usr/local/nebula/scripts/nebula.service start graphd

ExecReload=/usr/local/nebula/scripts/nebula.service restart graphd

ExecStop=/usr/local/nebula/scripts/nebula.service stop graphd

PrivateTmp=true

StartLimitInterval=0

LimitNOFILE=1024

[Install]

WantedBy=multi-user.target

$ vi /usr/lib/systemd/system/nebula-storaged.service

[Unit]

Description=Nebula Graph Storaged Service

After=network.target

20.5.6 How can I set the NebulaGraph service to start automatically on boot via systemctl?

- 774/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/discussions

Reload the configuration file.

Restart the service.

20.6 About connections

20.6.1 "Which ports should be opened on the firewalls?"

If you have not modified the predefined ports in the Configurations, open the following ports for the NebulaGraph services:

If you have customized the configuration files and changed the predefined ports, find the port numbers in your configuration files

and open them on the firewalls.

For more port information, see Port Guide for Company Products.

20.6.2 "How to test whether a port is open or closed?"

You can use telnet as follows to check for port status.

If you cannot use the telnet command, check if telnet is installed or enabled on your host.

For example:

[Service]

Type=forking

Restart=always

RestartSec=15s

PIDFile=/usr/local/nebula/pids/nebula-storaged.pid

ExecStart=/usr/local/nebula/scripts/nebula.service start storaged

ExecReload=/usr/local/nebula/scripts/nebula.service restart storaged

ExecStop=/usr/local/nebula/scripts/nebula.service stop storaged

PrivateTmp=true

StartLimitInterval=0

LimitNOFILE=1024

[Install]

WantedBy=multi-user.target

3.

[root]# sudo systemctl daemon-reload

4.

$ systemctl restart nebula-metad.service

$ systemctl restart nebula-graphd.service

$ systemctl restart nebula-storaged.service

Service Port

Meta 9559, 9560, 19559

Graph 9669, 19669

Storage 9777 ~ 9780, 19779

telnet <ip> <port>

Note

// If the port is open:

$ telnet 192.168.1.10 9669

Trying 192.168.1.10...

Connected to 192.168.1.10.

Escape character is '^]'.

// If the port is closed or blocked:

$ telnet 192.168.1.10 9777

Trying 192.168.1.10...

telnet: connect to address 192.168.1.10: Connection refused

20.6 About connections

- 775/804 - 2023 Vesoft Inc.

Last update: January 31, 2024

20.6.2 "How to test whether a port is open or closed?"

- 776/804 - 2023 Vesoft Inc.

21. Appendix

21.1 Release Note

21.1.1 NebulaGraph 3.6.0 release notes

Features

Enhance the full-text index. #5567 #5575 #5577 #5580 #5584 #5587

The changes involved are listed below:

The original full-text indexing function has been changed from calling Elasticsearch's Term-level queries to Full text queries.

In addition to supporting wildcards, regulars, fuzzy matches, etc. (but the syntax has been changed), support for word splitting

(relying on Elasticsearch's own word splitter) has been added, and the query results include scoring results. For more syntax,

see official Elasticsearch documentation.

Enhancements

Support variables when querying vertex id or property index in a match clause. #5486 #5553

Performance

Support parallel startup of RocksDB instances to speed up the startup of the Storage service. #5521

Optimize the prefix search performance of the RocksDB iterator after the DeleteRange operation. #5525

Optimize the appendLog sending logic to avoid impacting write performance when a follower is down. #5571

Optimize the performance of the MATCH statement when querying for non-existent properties. #5634

Bug fixes

DQL

Fix the crash of the Graph service when executing a single big query. #5619

Fix the crash of the Graph service when executing the Find All Path statement. #5621 #5640

Fix the bug that some expired data is not recycled at the bottom level. #5447 #5622

Fix the bug that adding a path variable in the MATCH statement causes the all() function push-down optimization to fail. #5631

Fix the bug in the MATCH statement that returns incorrect results when querying the self-loop by the shortest path. #5636

Fix the bug that deleting edges by pipe causes the Graph service to crash. #5645

Fix the bug in the MATCH statement that returns missing properties of edges when matching multiple hops. #5646

Others

Fix the bug of meta data inconsistency. #5517

Fix the bug that RocksDB ingest causes the leader lease to be invalid. #5534

Fix the error in the statistics logic of storage. #5547

Fix the bug that causes the web service to crash if a flag is set for an invalid request parameter. #5566

Fix the bug that too many logs are printed when listing sessions. #5618

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: November 16, 2023

21. Appendix

- 777/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/pull/5567
https://github.com/vesoft-inc/nebula/pull/5575
https://github.com/vesoft-inc/nebula/pull/5577
https://github.com/vesoft-inc/nebula/pull/5580
https://github.com/vesoft-inc/nebula/pull/5584
https://github.com/vesoft-inc/nebula/pull/5587
https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html
https://github.com/vesoft-inc/nebula/pull/5486
https://github.com/vesoft-inc/nebula/pull/5553
https://github.com/vesoft-inc/nebula/pull/5521
https://github.com/vesoft-inc/nebula/pull/5525
https://github.com/vesoft-inc/nebula/pull/5571
https://github.com/vesoft-inc/nebula/pull/5634
https://github.com/vesoft-inc/nebula/pull/5619
https://github.com/vesoft-inc/nebula/pull/5621
https://github.com/vesoft-inc/nebula/pull/5640
https://github.com/vesoft-inc/nebula/pull/5447
https://github.com/vesoft-inc/nebula/pull/5622
https://github.com/vesoft-inc/nebula/pull/5631
https://github.com/vesoft-inc/nebula/pull/5636
https://github.com/vesoft-inc/nebula/pull/5645
https://github.com/vesoft-inc/nebula/pull/5646
https://github.com/vesoft-inc/nebula/pull/5517
https://github.com/vesoft-inc/nebula/pull/5534
https://github.com/vesoft-inc/nebula/pull/5547
https://github.com/vesoft-inc/nebula/pull/5566
https://github.com/vesoft-inc/nebula/pull/5618

21.1.2 NebulaGraph Studio release notes

v3.8.0

Features

Supported the use of MySQL databases as backend storage.

Enhancements

Supported customizing the read and write parameters of the WebSocket.

Usability

Supported filtering tasks in the import task list based on the map space name.

Compatibility

Since the database table structure has changed, you need to set DB.AutoMigrate to true in the configuration file, and the system

will automatically upgrade and adapt the existing historical data.

If the tables were created manually after you consulted our after-sales staff, please modify these tables manually: task_infos ,

task_effects , sketches , schema_snapshots , favorites , files , and datasources .

For example:

v3.7.0

Enhancements

Supported importing SFTP, Amazon S3 data files.

The import page is supported to configure more import parameters, such as concurrency, retries, etc.

Supported re-running tasks.

Supported saving tasks as drafts.

Supported running Studio in a docker container on the ARM architecture.

•

•

•

•

•

•

•

•

ALTER TABLE `task_infos` ADD COLUMN `b_id` CHAR(32) NOT NULL DEFAULT '';

UPDATE TABLE `task_infos` SET `b_id` = `id`;

CREATE UNIQUE INDEX `idx_task_infos_id` ON `task_infos`(`b_id`);

ALTER TABLE `task_effects` ADD COLUMN `b_id` CHAR(32) NOT NULL DEFAULT '';

UPDATE TABLE `task_effects` SET `b_id` = `id`;

CREATE UNIQUE INDEX `idx_task_effects_id` ON `task_effects`(`b_id`);

...

•

•

•

•

•

•

Last update: December 1, 2023

21.1.2 NebulaGraph Studio release notes

- 778/804 - 2023 Vesoft Inc.

21.1.3 NebulaGraph Dashboard Community Edition 3.6.0 release notes

Community Edition 3.4.0

Feature

Support the built-in dashboard.service script to manage the Dashboard services with one-click and view the Dashboard

version.

Support viewing the configuration of Meta services.

Enhancement

Adjust the directory structure and simplify the deployment steps.

Display the names of the monitoring metrics on the overview page of machine .

Optimize the calculation of monitoring metrics such as num_queries , and adjust the display to time series aggregation.

•

•

•

•

•

•

•

Last update: October 25, 2023

21.1.3 NebulaGraph Dashboard Community Edition 3.6.0 release notes

- 779/804 - 2023 Vesoft Inc.

21.2 Ecosystem tools overview

21.2.1 NebulaGraph Studio

NebulaGraph Studio (Studio for short) is a graph database visualization tool that can be accessed through the Web. It can be

used with NebulaGraph DBMS to provide one-stop services such as composition, data import, writing nGQL queries, and graph

exploration. For details, see What is NebulaGraph Studio.

The release of the Studio is independent of NebulaGraph core, and its naming method is also not the same as the core naming rules.

21.2.2 NebulaGraph Dashboard Community Edition

NebulaGraph Dashboard Community Edition (Dashboard for short) is a visualization tool for monitoring the status of machines

and services in the NebulaGraph cluster. For details, see What is NebulaGraph Dashboard.

21.2.3 NebulaGraph Exchange

NebulaGraph Exchange (Exchange for short) is an Apache Spark&trade application for batch migration of data in a cluster to

NebulaGraph in a distributed environment. It can support the migration of batch data and streaming data in a variety of different

formats. For details, see What is NebulaGraph Exchange.

21.2.4 NebulaGraph Operator

NebulaGraph Operator (Operator for short) is a tool to automate the deployment, operation, and maintenance of NebulaGraph

clusters on Kubernetes. Building upon the excellent scalability mechanism of Kubernetes, NebulaGraph introduced its operation

Note

NebulaGraph version Studio version

v3.6.0 v3.8.0

NebulaGraph version Dashboard Community version

v3.6.0 v3.4.0

NebulaGraph version Exchange Community version

v3.6.0 v3.6.1

21.2 Ecosystem tools overview

- 780/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/figures/architecture_map_2022-08-08_17-37-15.png
https://docs-cdn.nebula-graph.com.cn/figures/architecture_map_2022-08-08_17-37-15.png

and maintenance knowledge into the Kubernetes system, which makes NebulaGraph a real cloud-native graph database. For

more information, see What is NebulaGraph Operator.

21.2.5 NebulaGraph Importer

NebulaGraph Importer (Importer for short) is a CSV file import tool for NebulaGraph. The Importer can read the local CSV file,

and then import the data into the NebulaGraph database. For details, see What is NebulaGraph Importer.

21.2.6 NebulaGraph Spark Connector

NebulaGraph Spark Connector is a Spark connector that provides the ability to read and write NebulaGraph data in the Spark

standard format. NebulaGraph Spark Connector consists of two parts, Reader and Writer. For details, see What is NebulaGraph

Spark Connector.

21.2.7 NebulaGraph Flink Connector

NebulaGraph Flink Connector is a connector that helps Flink users quickly access NebulaGraph. It supports reading data from

the NebulaGraph database or writing data read from other external data sources to the NebulaGraph database. For details, see

What is NebulaGraph Flink Connector.

21.2.8 NebulaGraph Algorithm

NebulaGraph Algorithm (Algorithm for short) is a Spark application based on GraphX, which uses a complete algorithm tool to

analyze data in the NebulaGraph database by submitting a Spark task To perform graph computing, use the algorithm under the

lib repository through programming to perform graph computing for DataFrame. For details, see What is NebulaGraph

Algorithm.

21.2.9 NebulaGraph Console

NebulaGraph Console is the native CLI client of NebulaGraph. For how to use it, see NebulaGraph Console.

