
NebulaGraph Database

Manual

3.1.0

Min Wu, Yao Zhou, Cooper Liang, Foesa Yang, Abby Huang

2022 Vesoft Inc.

Table of contents

71. Welcome to NebulaGraph 3.1.0 Documentation

71.1 Getting started

71.2 Other Sources

71.3 Symbols used in this manual

81.4 Modify errors

92. Introduction

92.1 An introduction to graphs

232.2 Market overview of graph databases

372.3 Related technologies

512.4 What is NebulaGraph

552.5 Data modeling

572.6 Path types

592.7 VID

612.8 NebulaGraph architecture

793. Quick start

793.1 Quick start workflow

803.2 Step 1: Install NebulaGraph

833.3 Step 2: Manage NebulaGraph Service

883.4 Step 3: Connect to NebulaGraph

903.5 Register the Storage Service

913.6 Step 4: Use nGQL (CRUD)

1013.7 nGQL cheatsheet

1234. nGQL guide

1234.1 nGQL overview

1404.2 Data types

1594.3 Variables and composite queries

1644.4 Operators

1774.5 Functions and expressions

2044.6 General queries statements

2434.7 Clauses and options

2724.8 Space statements

2824.9 Tag statements

2904.10 Edge type statements

2964.11 Vertex statements

3034.12 Edge statements

Table of contents

- 2/927 - 2022 Vesoft Inc.

3104.13 Native index statements

3214.14 Full-text index statements

3304.15 Subgraph and path

3374.16 Query tuning and terminating statements

3414.17 Job manager and the JOB statements

3455. Deployment and installation

3455.1 Prepare resources for compiling, installing, and running NebulaGraph

3515.2 Compile and install Nebula Graph

3715.3 Standalone NebulaGraph

3735.4 Deploy a license for NebulaGraph Enterprise Edition

3765.5 Manage NebulaGraph Service

3815.6 Connect to NebulaGraph

3835.7 Manage Storage hosts

3845.8 Upgrade

3895.9 Uninstall NebulaGraph

3916. Configurations and logs

3916.1 Configurations

4106.2 Log management

4157. Monitor and metrics

4157.1 Query NebulaGraph metrics

4237.2 RocksDB statistics

4258. Data security

4258.1 Authentication and authorization

4358.2 SSL encryption

4379. Backup & Restore

4379.1 Nebula BR

4489.2 Backup and restore data with snapshots

45010. Synchronization & Migration

45010.1 BALANCE syntax

45110.2 Synchronize between two clusters

45811. Practices

45811.1 Compaction

46011.2 Storage load balance

46411.3 Graph data modeling suggestions

46811.4 System design suggestions

46911.5 Execution plan

47011.6 Processing super vertices

47211.7 Best practices

Table of contents

- 3/927 - 2022 Vesoft Inc.

47312. Client

47312.1 Clients overview

47412.2 Nebula Console

47812.3 Nebula CPP

48012.4 Nebula Java

48212.5 Nebula Python

48312.6 Nebula Go

48413. NebulaGraph Cloud

48413.1 What is NebulaGraph Cloud

48513.2 NebulaGraph on AWS

49213.3 NebulaGraph on Azure

49714. Nebula Studio

49714.1 Change Log

49814.2 About Nebula Studio

50114.3 Deploy and connect

51614.4 Quick start

54214.5 Troubleshooting

54615. Nebula Dashboard Community Edition

54615.1 What is Nebula Dashboard Community Edition

54815.2 Deploy Dashboard

55215.3 Connect Dashboard

55415.4 Dashboard

55815.5 Metrics

56616. Nebula Dashboard Enterprise Edition

56616.1 What is Nebula Dashboard Enterprise Edition

56816.2 Deploy Dashboard Enterprise Edition

57516.3 Nebula Dashboard Enterprise Edition license

57716.4 Create and import clusters

58616.5 Cluster management

61816.6 Task Center

61916.7 Authority management

62216.8 Package management

62416.9 Global settings

62616.10 Macro Rendering Error

62716.11 FAQ

62917. Nebula Explorer

62917.1 What is Nebula Explorer

63117.2 Deploy and connect

Table of contents

- 4/927 - 2022 Vesoft Inc.

64017.3 Page overview

64317.4 Database management

64617.5 Graph explorer

65517.6 Visual Query

66017.7 Canvas

66817.8 Workflow

69617.9 Basic operations and shortcuts

69718. Nebula Importer

69718.1 Nebula Importer

70418.2 Configuration with Header

70718.3 Configuration without Header

71019. Nebula Exchange

71019.1 Introduction

71519.2 Get Exchange

71719.3 Exchange configurations

72919.4 Use Nebula Exchange

80419.5 Exchange FAQ

80720. Nebula Operator

80720.1 What is Nebula Operator

80920.2 Overview of using Nebula Operator

81020.3 Deploy Nebula Operator

81620.4 Deploy clusters

83120.5 Configure clusters

84020.6 Upgrade NebulaGraph clusters created with Nebula Operator

84320.7 Connect to NebulaGraph databases with Nebular Operator

84720.8 Self-healing

84820.9 FAQ

84921. Graph computing

84921.1 Algorithm overview

86121.2 Nebula Algorithm

86921.3 Nebula Analytics

87521.4 Nebula Explorer Workflow

87621.5 Dag Controller

88022. Nebula Spark Connector

88022.1 Use cases

88022.2 Benefits

88022.3 Release note

88122.4 Get Nebula Spark Connector

Table of contents

- 5/927 - 2022 Vesoft Inc.

88122.5 How to use

88623. Nebula Flink Connector

88623.1 Use cases

88623.2 Release note

88724. Nebula Bench

88724.1 Scenario

88724.2 Release note

88724.3 Test process

88825. Appendix

88825.1 NebulaGraph learning path

89425.2 NebulaGraph 3.1.0 release notes

89625.3 FAQ

90525.4 Ecosystem tools overview

90925.5 Import tools

91025.6 How to Contribute

91425.7 History timeline for NebulaGraph

92025.8 Error code

Table of contents

- 6/927 - 2022 Vesoft Inc.

1. Welcome to NebulaGraph 3.1.0 Documentation

The documents of this version are for NebulaGraph Enterprise Edition 3.1.0, NebulaGraph Community Edition 3.1.0, and the

corresponding tools. For details, see Release notes.

This manual is revised on 2024-2-19, with GitHub commit 5eb3f5410f.

NebulaGraph is a distributed, scalable, and lightning-fast graph database. It is the optimal solution in the world capable of

hosting graphs with dozens of billions of vertices (nodes) and trillions of edges (relationships) with millisecond latency.

1.1 Getting started

Learning path & Get NebulaGraph Certifications

What is Nebula Graph

Quick start

Preparations before deployment

nGQL cheatsheet

FAQ

Ecosystem Tools

1.2 Other Sources

NebulaGraph Homepage

Release notes

Forum

Blogs

Videos

Chinese Docs

1.3 Symbols used in this manual

Additional information or operation-related notes.

Cautions that need strict observation. If not, systematic breakdown, data loss, and security issues may happen.

Caution

Note

•

•

•

•

•

•

•

•

•

•

•

•

•

Note

Caution

1. Welcome to NebulaGraph 3.1.0 Documentation

- 7/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-docs/commits/v3.1.0
https://academic.nebula-graph.io/?lang=EN_US
https://nebula-graph.io/
https://discuss.nebula-graph.io/
https://nebula-graph.io/posts/
https://www.youtube.com/channel/UC73V8q795eSEMxDX4Pvdwmw
https://docs.nebula-graph.com.cn/

Operations that may cause danger. If not observed, systematic breakdown, data loss, and security issues will happen.

Operations that merit attention as for performance enhancement.

Frequently asked questions.

The compatibility notes between nGQL and openCypher, or between the current version of nGQL and its prior ones.

Differences between the NebulaGraph Community and Enterprise editions.

1.4 Modify errors

This NebulaGraph manual is written in the Markdown language. Users can click the pencil sign on the upper right side of each

document title and modify errors.

Danger

Performance

Faq

Compatibility

Enterpriseonly

Last update: March 13, 2023

1.4 Modify errors

- 8/927 - 2022 Vesoft Inc.

2. Introduction

2.1 An introduction to graphs

People from tech giants (such as Amazon and Facebook) to small research teams are devoting significant resources to exploring

the potential of graph databases to solve data relationships problems. What exactly is a graph database? What can it do? Where

does it fit in the database landscape? To answer these questions, we first need to understand graphs.

Graphs are one of the main areas of research in computer science. Graphs can efficiently solve many of the problems that exist

today. This topic will start with graphs and explain the advantages of graph databases and their great potential in modern

application development, and then describe the differences between distributed graph databases and several other types of

databases.

2.1.1 What are graphs?

Graphs are everywhere. When hearing the word graph, many people think of bar charts or line charts, because sometimes we

call them graphs, which show the connections between two or more data systems. The simplest example is the following picture,

which shows the number of NebulaGraph GitHub repository stars over time.

This type of diagram is often called a line chart. As you can see, the number of starts rises over time. A line chart can show data

changes over time (depending on the scale settings). Here we have given only examples of line charts. There are various graphs,

such as pie charts, bar charts, etc.

Another kind of diagram is often used in daily conversation, such as image recognition, retouched photos. This type of diagram is

called a picture/photo/image.

2. Introduction

- 9/927 - 2022 Vesoft Inc.

The diagram we discuss in this topic is a different concept, the graph in graph theory.

In graph theory, a branch of mathematics, graphs are used to represent the relationships between entities. A graph consists of

several small dots (called vertices or nodes) and lines or curves (called edges) that connect these dots. The term graph was

proposed by Sylvester in 1878.

The following picture is what this topic calls a graph.

Simply put, graph theory is the study of graphs. Graph theory began in the early 18th century with the problem of the Seven

Bridges of Königsberg. Königsberg was then a Prussian city (now part of Russia, renamed Kaliningrad). The river Preger crossed

Königsberg and not only divided Königsberg into two parts, but also formed two small islands in the middle of the river. This

divided the city into four areas, each connected by seven bridges. There was a game associated with Königsberg at the time,

namely how to cross each bridge only once and navigate the entire four areas of the city. A simplified view of the seven bridges is

shown below. Try to find the answer to this game if you are interested
1
.

2.1.1 What are graphs?

- 10/927 - 2022 Vesoft Inc.

To solve this problem, the great mathematician Euler proved that the problem was unsolvable by abstracting the four regions of

the city into points and the seven bridges connecting the city into edges connecting the points. The simplified abstract diagram is

as follows
2
.

The four dots in the picture represent the four regions of Königsberg, and the lines between the dots represent the seven bridges

connecting the four regions. It is easy to see that the area connected by the even-numbered bridges can be easily passed because

different routes can be chosen to come and go. The areas connected by the odd-numbered bridges can only be used as starting or

endings points because the same route can only be taken once. The number of edges associated with a node is called the node

degree. Now it can be shown that the Königsberg problem can only be solved if two nodes have odd degrees and the other nodes

2.1.1 What are graphs?

- 11/927 - 2022 Vesoft Inc.

have even degrees, i.e., two regions must have an even number of bridges and the remaining regions have an odd number of

bridges. However, as we know from the above picture, there is no even number of bridges in any region of Königsberg, so this

puzzle is unsolvable.

2.1.2 Property graphs

From a mathematical point of view, graph theory studies the relationships between modeled objects. However, it is common to

extend the underlying graph model. The extended graphs are called the attribute graph model. A property graph usually

consists of the following components.

Node, an object or entity. In this topic, nodes are called vertices.

Relationship between nodes. In this topic, relationships are called edges. Usually, the edges can be directed or undirected to

indicate a relationship between two entities.

There can be properties on nodes and edges.

In real life, there are many examples of property graphs.

For example, Qichacha or BOSS Zhipin use graphs to model business equity relationships. A vertex usually represents a natural

person or a business, and the edge represents the equity relationship between a person and a business. The properties on

vertices can be the name, age, ID number, etc. of the natural person. The properties on edges can be the investment amount,

investment time, position such as director and supervisor.

A vertex can be a listed company and an edge can be a correlation between listed companies. The vertex property can be a stock

code, abbreviation, market capitalization, sector, etc. The edge property can be the time-series correlation coefficient of the stock

price
3
.

The graph relationship can also be similar to the character relationship in a TV series like Game of Thrones
4
. Vertices stand for

the characters. Edges represent the interactions between the characters. Vertex properties are the character's names, ages,

camps, etc., and edge properties are the number of interactions between two characters.

•

•

•

2.1.2 Property graphs

- 12/927 - 2022 Vesoft Inc.