NebulaGraph version Operator version

v3.6.0 v1.8.0

NebulaGraph version Importer version

v3.6.0 v4.1.0

NebulaGraph version Spark Connector version

v3.6.0 v3.6.0

NebulaGraph version Flink Connector version

v3.6.0 v3.5.0

NebulaGraph version Algorithm version

v3.6.0 v3.0.0

NebulaGraph version Console version

v3.6.0 v3.6.0

21.2.5 NebulaGraph Importer

- 781/804 - 2023 Vesoft Inc.

https://spark.apache.org/graphx/

21.2.10 NebulaGraph Docker Compose

Docker Compose can quickly deploy NebulaGraph clusters. For how to use it, please refer to Docker Compose Deployment

NebulaGraph.

21.2.11 Backup & Restore

Backup&Restore (BR for short) is a command line interface (CLI) tool that can help back up the graph space data of

NebulaGraph, or restore it through a backup file data.

21.2.12 NebulaGraph Bench

NebulaGraph Bench is used to test the baseline performance data of NebulaGraph. It uses the standard data set of LDBC.

21.2.13 API, SDK

Select the latest version of X.Y.* which is the same as the core version.

NebulaGraph version Docker Compose version

v3.6.0 v3.6.0

NebulaGraph version BR version

v3.6.0 v3.6.0

NebulaGraph version Bench version

v3.6.0 v1.2.0

Compatibility

NebulaGraph version Language

v3.6.0 C++

v3.6.0 Go

v3.6.0 Python

v3.6.0 Java

v3.6.0 HTTP

21.2.10 NebulaGraph Docker Compose

- 782/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench/releases/tag/v1.2.0
https://github.com/vesoft-inc/nebula-cpp/releases/tag/v3.4.0
https://github.com/vesoft-inc/nebula-go/releases/tag/v3.7.0
https://github.com/vesoft-inc/nebula-python/releases/tag/v3.4.0
https://github.com/vesoft-inc/nebula-java/releases/tag/v3.6.1
https://github.com/vesoft-inc/nebula-http-gateway/releases/tag/v3.4.0

21.2.14 Community contributed tools

The following are useful utilities and tools contributed and maintained by community users.

Object Relational Mapping (ORM) frameworks

NGBATIS: An ORM framework that integrates with the Spring Boot ecosystem

graph-ocean: An ORM framework developed based on NebulaGraph Java client

nebula-jdbc: An ORM framework that supports JDBC

nebula-carina: An ORM framework developed based on NebulaGraph Python client

norm: An ORM framework written in Golang

Data processing tools

nebula-real-time-exchange: Enables real-time data synchronization from MySQL to NebulaGraph

nebula-datax-plugin: Provides NebulaGraph's Reader and Writer plugins based on DataX to enable offline data synchronization

Quick deployment

nebulagraph-docker-ext: Starts NebulaGraph in Docker Desktop in 10 seconds

nebulagraph-lite: A NebulaGraph sandbox running in the browser

Testing

testcontainers-nebula: A lightweight database testing library for Java

Clients

zio-nebula: Scala client

nebula-node: Node.js client

nebula-php: PHP client

nebula-net: .NET client

nebula-rust: Rust client

Terminal tools

nebula-console-intellij-plugin: A Nebula-console plugin for JetBrains IDEs that supports syntax highlighting, function field auto-

completion, data table pagination, and relationship graphs.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: April 15, 2024

21.2.14 Community contributed tools

- 783/804 - 2023 Vesoft Inc.

https://github.com/nebula-contrib/ngbatis
https://github.com/nebula-contrib/graph-ocean
https://github.com/nebula-contrib/nebula-jdbc
https://github.com/nebula-contrib/nebula-carina
https://github.com/nebula-contrib/norm
https://github.com/nebula-contrib/nebula-real-time-exchange
https://github.com/nebula-contrib/nebula-datax-plugin
https://github.com/nebula-contrib/nebulagraph-docker-ext
https://github.com/nebula-contrib/nebulagraph-lite
https://github.com/nebula-contrib/testcontainers-nebula
https://github.com/nebula-contrib/zio-nebula
https://github.com/nebula-contrib/nebula-node
https://github.com/nebula-contrib/nebula-php
https://github.com/nebula-contrib/nebula-net
https://github.com/vesoft-inc/nebula-rust
https://github.com/nebula-contrib/nebula-console-intellij-plugin

21.3 Port guide for company products

The following are the default ports used by NebulaGraph core and peripheral tools.

21.3 Port guide for company products

- 784/804 - 2023 Vesoft Inc.

No. Product /

Service

Type Default Description

1 NebulaGraph TCP 9669 Graph service RPC daemon listening port. Commonly used

for client connections to the Graph service.

2 NebulaGraph TCP 19669 Graph service HTTP port.

3 NebulaGraph TCP 19670 Graph service HTTP/2 port. (Deprecated after version 3.x)

4 NebulaGraph TCP 9559,

9560

9559 is the RPC daemon listening port for Meta service.

Commonly used by Graph and Storage services for

querying and updating metadata in the graph database.

The neighboring +1 (9560) port is used for Raft

communication between Meta services.

5 NebulaGraph TCP 19559 Meta service HTTP port.

6 NebulaGraph TCP 19560 Meta service HTTP/2 port. (Deprecated after version 3.x)

7 NebulaGraph TCP 9779,

9778,

9780

9779 is the RPC daemon listening port for Storage service.

Commonly used by Graph services for data storage-related

operations, such as reading, writing, or deleting data.

The neighboring ports -1 (9778) and +1 (9780) are also

used.

9778 : The port used by the Admin service, which receives

Meta commands for Storage.

9780 : The port used for Raft communication between

Storage services.

8 NebulaGraph TCP 19779 Storage service HTTP port.

9 NebulaGraph TCP 19780 Storage service HTTP/2 port. (Deprecated after version

3.x)

10 NebulaGraph TCP 8888 Backup and restore Agent service port. The Agent is a

daemon running on each machine in the cluster,

responsible for starting and stopping NebulaGraph services

and uploading and downloading backup files.

11 NebulaGraph TCP 9789,

9788,

9790

9789 is the Raft Listener port for Full-text index, which

reads data from Storage services and writes it to the

Elasticsearch cluster.

Also the port for Storage Listener in inter-cluster data

synchronization, used for synchronizing Storage data from

the primary cluster.

The neighboring ports -1 (9788) and +1 (9790) are also

used.

9788 : An internal port.

9790 : The port used for Raft communication.

12 NebulaGraph TCP 9200 NebulaGraph uses this port for HTTP communication with

Elasticsearch to perform full-text search queries and

manage full-text indexes.

13 NebulaGraph TCP 9569,

9568,

9570

9569 is the Meta Listener port in inter-cluster data

synchronization, used for synchronizing Meta data from the

primary cluster.

The neighboring ports -1 (9568) and +1 (9570) are also

used.

9568 : An internal port.

9570 : The port used for Raft communication.

14 NebulaGraph TCP

21.3 Port guide for company products

- 785/804 - 2023 Vesoft Inc.

No. Product /

Service

Type Default Description

9889,

9888,

9890

Drainer service port in inter-cluster data synchronization,

used for synchronizing Storage and Meta data to the

primary cluster.

The neighboring ports -1 (9888) and +1 (9890) are also

used.

9888 : An internal port.

9890 : The port used for Raft communication.

15 NebulaGraph

Studio

TCP 7001 Studio web service port.

16 NebulaGraph

Dashboard

TCP 8090 Nebula HTTP Gateway dependency service port. Provides

an HTTP interface for cluster services to interact with the

NebulaGraph database using nGQL statements.0

17 NebulaGraph

Dashboard

TCP 9200 Nebula Stats Exporter dependency service port. Collects

cluster performance metrics, including service IP

addresses, versions, and monitoring metrics (such as query

count, query latency, heartbeat latency, etc.).

18 NebulaGraph

Dashboard

TCP 9100 Node Exporter dependency service port. Collects resource

information for machines in the cluster, including CPU,

memory, load, disk, and traffic.

19 NebulaGraph

Dashboard

TCP 9090 Prometheus service port. Time-series database for storing

monitoring data.

20 NebulaGraph

Dashboard

TCP 7003 Dashboard Community Edition web service port.

Last update: November 10, 2023

21.3 Port guide for company products

- 786/804 - 2023 Vesoft Inc.

21.4 How to Contribute

21.4.1 Before you get started

Commit an issue on the github or forum

You are welcome to contribute any code or files to the project. But firstly we suggest you raise an issue on the github or the

forum to start a discussion with the community. Check through the topic for Github.

Sign the Contributor License Agreement CLA

Open the CLA sign-in page.

Click the Sign in with GitHub button to sign in.

Read and agree to the vesoft inc. Contributor License Agreement.

If you have any questions, submit an issue.

21.4.2 Modify a single document

This manual is written in the Markdown language. Click the pencil icon on the right of the document title to commit the

modification.

This method applies to modifying a single document only.

21.4.3 Batch modify or add files

This method applies to contributing code, modifying multiple documents in batches, or adding new documents.

21.4.4 Step 1: Fork in the github.com

The NebulaGraph project has many repositories. Take the nebul repository for example:

Visit https://github.com/vesoft-inc/nebula.

Click the Fork button to establish an online fork.

21.4.5 Step 2: Clone Fork to Local Storage

Define a local working directory.

Set user to match the Github profile name.

Create your clone.

1.

2.

3.

1.

2.

1.

Define the working directory.

working_dir=$HOME/Workspace

2.

user={the Github profile name}

3.

mkdir -p $working_dir

cd $working_dir

git clone https://github.com/$user/nebula.git

or: git clone git@github.com:$user/nebula.git

cd $working_dir/nebula

git remote add upstream https://github.com/vesoft-inc/nebula.git

or: git remote add upstream git@github.com:vesoft-inc/nebula.git

Never push to upstream master since you do not have write access.

git remote set-url --push upstream no_push

Confirm that the remote branch is valid.

The correct format is:

21.4 How to Contribute

- 787/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula/discussions
https://www.apache.org/licenses/contributor-agreements.html
https://cla-assistant.io/
https://cla-assistant.io/vesoft-inc/
https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc
https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula

(Optional) Define a pre-commit hook.

Please link the NebulaGraph pre-commit hook into the .git directory.

This hook checks the commits for formatting, building, doc generation, etc.

Sometimes, the pre-commit hook cannot be executed. You have to execute it manually.

21.4.6 Step 3: Branch

Get your local master up to date.

Checkout a new branch from master.

Because the PR often consists of several commits, which might be squashed while being merged into upstream. We strongly suggest

you to open a separate topic branch to make your changes on. After merged, this topic branch can be just abandoned, thus you could

synchronize your master branch with upstream easily with a rebase like above. Otherwise, if you commit your changes directly into

master, you need to use a hard reset on the master branch. For example:

21.4.7 Step 4: Develop

Code style

origin git@github.com:$(user)/nebula.git (fetch)

origin git@github.com:$(user)/nebula.git (push)

upstream https://github.com/vesoft-inc/nebula (fetch)

upstream no_push (push)

git remote -v

4.

cd $working_dir/nebula/.git/hooks

ln -s $working_dir/nebula/.linters/cpp/hooks/pre-commit.sh .

cd $working_dir/nebula/.git/hooks

chmod +x pre-commit

1.

cd $working_dir/nebula

git fetch upstream

git checkout master

git rebase upstream/master

2.

git checkout -b myfeature

Note

git fetch upstream

git checkout master

git reset --hard upstream/master

git push --force origin master

•

21.4.6 Step 3: Branch

- 788/804 - 2023 Vesoft Inc.

NebulaGraph adopts cpplint to make sure that the project conforms to Google's coding style guides. The checker will be

implemented before the code is committed.

Unit tests requirements

Please add unit tests for the new features or bug fixes.

Build your code with unit tests enabled

For more information, see Install NebulaGraph by compiling the source code.

Make sure you have enabled the building of unit tests by setting -DENABLE_TESTING=ON .

Run tests

In the root directory of nebula , run the following command:

21.4.8 Step 5: Bring Your Branch Update to Date

Users need to bring the head branch up to date after other contributors merge PR to the base branch.

21.4.9 Step 6: Commit

Commit your changes.

Users can use the command --amend to re-edit the previous code.

21.4.10 Step 7: Push

When ready to review or just to establish an offsite backup, push your branch to your fork on github.com :

21.4.11 Step 8: Create a Pull Request

Visit your fork at https://github.com/$user/nebula (replace $user here).

Click the Compare & pull request button next to your myfeature branch.

21.4.12 Step 9: Get a Code Review

Once your pull request has been created, it will be assigned to at least two reviewers. Those reviewers will do a thorough code

review to make sure that the changes meet the repository's contributing guidelines and other quality standards.

•

•

Note

•

cd nebula/build

ctest -j$(nproc)

While on your myfeature branch.

git fetch upstream

git rebase upstream/master

git commit -a

git push origin myfeature

1.

2.

21.4.8 Step 5: Bring Your Branch Update to Date

- 789/804 - 2023 Vesoft Inc.

21.4.13 Add test cases

For detailed methods, see How to add test cases.

21.4.14 Donation

Step 1: Confirm the project donation

Contact the official NebulaGraph staff via email, WeChat, Slack, etc. to confirm the donation project. The project will be donated

to the NebulaGraph Contrib organization.

Email address: info@vesoft.com

WeChat: NebulaGraphbot

Slack: Join Slack

Step 2: Get the information of the project recipient

The NebulaGraph official staff will give the recipient ID of the NebulaGraph Contrib project.

Step 3: Donate a project

The user transfers the project to the recipient of this donation, and the recipient transfers the project to the NebulaGraph

Contrib organization. After the donation, the user will continue to lead the development of community projects as a Maintainer.

For operations of transferring a repository on GitHub, see Transferring a repository owned by your user account.

Last update: January 2, 2024

21.4.13 Add test cases

- 790/804 - 2023 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/tests/README.md#how-to-add-test-case
https://github.com/nebula-contrib
https://join.slack.com/t/nebulagraph/shared_invite/zt-7ybejuqa-NCZBroh~PCh66d9kOQj45g
https://docs.github.com/en/enterprise-server@3.0/github/administering-a-repository/managing-repository-settings/transferring-a-repository#transferring-a-repository-owned-by-your-user-account

21.5 History timeline for NebulaGraph

2018.9: dutor wrote and submitted the first line of NebulaGraph database code.

2019.5: NebulaGraph v0.1.0-alpha was released as open-source.

1.

2.

21.5 History timeline for NebulaGraph

- 791/804 - 2023 Vesoft Inc.

https://github.com/dutor
https://docs-cdn.nebula-graph.com.cn/books/images/dutor.png
https://docs-cdn.nebula-graph.com.cn/books/images/dutor.png

NebulaGraph v1.0.0-beta, v1.0.0-rc1, v1.0.0-rc2, v1.0.0-rc3, and v1.0.0-rc4 were released one after another within a year

thereafter.

21.5 History timeline for NebulaGraph

- 792/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/books/images/alpha-bj.png
https://docs-cdn.nebula-graph.com.cn/books/images/alpha-bj.png
https://docs-cdn.nebula-graph.com.cn/books/images/alpha-hz.jpg
https://docs-cdn.nebula-graph.com.cn/books/images/alpha-hz.jpg

2019.7: NebulaGraph's debut at HBaseCon
1
. @dangleptr3.

21.5 History timeline for NebulaGraph

- 793/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/books/images/v010.png
https://docs-cdn.nebula-graph.com.cn/books/images/v010.png
https://github.com/dangleptr

2020.3: NebulaGraph v2.0 was starting developed in the final stage of v1.0 development.

2020.6: The first major version of NebulaGraph v1.0.0 GA was released.

4.

5.

21.5 History timeline for NebulaGraph

- 794/804 - 2023 Vesoft Inc.

https://www-cdn.nebula-graph.com.cn/nebula-blog/HBase01.png
https://www-cdn.nebula-graph.com.cn/nebula-blog/HBase01.png

2021.3: The second major version of NebulaGraph v2.0 GA was released.6.

21.5 History timeline for NebulaGraph

- 795/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/books/images/v100GA.png
https://docs-cdn.nebula-graph.com.cn/books/images/v100GA.png

2021.8: NebulaGraph v2.5.0 was released.

2021.10: NebulaGraph v2.6.0 was released.

2022.2: NebulaGraph v3.0.0 was released.

2022.4: NebulaGraph v3.1.0 was released.

2022.7: NebulaGraph v3.2.0 was released.

2022.10: NebulaGraph v3.3.0 was released.

2023.2: NebulaGraph v3.4.0 was released.

2023.5: NebulaGraph v3.5.0 was released.

2023.8: NebulaGraph v3.6.0 was released.

NebulaGraph v1.x supports both RocksDB and HBase as its storage engines. NebulaGraph v2.x removes HBase supports.

7.

8.

9.

10.

11.

12.

13.

14.

15.

1.

Last update: October 25, 2023

21.5 History timeline for NebulaGraph

- 796/804 - 2023 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/books/images/v200.png
https://docs-cdn.nebula-graph.com.cn/books/images/v200.png

21.6 Error code

NebulaGraph returns an error code when an error occurs. This topic describes the details of the error code returned.

21.6 Error code

- 797/804 - 2023 Vesoft Inc.

If an error occurs but no error code is returned, or if the error code description is unclear, we welcome your feedback or suggestions

on the forum or GitHub.

When the code returned is 0 , it means that the operation is successful.

Note

•

•

21.6 Error code

- 798/804 - 2023 Vesoft Inc.

https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues

Error name Error Code Description

E_DISCONNECTED -1 Lost connection

E_FAIL_TO_CONNECT -2 Unable to establish connection

E_RPC_FAILURE -3 RPC failure

E_LEADER_CHANGED -4 Raft leader has been changed

E_SPACE_NOT_FOUND -5 Graph space does not exist

E_TAG_NOT_FOUND -6 Tag does not exist

E_EDGE_NOT_FOUND -7 Edge type does not exist

E_INDEX_NOT_FOUND -8 Index does not exist

E_EDGE_PROP_NOT_FOUND -9 Edge type property does not exist

E_TAG_PROP_NOT_FOUND -10 Tag property does not exist

E_ROLE_NOT_FOUND -11 The current role does not exist

E_CONFIG_NOT_FOUND -12 The current configuration does not exist

E_MACHINE_NOT_FOUND -13 The current host does not exist

E_LISTENER_NOT_FOUND -15 Listener does not exist

E_PART_NOT_FOUND -16 The current partition does not exist

E_KEY_NOT_FOUND -17 Key does not exist

E_USER_NOT_FOUND -18 User does not exist

E_STATS_NOT_FOUND -19 Statistics do not exist

E_SERVICE_NOT_FOUND -20 No current service found

E_DRAINER_NOT_FOUND -21 Drainer does not exist

E_DRAINER_CLIENT_NOT_FOUND -22 Drainer client does not exist

E_PART_STOPPED -23 The current partition has already been stopped

E_BACKUP_FAILED -24 Backup failed

E_BACKUP_EMPTY_TABLE -25 The backed-up table is empty

E_BACKUP_TABLE_FAILED -26 Table backup failure

E_PARTIAL_RESULT -27 MultiGet could not get all data

E_REBUILD_INDEX_FAILED -28 Index rebuild failed

E_INVALID_PASSWORD -29 Password is invalid

E_FAILED_GET_ABS_PATH -30 Unable to get absolute path

E_BAD_USERNAME_PASSWORD -1001 Authentication failed

E_SESSION_INVALID -1002 Invalid session

E_SESSION_TIMEOUT -1003 Session timeout

E_SYNTAX_ERROR -1004 Syntax error

E_EXECUTION_ERROR -1005 Execution error

E_STATEMENT_EMPTY -1006 Statement is empty

21.6 Error code

- 799/804 - 2023 Vesoft Inc.

Error name Error Code Description

E_BAD_PERMISSION -1008 Permission denied

E_SEMANTIC_ERROR -1009 Semantic error

E_TOO_MANY_CONNECTIONS -1010 Maximum number of connections exceeded

E_PARTIAL_SUCCEEDED -1011 Access to storage failed (only some requests succeeded)

E_NO_HOSTS -2001 Host does not exist

E_EXISTED -2002 Host already exists

E_INVALID_HOST -2003 Invalid host

E_UNSUPPORTED -2004 The current command, statement, or function is not supported

E_NOT_DROP -2005 Not allowed to drop

E_CONFIG_IMMUTABLE -2007 Configuration items cannot be changed

E_CONFLICT -2008 Parameters conflict with meta data

E_INVALID_PARM -2009 Invalid parameter

E_WRONGCLUSTER -2010 Wrong cluster

E_ZONE_NOT_ENOUGH -2011 Listener conflicts

E_ZONE_IS_EMPTY -2012 Host not exist

E_SCHEMA_NAME_EXISTS -2013 Schema name already exists

E_RELATED_INDEX_EXISTS -2014 There are still indexes related to tag or edge, cannot drop it

E_RELATED_SPACE_EXISTS -2015 There are still some space on the host, cannot drop it

E_STORE_FAILURE -2021 Failed to store data

E_STORE_SEGMENT_ILLEGAL -2022 Illegal storage segment

E_BAD_BALANCE_PLAN -2023 Invalid data balancing plan

E_BALANCED -2024 The cluster is already in the data balancing status

E_NO_RUNNING_BALANCE_PLAN -2025 There is no running data balancing plan

E_NO_VALID_HOST -2026 Lack of valid hosts

E_CORRUPTED_BALANCE_PLAN -2027 A data balancing plan that has been corrupted

E_IMPROPER_ROLE -2030 Failed to recover user role

E_INVALID_PARTITION_NUM -2031 Number of invalid partitions

E_INVALID_REPLICA_FACTOR -2032 Invalid replica factor

E_INVALID_CHARSET -2033 Invalid character set

E_INVALID_COLLATE -2034 Invalid character sorting rules

E_CHARSET_COLLATE_NOT_MATCH -2035 Character set and character sorting rule mismatch

E_SNAPSHOT_FAILURE -2040 Failed to generate a snapshot

E_BLOCK_WRITE_FAILURE -2041 Failed to write block data

E_ADD_JOB_FAILURE -2044 Failed to add new task

E_STOP_JOB_FAILURE -2045 Failed to stop task

21.6 Error code

- 800/804 - 2023 Vesoft Inc.