Graphs are also used for governance within IT systems. For example, a company like WeBank has a very large data warehouse

and corresponding data warehouse management tools. These management tools record the ETL relationships between the Hive

tables in the data warehouse through Job implementation
5
. Such ETL relationships can be very easily presented and managed in

the form of graphs, and the root cause can be easily traced when problems arise.

2.1.2 Property graphs

- 13/927 - 2022 Vesoft Inc.

Graphs can also be used to document the invocation relationships between the intricate microservices within a large IT system
6
,

which is used by operations teams for service governance. Here each point represents a microservice and the edge represents

the invocation relationship between two microservices; thus, Ops can easily find invocation links with availability below a

threshold (99.99%) or discover microservice nodes that would be particularly affected by a failure.

Graphs are also used to record the invocation relationships between the intricate microservices
6
. Each vertex represents a

microservice and an edge represents the invocation relationship between two microservices. This allows Ops to easily find call

links with availability below a threshold (99.99%), or to discover microservice nodes where a failure would have a particularly

large impact.

Graphs can also be used to improve the efficiency of code development. Graphs store function call relationships between codes
6

to improve the efficiency of reviewing and testing the code. In such a graph, each vertex is a function or variable, each edge is a

call relationship between functions or variables. When there is a new code commit, one can more easily see other interfaces that

may be affected, which helps testers better assess potential go-live risks.

In addition, we can discover more scenarios by adding some temporal information as opposed to a static property graph that

does not change.

For example, inside a network of interbank account fund flows
7
, a vertex is an account, an edge is the transfer record between

accounts. Edge properties record the time, amount, etc. of the transfer. Companies can use graph technology to easily explore

the graph to discover obvious misappropriation of funds, paying back a load to with the loan, loan gang scams, and other

phenomena.

2.1.2 Property graphs

- 14/927 - 2022 Vesoft Inc.

The same approach can be used to explore the discovery of the flow of cryptocurrencies.

In a network of accounts and devices
8
, vertices can be accounts, mobile devices, and WIFI networks, edges are the login

relationships between these accounts and mobile devices, and the access relationships between mobile devices and WIFI

networks.

2.1.2 Property graphs

- 15/927 - 2022 Vesoft Inc.

These graph data records the characteristic of the network black production operations. Some big companies such as 360

DigiTech
8
, Kuaishou

9
, WeChat

10
, Zhihu

11
, and Ctrip Finance all identified over a million crime groups through technology.

In addition to the dimension of time, you can find more scenarios for property graphs by adding some geographic location

information.

For an example of tracing the source of the Coronavirus Disease (COVID-19)
12

, vertices are the person and edges are the

contact between people. Vertex properties are the information of the person's ID card and onset time, and edge properties are

the time and geographical location of the close contact between people, etc. It provides help for health prevention departments

to quickly identify high-risk people and their behavioral trajectories.

2.1.2 Property graphs

- 16/927 - 2022 Vesoft Inc.

The combination of geographic location and graph is also used in some O2O scenarios, such as real-time food recommendation

based on POI (Point-of-Interest)
13

, which enables local life service platform companies like Meituan to recommend more suitable

businesses in real-time when consumers open the APP.

A graph is also used for knowledge inference. Huawei, Vivo, OPPO, WeChat, Meituan, and other companies use graphs for the

representation of the underlying knowledge relationships.

2.1.2 Property graphs

- 17/927 - 2022 Vesoft Inc.

2.1.3 Why do we use graph databases?

Although relational databases and semi-structured databases such as XML/JSON can be used to describe a graph-structured data

model, a graph (database) not only describes the graph structure and stores data itself but also focuses on handling the

associative relationships between the data. Specifically, graph databases have several advantages:

Graphs are a more visual and intuitive way of representing knowledge to human brains. This allows us to focus on the business

problem itself rather than how to describe the problem as a particular structure of the database (e.g., a table structure).

•

2.1.3 Why do we use graph databases?

- 18/927 - 2022 Vesoft Inc.

It is easier to show the characteristic of the data in graphs. Such as transfer paths and nearby communities. To analyze the

relationships of characters and character importance in Game of Thrones, data displayed with tables is not as intuitive as with

graphs.

Especially when some central vertices are deleted:

•

2.1.3 Why do we use graph databases?

- 19/927 - 2022 Vesoft Inc.

Adding an edge can completely change the entire topology.

We can intuitively sense the importance of minor changes in graphs rather than in tables.

2.1.3 Why do we use graph databases?

- 20/927 - 2022 Vesoft Inc.

Graph query language is designed based on graph structures. The following is a query example in LDBC. Requirements: Query

the posts posted by a person, and query the corresponding replies (the replies themselves will also be replied multiple times).

Since the posting time and reply time both meet certain conditions, you can sort the results according to the number of

replies.

Write querying statements using PostgreSQL:

Write querying statements using Cypher designed especially for graphs:

Graph traversal (corresponding to Join in SQL) is much more efficient because the storage and query engines are designed

specifically for the structure of the graph.

Graph databases have a wide range of application scenarios. Examples include data integration (knowledge graph),

personalized recommendations, fraud, and threat detection, risk analysis, and compliance, identity (and control) verification,

IT infrastructure management, supply chain, and logistics, social network research, etc.

According to the literature
14

, the fields that use graph technology are (from the greatest to least): information technology (IT),

research in academia, finance, laboratories in industry, government, healthcare, defense, pharmaceuticals, retail, and e-

commerce, transportation, telecommunications, and insurance.

In 2019, according to Gartner's questionnaire research, 27% of customers (500 groups) are using graph databases and 20%

have plans to use them.

•

--PostgreSQL

WITH RECURSIVE post_all(psa_threadid

 , psa_thread_creatorid, psa_messageid

 , psa_creationdate, psa_messagetype

) AS (

 SELECT m_messageid AS psa_threadid

 , m_creatorid AS psa_thread_creatorid

 , m_messageid AS psa_messageid

 , m_creationdate, 'Post'

 FROM message

 WHERE 1=1 AND m_c_replyof IS NULL -- post, not comment

 AND m_creationdate BETWEEN :startDate AND :endDate

 UNION ALL

 SELECT psa.psa_threadid AS psa_threadid

 , psa.psa_thread_creatorid AS psa_thread_creatorid

 , m_messageid, m_creationdate, 'Comment'

 FROM message p, post_all psa

 WHERE 1=1 AND p.m_c_replyof = psa.psa_messageid

 AND m_creationdate BETWEEN :startDate AND :endDate

)

SELECT p.p_personid AS "person.id"

 , p.p_firstname AS "person.firstName"

 , p.p_lastname AS "person.lastName"

 , count(DISTINCT psa.psa_threadid) AS threadCount

END) AS messageCount

 , count(DISTINCT psa.psa_messageid) AS messageCount

 FROM person p left join post_all psa on (

 1=1 AND p.p_personid = psa.psa_thread_creatorid

 AND psa_creationdate BETWEEN :startDate AND :endDate

)

 GROUP BY p.p_personid, p.p_firstname, p.p_lastname

 ORDER BY messageCount DESC, p.p_personid

 LIMIT 100;

--Cypher

MATCH (person:Person)<-[:HAS_CREATOR]-(post:Post)<-[:REPLY_OF*0..]-(reply:Message)

WHERE post.creationDate >= $startDate AND post.creationDate <= $endDate

 AND reply.creationDate >= $startDate AND reply.creationDate <= $endDate

RETURN

 person.id, person.firstName, person.lastName, count(DISTINCT post) AS threadCount,

 count(DISTINCT reply) AS messageCount

ORDER BY

 messageCount DESC, person.id ASC

LIMIT 100

•

•

•

•

2.1.3 Why do we use graph databases?

- 21/927 - 2022 Vesoft Inc.

2.1.4 RDF

This topic does not discuss the RDF data model due to space limitations.

Souce of the picture: https://medium.freecodecamp.org/i-dont-understand-graph-theory-1c96572a1401.

Source of the picture: https://medium.freecodecamp.org/i-dont-understand-graph-theory-1c96572a1401

https://nebula-graph.com.cn/posts/stock-interrelation-analysis-jgrapht-nebula-graph/

https://nebula-graph.com.cn/posts/game-of-thrones-relationship-networkx-gephi-nebula-graph/

https://nebula-graph.com.cn/posts/practicing-nebula-graph-webank/

https://nebula-graph.com.cn/posts/meituan-graph-database-platform-practice/

https://zhuanlan.zhihu.com/p/90635957

https://nebula-graph.com.cn/posts/graph-database-data-connections-insight/

https://nebula-graph.com.cn/posts/kuaishou-security-intelligence-platform-with-nebula-graph/

https://nebula-graph.com.cn/posts/nebula-graph-for-social-networking/

https://mp.weixin.qq.com/s/K2QinpR5Rplw1teHpHtf4w

https://nebula-graph.com.cn/posts/detect-corona-virus-spreading-with-graph-database/

https://nebula-graph.com.cn/posts/meituan-graph-database-platform-practice/

https://arxiv.org/abs/1709.03188

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Last update: March 13, 2023

2.1.4 RDF

- 22/927 - 2022 Vesoft Inc.

2.2 Market overview of graph databases

Now that we have discussed what a graph is, let's move on to further understanding graph databases developed based on graph

theory and the property graph model.

Different graph databases may differ slightly in terms of terminology, but in the end, they all talk about vertices, edges, and

properties. As for more advanced features such as labels, indexes, constraints, TTL, long tasks, stored procedures, and UDFs,

these advanced features will vary significantly from one graph database to another.

Graph databases use graphs to store data, and the graph structure is one of the structures that are closest to high flexibility and

high performance. A graph database is a storage engine specifically designed to store and retrieve large information, which

efficiently stores data as vertices and edges and allows high-performance retrieval and querying of these vertex-edge structures.

We can also add properties to these vertices and edges.

2.2.1 Third-party services market predictions

DB-Engines ranking

According to DB-Engines.com, the world's leading database ranking site, graph databases have been the fastest growing

database category since 2013
1
.

The site counts trends in the popularity of each category based on several metrics, including records and trends based on search

engines such as Google, technical topics discussed on major IT technology forums and social networking sites, job posting

changes on job boards. 371 database products are included in the site and are divided into 12 categories. Of these 12 categories,

a category like graph databases is growing much faster than any of the others.

Gartner’s predictions

Gartner, one of the world's top think tanks, identified graph databases as a major business intelligence and analytics technology

trend long before 2013
2
. At that time, big data was hot as ever, and data scientists were in a hot position.

2.2 Market overview of graph databases

- 23/927 - 2022 Vesoft Inc.

Until recently, graph databases and related graph technologies were ranked in the Top 10 Data and Analytics Trends for 2021
3
.

2.2.1 Third-party services market predictions

- 24/927 - 2022 Vesoft Inc.

Graphs form the foundation of many modern data and analytics capabilities to find relationships between people, places, things,

events, and locations across diverse data assets. D&A leaders rely on graphs to quickly answer complex business questions which

require contextual awareness and an understanding of the nature of connections and strengths across multiple entities.

Gartner predicts that by 2025, graph technologies will be used in 80% of data and analytics innovations, up from 10% in 2021,

facilitating rapid decision-making across the organization.

Trend 8: Graph Relates Everything

2.2.1 Third-party services market predictions

- 25/927 - 2022 Vesoft Inc.

It can be noted that Gartner's predictions match the DB-Engines ranking well. There is usually a period of rapid bubble

development, then a plateau period, followed by a new bubble period due to the emergence of new technologies, and then a

plateau period again.

Market size of graph databases

According to statistics and forecasts from Verifiedmarketresearc
4
, fnfresearch

5
, MarketsandMarkets

6
, and Gartner

7
, the global

graph database market size is about to grow from about USD 0.8 billion in 2019 to USD 3-4 billion by 2026, at a Compound

Annual Growth Rate (CAGR) of about 25%, which corresponds to about 5%-10% market share of the global database market.

2.2.2 Market participants

Neo4j, the pioneer of (first generation) graph databases

Although some graph-like data models and products, and the corresponding graph language G/G+ had been proposed in the

1970s (e.g. CODASYL
8
). But it is Neo4j, the main pioneer in this market, that has really made the concept of graph databases

popular, and even the two main terms (labeled) property graphs and graph databases were first introduced and practiced by

Neo4j.

!!! Info "This section on the history of Neo4j and the graph query language it created, Cypher, is largely excerpted from the ISO

WG3 paper An overview of the recent history of Graph Query Languages
10

 and
9
. To take into account the latest two years of

development, the content mentioned in this topic has been abridged and updated by the authors of this book.

2.2.2 Market participants

- 26/927 - 2022 Vesoft Inc.