Error name Error Code Description

E_SAVE_JOB_FAILURE -2046 Failed to save task information

E_BALANCER_FAILURE -2047 Data balancing failed

E_JOB_NOT_FINISHED -2048 The current task has not been completed

E_TASK_REPORT_OUT_DATE -2049 Task report failed

E_JOB_NOT_IN_SPACE -2050 The current task is not in the graph space

E_JOB_NEED_RECOVER -2051 The current task needs to be resumed

E_JOB_ALREADY_FINISH -2052 The job status has already been failed or finished

E_JOB_SUBMITTED -2053 Job default status

E_JOB_NOT_STOPPABLE -2054 The given job do not support stop

E_JOB_HAS_NO_TARGET_STORAGE -2055 The leader distribution has not been reported, so can't send task to

storage

E_INVALID_JOB -2065 Invalid task

E_BACKUP_BUILDING_INDEX -2066 Backup terminated (index being created)

E_BACKUP_SPACE_NOT_FOUND -2067 Graph space does not exist at the time of backup

E_RESTORE_FAILURE -2068 Backup recovery failed

E_SESSION_NOT_FOUND -2069 Session does not exist

E_LIST_CLUSTER_FAILURE -2070 Failed to get cluster information

E_LIST_CLUSTER_GET_ABS_PATH_FAILURE -2071 Failed to get absolute path when getting cluster information

E_LIST_CLUSTER_NO_AGENT_FAILURE -2072 Unable to get an agent when getting cluster information

E_QUERY_NOT_FOUND -2073 Query not found

E_AGENT_HB_FAILUE -2074 Failed to receive heartbeat from agent

E_HOST_CAN_NOT_BE_ADDED -2082 The host can not be added for it's not a storage host

E_ACCESS_ES_FAILURE -2090 Failed to access elasticsearch

E_GRAPH_MEMORY_EXCEEDED -2600 Graph memory exceeded

E_CONSENSUS_ERROR -3001 Consensus cannot be reached during an election

E_KEY_HAS_EXISTS -3002 Key already exists

E_DATA_TYPE_MISMATCH -3003 Data type mismatch

E_INVALID_FIELD_VALUE -3004 Invalid field value

E_INVALID_OPERATION -3005 Invalid operation

E_NOT_NULLABLE -3006 Current value is not allowed to be empty

E_FIELD_UNSET -3007 Field value must be set if the field value is NOT NULL or has no default

value

E_OUT_OF_RANGE -3008 The value is out of the range of the current type

E_DATA_CONFLICT_ERROR -3010 Data conflict

E_WRITE_STALLED -3011 Writes are delayed

E_IMPROPER_DATA_TYPE -3021 Incorrect data type

21.6 Error code

- 801/804 - 2023 Vesoft Inc.

Error name Error Code Description

E_INVALID_SPACEVIDLEN -3022 Invalid VID length

E_INVALID_FILTER -3031 Invalid filter

E_INVALID_UPDATER -3032 Invalid field update

E_INVALID_STORE -3033 Invalid KV storage

E_INVALID_PEER -3034 Peer invalid

E_RETRY_EXHAUSTED -3035 Out of retries

E_TRANSFER_LEADER_FAILED -3036 Leader change failed

E_INVALID_STAT_TYPE -3037 Invalid stat type

E_INVALID_VID -3038 VID is invalid

E_LOAD_META_FAILED -3040 Failed to load meta information

E_FAILED_TO_CHECKPOINT -3041 Failed to generate checkpoint

E_CHECKPOINT_BLOCKED -3042 Generating checkpoint is blocked

E_FILTER_OUT -3043 Data is filtered

E_INVALID_DATA -3044 Invalid data

E_MUTATE_EDGE_CONFLICT -3045 Concurrent write conflicts on the same edge

E_MUTATE_TAG_CONFLICT -3046 Concurrent write conflict on the same vertex

E_OUTDATED_LOCK -3047 Lock is invalid

E_INVALID_TASK_PARA -3051 Invalid task parameter

E_USER_CANCEL -3052 The user canceled the task

E_TASK_EXECUTION_FAILED -3053 Task execution failed

E_PLAN_IS_KILLED -3060 Execution plan was cleared

E_NO_TERM -3070 The heartbeat process was not completed when the request was

received

E_OUTDATED_TERM -3071 Out-of-date heartbeat received from the old leader (the new leader has

been elected)

E_WRITE_WRITE_CONFLICT -3073 Concurrent write conflicts with later requests

E_RAFT_UNKNOWN_PART -3500 Unknown partition

E_RAFT_LOG_GAP -3501 Raft logs lag behind

E_RAFT_LOG_STALE -3502 Raft logs are out of date

E_RAFT_TERM_OUT_OF_DATE -3503 Heartbeat messages are out of date

E_RAFT_UNKNOWN_APPEND_LOG -3504 Unknown additional logs

E_RAFT_WAITING_SNAPSHOT -3511 Waiting for the snapshot to complete

E_RAFT_SENDING_SNAPSHOT -3512 There was an error sending the snapshot

E_RAFT_INVALID_PEER -3513 Invalid receiver

E_RAFT_NOT_READY -3514 Raft did not start

E_RAFT_STOPPED -3515 Raft has stopped

21.6 Error code

- 802/804 - 2023 Vesoft Inc.

Error name Error Code Description

E_RAFT_BAD_ROLE -3516 Wrong role

E_RAFT_WAL_FAIL -3521 Write to a WAL failed

E_RAFT_HOST_STOPPED -3522 The host has stopped

E_RAFT_TOO_MANY_REQUESTS -3523 Too many requests

E_RAFT_PERSIST_SNAPSHOT_FAILED -3524 Persistent snapshot failed

E_RAFT_RPC_EXCEPTION -3525 RPC exception

E_RAFT_NO_WAL_FOUND -3526 No WAL logs found

E_RAFT_HOST_PAUSED -3527 Host suspended

E_RAFT_WRITE_BLOCKED -3528 Writes are blocked

E_RAFT_BUFFER_OVERFLOW -3529 Cache overflow

E_RAFT_ATOMIC_OP_FAILED -3530 Atomic operation failed

E_LEADER_LEASE_FAILED -3531 Leader lease expired

E_RAFT_CAUGHT_UP -3532 Data has been synchronized on Raft

E_STORAGE_MEMORY_EXCEEDED -3600 Storage memory exceeded

E_LOG_GAP -4001 Drainer logs lag behind

E_LOG_STALE -4002 Drainer logs are out of date

E_INVALID_DRAINER_STORE -4003 The drainer data storage is invalid

E_SPACE_MISMATCH -4004 Graph space mismatch

E_PART_MISMATCH -4005 Partition mismatch

E_DATA_CONFLICT -4006 Data conflict

E_REQ_CONFLICT -4007 Request conflict

E_DATA_ILLEGAL -4008 Illegal data

E_CACHE_CONFIG_ERROR -5001 Cache configuration error

E_NOT_ENOUGH_SPACE -5002 Insufficient space

E_CACHE_MISS -5003 No cache hit

E_CACHE_WRITE_FAILURE -5005 Write cache failed

E_NODE_NUMBER_EXCEED_LIMIT -7001 Number of machines exceeded the limit

E_PARSING_LICENSE_FAILURE -7002 Failed to resolve certificate

E_UNKNOWN -8000 Unknown error

Last update: October 25, 2023

21.6 Error code

- 803/804 - 2023 Vesoft Inc.

https://docs.nebula-graph.io/3.6.0

NebulaGraph Database Manual 2023 Vesoft Inc.

https://docs.nebula-graph.io/3.6.0
https://docs.nebula-graph.io/3.6.0
https://docs.nebula-graph.io/3.6.0
https://docs.nebula-graph.io/3.6.0

	NebulaGraph Database Manual
	1. Welcome to NebulaGraph 3.6.0 Documentation
	1.1 Getting started
	1.2 Release notes
	1.3 Other Sources
	1.4 Symbols used in this manual
	1.5 Modify errors

	2. Introduction
	2.1 What is NebulaGraph
	2.1.1 What is a graph database
	2.1.2 Advantages of NebulaGraph
	Open source
	Outstanding performance
	High scalability
	Developer friendly
	Reliable access control
	Diversified ecosystem
	OpenCypher-compatible query language
	Future-oriented hardware with balanced reading and writing
	Easy data modeling and high flexibility
	High popularity

	2.1.3 Use cases
	Fraud detection
	Real-time recommendation
	Intelligent question-answer system
	Social networking

	2.1.4 Related links

	2.2 Data modeling
	2.2.1 Data structures
	2.2.2 Directed property graph

	2.3 Path types
	2.3.1 Walk
	2.3.2 Trail
	2.3.3 Path

	2.4 VID
	2.4.1 Features
	2.4.2 VID Operation
	2.4.3 VID Generation
	2.4.4 Define and modify a VID and its data type
	2.4.5 Query start vid and global scan

	2.5 NebulaGraph architecture
	2.5.1 Architecture overview
	The Meta Service
	The Graph Service and the Storage Service

	2.5.2 Meta Service
	The architecture of the Meta Service
	Functions of the Meta Service
	Manages user accounts
	Manages partitions
	Manages graph spaces
	Manages schema information
	Manages TTL information
	Manages jobs

	2.5.3 Graph Service
	The architecture of the Graph Service
	Parser
	Validator
	Planner
	Executor
	Source code hierarchy

	2.5.4 Storage Service
	Advantages
	The architecture of the Storage Service
	Storage writing process
	KVStore
	Data storage structure
	Property descriptions

	Data partitioning
	Edge partitioning and storage amplification
	Partition algorithm

	Raft
	Raft implementation
	Multi Group Raft
	Batch
	Transfer Leadership
	Peer changes

	Differences with HDFS

	3. Quick start
	3.1 Quickly deploy NebulaGraph using Docker
	3.1.1 Prerequisites
	3.1.2 Deploy NebulaGraph
	3.1.3 Connect to NebulaGraph
	3.1.4 Check the NebulaGraph service status and ports
	3.1.5 Check the service data and logs
	3.1.6 Stop the NebulaGraph services
	3.1.7 Modify configurations
	3.1.8 FAQ
	How to fix the docker mapping to external ports?
	How to upgrade or update the docker images of NebulaGraph services
	ERROR: toomanyrequests when docker-compose pull
	How to update the NebulaGraph Console client

	3.2 Deploy NebulaGraph on-premise
	3.2.1 Step 1: Install NebulaGraph
	Prerequisites
	Step 1: Download the package from cloud service
	Step 2: Install NebulaGraph
	Next to do

	3.2.2 Step 2: Manage NebulaGraph Service
	Manage services with script
	Syntax

	Start NebulaGraph
	Stop NebulaGraph
	Check the service status
	Next to do

	3.2.3 Step 3: Connect to NebulaGraph
	Prerequisites
	Steps

	3.2.4 Register the Storage Service
	Prerequisites
	Steps

	3.2.5 Step 4: Use nGQL (CRUD)
	Graph space and NebulaGraph schema
	Async implementation of CREATE and ALTER

	Create and use a graph space
	nGQL syntax
	Examples

	Create tags and edge types
	nGQL syntax
	Examples

	Insert vertices and edges
	nGQL syntax
	Examples

	Read data
	nGQL syntax
	Examples of GO statement
	Example of FETCH statement

	Update vertices and edges
	nGQL syntax
	Examples

	Delete vertices and edges
	nGQL syntax
	Examples

	About indexes
	nGQL syntax
	Examples of LOOKUP and MATCH (index-based)

	3.3 nGQL cheatsheet
	3.3.1 Functions
	3.3.2 General queries statements
	3.3.3 Clauses and options
	3.3.4 Space statements
	3.3.5 TAG statements
	3.3.6 Edge type statements
	3.3.7 Vertex statements
	3.3.8 Edge statements
	3.3.9 Index
	3.3.10 Subgraph and path statements
	3.3.11 Query tuning statements
	3.3.12 Operation and maintenance statements

	4. nGQL guide
	4.1 nGQL overview
	4.1.1 NebulaGraph Query Language (nGQL)
	What is nGQL
	What can nGQL do
	Example data Basketballplayer
	Placeholder identifiers and values
	About openCypher compatibility
	Native nGQL and openCypher
	Is nGQL compatible with openCypher 9 completely?
	What are the major differences between nGQL and openCypher 9?
	Where can I find more nGQL examples?
	Does it support TinkerPop Gremlin?
	Does NebulaGraph support W3C RDF (SPARQL) or GraphQL?

	4.1.2 Patterns
	Patterns for vertices
	Patterns for related vertices
	Patterns for tags
	Patterns for properties
	Patterns for edges
	Variable-length pattern
	Assigning to path variables

	4.1.3 Comments
	Examples
	OpenCypher compatibility

	4.1.4 Identifier case sensitivity
	Identifiers are Case-Sensitive
	Keywords and Reserved Words are Case-Insensitive
	Functions are Case-Insensitive

	4.1.5 Keywords
	Reserved keywords
	Non-reserved keywords

	4.1.6 nGQL style guide
	Newline
	Identifier naming
	Pattern
	String
	Statement termination

	4.2 Data types
	4.2.1 Numeric types
	Integer
	Floating-point number
	Reading and writing of data values

	4.2.2 Boolean
	4.2.3 String
	Declaration and literal representation
	String reading and writing
	Escape Characters
	OpenCypher compatibility

	4.2.4 Date and time types
	Precautions
	OpenCypher Compatibility
	DATE
	TIME
	DATETIME
	TIMESTAMP
	DURATION
	Examples

	4.2.5 NULL
	Logical operations with NULL
	OpenCypher compatibility
	Comparisons with NULL
	Operations and RETURN with NULL

	Examples
	Use NOT NULL
	Use NOT NULL and set the default

	4.2.6 Lists
	OpenCypher compatibility
	List operations
	Index syntax

	Examples
	OpenCypher compatibility

	4.2.7 Sets
	OpenCypher compatibility
	Examples

	4.2.8 Maps
	OpenCypher compatibility
	Examples

	4.2.9 Type Conversion/Type coercions
	Examples

	4.2.10 Geography
	Type description
	Examples

	4.3 Operators
	4.3.1 Comparison operators
	OpenCypher compatibility
	Examples
	==
	>
	>=
	<
	<=
	!=
	IS [NOT] NULL
	IS [NOT] EMPTY

	4.3.2 Boolean operators
	Legacy version compatibility

	4.3.3 Pipe operators
	OpenCypher compatibility
	Syntax
	Examples
	Performance tips

	4.3.4 Set operators
	UNION, UNION DISTINCT, and UNION ALL
	Examples

	INTERSECT
	Example

	MINUS
	Example

	Precedence of the set operators and pipe operators
	Examples

	4.3.5 String operators
	Examples
	+
	CONTAINS
	(NOT) IN
	(NOT) STARTS WITH
	(NOT) ENDS WITH
	Regular expressions

	4.3.6 List operators
	Examples

	4.3.7 Arithmetic operators
	Examples

	4.3.8 Operator precedence
	Examples
	OpenCypher compatibility

	4.4 Functions and expressions
	4.4.1 Built-in math functions
	abs()
	floor()
	ceil()
	round()
	sqrt()
	cbrt()
	hypot()
	pow()
	exp()
	exp2()
	log()
	log2()
	log10()
	sin()
	asin()
	cos()
	acos()
	tan()
	atan()
	rand()
	rand32()
	rand64()
	bit_and()
	bit_or()
	bit_xor()
	size()
	range()
	sign()
	e()
	pi()
	radians()

	4.4.2 Aggregating functions
	avg()
	count()
	max()
	min()
	collect()
	std()
	sum()
	Aggregating example

	4.4.3 Built-in string functions
	Precautions
	strcasecmp()
	lower() and toLower()
	upper() and toUpper()
	length()
	trim()
	ltrim()
	rtrim()
	left()
	right()
	lpad()
	rpad()
	substr() and substring()
	Explanations for the return of SUBSTR() and SUBSTRING()

	reverse()
	replace()
	split()
	concat()
	concat_ws()
	extract()
	json_extract()

	4.4.4 Built-in date and time functions
	Examples

	4.4.5 Schema-related functions
	For nGQL statements
	id(vertex)
	properties(vertex)
	properties(edge)
	type(edge)
	src(edge)
	dst(edge)
	rank(edge)
	vertex
	edge
	vertices
	edges
	path

	For statements compatible with openCypher
	id()
	tags() and labels()
	properties()
	type()
	typeid()
	src()
	dst()
	startNode()
	endNode()
	rank()

	4.4.6 List functions
	Precautions
	General
	range()
	reverse()
	tail()
	head()
	last()
	reduce()

	For nGQL statements
	keys()
	labels()

	For statements compatible with openCypher
	keys()
	labels()
	nodes()
	relationships()

	4.4.7 Type conversion functions
	toBoolean()
	toFloat()
	toString()
	toInteger()
	toSet()
	hash()

	4.4.8 Conditional expressions
	CASE
	The simple form of CASE expressions
	The generic form of CASE expressions
	Differences between the simple form and the generic form

	coalesce()

	4.4.9 Predicate functions
	Syntax
	Examples

	4.4.10 Geography functions
	Descriptions
	Examples

	4.5 General queries statements
	4.5.1 Overview of NebulaGraph general query statements
	Background
	Categories
	Usage and use cases
	FETCH PROP ON
	LOOKUP ON
	GO
	MATCH
	FIND PATH
	GET SUBGRAPH
	SHOW

	Compound queries
	More information

	4.5.2 MATCH
	Syntax
	Notes
	Using patterns in MATCH statements
	Match vertices
	Match tags
	Match vertex properties
	Match VIDs
	Match connected vertices
	Match paths
	Match edges
	Match edge types
	Match edge type properties
	Match multiple edge types
	Match multiple edges
	Match fixed-length paths
	Match variable-length paths
	Match variable-length paths with multiple edge types
	Match multiple patterns
	Match shortest paths

	Retrieve with multiple match
	Retrieve with optional match

	4.5.3 OPTIONAL MATCH
	OpenCypher Compatibility
	Limitations
	Example

	4.5.4 LOOKUP
	OpenCypher compatibility
	Precautions
	Prerequisites
	Syntax
	Limitations of using WHERE in LOOKUP
	Retrieve vertices
	Retrieve edges
	List vertices or edges with a tag or an edge type
	Count the numbers of vertices or edges

	4.5.5 GO
	OpenCypher compatibility
	Syntax
	Notes
	Cases and examples
	To query the immediate neighbors of a vertex
	To query all vertices within a specified number of hops from a starting vertex
	To add filtering conditions
	To query all edges
	To query multiple edge types
	To query incoming vertices using the REVERSELY keyword
	To use subqueries as the starting vertice of a graph traversal
	To use GROUP BY to group the output
	To use ORDER BY and LIMIT to sort and limit the output
	Other examples

	4.5.6 FETCH
	OpenCypher Compatibility
	Fetch vertex properties
	Syntax
	Fetch vertex properties by one tag
	Fetch specific properties of a vertex
	Fetch properties of multiple vertices
	Fetch vertex properties by multiple tags
	Fetch vertex properties by all tags

	Fetch edge properties
	Syntax
	Fetch all properties of an edge
	Fetch specific properties of an edge
	Fetch properties of multiple edges

	Fetch properties based on edge rank
	Use FETCH in composite queries

	4.5.7 SHOW
	SHOW CHARSET
	Syntax
	Example

	SHOW COLLATION
	Syntax
	Example

	SHOW CREATE SPACE
	Syntax
	Example

	SHOW CREATE TAG/EDGE
	Syntax
	Examples

	SHOW HOSTS
	Syntax
	Examples

	SHOW INDEX STATUS
	Syntax
	Examples
	Related topics

	SHOW INDEXES
	Syntax
	Examples

	SHOW PARTS
	Syntax
	Examples

	SHOW ROLES
	Syntax
	Example

	SHOW SNAPSHOTS
	Role requirement
	Syntax
	Example

	SHOW SPACES
	Syntax
	Example

	SHOW STATS
	Prerequisites
	Syntax
	Examples

	SHOW TAGS/EDGES
	Syntax
	Examples

	SHOW USERS
	Role requirement
	Syntax
	Example

	SHOW SESSIONS
	Precautions
	Syntax
	Examples

	SHOW QUERIES
	Precautions
	Syntax
	Examples

	SHOW META LEADER
	Syntax
	Example

	4.5.8 FIND PATH
	Syntax
	Limitations
	Examples
	FAQ
	Does it support the WHERE clause to achieve conditional filtering during graph traversal?

	4.5.9 GET SUBGRAPH
	Syntax
	Limitations
	Examples
	FAQ
	Why is the number of hops in the returned result greater than STEP_COUNT?
	Why is the number of hops in the returned result lower than STEP_COUNT?

	4.6 Clauses and options
	4.6.1 GROUP BY
	OpenCypher Compatibility
	Syntax
	Examples
	Implicit GROUP BY

	4.6.2 LIMIT AND SKIP
	LIMIT in native nGQL statements
	General LIMIT syntax in native nGQL statements
	LIMIT in GO statements

	LIMIT in openCypher compatible statements
	Examples of LIMIT
	Examples of SKIP
	Example of SKIP and LIMIT

	4.6.3 SAMPLE
	4.6.4 ORDER BY
	Native nGQL Syntax
	Examples

	OpenCypher Syntax
	Examples

	Order of NULL values

	4.6.5 RETURN
	OpenCypher compatibility
	Map order description
	Return vertices or edges
	Return VIDs
	Return Tag
	Return properties
	Return edge type
	Return paths
	Return vertices in a path
	Return edges in a path
	Return path length

	Return all elements
	Rename a field
	Return a non-existing property
	Return expression results
	Return unique fields

	4.6.6 TTL
	OpenCypher Compatibility
	Precautions
	TTL options
	Use TTL options
	Set a timeout if a tag or an edge type exists
	Set a timeout when creating a tag or an edge type

	Data expiration and deletion
	Vertex property expiration
	Edge property expiration
	Data deletion

	Remove a timeout

	4.6.7 WHERE
	OpenCypher compatibility
	Basic usage
	Define conditions with boolean operators
	Filter on properties
	Filter on dynamically-calculated properties
	Filter on existing properties
	Filter on edge rank
	Filter on pattern

	Filter on strings
	STARTS WITH
	ENDS WITH
	CONTAINS
	Negative string matching

	Filter on lists
	Match values in a list
	Match values not in a list

	4.6.8 YIELD
	OpenCypher compatibility
	YIELD clauses
	Syntax
	Use a YIELD clause in a statement

	YIELD statements
	Syntax
	Use a YIELD statement in a composite query
	Use a standalone YIELD statement

	4.6.9 WITH
	OpenCypher compatibility
	Combine statements and form a composite query
	Example 1
	Example 2

	Filter composite queries
	Process the output before using collect()
	Use with RETURN

	4.6.10 UNWIND
	UNWIND statement
	Syntax
	Examples

	UNWIND clause
	Syntax
	Examples

	4.7 Variables and composite queries
	4.7.1 Composite queries (clause structure)
	OpenCypher compatibility
	Composite queries are not transactional queries (as in SQL/Cypher)
	Examples

	4.7.2 User-defined variables
	OpenCypher compatibility
	Native nGQL
	Example
	Set operations and scope of user-defined variables

	4.7.3 Reference to properties
	Property references for vertexes
	Property reference syntax

	Property references for edges
	Property reference syntax

	Property references for composite queries
	Examples
	Use property references for vertexes
	Use property references for edges
	Use property references for composite queries