Readers familiar with databases are probably aware of the Structured Query Language SQL. by using SQL, people access databases

in a way that is close to natural language. Before SQL was widely adopted and standardized, the market for relational databases was

very fragmented. Each vendor's product had a completely different way of accessing. Developers of the database product itself,

developers of the tools surrounding the database product, and end-users of the database, all had to learn each product. When the

SQL-89 standard was developed in 1989, the entire relational database market quickly focus on SQL-89. This greatly reduced the

learning costs for the people mentioned above.

GQL (Graph Query Language) assumes a role similar to SQL in the field of graph databases. Uses interacts with graphs with GQL.

Unlike international standards such as SQL-89, there are no international standards for GQL. Two mainstream graph languages are

Neo4j’s Cypher and Apache TinkerPop's Gremlin. The former is often referred to as the DQL, Declarative Query Language. DQL tells

the system "what to do", regardless of "how to do". The latter is referred to as the IQL, Imperative Query Language. IQL explicitly

specifies the system's actions.

The GQL International Standard is in the process of being developed.

OVERVIEW OF THE RECENT HISTORY OF GRAPH DATABASES

In 2000, the idea of modeling data as a network came to the founders of Neo4j.

In 2001, Neo4j developed the earliest core part of the code.

In 2007, Neo4j started operating as a company.

In 2009, Neo4j borrowed XPath as a graph query language. Gremlin
11

 is also similar to XPath.

In 2010, Marko Rodriguez, a Neo4j employee, used the term Property Graph to describe the data model of Neo4j and

TinkerPop (Gremlin).

In 2011, the first public version Neo4j 1.4 was released, and the first version of Cypher was released.

In 2012, Neo4j 1.8 enabled you to write a Cypher. Neo4j 2.0 added labels and indexes. Cypher became a declarative graph

query language.

In 2015, Cypher was opened up by Neo4j through the openCypher project.

In 2017, the ISO WG3 organization discussed how to use SQL to query property graph data.

In 2018, Starting from the Neo4j 3.5 GA, the core of Neo4j only for the Enterprise Edition will no longer be open source.

In 2019, ISO officially established two projects ISO/IEC JTC 1 N 14279 and ISO/IEC JTC 1/SC 32 N 3228 to develop an

international standard for graph database language.

In 2021, the $325 million Series F funding round for Neo4j marks the largest investment round in database history.

THE EARLY HISTORY OF NEO4J

The data model property graph was first conceived in 2000. The founders of Neo4j were developing a media management

system, and the schema of the system was often changed. To adapt to such changes, Peter Neubauer, one of the founders,

wanted to enable the system to be modeled to a conceptually interconnected network. A group of graduate students at the Indian

Institute of Technology Bombay implemented the earliest prototypes. Emil Eifrém, the Neo4j co-founder, and these students

spent a week extending Peter's idea into a more abstract model: vertices were connected by relationships, and key-values were

used as properties of vertices and relationships. They developed a Java API to interact with this data model and implemented an

abstraction layer on top of the relational database.

Although this network model greatly improved productivity, its performance has been poor. So Johan Svensson, Neo4j co-founder,

put a lot of effort into implementing a native data management system, that is Neo4j. For the first few years, Neo4j was

successful as an in-house product. In 2007, the intellectual property of Neo4j was transferred to an independent database

company.

In the first public release of Neo4j (Neo4j 1.4，2011), the data model was consisted of vertices and typed edges. Vertices and

edges have properties. The early versions of Neo4j did not have indexes. Applications had to construct their search structure

from the root vertex. Because this was very unwieldy for the applications, Neo4j 2.0 (2013.12) introduced a new concept label on

vertices. Based on labels, Neo4j can index some predefined vertex properties.

About GQL (Graph Query Language) and the development of an International Standard

•

•

•

•

•

•

•

•

•

•

•

•

2.2.2 Market participants

- 27/927 - 2022 Vesoft Inc.

"Vertex", "Relationship", "Property", "Relationships can only have one label.", "Vertices can have zero or multiple labels.". All

these concepts form the data model definitions for Neo4j property graphs. With the later addition of indexing, Cypher became

the main way of interacting with Neo4j. This is because the application developer only needs to focus on the data itself, not on

the search structure that the developer built himself as mentioned above.

THE CREATION OF GREMLIN

Gremlin is a graph query language based on Apache TinkerPop, which is close in style to a sequence of function (procedure)

calls. Initially, Neo4j was queried through the Java API. applications could embed the query engine as a library into the

application and then use the API to query the graph.

The early Neo4j employees Tobias Lindaaker, Ivarsson, Peter Neubauer, and Marko Rodriguez used XPath as a graph query.

Groovy provides loop structures, branching, and computation. This was the original prototype of Gremlin, the first version of

which was released in November 2009.

Later, Marko found a lot of problems with using two different parsers (XPath and Groovy) at the same time and changed Gremlin

to a Domain Specific Language (DSL) based on Groovy.

THE CREATION OF CYPHER

Gremlin, like Neo4j's Java API, was originally intended to be a procedural way of expressing how to query databases. It uses

shorter syntaxes to query and remotely access databases through the network. The procedural nature of Gremlin requires users

to know the best way to query results, which is still burdensome for application developers. Over the last 30 years, the

declarative language SQL has been a great success. SQL can separate the declarative way to get data from how the engine gets

data. So the Neo4j engineers wanted to develop a declarative graph query language.

In 2010, Andrés Taylor joined Neo4j as an engineer. Inspired by SQL, he started a project to develop graph query language,

which was released as Neo4j 1.4 in 2011. The language is the ancestor of most graph query languages today - Cypher.

Cypher's syntax is based on the use of ASCII art to describe graph patterns. This approach originally came from the annotations

on how to describe graph patterns in the source code. An example can be seen as follows.

2.2.2 Market participants

- 28/927 - 2022 Vesoft Inc.

Simply put, ASCII art uses printable text to describe vertices and edges. Cypher syntax uses () for vertices and -[]-> for edges.

(query)-[modeled as]->(drawing) is used to represent a simple graph relationship (which can also be called graph schema): the starting

vertex - query , the destination vertex - drawing , and the edge - modeled as .

The first version of Cypher implemented graph reading, but users should specify vertices from which to start querying. Only from

these vertices could graph schema matching be supported.

In a later version, Neo4j 1.8, released in October 2012, Cypher added the ability to modify graphs. However, queries still need to

specify which nodes to start from.

2.2.2 Market participants

- 29/927 - 2022 Vesoft Inc.

In December 2013, Neo4j 2.0 introduced the concept of a label, which is essentially an index. This allows the query engine to use

the index to select the vertices matched by the schema, without requiring the user to specify the vertex to start the query.

With the popularity of Neo4j, Cypher has a wide community of developers and is widely used in a variety of industries. It is still

the most popular graph query language.

In September 2015, Neo4j established the openCypher Implementors Group (oCIG) to open source Cypher to openCypher, to

govern and advance the evolution of the language itself through open source.

SUBSEQUENT EVENTS

Cypher has inspired a series of graph query languages, including:

2015, Oracle released PGQL, a graph language used by the graph engine PGX.

2016, the Linked Data Benchmarking Council (short for LDBC) an industry-renowned benchmarking organization for graph

performance, released G-CORE.

2018, RedisGraph, a Redis-based graph library, adopted Cypher as its graph language.

2019, the International Standards Organization ISO started two projects to initiate the process of developing an international

standard for graph languages based on existing industry achievements such as openCypher, PGQL, GSQL
12

, and G-CORE.

2019, NebulaGraph released NebulaGraph Query Language (nGQL) based on openCypher.

Distributed graph databases

From 2005 to 2010, with the release of Google's cloud computing "Troika", various distributed architectures became increasingly

popular, including Hadoop and Cassandra, which have been open-sourced. Several implications are as follows:

The technical and cost advantages of distributed systems over single machines (e.g. Neo4j) or small machines are more obvious

due to the increasing volume of data and computation. Distributed systems allow applications to access these thousands of

machines as if they were local systems, without the need for much modification at the code level.

The open-source approach allows more people to know emerging technologies and feedback to the community in a more cost-

effective way, including code developers, data scientists, and product managers.

1.

2.

2.2.2 Market participants

- 30/927 - 2022 Vesoft Inc.

Strictly speaking, Neo4j also offers several distributed capabilities, which are quite different from the industry's sense of the

distributed system.

Neo4j 3. x requires that the full amount of data must be stored on a single machine. Although it supports full replication and

high availability between multiple machines, the data cannot be sliced into different subgraphs.

•

2.2.2 Market participants

- 31/927 - 2022 Vesoft Inc.

Neo4j 4. x stores a part of data on different machines (subgraphs), and then the application layer assembles data in a certain

way (called Fabric)
13

 and distributes the reads and writes to each machine. This approach requires a log of involvement and

work from the application layer code. For example, designing how to place different subgraphs on which machines they should

be placed and how to assemble some of the results obtained from each machine into the final result.

The style of its syntax is as follows:

•

USE graphA

MATCH (movie:Movie)

Return movie.title AS title

 UNION

USE graphB

MATCH （move:Movie)

RETURN movie.title AS title

2.2.2 Market participants

- 32/927 - 2022 Vesoft Inc.

THE SECOND GENERATION (DISTRIBUTED) GRAPH DATABASE: TITAN AND ITS SUCCESSOR JANUSGRAPH

In 2011, Aurelius was founded to develop an open-source distributed graph database called Titan
14

. By the first official release

of Titan in 2015, the backend of Titan can support many major distributed storage architectures (e.g. Cassandra, HBase,

Elasticsearch, BerkeleyDB) and can reuse many of the conveniences of the Hadoop ecosystem, with Gremlin as a unified query

language on the frontend. It is easy for programmers to use, develop and participate in the community. Large-scale graphs could

be sharded and stored on HBase or Cassandra (which were relatively mature distributed storage solutions at the time), and the

Gremlin language was relatively full-featured though slightly lengthy. The whole solution was competitive at that time

(2011-2015).

The following picture shows the growth of Titan and Neo4j stars on Github.com from 2012 to 2015.

After Aurelius (Titan) was acquired by DataStax in 2015, Titan was gradually transformed into a closed-source commercial

product(DataStax Enterprise Graph).

After the acquisition of Aurelius(Titan), there has been a strong demand for an open-source distributed graph database, and

there were not many mature and active products in the market. In the era of big data, data is still being generated in a steady

stream, far faster than Moore's Law. The Linux Foundation, along with some technology giants (Expero, Google, GRAKN.AI,

Hortonworks, IBM, and Amazon) replicated and forked the original Titan project and started it as a new project JanusGraph
15

.

Most of the community work including development, testing, release, and promotion, has been gradually shifted to the new

JanusGraph。

2.2.2 Market participants

- 33/927 - 2022 Vesoft Inc.

The following graph shows the evolution of daily code commits (pull requests) for the two projects, and we can see:

Although Aurelius(Titan) still has some activity in its open-source code after its acquisition in 2015, the growth rate has slowed

down significantly. This reflects the strength of the community.

After the new project was started in January 2017, its community became active quickly, surpassing the number of pull requests

accumulated by Titan in the past 5 years in just one year. At the same time, the open-source Titan came to a halt.

FAMOUS PRODUCTS OF THE SAME PERIOD ORIENTDB, TIGERGRAPH, ARANGODB, AND DGRAPH

In addition to JanusGraph managed by the Linux Foundation, more vendors have been joined the overall market. Some

distributed graph databases that were developed by commercial companies use different data models and access methods.

1.

2.

2.2.2 Market participants

- 34/927 - 2022 Vesoft Inc.

The following table only lists the main differences.

TRADITIONAL GIANTS MICROSOFT, AMAZON, AND ORACLE

In addition to vendors focused on graph products, traditional giants have also entered the graph database field.

Microsoft Azure Cosmos DB
16

 is a multimodal database cloud service on the Microsoft cloud that provides SQL, document,

graph, key-value, and other capabilities. Amazon AWS Neptune
17

 is a graph database cloud service provided by AWS support

property graphs and RDF two data models. Oracle Graph
18

 is a product of the relational database giant Oracle in the direction of

graph technology and graph databases.

NEBULAGRAPH, A NEW GENERATION OF OPEN-SOURCE DISTRIBUTED GRAPH DATABASES

In the following topics, we will formally introduce NebulaGraph, a new generation of open-source distributed graph databases.

https://db-engines.com/en/ranking_categories

https://www.yellowfinbi.com/blog/2014/06/yfcommunitynews-big-data-analytics-the-need-for-pragmatism-tangible-benefits-and-real-world-

case-165305

https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021/

https://www.verifiedmarketresearch.com/product/graph-database-market/

https://www.globenewswire.com/news-release/2021/01/28/2165742/0/en/Global-Graph-Database-Market-Size-Share-to-Exceed-

USD-4-500-Million-By-2026-Facts-Factors.html

https://www.marketsandmarkets.com/Market-Reports/graph-database-market-126230231.html

https://www.gartner.com/en/newsroom/press-releases/2019-07-01-gartner-says-the-future-of-the-database-market-is-the

https://www.amazon.com/Designing-Data-Intensive-Applications-Reliable-Maintainable/dp/1449373321

I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A Graphical Query Language Supporting Recursion. In Proceedings of the Association for

Computing Machinery Special Interest Group on Management of Data, pages 323–330. ACM Press, May 1987.

"An overview of the recent history of Graph Query Languages". Authors: Tobias Lindaaker, U.S. National Expert.Date: 2018-05-14

Gremlin is a graph language developed based on Apache TinkerPop.

https://docs.tigergraph.com/dev/gsql-ref

https://neo4j.com/fosdem20/

https://github.com/thinkaurelius/titan

https://github.com/JanusGraph/janusgraph

https://azure.microsoft.com/en-us/free/cosmos-db/

https://aws.amazon.com/cn/neptune/

https://www.oracle.com/database/graph/

Vendors Creation

time

Core

product

Open source

protocol

Data model Query language

OrientDB LTD

(Acquired by

SAP in 2017)

2011 OrientDB Open source Document +

KV + Graph

OrientDB SQL (SQL-

based extended

graph abilities)

GraphSQL (was

renamed

TigerGraph)

2012 TigerGraph Commercial

version

Graph

(Analysis)

GraphSQL (similar

to SQL)

ArangoDB

GmbH

2014 ArangoDB Apache License

2.0

Document +

KV + Graph

AQL (Simultaneous

operation of

documents, KVs and

graphs)

DGraph Labs 2016 DGraph Apache Public

License 2.0 +

Dgraph

Community

License

Originally

RDF, later

changed to

GraphQL

GraphQL+-

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

2.2.2 Market participants

- 35/927 - 2022 Vesoft Inc.

https://tinkerpop.apache.org/

Last update: March 13, 2023

2.2.2 Market participants

- 36/927 - 2022 Vesoft Inc.

2.3 Related technologies

This topic introduces databases and graph-related technologies that are closely related to distributed graph databases.

2.3.1 Databases

Relational databases

A relational database is a database that uses a relational model to organize data. The relational model is a two-dimensional table

model, and a relational database consists of two-dimensional tables and the relationships between them. When it comes to

relational databases, most people think of MySQL, one of the most popular database management systems that support database

operations using the most common structured query language (SQL) and stores data in the form of tables, rows, and columns.

This approach to storing data is derived from the relational data model proposed by Edgar Frank Codd in 1970.

In a relational database, a table can be created for each type of data to be stored. For example, the player table is used to store

all player information, the team table is used to store team information. Each row of data in a SQL table must contain a primary

key. The primary key is a unique identifier for the row of data. Generally, the primary key is self-incrementing with the number of

rows as the field ID. Relational databases have served the computer industry very well since their inception and will continue to

do so for a long time to come.

If you have used Excel, WPS, or other similar applications, you have a rough idea of how relational databases work. First, you set

up the columns, then you add rows of data under the corresponding columns. You can average or otherwise aggregate the data in

a column, similar to averaging in a relational database MySQL. Pivot tables in Excel are the equivalent of querying data in a

relational database MySQL using aggregation functions and CASE statements. An Excel file can have multiple tables, and a

single table is equivalent to a single table in MySQL. An Excel file is similar to a MySQL database.

RELATIONSHIPS IN RELATIONAL DATABASES

Unlike graph databases, edges in relational databases (or SQL-type databases) are also stored as entities in specialized edge

tables. Two tables are created, player and team, and then player_team is created as an edge table. Edge tables are usually

formed by joining related tables. For example, here the edge table player_team is made by joining the player table and the team

table.

The way of storing edges is not a big problem when associating small data sets, but problems arise when there are too many

relationships in a relational database. Specifically, when you want to query just one player's teammates, you have to join all the

data in the table and then filter out all the data you don't need, which puts a huge strain on the relational database when your

2.3 Related technologies

- 37/927 - 2022 Vesoft Inc.

dataset reaches a certain size. If you want to associate multiple different tables, the system may not be able to respond before

the join bombs.

ORIGINS OF RELATIONAL DATABASES

As mentioned above, the relational data model was first proposed by Edgar Frank Codd, an IBM engineer, in 1970. Codd wrote

several papers on database management systems that addressed the potential of the relational data model. The relational data

model does not rely on linked lists of data (mesh or hierarchical data), but more on data sets. Using the mathematical method of

tuple calculus, he argued that these datasets can perform the same tasks as a navigational database. The only requirement was

that the relational data model needed a suitable query language to guarantee the consistency requirements of the database. This

became the inspiration for declarative query languages such as Structured Query Language (SQL). IBM's System R was one of

the first implementations of such a system. But Software Development Laboratories, a small company founded by ex-IBM people

and one illustrious Mr.Larry Ellison, beat IBM to the market with the product that would become known as Oracle.

Since the relational database was a trendy term at the time, many database vendors preferred to use it in their product names,

even though their products were not actually relational. To prevent this and reduce the misuse of the relational data model, Codd

introduced the famous Codd's 12 Rules. All relational data systems must follow Codd's 12 Rules.

NoSQL databases

Graph databases are not the only alternative that can overcome the shortcomings of relational databases. There are many non-

relational database products on the market that can be called NoSQL. The term NoSQL was first introduced in the late 1990s

and can be interpreted as "not SQL" or "not only SQL". For the sake of understanding, NoSQL can be interpreted as a "non-

relational database" here. Unlike relational databases, the data storage and retrieval mechanisms provided by NoSQL databases

are not modeled based on table relationships. NoSQL databases can be divided into four categories.

Key-value Data Store

Columnar Store

Document Store

Graph Store

The following describes the four types of NoSQL databases.

KEY-VALUE DATA STORE

Key-value databases store data in unique key-value pairs. Unlike relational databases, key-value stores do not have tables and

columns. A key-value database itself is like a large table with many columns (i.e., keys). In a key-value store database, data are

stored and queried by means of keys, usually implemented as hash lists. This is much simpler than traditional SQL databases,

and for some web applications, it is sufficient.

The advantage of the key-value model for IT systems is that it is simple and easy to deploy. In most cases, this type of storage

works well for unrelated data. If you are just storing data without querying it, there is no problem using this storage method.

However, if the DBA only queries or updates some of the values, the key-value model becomes inefficient. Common key-value

storage databases include Redis, Voldemort, and Oracle BDB.

COLUMNAR STORE

A NoSQL database's columnar store has many similarities to a NoSQL database's key-value store because the columnar store is

still using keys for storage and retrieval. The difference is that in a columnar store database, the column is the smallest storage

unit, and each column consists of a key, a value, and a timestamp for version control and conflict resolution. This is particularly

useful when scaling in a distributed manner, as timestamps can be used to locate expired data when the database is updated.

Because of the good scalability of columnar storage, the columnar store is suitable for very large data sets. Common columnar

storage databases include HBase, Cassandra, HadoopDB, etc.

DOCUMENT STORE

A NoSQL database document store is a key-value-based database, but with enhanced functionality. Data is still stored as keys,

but the values in a document store are structured documents, not just a string or a single value. That is, because of the increased

information structure, document stores are able to perform more optimized queries and make data retrieval easier. Therefore,

•

•

•

•

2.3.1 Databases

- 38/927 - 2022 Vesoft Inc.

document stores are particularly well suited for storing, indexing, and managing document-oriented data or similar semi-

structured data.

Technically speaking, as a semi-structured unit of information, a document in a document store can be any form of document

available, including XML, JSON, YAML, etc., depending on the design of the database vendor. For example, JSON is a common

choice. While JSON is not the best choice for structured data, JSON-type data can be used in both front-end and back-end

applications. Common document storage databases include MongoDB, CouchDB, Terrastore, etc.

GRAPH STORE

The last class of NoSQL databases is graph databases. NebulaGraph, is also a graph database. Although graph databases are

also NoSQL databases, graph databases are fundamentally different from the above-mentioned NoSQL databases. Graph

databases store data in the form of vertices, edges, and properties. Its advantages include high flexibility, support for complex

graph algorithms, and can be used to build complex relational graphs. We will discuss graph databases in detail in the

subsequent topics. But in this topic, you just need to know that a graph database is a NoSQL type of database. Common graph

databases include NebulaGraph, Neo4j, OrientDB, etc.

2.3.2 Graph-related technologies

Take a look at a panoramic view of graph technology in 2020
1
.

There are many technologies that are related to graphs, which can be broadly classified into these categories:

Infrastructure: Graph databases, graph computing (processing) engines, graph deep learning, cloud services, etc.

Applications: Visualization, knowledge graph, anti-fraud, cyber security, social network, etc.

Development tools: Graph query languages, modeling tools, development frameworks, and libraries.

E-books
2
 and conferences, etc.

•

•

•

•

2.3.2 Graph-related technologies

- 39/927 - 2022 Vesoft Inc.

Graph language

In the previous topic, we introduced the history of graph languages. In this section, we make a classification of the functions of

graph languages.

Nearest neighbor query (NNS): Query the neighboring edges, neighbors, or K-hops neighbors.

Find one/all subgraphs that satisfy a given graph pattern. This problem is very close to Subgraph Isomorphism - two seemingly

different graphs that are actually identical
3
 as shown below.

Reachability (connectivity) problems: The most common reachability problem is the shortest path problem. Such problems are

usually described in terms of Regular Path Query - a series of connected groups of vertices forming a path that needs to satisfy

some regular expression.

Analytic problems: It is related to some convergent operators, such as Average, Count, Max, Vertex Degree. Measures the

distance between all two vertices, the degree of interaction between a vertex and other vertices.

Graph database and graph processing systems

A graph system usually includes a complex data pipeline
4
. From the data source (the left side of the picture below) to the

processing output (the right side), multiple data processing steps and systems are used, such as the ETL module, Graph OLTP

module, OLAP module, BI, and knowledge graph.

•

•

•

•

2.3.2 Graph-related technologies

- 40/927 - 2022 Vesoft Inc.

Graph databases and graph processing systems have different origins and specialties (and weaknesses).

(Online) The graph database is designed for persistent storage management of graphs and efficient subgraph operations. Hard

disks and network are the target operating devices, physical/logical data mapping, data integrity, and (fault) consistency are

the main goals. Each request typically involves only a small part of the full graph and can usually be done on a single server.

Request latency is usually in milliseconds or seconds, and request concurrency is typically in the thousands or hundreds of

thousands. The early Neo4j was one of the origins of the graph database space.

(Offline) The graph processing system is for high-volume, concurrency, iteration, processing, and analysis of the full graph.

Memory and network are the target operating devices. Each request involves all graph vertices and requires all servers to be

involved in its completion. The latency of a single request is in the range of minutes to hours (days). The request concurrency

is in single digits. Google's Pregel
5
 represents the typical origin of graph processing systems. Its point-centric programming

abstraction and BSP's operational model constitute a programming paradigm that is a more graph-friendly API abstraction

than the previous Hadoop Map-Reduce.

6

•

•

2.3.2 Graph-related technologies

- 41/927 - 2022 Vesoft Inc.

Graph sharding methods

For large-scale graph data, it is difficult to store it in the memory of a single server, and even just storing the graph structure

itself is not enough. By increasing the capacity of a single server, its cost price usually rises exponentially.

As the volume of data increases, for example, 100 billion data already exceeds the capacity of all commercially available servers

on the market.

Another option is to shard data and place each shard on a different server to increase reliability and performance. For NoSQL

systems, such as key-value or document systems, the sharding method is intuitive and natural. Each record and data unit can

usually be placed on a different server based on the key or docID.

However, the sharding of data structures like graphs is usually less intuitive, because usually, graphs are "fully connected" and

each vertex can be connected to any other vertex in usually 6 hops.

And it has been theoretically proven that the graph sharding problem is NP.

When distributing the entire graph data across multiple servers, the cross-server network access latency is 10 times higher than

the hardware (memory) access time inside the same server. Therefore, for some depth-first traversal scenarios, a large number of

cross-network accesses occur, resulting in extremely high overall latency.

7

Usually, graphs have a clear power-law distribution. A small number of vertices have much denser neighboring edges than the

average vertices. Though processing these vertices can usually be within the same server which reduces cross-network access,

load will be far more heavier than the average.

2.3.2 Graph-related technologies

- 42/927 - 2022 Vesoft Inc.

The common graph sharding methods are as follows:

Application-level sharding: The application layer senses and controls which shard each vertex and edge should locate on based

on the type of vertices and edges. A set of vertices of the same type is placed on one sharding and another set of vertices of the

same type is placed on another sharding. Of course, for high reliability, the sharding itself can also be made multiple replicas.