	4.8 Space statements
	4.8.1 CREATE SPACE
	Prerequisites
	Syntax
	Create graph spaces
	Clone graph spaces

	Examples
	Implementation of the operation
	Check partition distribution

	4.8.2 USE
	Prerequisites
	Syntax
	Examples

	4.8.3 SHOW SPACES
	Syntax
	Example

	4.8.4 DESCRIBE SPACE
	Syntax
	Example

	4.8.5 CLEAR SPACE
	Permission requirements
	Caution
	Syntax
	Data reserved

	4.8.6 DROP SPACE
	Prerequisites
	Syntax
	FAQ

	4.9 Tag statements
	4.9.1 CREATE TAG
	OpenCypher compatibility
	Prerequisites
	Syntax
	Examples

	Implementation of the operation

	4.9.2 DROP TAG
	Prerequisites
	Syntax
	Example

	4.9.3 ALTER TAG
	Notes
	Syntax
	Examples
	Implementation of the operation

	4.9.4 SHOW TAGS
	Syntax
	Examples

	4.9.5 DESCRIBE TAG
	Prerequisite
	Syntax
	Example

	4.9.6 DELETE TAG
	Prerequisites
	Syntax
	Example

	4.9.7 Add and delete tags
	Examples

	4.10 Edge type statements
	4.10.1 CREATE EDGE
	OpenCypher compatibility
	Prerequisites
	Syntax
	Examples

	4.10.2 DROP EDGE
	Prerequisites
	Syntax
	Example

	4.10.3 ALTER EDGE
	Notes
	Syntax
	Example
	Implementation of the operation

	4.10.4 SHOW EDGES
	Syntax
	Example

	4.10.5 DESCRIBE EDGE
	Prerequisites
	Syntax
	Example

	4.11 Vertex statements
	4.11.1 INSERT VERTEX
	Prerequisites
	Syntax
	Examples

	4.11.2 DELETE VERTEX
	Syntax
	Examples
	Process of deleting vertices

	4.11.3 UPDATE VERTEX
	Syntax
	Example

	4.11.4 UPSERT VERTEX
	Syntax
	Insert a vertex if it does not exist
	Update a vertex if it exists

	4.12 Edge statements
	4.12.1 INSERT EDGE
	Syntax
	Examples

	4.12.2 DELETE EDGE
	Syntax
	Examples

	4.12.3 UPDATE EDGE
	Syntax
	Example

	4.12.4 UPSERT EDGE
	Syntax
	Insert an edge if it does not exist
	Update an edge if it exists

	4.13 Native index statements
	4.13.1 Index overview
	Usage Instructions
	Native indexes
	Operations on native indexes

	Full-text indexes
	Null values
	Range queries

	4.13.2 CREATE INDEX
	Prerequisites
	Must-read for using indexes
	Steps
	Syntax
	Create tag/edge type indexes
	Create single-property indexes
	Create composite property indexes

	4.13.3 SHOW INDEXES
	Syntax
	Examples

	4.13.4 SHOW CREATE INDEX
	Syntax
	Examples

	4.13.5 DESCRIBE INDEX
	Syntax
	Examples

	4.13.6 REBUILD INDEX
	Syntax
	Examples

	4.13.7 SHOW INDEX STATUS
	Syntax
	Example

	4.13.8 DROP INDEX
	Prerequisite
	Syntax
	Example

	4.14 Full-text index statements
	4.14.1 Full-text index restrictions
	4.14.2 Deploy full-text index
	Precaution
	Deploy Elasticsearch cluster
	Sign in to the text search clients
	Syntax
	Example

	Show text search clients
	Syntax
	Example

	Sign out to the text search clients
	Syntax
	Example

	4.14.3 Deploy Raft Listener for NebulaGraph Storage service
	Prerequisites
	Precautions
	Deployment process
	Step 1: Install the Listener service
	Step 2: Prepare the configuration file for the Listener
	Step 3: Start Listeners
	Step 4: Add Listeners to NebulaGraph

	Show Listeners
	Example

	Remove Listeners
	Example

	4.14.4 Full-text indexes
	Prerequisite
	Precaution
	Full Text Queries
	Syntax
	Create full-text indexes
	Show full-text indexes
	Rebuild full-text indexes
	Drop full-text indexes
	Use query options

	Examples

	4.15 Query tuning and terminating statements
	4.15.1 EXPLAIN and PROFILE
	Execution Plan
	Syntax
	Output formats
	The row format
	The dot format
	The tck format

	4.15.2 Kill queries
	Syntax
	Examples

	4.15.3 Kill sessions
	Syntax
	Examples

	4.16 Job manager and the JOB statements
	4.16.1 SUBMIT JOB BALANCE LEADER
	4.16.2 SUBMIT JOB COMPACT
	4.16.3 SUBMIT JOB FLUSH
	4.16.4 SUBMIT JOB STATS
	4.16.5 SUBMIT JOB DOWNLOAD/INGEST
	4.16.6 SHOW JOB
	Job status

	4.16.7 SHOW JOBS
	4.16.8 STOP JOB
	4.16.9 RECOVER JOB
	4.16.10 FAQ
	How to troubleshoot job problems?

	5. Deploy and install
	5.1 Prepare resources for compiling, installing, and running NebulaGraph
	5.1.1 About storage devices
	5.1.2 About CPU architecture
	5.1.3 Requirements for compiling the source code
	Hardware requirements for compiling NebulaGraph
	Supported operating systems for compiling NebulaGraph
	Software requirements for compiling NebulaGraph
	Prepare software for compiling NebulaGraph

	5.1.4 Requirements and suggestions for installing NebulaGraph in test environments
	Hardware requirements for test environments
	Supported operating systems for test environments
	Suggested service architecture for test environments

	5.1.5 Requirements and suggestions for installing NebulaGraph in production environments
	Hardware requirements for production environments
	Supported operating systems for production environments
	Suggested service architecture for production environments

	5.1.6 Capacity requirements for running a NebulaGraph cluster

	5.2 Compile and install
	5.2.1 Install NebulaGraph by compiling the source code
	Prerequisites
	Installation steps
	Update the master branch
	Next to do
	CMake variables
	Usage of CMake variables
	CMAKE_INSTALL_PREFIX
	ENABLE_WERROR
	ENABLE_TESTING
	ENABLE_ASAN
	CMAKE_BUILD_TYPE
	ENABLE_INCLUDE_WHAT_YOU_USE
	NEBULA_USE_LINKER
	CMAKE_C_COMPILER/CMAKE_CXX_COMPILER
	ENABLE_CCACHE
	NEBULA_THIRDPARTY_ROOT

	Examine problems

	5.2.2 Compile NebulaGraph using Docker
	Prerequisites
	Compilation steps
	Next Steps

	5.3 Local single-node installation
	5.3.1 Install NebulaGraph with RPM or DEB package
	Prerequisites
	Step 1: Download the package from cloud service
	Step 2: Install NebulaGraph
	Next to do

	5.3.2 Install NebulaGraph graph with the tar.gz file
	Installation steps
	Next to do

	5.3.3 Standalone NebulaGraph
	Background
	Scenarios
	Limitations
	Resource requirements
	Steps
	Configuration file

	5.4 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers
	5.4.1 Deployment
	5.4.2 Prerequisites
	5.4.3 Manual deployment process
	Install NebulaGraph
	Modify the configurations
	Start the cluster
	Check the cluster status

	5.5 Deploy NebulaGraph with Docker Compose
	5.5.1 Prerequisites
	5.5.2 Deploy NebulaGraph
	5.5.3 Connect to NebulaGraph
	5.5.4 Check the NebulaGraph service status and ports
	5.5.5 Check the service data and logs
	5.5.6 Stop the NebulaGraph services
	5.5.7 Modify configurations
	5.5.8 FAQ
	How to fix the docker mapping to external ports?
	How to upgrade or update the docker images of NebulaGraph services?
	ERROR: toomanyrequests when docker-compose pull
	How to update the NebulaGraph Console client?
	How to activate storaged containers when they remain in offline status?

	5.5.9 Related documents

	5.6 Deploy NebulaGraph with NebulaGraph Lite
	5.6.1 Benefits
	5.6.2 Steps
	5.6.3 What's next

	5.7 Install NebulaGraph with ecosystem tools
	5.7.1 Installation details

	5.8 Manage NebulaGraph Service
	5.8.1 Manage services with script
	Syntax

	5.8.2 Start NebulaGraph
	5.8.3 Stop NebulaGraph
	5.8.4 Check the service status
	5.8.5 Next to do

	5.9 Connect to NebulaGraph
	5.9.1 Prerequisites
	Steps

	5.10 Manage Storage hosts
	5.10.1 Prerequisites
	5.10.2 Add Storage hosts
	5.10.3 Drop Storage hosts
	5.10.4 View Storage hosts

	5.11 Upgrade NebulaGraph to 3.6.0
	5.11.1 Applicable source versions
	5.11.2 Limitations
	5.11.3 Upgrade influences
	5.11.4 Preparations before the upgrade
	5.11.5 Upgrade steps
	5.11.6 Upgrade failure and rollback
	5.11.7 FAQ
	Can I write through the client during the upgrade?
	The Space 0 not found warning message during the upgrade process
	How to upgrade if a machine has only the Graph Service, but not the Storage Service?
	How to resolve the error Permission denied?
	Is there any change in gflags?
	Is there a tool or solution for verifying data consistency after the upgrade?
	How to solve the issue that Storage is OFFLINE and Leader count is 0?
	Why the job type changed after the upgrade, but job ID remains the same?

	5.12 Uninstall NebulaGraph
	5.12.1 Prerequisite
	5.12.2 Step 1: Delete data files of the Storage and Meta Services
	5.12.3 Step 2: Delete the installation directories
	Uninstall NebulaGraph deployed with source code
	Uninstall NebulaGraph deployed with RPM packages
	Uninstall NebulaGraph deployed with DEB packages
	Uninstall NebulaGraph deployed with Docker Compose

	6. Configure and log
	6.1 Configurations
	6.1.1 Configurations
	Get the configuration list and descriptions
	Get configurations
	Configuration files
	Configuration files for clusters installed from source, with an RPM/DEB package, or a TAR package
	Configuration files for clusters installed with Docker Compose
	Configuration files for clusters installed with NebulaGraph Operator

	Modify configurations
	Modifying configurations in the configuration file
	Dynamically modifying configurations using command

	6.1.2 Meta Service configuration
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Networking configurations
	Storage configurations
	Misc configurations
	RocksDB options configurations

	6.1.3 Graph Service configuration
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Query configurations
	Networking configurations
	Authorization configurations
	Memory configurations
	Metrics configurations
	Session configurations
	Experimental configurations
	Memory tracker configurations
	performance optimization configurations

	6.1.4 Storage Service configurations
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Networking configurations
	Raft configurations
	Disk configurations
	RocksDB options
	Misc configurations
	Memory Tracker configurations
	For super-Large vertices
	Storage configurations for large dataset

	6.1.5 Kernel configurations
	Resource control
	Memory
	vm.swappiness
	vm.min_free_kbytes
	vm.max_map_count
	vm.dirty_*
	Transparent Huge Pages

	Networking
	net.ipv4.tcp_slow_start_after_idle
	net.core.somaxconn
	net.ipv4.tcp_max_syn_backlog
	net.core.netdev_max_backlog
	net.ipv4.tcp_keepalive_*
	net.ipv4.tcp_rmem/wmem
	scheduler

	Other parameters
	kernel.core_pattern

	Modify parameters
	sysctl
	prlimit

	6.2 Log management
	6.2.1 Runtime logs
	Log directory
	Parameter descriptions
	Check the severity level
	Change the severity level
	RocksDB runtime logs
	Log recycling
	Log recycling using cron jobs
	Log recycling using logrotate

	7. Monitor
	7.1 Query NebulaGraph metrics
	7.1.1 Metrics structure
	7.1.2 Query metrics over HTTP
	Syntax
	Query a single metric
	Query multiple metrics
	Return a JSON result.
	Query all metrics in a service.
	Space-level metrics

	7.1.3 Metric description
	Graph
	Meta
	Storage
	Graph space

	7.2 RocksDB statistics
	7.2.1 Enable RocksDB
	7.2.2 Get RocksDB statistics
	7.2.3 Examples

	8. Data security
	8.1 Authentication and authorization
	8.1.1 Authentication
	Local authentication
	Enable local authentication

	8.1.2 User management
	CREATE USER
	GRANT ROLE
	REVOKE ROLE
	DESCRIBE USER
	SHOW ROLES
	CHANGE PASSWORD
	ALTER USER
	DROP USER
	SHOW USERS