When used by the application, the desired vertices and edges are fetched from each shard, and then on the off-application side

(or some proxy server-side), the fetched data is assembled into the final result. This is typically represented by the Neo4j 4. x

Fabric.

•

2.3.2 Graph-related technologies

- 43/927 - 2022 Vesoft Inc.

Using a distributed cache layer: Add a memory cache layer on the top of the hard disk and cache important portions of the

sharding and data and preheat that cache.

Adding read-only replicas or views: Add read-only replicas or create a view for some of the graph sharding, and pass the

heavier load of read requests through these sharding servers.

Performing fine-grained graph sharding: Form multiple small partitions of vertices and edges instead of one large sharding,

and then place the more correlated partitions on the same server as much as possible.
8
。

•

•

•

2.3.2 Graph-related technologies

- 44/927 - 2022 Vesoft Inc.

A mixture of these approaches is also used in specific engineering practices. Usually, offline graph processing systems perform

some degree of graph preprocessing to improve the locality through an ETL process, while online graph database systems

usually choose a periodic data rebalancing process to improve data locality.

Technical challenges

In the literature
9
, a thorough investigation of graphs and challenges is done, and the following lists the top ten graph technology

challenges.

Scalability: Loading and upgrading big graphs, performing graph computation and graph traversal, use of triggers and

supernodes

Visualization: Customizable layouts, rendering and display big images, and display dynamic and updated display

Query language and programming API: Language expressiveness, standards compatibility, compatibility with existing systems,

design of subqueries, and associative queries across multiple graphs

Faster graph algorithms

Easy to use (configuration and usage)

Performance metrics and testing

General graph technology software (e.g., to handle offline, online, streaming computations.）

ETL

Debug and test

Open-source graph tools on single machines

There is a common misconception about graph databases that any data access involving graph structure needs to be stored in a

graph database.

When the amount of data is not large, single machine memory is enough to store the data. You can use some single-machine

open-source tools to store tens of millions of vertices and edges.

JGraphT
10

: A well-known open-source Java graph theory library, which implements a considerable number of efficient graph

algorithms.

igraph
11

: A lightweight and powerful library, supporting R, Python, and C++.

NetworkX
12

: The first choice for data scientists doing graph theory analysis.

Cytoscape
13

: A powerful visual open-source graph analysis tool.

Gephi
14

: A powerful visual open-source graph analysis tool.

arrows.app
15

: A simple brain mapping tool for visually generating Cypher statements.

Industry databases and benchmarks

LDBC

LDBC
16

 (Linked Data Benchmark Council）is a non-profit organization composed of hardware and software giants such as

Oracle, Intel and mainstream graph database vendors such as Neo4j and TigerGraph, which is the benchmark guide developer

and test result publisher for graphs and has a high influence in the industry.

SNB (Social Network Benchmark）is one of the benchmarks developed by the Linked Data Benchmark Committee (LDBC) for

graph databases and is divided into two scenarios: interactive query (Interactive) and business intelligence (BI). Its role is similar

to that of TPC-C, TPC-H, and other tests in SQL-type databases, which can help users compare the functions, performance, and

capacity of various graph database products.

An SNB dataset simulates the relationship between people and posts of a social network, taking into account the distribution

properties of the social network, the activity of people, and other social information.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.3.2 Graph-related technologies

- 45/927 - 2022 Vesoft Inc.

The standard data size ranges from 0.1 GB (scale factor 0.1) to 1000 GB (sf 1000). Larger data sets of 10 TB and 100 TB can also

be generated. The number of vertices and edges is as shown below.

2.3.2 Graph-related technologies

- 46/927 - 2022 Vesoft Inc.

2.3.3 Trends

Graph technologies of different origins and goals are learning from and integrating with each other

The trends in cloud computing place higher demands on scalability.

According to Gartner's projections, cloud services have been growing at a rapid rate and penetration
17

. A large number of

commercial software is gradually moving from a completely local and private model 10 years ago to a cloud services-based

business model. One of the major advantages of cloud services is that they offer near-infinite scalability. It requires that various

cloud infrastructure-based software must have a better ability to scale quickly and elastically.

2.3.3 Trends

- 47/927 - 2022 Vesoft Inc.

Trends in hardware that SSD will be the mainstream persistent device

Hardware determines software architecture. From the 1950s, when Moore's Law was discovered, to the 00s, when multi-core

was introduced, hardware trends and speeds have profoundly determined software architecture. Database systems are mostly

designed around "hard disk + memory", high-performance computing systems are mostly designed around "memory + CPU", and

distributed systems are designed completely differently for 1 gigabit, 10 gigabits, and RDMA.

Graph traversals are featured as random access. Early graph database systems adopted the large memory + HDD architecture.

By designing some data structure in memory, random access can be achieved in memory (B+ trees, Hash tables) for the purpose

of optimizing graph topology traversal. And then the random access was converted into sequential reads and writes suitable for

HDDs. The entire software architecture (including the storage and compute layers) must be based on and built around such IO

processes. With the decline in SSD prices
18

, SSDs are replacing HDDs as the dominant device. Friendly random access, deep IO

queue, fast access are the features of SSD that differ from HDD's highly repetitive sequence, random latency, and easily damaged

disk. The redesign for all software architectures becomes a heavy historical technical burden.

2.3.3 Trends

- 48/927 - 2022 Vesoft Inc.

https://graphaware.com/graphaware/2020/02/17/graph-technology-landscape-2020.html

Electronic copies are available for learning purposes by contacting Author.

https://en.wikipedia.org/wiki/Graph_isomorphism

The Future is Big Graphs! A Community View on Graph Processing Systems. https://arxiv.org/abs/2012.06171

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph

processing. In Proceedings of the International Conference on Management of data (SIGMOD), pages 135–146, New York, NY, USA,

2010. ACM

https://neo4j.com/graphacademy/training-iga-40/02-iga-40-overview-of-graph-algorithms/

https://livebook.manning.com/book/graph-powered-machine-learning/welcome/v-8/

https://www.arangodb.com/learn/graphs/using-smartgraphs-arangodb/

https://arxiv.org/abs/1709.03188

https://jgrapht.org/

https://igraph.org/

https://networkx.org/

https://cytoscape.org/

https://gephi.org/

https://arrows.app/

https://github.com/ldbc/ldbc_snb_docs

https://cloudcomputing-news.net/news/2019/apr/15/public-cloud-soaring-to-331b-by-2022-according-to-gartner/

https://blocksandfiles.com/2021/01/25/wikibon-ssds-vs-hard-drives-wrights-law/

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

2.3.3 Trends

- 49/927 - 2022 Vesoft Inc.

mailto:min.wu@vesoft.com

Last update: March 13, 2023

2.3.3 Trends

- 50/927 - 2022 Vesoft Inc.

2.4 What is NebulaGraph

NebulaGraph is an open-source, distributed, easily scalable, and native graph database. It is capable of hosting graphs with

hundreds of billions of vertices and trillions of edges, and serving queries with millisecond-latency.

2.4.1 What is a graph database

A graph database, such as NebulaGraph, is a database that specializes in storing vast graph networks and retrieving information

from them. It efficiently stores data as vertices (nodes) and edges (relationships) in labeled property graphs. Properties can be

attached to both vertices and edges. Each vertex can have one or multiple tags (labels).

2.4 What is NebulaGraph

- 51/927 - 2022 Vesoft Inc.

Graph databases are well suited for storing most kinds of data models abstracted from reality. Things are connected in almost all

fields in the world. Modeling systems like relational databases extract the relationships between entities and squeeze them into

table columns alone, with their types and properties stored in other columns or even other tables. This makes data management

time-consuming and cost-ineffective.

NebulaGraph, as a typical native graph database, allows you to store the rich relationships as edges with edge types and

properties directly attached to them.

2.4.2 Advantages of NebulaGraph

Open source

NebulaGraph is open under the Apache 2.0 License. More and more people such as database developers, data scientists, security

experts, and algorithm engineers are participating in the designing and development of NebulaGraph. To join the opening of

source code and ideas, surf the NebulaGraph GitHub page.

Outstanding performance

Written in C++ and born for graphs, NebulaGraph handles graph queries in milliseconds. Among most databases, NebulaGraph

shows superior performance in providing graph data services. The larger the data size, the greater the superiority of

NebulaGraph. For more information, see NebulaGraph benchmarking.

2.4.2 Advantages of NebulaGraph

- 52/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/t/nebula-graph-1-0-benchmark-report/581

High scalability

NebulaGraph is designed in a shared-nothing architecture and supports scaling in and out without interrupting the database

service.

Developer friendly

NebulaGraph supports clients in popular programming languages like Java, Python, C++, and Go, and more are under

development. For more information, see NebulaGraph clients.

Reliable access control

NebulaGraph supports strict role-based access control and external authentication servers such as LDAP (Lightweight Directory

Access Protocol) servers to enhance data security. For more information, see Authentication and authorization.

Diversified ecosystem

More and more native tools of NebulaGraph have been released, such as Nebula Studio, Nebula Console, and Nebula Exchange.

For more ecosystem tools, see Ecosystem tools overview.

Besides, NebulaGraph has the ability to be integrated with many cutting-edge technologies, such as Spark, Flink, and HBase, for

the purpose of mutual strengthening in a world of increasing challenges and chances.

OpenCypher-compatible query language

The native NebulaGraph Query Language, also known as nGQL, is a declarative, openCypher-compatible textual query language.

It is easy to understand and easy to use. For more information, see nGQL guide.

Future-oriented hardware with balanced reading and writing

Solid-state drives have extremely high performance and they are getting cheaper. NebulaGraph is a product based on SSD.

Compared with products based on HDD and large memory, it is more suitable for future hardware trends and easier to achieve

balanced reading and writing.

Easy data modeling and high flexibility

You can easily model the connected data into NebulaGraph for your business without forcing them into a structure such as a

relational table, and properties can be added, updated, and deleted freely. For more information, see Data modeling.

High popularity

NebulaGraph is being used by tech leaders such as Tencent, Vivo, Meituan, and JD Digits. For more information, visit the

NebulaGraph official website.

2.4.3 Use cases

NebulaGraph can be used to support various graph-based scenarios. To spare the time spent on pushing the kinds of data

mentioned in this section into relational databases and on bothering with join queries, use NebulaGraph.

Fraud detection

Financial institutions have to traverse countless transactions to piece together potential crimes and understand how

combinations of transactions and devices might be related to a single fraud scheme. This kind of scenario can be modeled in

graphs, and with the help of NebulaGraph, fraud rings and other sophisticated scams can be easily detected.

2.4.3 Use cases

- 53/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-web-docker
https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-exchange
https://blocksandfiles.com/wp-content/uploads/2021/01/Wikibon-SSD-less-than-HDD-in-2026.jpg
https://nebula-graph.io/

Real-time recommendation

NebulaGraph offers the ability to instantly process the real-time information produced by a visitor and make accurate

recommendations on articles, videos, products, and services.

Intelligent question-answer system

Natural languages can be transformed into knowledge graphs and stored in NebulaGraph. A question organized in a natural

language can be resolved by a semantic parser in an intelligent question-answer system and re-organized. Then, possible

answers to the question can be retrieved from the knowledge graph and provided to the one who asked the question.

Social networking

Information on people and their relationships is typical graph data. NebulaGraph can easily handle the social networking

information of billions of people and trillions of relationships, and provide lightning-fast queries for friend recommendations and

job promotions in the case of massive concurrency.

2.4.4 Related links

Official website

Docs

Blogs

Forum

GitHub

•

•

•

•

•

Last update: March 13, 2023

2.4.4 Related links

- 54/927 - 2022 Vesoft Inc.

https://www.vesoft.com/en/
https://docs.nebula-graph.io/master/
https://nebula-graph.io/posts/
https://discuss.nebula-graph.io
https://github.com/vesoft-inc

2.5 Data modeling

A data model is a model that organizes data and specifies how they are related to one another. This topic describes the

Nebula Graph data model and provides suggestions for data modeling with NebulaGraph.

2.5.1 Data structures

NebulaGraph data model uses six data structures to store data. They are graph spaces, vertices, edges, tags, edge types and

properties.

Graph spaces: Graph spaces are used to isolate data from different teams or programs. Data stored in different graph spaces

are securely isolated. Storage replications, privileges, and partitions can be assigned.

Vertices: Vertices are used to store entities.

In NebulaGraph, vertices are identified with vertex identifiers (i.e. VID). The VID must be unique in the same graph space. VID

should be int64, or fixed_string(N).

A vertex has zero to multiple tags.

In NebulaGraph 2.x a vertex must have at least one tag. And in NebulaGraph 3.1.0, a tag is not required for a vertex.

Edges: Edges are used to connect vertices. An edge is a connection or behavior between two vertices.

There can be multiple edges between two vertices.

Edges are directed. -> identifies the directions of edges. Edges can be traversed in either direction.

An edge is identified uniquely with <a source vertex, an edge type, a rank value, and a destination vertex> . Edges have no EID.

An edge must have one and only one edge type.

The rank value is an immutable user-assigned 64-bit signed integer. It identifies the edges with the same edge type between

two vertices. Edges are sorted by their rank values. The edge with the greatest rank value is listed first. The default rank value

is zero.

Tags: Tags are used to categorize vertices. Vertices that have the same tag share the same definition of properties.

Edge types: Edge types are used to categorize edges. Edges that have the same edge type share the same definition of

properties.

Properties: Properties are key-value pairs. Both vertices and edges are containers for properties.

Tags and Edge types are similar to "vertex tables" and "edge tables" in the relational databases.

2.5.2 Directed property graph

NebulaGraph stores data in directed property graphs. A directed property graph has a set of vertices connected by directed

edges. Both vertices and edges can have properties. A directed property graph is represented as:

•

•

•

•

Compatibility

•

•

•

•

•

•

•

•

•

Note

2.5 Data modeling

- 55/927 - 2022 Vesoft Inc.

G = < V, E, P
V

, P
E

 >

V is a set of vertices.

E is a set of directed edges.

P
V

 is the property of vertices.

P
E

 is the property of edges.

The following table is an example of the structure of the basketball player dataset. We have two types of vertices, that is player

and team, and two types of edges, that is serve and follow.

NebulaGraph supports only directed edges.

NebulaGraph 3.1.0 allows dangling edges. Therefore, when adding or deleting, you need to ensure the corresponding source vertex

and destination vertex of an edge exist. For details, see INSERT VERTEX, DELETE VERTEX, INSERT EDGE, and DELETE EDGE.

The MERGE statement in openCypher is not supported.

•

•

•

•

Element Name Property name

(Data type)

Description

Tag player name (string)

age (int)

Represents players in the team.

Tag team name (string) Represents the teams.

Edge type serve start_year (int)

end_year (int)

Represents actions taken by players in the team.

An action links a player with a team, and the direction is from

a player to a team.

Edge type follow degree (int) Represents actions taken by players in the team.

An action links a player with another player, and the direction

is from one player to the other player.

Note

Compatibility

Last update: March 13, 2023

2.5.2 Directed property graph

- 56/927 - 2022 Vesoft Inc.

2.6 Path types

In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices. Paths are

fundamental concepts of graph theory.

Paths can be categorized into 3 types: walk , trail , and path . For more information, see Wikipedia.

The following figure is an example for a brief introduction.

2.6.1 Walk

A walk is a finite or infinite sequence of edges. Both vertices and edges can be repeatedly visited in graph traversal.

In the above figure C, D, and E form a cycle. So, this figure contains infinite paths, such as A->B->C->D->E , A->B->C->D->E->C , and A->B-

>C->D->E->C->D .

GO statements use walk .

2.6.2 Trail

A trail is a finite sequence of edges. Only vertices can be repeatedly visited in graph traversal. The Seven Bridges of Königsberg

is a typical trail .

In the above figure, edges cannot be repeatedly visited. So, this figure contains finite paths. The longest path in this figure

consists of 5 edges: A->B->C->D->E->C .

MATCH , FIND PATH , and GET SUBGRAPH statements use trail .

There are two special cases of trail, cycle and circuit . The following figure is an example for a brief introduction.

Note

Note

2.6 Path types

- 57/927 - 2022 Vesoft Inc.

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path

cycle

A cycle refers to a closed trail . Only the terminal vertices can be repeatedly visited. The longest path in this figure consists of

3 edges: A->B->C->A or C->D->E->C .

circuit

A circuit refers to a closed trail . Edges cannot be repeatedly visited in graph traversal. Apart from the terminal vertices,

other vertices can also be repeatedly visited. The longest path in this figure: A->B->C->D->E->C->A .

2.6.3 Path

A path is a finite sequence of edges. Neither vertices nor edges can be repeatedly visited in graph traversal.

So, the above figure contains finite paths. The longest path in this figure consists of 4 edges: A->B->C->D->E .

•

•

Last update: March 23, 2022

2.6.3 Path

- 58/927 - 2022 Vesoft Inc.

2.7 VID

In NebulaGraph, a vertex is uniquely identified by its ID, which is called a VID or a Vertex ID.

2.7.1 Features

The data types of VIDs are restricted to FIXED_STRING(<N>) or INT64 . One graph space can only select one VID type.

A VID in a graph space is unique. It functions just as a primary key in a relational database. VIDs in different graph spaces are

independent.

The VID generation method must be set by users, because NebulaGraph does not provide auto increasing ID, or UUID.

Vertices with the same VID will be identified as the same one. For example:

A VID is the unique identifier of an entity, like a person's ID card number. A tag means the type of an entity, such as driver, and

boss. Different tags define two groups of different properties, such as driving license number, driving age, order amount, order

taking alt, and job number, payroll, debt ceiling, business phone number.

When two INSERT statements (neither uses a parameter of IF NOT EXISTS) with the same VID and tag are operated at the same

time, the latter INSERT will overwrite the former.

When two INSERT statements with the same VID but different tags, like TAG A and TAG B , are operated at the same time, the

operation of Tag A will not affect Tag B .

VIDs will usually be indexed and stored into memory (in the way of LSM-tree). Thus, direct access to VIDs enjoys peak

performance.

2.7.2 VID Operation

NebulaGraph 1.x only supports INT64 while NebulaGraph 2.x supports INT64 and FIXED_STRING(<N>) . In CREATE SPACE , VID types can

be set via vid_type .

id() function can be used to specify or locate a VID.

LOOKUP or MATCH statements can be used to find a VID via property index.

Direct access to vertices statements via VIDs enjoys peak performance, such as DELETE xxx WHERE id(xxx) == "player100" or GO FROM

"player100" . Finding VIDs via properties and then operating the graph will cause poor performance, such as

LOOKUP | GO FROM $-.ids , which will run both LOOKUP and | one more time.

2.7.3 VID Generation

VIDs can be generated via applications. Here are some tips:

(Optimal) Directly take a unique primary key or property as a VID. Property access depends on the VID.

Generate a VID via a unique combination of properties. Property access depends on property index.

Generate a VID via algorithms like snowflake. Property access depends on property index.

If short primary keys greatly outnumber long primary keys, do not enlarge the N of FIXED_STRING(<N>) too much. Otherwise, it will

occupy a lot of memory and hard disks, and slow down performance. Generate VIDs via BASE64, MD5, hash by encoding and

splicing.

If you generate int64 VID via hash, the probability of collision is about 1/10 when there are 1 billion vertices. The number of

edges has no concern with the probability of collision.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.7 VID

- 59/927 - 2022 Vesoft Inc.

2.7.4 Define and modify a VID and its data type

The data type of a VID must be defined when you create the graph space. Once defined, it cannot be modified.

A VID is set when you insert a vertex and cannot be modified.

2.7.5 Query start vid and global scan

In most cases, the execution plan of query statements in NebulaGraph (MATCH , GO , and LOOKUP) must query the start vid in a

certain way.

There are only two ways to locate start vid :

For example, GO FROM "player100" OVER explicitly indicates in the statement that start vid is "player100".

For example, LOOKUP ON player WHERE player.name == "Tony Parker" or MATCH (v:player {name:"Tony Parker"}) locates start vid by the index of the

property player.name .

For example, match (n) return n; returns an error: Scan vertices or edges need to specify a limit number, or limit number can not push down. , because

it is a global scan, you must use the LIMIT clause to limit the number of returns.

1.

2.

Caution

Last update: March 13, 2023

2.7.4 Define and modify a VID and its data type

- 60/927 - 2022 Vesoft Inc.

2.8 NebulaGraph architecture

2.8.1 Architecture overview

NebulaGraph consists of three services: the Graph Service, the Storage Service, and the Meta Service. It applies the separation

of storage and computing architecture.

Each service has its executable binaries and processes launched from the binaries. Users can deploy a NebulaGraph cluster on a

single machine or multiple machines using these binaries.

The following figure shows the architecture of a typical NebulaGraph cluster.

2.8 NebulaGraph architecture

- 61/927 - 2022 Vesoft Inc.

The Meta Service

The Meta Service in the NebulaGraph architecture is run by the nebula-metad processes. It is responsible for metadata

management, such as schema operations, cluster administration, and user privilege management.

For details on the Meta Service, see Meta Service.

2.8.1 Architecture overview

- 62/927 - 2022 Vesoft Inc.

The Graph Service and the Storage Service

NebulaGraph applies the separation of storage and computing architecture. The Graph Service is responsible for querying. The

Storage Service is responsible for storage. They are run by different processes, i.e., nebula-graphd and nebula-storaged. The

benefits of the separation of storage and computing architecture are as follows:

Great scalability

The separated structure makes both the Graph Service and the Storage Service flexible and easy to scale in or out.

High availability

If part of the Graph Service fails, the data stored by the Storage Service suffers no loss. And if the rest part of the Graph

Service is still able to serve the clients, service recovery can be performed quickly, even unfelt by the users.

Cost-effective

The separation of storage and computing architecture provides a higher resource utilization rate, and it enables clients to

manage the cost flexibly according to business demands.

Open to more possibilities

With the ability to run separately, the Graph Service may work with multiple types of storage engines, and the Storage Service

may also serve more types of computing engines.

For details on the Graph Service and the Storage Service, see Graph Service and Storage Service.

•

•

•

•

Last update: March 13, 2023

2.8.1 Architecture overview

- 63/927 - 2022 Vesoft Inc.

2.8.2 Meta Service

This topic introduces the architecture and functions of the Meta Service.

The architecture of the Meta Service

The architecture of the Meta Service is as follows:

The Meta Service is run by nebula-metad processes. Users can deploy nebula-metad processes according to the scenario:

In a test environment, users can deploy one or three nebula-metad processes on different machines or a single machine.

In a production environment, we recommend that users deploy three nebula-metad processes on different machines for high

availability.

All the nebula-metad processes form a Raft-based cluster, with one process as the leader and the others as the followers.

The leader is elected by the majorities and only the leader can provide service to the clients or other components of

NebulaGraph. The followers will be run in a standby way and each has a data replication of the leader. Once the leader fails, one

of the followers will be elected as the new leader.

The data of the leader and the followers will keep consistent through Raft. Thus the breakdown and election of the leader will not

cause data inconsistency. For more information on Raft, see Storage service architecture.

•

•

Note

2.8.2 Meta Service

- 64/927 - 2022 Vesoft Inc.

Functions of the Meta Service

MANAGES USER ACCOUNTS

The Meta Service stores the information of user accounts and the privileges granted to the accounts. When the clients send

queries to the Meta Service through an account, the Meta Service checks the account information and whether the account has

the right privileges to execute the queries or not.

For more information on NebulaGraph access control, see Authentication.

MANAGES PARTITIONS

The Meta Service stores and manages the locations of the storage partitions and helps balance the partitions.

MANAGES GRAPH SPACES

NebulaGraph supports multiple graph spaces. Data stored in different graph spaces are securely isolated. The Meta Service

stores the metadata of all graph spaces and tracks the changes of them, such as adding or dropping a graph space.

MANAGES SCHEMA INFORMATION

NebulaGraph is a strong-typed graph database. Its schema contains tags (i.e., the vertex types), edge types, tag properties, and

edge type properties.

The Meta Service stores the schema information. Besides, it performs the addition, modification, and deletion of the schema, and

logs the versions of them.

For more information on NebulaGraph schema, see Data model.

MANAGES TTL INFORMATION

The Meta Service stores the definition of TTL (Time to Live) options which are used to control data expiration. The Storage

Service takes care of the expiring and evicting processes. For more information, see TTL.

MANAGES JOBS

The Job Management module in the Meta Service is responsible for the creation, queuing, querying, and deletion of jobs.

Last update: March 13, 2023

2.8.2 Meta Service

- 65/927 - 2022 Vesoft Inc.

2.8.3 Graph Service

The Graph Service is used to process the query. It has four submodules: Parser, Validator, Planner, and Executor. This topic will

describe the Graph Service accordingly.

The architecture of the Graph Service

After a query is sent to the Graph Service, it will be processed by the following four submodules:

Parser: Performs lexical analysis and syntax analysis.

Validator: Validates the statements.

Planner: Generates and optimizes the execution plans.

Executor: Executes the plans with operators.