	8.1.3 Roles and privileges
	Built-in roles
	Role privileges and allowed nGQL

	8.2 SSL encryption
	8.2.1 Precaution
	8.2.2 Certificate modes
	8.2.3 Authentication policies
	8.2.4 Example of TLS

	9. Backup and restore
	9.1 NebulaGraph BR Community
	9.1.1 What is Backup & Restore
	Features
	Limitations
	How to use BR

	9.1.2 Install BR
	Notes
	Version compatibility
	Install BR with a binary file
	Install BR with the source code
	Install Agent
	FAQ
	The error `E_LIST_CLUSTER_NO_AGENT_FAILURE

	9.1.3 Use BR to back up data
	Prerequisites
	Procedure
	Next to do

	9.1.4 Use BR to restore data
	Prerequisites
	Procedures

	9.2 Backup and restore data with snapshots
	9.2.1 Prerequisites
	9.2.2 Precautions
	9.2.3 Create snapshots
	9.2.4 View snapshots
	Snapshot path

	9.2.5 Delete snapshots
	9.2.6 Restore data with snapshots

	10. Synchronize and migrate
	10.1 BALANCE syntax

	11. Import and export
	11.1 Import tools
	11.1.1 Export tools

	11.2 NebulaGraph Importer
	11.2.1 Features
	11.2.2 Advantage
	11.2.3 Version compatibility
	11.2.4 Release note
	11.2.5 Prerequisites
	11.2.6 Steps
	Download binary package and run
	Source code compile and run
	Run in Docker mode

	11.2.7 Configuration File Description
	Client configuration
	Manager configuration
	Log configuration
	Source configuration

	11.3 NebulaGraph Exchange
	11.3.1 Introduction
	What is NebulaGraph Exchange
	Editions
	Scenarios
	Advantages
	Version compatibility
	Data source
	Release note

	Limitations
	Environment
	Software dependencies

	11.3.2 Get Exchange
	Download the JAR file directly
	Get the JAR file by compiling the source code
	Prerequisites

	Steps
	Failed to download the dependency package

	11.3.3 Exchange configurations
	Options for import
	Import data
	Import the reload file

	Parameters in the configuration file
	Generate template configuration file automatically
	Configuration instructions
	Spark configurations
	Hive configurations (optional)
	NebulaGraph configurations
	Vertex configurations
	Edge configurations

	11.3.4 Use NebulaGraph Exchange
	Import data from CSV files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process CSV files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	Import data from JSON files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process JSON files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	Import data from ORC files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process ORC files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	Import data from Parquet files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process Parquet files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	Import data from HBase
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from MySQL/PostgreSQL
	Data set
	Environment
	Prerequisites
	Precautions
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from Oracle
	Data set
	Environment
	Prerequisites
	Precautions
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from ClickHouse
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from Neo4j
	Implementation method
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Configuring source data
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	Import data from Hive
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Use Spark SQL to confirm Hive SQL statements
	Step 3: Modify configuration file
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	Import data from MaxCompute
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from Pulsar
	Environment
	Prerequisites
	Precautions
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from Kafka
	Environment
	Prerequisites
	Precautions
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from general JDBC
	Data set
	Environment
	Prerequisites
	Precautions
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	Import data from SST files
	Precautions
	Background information
	Scenarios
	Implementation methods
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process CSV files
	Step 3: Modify configuration files
	Step 4: Generate the SST file
	Step 5: Import the SST file
	Step 6: (Optional) Validate data
	Step 7: (Conditional) Rebuild indexes in NebulaGraph

	11.3.5 Exchange FAQ
	Compilation
	Q: Some packages not in central repository failed to download, error: COULD NOT RESOLVE DEPENDENCIES FOR PROJECT XXX
	Q: Unable to download SNAPSHOT packages when compiling Exchange

	Execution
	Q: Error: JAVA.LANG.CLASSNOTFOUNDEXCEPTION: COM.VESOFT.NEBULA.EXCHANGE.EXCHANGE
	Q: Error: METHOD NAME XXX NOT FOUND
	Q: Error: NoSuchMethod, MethodNotFound (EXCEPTION IN THREAD "MAIN" JAVA.LANG.NOSUCHMETHODERROR, etc)
	Q: When Exchange imports Hive data, error: EXCEPTION IN THREAD "MAIN" ORG.APACHE.SPARK.SQL.ANALYSISEXCEPTION: TABLE OR VIEW NOT FOUND
	Q: Run error: COM.FACEBOOK.THRIFT.PROTOCOL.TPROTOCOLEXCEPTION: EXPECTED PROTOCOL ID XXX
	Q: Error: EXCEPTION IN THREAD "MAIN" COM.FACEBOOK.THRIFT.PROTOCOL.TPROTOCOLEXCEPTION: THE FIELD 'CODE' HAS BEEN ASSIGNED THE INVALID VALUE -4
	Q: How to correct the encoding error when importing data in a Spark environment?
	Q: org.rocksdb.RocksDBException: While open a file for appending: /path/sst/1-xxx.sst: No such file or directory

	Configuration
	Q: Which configuration fields will affect import performance?

	Others
	Q: Which versions of NebulaGraph are supported by Exchange?
	Q: What is the relationship between Exchange and Spark Writer?

	12. Connectors
	12.1 NebulaGraph Spark Connector
	12.1.1 Version compatibility
	12.1.2 Use cases
	12.1.3 Benefits
	12.1.4 Release note
	12.1.5 Get NebulaGraph Spark Connector
	Compile and package
	Download maven remote repository

	12.1.6 How to use
	Reading data from NebulaGraph
	Write data into NebulaGraph

	12.2 NebulaGraph Flink Connector
	12.2.1 Use cases
	12.2.2 Release note
	12.2.3 Version compatibility
	12.2.4 Prerequisites
	12.2.5 Get NebulaGraph Flink Connector
	Configure Maven dependency
	Compile and package

	12.2.6 How to use
	Write data into NebulaGraph
	Read data from NebulaGraph
	Parameter descriptions

	12.2.7 Example

	13. Best practices
	13.1 Compaction
	13.1.1 Automatic compaction
	13.1.2 Full compaction
	13.1.3 Operation suggestions
	13.1.4 FAQ
	"Where are the logs related to Compaction stored?"
	"Can I do full compactions for multiple graph spaces at the same time?"
	"How much time does it take for full compactions?"
	"Can I modify --rocksdb_rate_limit dynamically?"
	"Can I stop a full compaction after it starts?"

	13.2 Storage load balance
	13.2.1 Balance leader distribution
	Example

	13.3 Graph data modeling suggestions
	13.3.1 Model for performance
	Design and evaluate the most important queries
	Full-graph scanning avoidance
	No predefined bonds between Tags and Edge types
	Tags/Edge types predefine a set of properties
	Control changes in the business model and the data model
	Set temporary properties through self-loop edges
	About dangling edges
	Breadth-first traversal over depth-first traversal
	Edge directions
	Set tag properties appropriately
	Use indexes correctly
	Design VIDs appropriately
	Long texts

	13.3.2 Dynamic graphs (sequence graphs) are not supported
	13.3.3 Free graph data modeling tools

	13.4 System design suggestions
	13.4.1 QPS or low-latency first
	13.4.2 Data transmission and optimization
	13.4.3 Query preheating and data preheating

	13.5 Execution plan
	13.6 Processing super vertices
	13.6.1 Principle introduction
	Indexes for duplicate properties
	Suggested solutions
	Solutions at the database end
	Solutions at the application end

	13.7 Enable AutoFDO for NebulaGraph
	13.7.1 Resource Preparations
	Install Dependencies
	NebulaGraph Binary with Debug Version

	13.7.2 Prepare Test Data
	13.7.3 Prepare Profile Data
	Collect Perf Data For AutoFdo Tool
	Create Gcov File
	Merge the Profile Data

	13.7.4 Recompile GraphNebula Binary with the Merged Profile
	13.7.5 Performance Test Result
	Hardware & Software Environment
	Test Results

	13.8 Best practices
	13.8.1 Scenarios
	13.8.2 Kernel
	13.8.3 Ecosystem tool

	14. Clients
	14.1 Clients overview
	14.2 NebulaGraph Console
	14.2.1 Compatibility with NebulaGraph
	14.2.2 Obtain NebulaGraph Console
	14.2.3 NebulaGraph Console functions
	Connect to NebulaGraph
	Manage parameters
	Export query results
	Import a testing dataset
	Run a command multiple times
	Sleep
	Disconnect NebulaGraph Console from NebulaGraph

	14.3 NebulaGraph CPP
	14.3.1 Prerequisites
	14.3.2 Compatibility with NebulaGraph
	14.3.3 Install NebulaGraph CPP
	Prerequisites
	Steps

	14.3.4 Use NebulaGraph CPP
	14.3.5 API reference
	14.3.6 Core of the example code

	14.4 NebulaGraph Java
	14.4.1 Prerequisites
	14.4.2 Compatibility with NebulaGraph
	14.4.3 Download NebulaGraph Java
	14.4.4 Use NebulaGraph Java
	14.4.5 API reference
	14.4.6 Core of the example code

	14.5 NebulaGraph Python
	14.5.1 Prerequisites
	14.5.2 Compatibility with NebulaGraph
	14.5.3 Install NebulaGraph Python
	Install NebulaGraph Python with pip
	Install NebulaGraph Python from the source code

	14.5.4 API reference
	14.5.5 Core of the example code

	14.6 NebulaGraph Go
	14.6.1 Prerequisites
	14.6.2 Compatibility with NebulaGraph
	14.6.3 Download NebulaGraph Go
	14.6.4 Install or update
	14.6.5 API reference
	14.6.6 Core of the example code

	14.7 Community contributed clients

	15. Studio
	15.1 About NebulaGraph Studio
	15.1.1 What is NebulaGraph Studio
	Deployment
	Features
	Scenarios
	Authentication
	Version compatibility
	Check updates

	15.1.2 Limitations
	Architecture
	Upload data
	Data backup
	nGQL statements
	Browser

	15.2 Deploy and connect
	15.2.1 Deploy Studio
	RPM-based Studio
	Prerequisites
	Install
	Uninstall
	Exception handling

	DEB-based Studio
	Prerequisites
	Install
	Uninstall

	tar-based Studio
	Prerequisites
	Install and deploy
	Stop Service

	Docker-based Studio
	Prerequisites
	Procedure

	Helm-based Studio
	Prerequisites
	Install
	Uninstall

	Next to do

	15.2.2 Connect to NebulaGraph
	Prerequisites
	Procedure
	Next to do
	Log out

	15.3 Quick start
	15.3.1 Design a schema
	15.3.2 Create a schema
	Prerequisites
	Create a schema with Schema
	Create a schema with Console
	Next to do

	15.3.3 Import data
	Prerequisites
	Entry
	Create a new data source
	Create an import task
	Next

	15.3.4 Console
	15.3.5 Use Schema
	Manage graph spaces
	Prerequisites
	Create a graph space
	Delete a graph space
	Next to do

	Manage tags
	Prerequisites
	Create a tag
	Edit a tag
	Delete a tag
	Next to do

	Manage edge types
	Prerequisites
	Create an edge type
	Edit an edge type
	Delete an Edge type
	Next to do

	Manage indexes
	Prerequisites
	Create an index
	View indexes
	Rebuild indexes
	Delete an index

	View Schema
	Steps
	Other operations

	15.3.6 Schema drafting
	Features
	Entry
	Design schema
	Apply schema
	Modify schema
	Delete schema
	Export Schema

	15.4 Troubleshooting
	15.4.1 Connecting to the database error
	Problem description
	Possible causes and solutions
	Step1: Confirm that the format of the HOST field is correct
	Step2: Confirm that the USERNAME and PASSWORD are correct
	Step3: Confirm that NebulaGraph service is normal
	Step4: Confirm the network connection of the Graph service is normal