Parser

After receiving a request, the statements will be parsed by Parser composed of Flex (lexical analysis tool) and Bison (syntax

analysis tool), and its corresponding AST will be generated. Statements will be directly intercepted in this stage because of their

invalid syntax.

For example, the structure of the AST of GO FROM "Tim" OVER like WHERE properties(edge).likeness > 8.0 YIELD dst(edge) is shown in the

following figure.

1.

2.

3.

4.

2.8.3 Graph Service

- 66/927 - 2022 Vesoft Inc.

Validator

Validator performs a series of validations on the AST. It mainly works on these tasks:

Validating metadata

Validator will validate whether the metadata is correct or not.

When parsing the OVER , WHERE , and YIELD clauses, Validator looks up the Schema and verifies whether the edge type and tag

data exist or not. For an INSERT statement, Validator verifies whether the types of the inserted data are the same as the ones

defined in the Schema.

Validating contextual reference

Validator will verify whether the cited variable exists or not, or whether the cited property is variable or not.

For composite statements, like $var = GO FROM "Tim" OVER like YIELD dst(edge) AS ID; GO FROM $var.ID OVER serve YIELD dst(edge) , Validator

verifies first to see if var is defined, and then to check if the ID property is attached to the var variable.

Validating type inference

Validator infers what type the result of an expression is and verifies the type against the specified clause.

For example, the WHERE clause requires the result to be a bool value, a NULL value, or empty .

Validating the information of *

Validator needs to verify all the Schema that involves * when verifying the clause if there is a * in the statement.

Take a statement like GO FROM "Tim" OVER * YIELD dst(edge), properties(edge).likeness, dst(edge) as an example. When verifying the OVER

clause, Validator needs to verify all the edge types. If the edge type includes like and serve , the statement would be

GO FROM "Tim" OVER like,serve YIELD dst(edge), properties(edge).likeness, dst(edge) .

Validating input and output

Validator will check the consistency of the clauses before and after the | .

In the statement GO FROM "Tim" OVER like YIELD dst(edge) AS ID | GO FROM $-.ID OVER serve YIELD dst(edge) , Validator will verify whether $-.ID

is defined in the clause before the | .

When the validation succeeds, an execution plan will be generated. Its data structure will be stored in the src/planner directory.

Planner

In the nebula-graphd.conf file, when enable_optimizer is set to be false , Planner will not optimize the execution plans generated by

Validator. It will be executed by Executor directly.

In the nebula-graphd.conf file, when enable_optimizer is set to be true , Planner will optimize the execution plans generated by

Validator. The structure is as follows.

•

•

•

•

•

2.8.3 Graph Service

- 67/927 - 2022 Vesoft Inc.

Before optimization

In the execution plan on the right side of the preceding figure, each node directly depends on other nodes. For example, the

root node Project depends on the Filter node, the Filter node depends on the GetNeighbor node, and so on, up to the leaf node

Start . Then the execution plan is (not truly) executed.

During this stage, every node has its input and output variables, which are stored in a hash table. The execution plan is not

truly executed, so the value of each key in the associated hash table is empty (except for the Start node, where the input

variables hold the starting data), and the hash table is defined in src/context/ExecutionContext.cpp under the nebula-graph repository.

For example, if the hash table is named as ResultMap when creating the Filter node, users can determine that the node takes

data from ResultMap["GN1"] , then puts the result into ResultMap["Filter2"] , and so on. All these work as the input and output of each

node.

Process of optimization

The optimization rules that Planner has implemented so far are considered RBO (Rule-Based Optimization), namely the pre-

defined optimization rules. The CBO (Cost-Based Optimization) feature is under development. The optimized code is in the src/

optimizer/ directory under the nebula-graph repository.

RBO is a “bottom-up” exploration process. For each rule, the root node of the execution plan (in this case, the Project node) is

the entry point, and step by step along with the node dependencies, it reaches the node at the bottom to see if it matches the

rule.

As shown in the preceding figure, when the Filter node is explored, it is found that its children node is GetNeighbors , which

matches successfully with the pre-defined rules, so a transformation is initiated to integrate the Filter node into the

GetNeighbors node, the Filter node is removed, and then the process continues to the next rule. Therefore, when the GetNeighbor

operator calls interfaces of the Storage layer to get the neighboring edges of a vertex during the execution stage, the Storage

layer will directly filter out the unqualified edges internally. Such optimization greatly reduces the amount of data transfer,

which is commonly known as filter pushdown.

Executor

The Executor module consists of Scheduler and Executor. The Scheduler generates the corresponding execution operators

against the execution plan, starting from the leaf nodes and ending at the root node. The structure is as follows.

•

•

2.8.3 Graph Service

- 68/927 - 2022 Vesoft Inc.

Each node of the execution plan has one execution operator node, whose input and output have been determined in the execution

plan. Each operator only needs to get the values for the input variables, compute them, and finally put the results into the

corresponding output variables. Therefore, it is only necessary to execute step by step from Start , and the result of the last

operator is returned to the user as the final result.

Source code hierarchy

The source code hierarchy under the nebula-graph repository is as follows.

|--src

 |--context //contexts for validation and execution

 |--daemons

 |--executor //execution operators

 |--mock

 |--optimizer //optimization rules

 |--parser //lexical analysis and syntax analysis

 |--planner //structure of the execution plans

 |--scheduler //scheduler

 |--service

 |--util //basic components

 |--validator //validation of the statements

 |--visitor

Last update: May 11, 2022

2.8.3 Graph Service

- 69/927 - 2022 Vesoft Inc.

2.8.4 Storage Service

The persistent data of NebulaGraph have two parts. One is the Meta Service that stores the meta-related data.

The other is the Storage Service that stores the data, which is run by the nebula-storaged process. This topic will describe the

architecture of the Storage Service.

Advantages

High performance (Customized built-in KVStore)

Great scalability (Shared-nothing architecture, not rely on NAS/SAN-like devices)

Strong consistency (Raft)

High availability (Raft)

Supports synchronizing with the third party systems, such as Elasticsearch.

The architecture of the Storage Service

The Storage Service is run by the nebula-storaged process. Users can deploy nebula-storaged processes on different occasions.

For example, users can deploy 1 nebula-storaged process in a test environment and deploy 3 nebula-storaged processes in a

production environment.

•

•

•

•

•

2.8.4 Storage Service

- 70/927 - 2022 Vesoft Inc.

All the nebula-storaged processes consist of a Raft-based cluster. There are three layers in the Storage Service:

Storage interface

The top layer is the storage interface. It defines a set of APIs that are related to the graph concepts. These API requests will be

translated into a set of KV operations targeting the corresponding Partition. For example:

getNeighbors : queries the in-edge or out-edge of a set of vertices, returns the edges and the corresponding properties, and

supports conditional filtering.

insert vertex/edge : inserts a vertex or edge and its properties.

getProps : gets the properties of a vertex or an edge.

It is this layer that makes the Storage Service a real graph storage. Otherwise, it is just a KV storage.

Consensus

Below the storage interface is the consensus layer that implements Multi Group Raft, which ensures the strong consistency

and high availability of the Storage Service.

Store engine

The bottom layer is the local storage engine library, providing operations like get , put , and scan on local disks. The related

interfaces are stored in KVStore.h and KVEngine.h files. You can develop your own local store plugins based on your needs.

The following will describe some features of the Storage Service based on the above architecture.

Storage writing process

•

•

•

•

•

•

2.8.4 Storage Service

- 71/927 - 2022 Vesoft Inc.

KVStore

NebulaGraph develops and customizes its built-in KVStore for the following reasons.

It is a high-performance KVStore.

It is provided as a (kv) library and can be easily developed for the filter pushdown purpose. As a strong-typed database, how to

provide Schema during pushdown is the key to efficiency for NebulaGraph.

It has strong data consistency.

Therefore, NebulaGraph develops its own KVStore with RocksDB as the local storage engine. The advantages are as follows.

For multiple local hard disks, NebulaGraph can make full use of its concurrent capacities through deploying multiple data

directories.

The Meta Service manages all the Storage servers. All the partition distribution data and current machine status can be found

in the meta service. Accordingly, users can execute a manual load balancing plan in meta service.

NebulaGraph does not support auto load balancing because auto data transfer will affect online business.

NebulaGraph provides its own WAL mode so one can customize the WAL. Each partition owns its WAL.

One NebulaGraph KVStore cluster supports multiple graph spaces, and each graph space has its own partition number and

replica copies. Different graph spaces are isolated physically from each other in the same cluster.

•

•

•

•

•

Note

•

•

2.8.4 Storage Service

- 72/927 - 2022 Vesoft Inc.

Data storage structure

Graphs consist of vertices and edges. NebulaGraph uses key-value pairs to store vertices, edges, and their properties. Vertices

and edges are stored in keys and their properties are stored in values. Such structure enables efficient property filtering.

The storage structure of vertices

Different from NebulaGraph version 2.x, version 3.x added a new key for each vertex. Compared to the old key that still exists,

the new key has no TagID field and no value. Vertices in NebulaGraph can now live without tags owing to the new key.

•

Field Description

Type One byte, used to indicate the key type.

PartID Three bytes, used to indicate the sharding partition and to scan the partition data based on the prefix

when re-balancing the partition.

VertexID The vertex ID. For an integer VertexID, it occupies eight bytes. However, for a string VertexID, it is

changed to fixed_string of a fixed length which needs to be specified by users when they create the space.

TagID Four bytes, used to indicate the tags that vertex relate with.

SerializedValue The serialized value of the key. It stores the property information of the vertex.

2.8.4 Storage Service

- 73/927 - 2022 Vesoft Inc.

The storage structure of edges

PROPERTY DESCRIPTIONS

NebulaGraph uses strong-typed Schema.

NebulaGraph will store the properties of vertex and edges in order after encoding them. Since the length of properties is fixed,

queries can be made in no time according to offset. Before decoding, NebulaGraph needs to get (and cache) the schema

information in the Meta Service. In addition, when encoding properties, NebulaGraph will add the corresponding schema version

to support online schema change.

Data partitioning

Since in an ultra-large-scale relational network, vertices can be as many as tens to hundreds of billions, and edges are even more

than trillions. Even if only vertices and edges are stored, the storage capacity of both exceeds that of ordinary servers. Therefore,

NebulaGraph uses hash to shard the graph elements and store them in different partitions.

•

Field Description

Type One byte, used to indicate the key type.

PartID Three bytes, used to indicate the partition ID. This field can be used to scan the partition data based on

the prefix when re-balancing the partition.

VertexID Used to indicate vertex ID. The former VID refers to the source VID in the outgoing edge and the dest

VID in the incoming edge, while the latter VID refers to the dest VID in the outgoing edge and the source

VID in the incoming edge.

Edge Type Four bytes, used to indicate the edge type. Greater than zero indicates out-edge, less than zero means in-

edge.

Rank Eight bytes, used to indicate multiple edges in one edge type. Users can set the field based on needs and

store weight, such as transaction time and transaction number.

PlaceHolder One byte. Reserved.

SerializedValue The serialized value of the key. It stores the property information of the edge.

2.8.4 Storage Service

- 74/927 - 2022 Vesoft Inc.

EDGE PARTITIONING AND STORAGE AMPLIFICATION

In NebulaGraph, an edge corresponds to two key-value pairs on the hard disk. When there are lots of edges and each has many

properties, storage amplification will be obvious. The storage format of edges is shown in the figure below.

2.8.4 Storage Service

- 75/927 - 2022 Vesoft Inc.

In this example, ScrVertex connects DstVertex via EdgeA, forming the path of (SrcVertex)-[EdgeA]->(DstVertex) . ScrVertex, DstVertex,

and EdgeA will all be stored in Partition x and Partition y as four key-value pairs in the storage layer. Details are as follows:

The key value of SrcVertex is stored in Partition x. Key fields include Type, PartID(x), VID(Src), and TagID. SerializedValue,

namely Value, refers to serialized vertex properties.

The first key value of EdgeA, namely EdgeA_Out, is stored in the same partition as the ScrVertex. Key fields include Type,

PartID(x), VID(Src), EdgeType(+ means out-edge), Rank(0), VID(Dst), and PlaceHolder. SerializedValue, namely Value, refers

to serialized edge properties.

The key value of DstVertex is stored in Partition y. Key fields include Type, PartID(y), VID(Dst), and TagID. SerializedValue,

namely Value, refers to serialized vertex properties.

The second key value of EdgeA, namely EdgeA_In, is stored in the same partition as the DstVertex. Key fields include Type,

PartID(y), VID(Dst), EdgeType(- means in-edge), Rank(0), VID(Src), and PlaceHolder. SerializedValue, namely Value, refers to

serialized edge properties, which is exactly the same as that in EdgeA_Out.