	15.4.2 Cannot access to Studio
	Problem description
	Possible causes and solutions
	Step1: Confirm system architecture
	Step2: Check if the Studio service starts normally
	Step3: Confirm address
	Step4: Confirm network connection

	15.4.3 FAQ

	16. Dashboard (Community)
	16.1 What is NebulaGraph Dashboard Community Edition
	16.1.1 Features
	16.1.2 Scenarios
	16.1.3 Precautions
	16.1.4 Version compatibility
	16.1.5 Release note

	16.2 Deploy Dashboard Community Edition
	16.2.1 Prerequisites
	16.2.2 Steps
	Deploy Dashboard with Docker Compose

	16.2.3 Manage services in Dashboard
	16.2.4 Next to do

	16.3 Connect Dashboard
	16.3.1 Prerequisites
	16.3.2 Procedures

	16.4 Dashboard
	16.4.1 Overview
	16.4.2 Machine
	16.4.3 Service
	Graph space

	16.4.4 Management
	Overview info
	Storage Leader Distribution
	Version
	Service information
	Partition Distribution
	Partition information

	Config

	16.4.5 Others

	16.5 Metrics
	16.5.1 Machine
	CPU
	Memory
	Load
	Disk
	Network

	16.5.2 Service
	Period
	Metric methods
	Graph
	Meta
	Storage
	Graph space

	17. NebulaGraph Operator
	17.1 What is NebulaGraph Operator
	17.1.1 Concept
	17.1.2 How it works
	17.1.3 Features
	17.1.4 Limitations
	Version limitations

	17.1.5 Release note

	17.2 Getting started
	17.2.1 Install NebulaGraph Operator
	Background
	Prerequisites
	Steps
	What's next

	17.2.2 Create a NebulaGraph cluster
	Prerequisites
	Create a NebulaGraph cluster with Helm
	Create a NebulaGraph cluster with Kubectl
	What's next

	17.2.3 Connect to a NebulaGraph cluster
	Prerequisites
	Connect to NebulaGraph databases from within a NebulaGraph cluster
	Connect to NebulaGraph databases from outside a NebulaGraph cluster via NodePort
	Connect to NebulaGraph databases from outside a NebulaGraph cluster via Ingress

	17.3 NebulaGraph Operator management
	17.3.1 Customize installation defaults
	Customizable parameters
	Example

	17.3.2 Update NebulaGraph Operator
	Steps

	17.3.3 Use NebulaGraph Operator to manage specific clusters
	Application scenarios
	Configurations
	Examples
	Specify the managed clusters by namespace
	Specify the managed clusters by label

	FAQ
	How to set labels for NebulaGraph clusters?
	How to view the labels of NebulaGraph clusters?
	How to delete the labels of NebulaGraph clusters?
	How to view the namespace where the NebulaGraph cluster is located?

	17.3.4 Upgrade NebulaGraph Operator
	Steps

	17.3.5 Uninstall NebulaGraph Operator
	Steps

	17.4 Cluster administration
	17.4.1 Deployment
	Install a NebulaGraph cluster using NebulaGraph Operator
	Prerequisites
	Use KUBECTL APPLY
	Use HELM

	Upgrade NebulaGraph clusters created with NebulaGraph Operator
	Limits
	Prerequisites
	Upgrade a NebulaGraph cluster with KUBECTL
	Upgrade a NebulaGraph cluster with HELM
	Accelerate the upgrade process
	Troubleshooting

	Delete a NebulaGraph cluster
	Usage limitations
	Delete a NebulaGraph cluster using KUBECTL
	Delete a NebulaGraph cluster using HELM

	17.4.2 Customize the configuration of the NebulaGraph cluster
	Prerequisites
	Configuration method
	Configurable parameters
	Parameter updates & Pod restart rules
	Customize port configuration

	17.4.3 Storage management
	Dynamically expand persistent volumes
	Background
	Prerequisites
	Online volume expansion example

	Use Local Persistent Volumes in a NebulaGraph cluster
	Principles
	Prerequisites
	Steps
	Failover for Local Persistent Volumes in the cloud

	Reclaim PVs
	Prerequisites
	Steps

	17.4.4 Manage cluster logs
	View logs
	Clean logs
	Collect logs

	17.4.5 Security
	Enable admission control
	Prerequisites
	Admission control rules
	TLS certificates for admission webhooks
	Steps of enabling admission control

	Configure deletion protection
	Prerequisites
	Add an annotation to enable deletion protection
	Verify deletion protection
	Remove the annotation to disable deletion protection

	17.4.6 HA and balancing
	Self-healing
	Prerequisites
	Steps

	17.4.7 Advanced
	Optimize leader transfer in rolling updates
	Rolling update trigger conditions
	Specify a rolling update strategy

	Restart service Pods in a NebulaGraph cluster on K8s
	Prerequisites
	Restart all Pods of a certain service type
	Restart a single Storage service Pod

	17.5 FAQ
	17.5.1 Does NebulaGraph Operator support the v1.x version of NebulaGraph?
	17.5.2 Is cluster stability guaranteed if using local storage?
	17.5.3 How to ensure the stability of a cluster when scaling the cluster?
	17.5.4 Is the replica in the Operator docs the same as the replica in the NebulaGraph core docs?
	17.5.5 How to view the logs of each service in the NebulaGraph cluster?
	17.5.6 How to resolve the host not found:nebula-<metad|storaged|graphd>-0.nebula.<metad|storaged|graphd>-headless.default.svc.cluster.local error?

	18. Graph computing
	18.1 NebulaGraph Algorithm
	18.1.1 Version compatibility
	18.1.2 Prerequisites
	18.1.3 Limitations
	18.1.4 Supported algorithms
	18.1.5 Implementation methods
	18.1.6 Get NebulaGraph Algorithm
	Compile and package
	Download maven from the remote repository

	18.1.7 How to use
	Use algorithm interface (recommended)
	Submit the algorithm package directly

	19. NebulaGraph Bench
	19.1 Scenario
	19.2 Release note
	19.3 Test process

	20. FAQ
	20.1 About manual updates
	20.1.1 "Why is the behavior in the manual not consistent with the system?"

	20.2 About legacy version compatibility
	20.3 About execution errors
	20.3.1 "How to resolve the error -1005:GraphMemoryExceeded: (-2600)?"
	20.3.2 "How to resolve the error SemanticError: Missing yield clause.?"
	20.3.3 "How to resolve the error Host not enough!?"
	20.3.4 "How to resolve the error To get the property of the vertex in 'v.age', should use the format 'var.tag.prop'?"
	20.3.5 "How to resolve Used memory hits the high watermark(0.800000) of total system memory.?"
	20.3.6 "How to resolve the error Storage Error E_RPC_FAILURE?"
	20.3.7 "How to resolve the error The leader has changed. Try again later?"
	20.3.8 "How to resolve Schema not exist: xxx?"
	20.3.9 Unable to download SNAPSHOT packages when compiling Exchange, Connectors, or Algorithm
	20.3.10 "How to resolve [ERROR (-1004)]: SyntaxError: syntax error near?"
	20.3.11 "How to resolve the error can’t solve the start vids from the sentence?"
	20.3.12 "How to resolve the error Wrong vertex id type: 1001?"
	20.3.13 "How to resolve the error The VID must be a 64-bit integer or a string fitting space vertex id length limit.?"
	20.3.14 "How to resolve the error edge conflict or vertex conflict?"
	20.3.15 "How to resolve the error RPC failure in MetaClient: Connection refused?"
	20.3.16 "How to resolve the error StorageClientBase.inl:214] Request to "x.x.x.x":9779 failed: N6apache6thrift9transport19TTransportExceptionE: Timed Out in nebula-graph.INFO?"
	20.3.17 "How to resolve the error MetaClient.cpp:65] Heartbeat failed, status:Wrong cluster! in nebula-storaged.INFO, or HBProcessor.cpp:54] Reject wrong cluster host "x.x.x.x":9771! in nebula-metad.INFO?"
	20.3.18 "How to resolve the error Storage Error: More than one request trying to add/update/delete one edge/vertex at he same time.?"

	20.4 About design and functions
	20.4.1 "How is the time spent value at the end of each return message calculated?"
	20.4.2 "Why does the port number of the nebula-storaged process keep showing red after connecting to NebulaGraph?"
	20.4.3 "Why is there no line separating each row in the returned result of NebulaGraph 2.6.0?"
	20.4.4 About dangling edges
	20.4.5 "Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2?"
	20.4.6 "Is stopping or killing slow queries supported?"
	20.4.7 "Why are the query results different when using GO and MATCH to execute the same semantic query?"
	20.4.8 "How to count the vertices/edges number of each tag/edge type?"
	20.4.9 "How to get all the vertices/edge of each tag/edge type?"
	20.4.10 "Can non-English characters be used as identifiers, such as the names of graph spaces, tags, edge types, properties, and indexes?"
	20.4.11 "How to get the out-degree/the in-degree of a given vertex?"
	20.4.12 "How to quickly get the out-degree and in-degree of all vertices?"

	20.5 About operation and maintenance
	20.5.1 "The runtime log files are too large. How to recycle the logs?"
	20.5.2 "How to check the NebulaGraph version?"
	20.5.3 "How to scale my cluster up/down or out/in?"
	Increase or decrease the number of Meta, Graph, or Storage nodes
	Add or remove disks in the Storage nodes

	20.5.4 "After changing the name of the host, the old one keeps displaying OFFLINE. What should I do?"
	20.5.5 "How do I view the dmp file?"
	20.5.6 How can I set the NebulaGraph service to start automatically on boot via systemctl?

	20.6 About connections
	20.6.1 "Which ports should be opened on the firewalls?"
	20.6.2 "How to test whether a port is open or closed?"

	21. Appendix
	21.1 Release Note
	21.1.1 NebulaGraph 3.6.0 release notes
	Features
	Enhancements
	Bug fixes

	21.1.2 NebulaGraph Studio release notes
	v3.8.0
	v3.7.0

	21.1.3 NebulaGraph Dashboard Community Edition 3.6.0 release notes
	Community Edition 3.4.0

	21.2 Ecosystem tools overview
	21.2.1 NebulaGraph Studio
	21.2.2 NebulaGraph Dashboard Community Edition
	21.2.3 NebulaGraph Exchange
	21.2.4 NebulaGraph Operator
	21.2.5 NebulaGraph Importer
	21.2.6 NebulaGraph Spark Connector
	21.2.7 NebulaGraph Flink Connector
	21.2.8 NebulaGraph Algorithm
	21.2.9 NebulaGraph Console
	21.2.10 NebulaGraph Docker Compose
	21.2.11 Backup & Restore
	21.2.12 NebulaGraph Bench
	21.2.13 API, SDK
	21.2.14 Community contributed tools

	21.3 Port guide for company products
	21.4 How to Contribute
	21.4.1 Before you get started
	Commit an issue on the github or forum
	Sign the Contributor License Agreement CLA

	21.4.2 Modify a single document
	21.4.3 Batch modify or add files
	21.4.4 Step 1: Fork in the github.com
	21.4.5 Step 2: Clone Fork to Local Storage
	21.4.6 Step 3: Branch
	21.4.7 Step 4: Develop
	21.4.8 Step 5: Bring Your Branch Update to Date
	21.4.9 Step 6: Commit
	21.4.10 Step 7: Push
	21.4.11 Step 8: Create a Pull Request
	21.4.12 Step 9: Get a Code Review
	21.4.13 Add test cases
	21.4.14 Donation
	Step 1: Confirm the project donation
	Step 2: Get the information of the project recipient
	Step 3: Donate a project

	21.5 History timeline for NebulaGraph
	21.6 Error code