EdgeA_Out and EdgeA_In are stored in storage layer with opposite directions, constituting EdgeA logically. EdgeA_Out is used

for traversal requests starting from SrcVertex, such as (a)-[]->() ; EdgeA_In is used for traversal requests starting from

DstVertex, such as ()-[]->(a) .

Like EdgeA_Out and EdgeA_In, NebulaGraph redundantly stores the information of each edge, which doubles the actual

capacities needed for edge storage. The key corresponding to the edge occupies a small hard disk space, but the space occupied

by Value is proportional to the length and amount of the property value. Therefore, it will occupy a relatively large hard disk

space if the property value of the edge is large or there are many edge property values.

To ensure the final consistency of the two key-value pairs when operating on edges, enable the TOSS function. After that, the

operation will be performed in Partition x first where the out-edge is located, and then in Partition y where the in-edge is located.

Finally, the result is returned. -->

PARTITION ALGORITHM

NebulaGraph uses a static Hash strategy to shard data through a modulo operation on vertex ID. All the out-keys, in-keys, and

tag data will be placed in the same partition. In this way, query efficiency is increased dramatically.

The number of partitions needs to be determined when users are creating a graph space since it cannot be changed afterward. Users

are supposed to take into consideration the demands of future business when setting it.

When inserting into NebulaGraph, vertices and edges are distributed across different partitions. And the partitions are located

on different machines. The number of partitions is set in the CREATE SPACE statement and cannot be changed afterward.

If certain vertices need to be placed on the same partition (i.e., on the same machine), see Formula/code.

The following code will briefly describe the relationship between VID and partition.

Roughly speaking, after hashing a fixed string to int64, (the hashing of int64 is the number itself), do modulo, and then plus one,

namely:

•

•

•

•

Note

// If VertexID occupies 8 bytes, it will be stored in int64 to be compatible with the version 1.0.

uint64_t vid = 0;

if (id.size() == 8) {

 memcpy(static_cast<void*>(&vid), id.data(), 8);

} else {

 MurmurHash2 hash;

 vid = hash(id.data());

}

PartitionID pId = vid % numParts + 1;

pId = vid % numParts + 1;

2.8.4 Storage Service

- 76/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/clients/meta/MetaClient.cpp

Parameters and descriptions of the preceding formula are as follows:

Suppose there are 100 partitions, the vertices with VID 1, 101, and 1001 will be stored on the same partition. But, the mapping

between the partition ID and the machine address is random. Therefore, we cannot assume that any two partitions are located on

the same machine.

Raft

RAFT IMPLEMENTATION

In a distributed system, one data usually has multiple replicas so that the system can still run normally even if a few copies fail. It

requires certain technical means to ensure consistency between replicas.

Basic principle: Raft is designed to ensure consistency between replicas. Raft uses election between replicas, and the (candidate)

replica that wins more than half of the votes will become the Leader, providing external services on behalf of all replicas. The

rest Followers will play backups. When the Leader fails (due to communication failure, operation and maintenance commands,

etc.), the rest Followers will conduct a new round of elections and vote for a new Leader. The Leader and Followers will detect

each other's survival through heartbeats and write them to the hard disk in Raft-wal mode. Replicas that do not respond to more

than multiple heartbeats will be considered faulty.

Raft-wal needs to be written into the hard disk periodically. If hard disk bottlenecks to write, Raft will fail to send a heartbeat and

conduct a new round of elections. If the hard disk IO is severely blocked, there will be no Leader for a long time.

Read and write: For every writing request of the clients, the Leader will initiate a Raft-wal and synchronize it with the Followers.

Only after over half replicas have received the Raft-wal will it return to the clients successfully. For every reading request of the

clients, it will get to the Leader directly, while Followers will not be involved.

Failure: Scenario 1: Take a (space) cluster of a single replica as an example. If the system has only one replica, the Leader will be

itself. If failure happens, the system will be completely unavailable. Scenario 2: Take a (space) cluster of three replicas as an

example. If the system has three replicas, one of them will be the Leader and the rest will be the Followers. If the Leader fails,

the rest two can still vote for a new Leader (and a Follower), and the system is still available. But if any of the two Followers fails

again, the system will be completely unavailable due to inadequate voters.

Raft and HDFS have different modes of duplication. Raft is based on a quorum vote, so the number of replicas cannot be even.

MULTI GROUP RAFT

The Storage Service supports a distributed cluster architecture, so NebulaGraph implements Multi Group Raft according to Raft

protocol. Each Raft group stores all the replicas of each partition. One replica is the leader, while others are followers. In this

way, NebulaGraph achieves strong consistency and high availability. The functions of Raft are as follows.

NebulaGraph uses Multi Group Raft to improve performance when there are many partitions because Raft-wal cannot be NULL.

When there are too many partitions, costs will increase, such as storing information in Raft group, WAL files, or batch operation

in low load.

Parameter Description

% The modulo operation.

numParts The number of partitions for the graph space where the VID is located, namely the value of partition_num in

the CREATE SPACE statement.

pId The ID for the partition where the VID is located.

Note

Note

2.8.4 Storage Service

- 77/927 - 2022 Vesoft Inc.

There are two key points to implement the Multi Raft Group:

To share transport layer

Each Raft Group sends messages to its corresponding peers. So if the transport layer cannot be shared, the connection costs

will be very high.

To share thread pool

Raft Groups share the same thread pool to prevent starting too many threads and a high context switch cost.

BATCH

For each partition, it is necessary to do a batch to improve throughput when writing the WAL serially. As NebulaGraph uses WAL

to implement some special functions, batches need to be grouped, which is a feature of NebulaGraph.

For example, lock-free CAS operations will execute after all the previous WALs are committed. So for a batch, if there are several

WALs in CAS type, we need to divide this batch into several smaller groups and make sure they are committed serially.

TRANSFER LEADERSHIP

Transfer leadership is extremely important for balance. When moving a partition from one machine to another, NebulaGraph first

checks if the source is a leader. If so, it should be moved to another peer. After data migration is completed, it is important to

balance leader distribution again.

When a transfer leadership command is committed, the leader will abandon its leadership and the followers will start a leader

election.

PEER CHANGES

To avoid split-brain, when members in a Raft Group change, an intermediate state is required. In such a state, the quorum of the

old group and new group always have an overlap. Thus it prevents the old or new group from making decisions unilaterally. To

make it even simpler, in his doctoral thesis Diego Ongaro suggests adding or removing a peer once to ensure the overlap

between the quorum of the new group and the old group. NebulaGraph also uses this approach, except that the way to add or

remove a member is different. For details, please refer to addPeer/removePeer in the Raft Part class.

Cache

The cache management of RocksDB can not cache vertices or edges on demand. NebulaGraph implements its own cache

management for Storage, allowing you to set the storage cache size, content, etc. For more information, see Storage cache

configurations.

Differences with HDFS

The Storage Service is a Raft-based distributed architecture, which has certain differences with that of HDFS. For example:

The Storage Service ensures consistency through Raft. Usually, the number of its replicas is odd to elect a leader. However,

DataNode used by HDFS ensures consistency through NameNode, which has no limit on the number of replicas.

In the Storage Service, only the replicas of the leader can read and write, while in HDFS all the replicas can do so.

In the Storage Service, the number of replicas needs to be determined when creating a space, since it cannot be changed

afterward. But in HDFS, the number of replicas can be changed freely.

The Storage Service can access the file system directly. While the applications of HDFS (such as HBase) have to access HDFS

before the file system, which requires more RPC times.

In a word, the Storage Service is more lightweight with some functions simplified and its architecture is simpler than HDFS,

which can effectively improve the read and write performance of a smaller block of data.

•

•

•

•

•

•

Last update: March 13, 2023

2.8.4 Storage Service

- 78/927 - 2022 Vesoft Inc.

3. Quick start

3.1 Quick start workflow

The quick start introduces the simplest workflow to use NebulaGraph, including deploying NebulaGraph, connecting to

NebulaGraph, and doing basic CRUD.

3.1.1 Steps

Users can quickly deploy and use NebulaGraph in the following steps.

Deploy NebulaGraph

Users can use the RPM or DEB file to quickly deploy NebulaGraph. For other deployment methods and the corresponding

preparations, see the Deployment and installation chapter.

Start NebulaGraph

Users need to start NebulaGraph after deployment.

Connect to NebulaGraph

Then users can use clients to connect to NebulaGraph. NebulaGraph supports a variety of clients. This topic will describe how to

use Nebula Console to connect to NebulaGraph.

Register the Storage Service

When connecting to NebulaGraph for the first time, users must register the Storage Service before querying data.

CRUD in NebulaGraph

Users can use nGQL (NebulaGraph Query Language) to run CRUD after connecting to NebulaGraph.

1.

2.

3.

4.

5.

Last update: March 13, 2023

3. Quick start

- 79/927 - 2022 Vesoft Inc.

3.2 Step 1: Install NebulaGraph

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install NebulaGraph with the

RPM or DEB package.

The console is not complied or packaged with NebulaGraph server binaries. You can install nebula-console by yourself.

For the Enterprise Edition, please send email to inquiry@vesoft.com.

3.2.1 Prerequisites

Wget installed.

3.2.2 Download the package from cloud service

Download the released version.

URL:

For example, download the release package 3.1.0 for Centos 7.5 :

Download the release package 3.1.0 for Ubuntu 1804 :

Note

Enterpriseonly

•

//Centos 6

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el6.x86_64.rpm

//Centos 7

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.el7.x86_64.rpm.sha256sum.txt

3.2 Step 1: Install NebulaGraph

- 80/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console

Download the nightly version.

Nightly versions are usually used to test new features. Do not use it in a production environment.

Nightly versions may not be built successfully every night. And the names may change from day to day.

URL:

For example, download the Centos 7.5 package developed and built in 2021.11.28 :

For example, download the Ubuntu 1804 package developed and built in 2021.11.28 :

3.2.3 Install NebulaGraph

Use the following syntax to install with an RPM package.

The option --prefix indicates the installation path. The default path is /usr/local/nebula/ .

For example, to install an RPM package in the default path for the 3.1.0 version, run the following command.

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.ubuntu1804.amd64.deb.sha256sum.txt

•

Danger

•

•

//Centos 6

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el6.x86_64.rpm

//Centos 7

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

•

$ sudo rpm -ivh --prefix=<installation_path> <package_name>

3.2.3 Install NebulaGraph

- 81/927 - 2022 Vesoft Inc.

Use the following syntax to install with a DEB package.

Customizing the installation path is not supported when installing NebulaGraph with a DEB package. The default installation path

is /usr/local/nebula/ .

For example, to install a DEB package for the 3.1.0 version, run the following command.

The default installation path is /usr/local/nebula/ .

3.2.4 Next to do

(Enterprise Edition)Deploy license

Start NebulaGraph

Connect to NebulaGraph

sudo rpm -ivh nebula-graph-3.1.0.el7.x86_64.rpm

•

$ sudo dpkg -i <package_name>

Note

sudo dpkg -i nebula-graph-3.1.0.ubuntu1804.amd64.deb

Note

•

•

•

Last update: March 13, 2023

3.2.4 Next to do

- 82/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.com.cn/3.1.0/4.deployment-and-installation/deploy-license
https://docs.nebula-graph.io/3.1.0/2.quick-start/5.start-stop-service/
https://docs.nebula-graph.io/3.1.0/2.quick-start/3.connect-to-nebula-graph/

3.3 Step 2: Manage NebulaGraph Service

NebulaGraph supports managing services with scripts or systemd. This topic will describe the two methods in detail.

Managing NebulaGraph with systemd is only available in the NebulaGraph Enterprise Edition.

The two methods are incompatible. It is recommended to use only one method in a cluster.

3.3.1 Manage services with script

You can use the nebula.service script to start, stop, restart, terminate, and check the NebulaGraph services.

nebula.service is stored in the /usr/local/nebula/scripts directory by default. If you have customized the path, use the actual path in your

environment.

Syntax

3.3.2 Manage services with systemd

For easy maintenance, NebulaGraph Enterprise Edition supports managing services with systemd. You can start, stop, restart,

and check services with systemctl commands.

Enterpriseonly

Danger

Note

$ sudo /usr/local/nebula/scripts/nebula.service

[-v] [-c <config_file_path>]

<start | stop | restart | kill | status>

<metad | graphd | storaged | all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the NebulaGraph services as the target services.

3.3 Step 2: Manage NebulaGraph Service

- 83/927 - 2022 Vesoft Inc.

After installing NebulaGraph Enterprise Edition, the .service files required by systemd are located in the etc/unit path in the

installation directory. NebulaGraph installed with the RPM/DEB package automatically places the .service files into the path /usr/lib/

systemd/system and the parameter ExecStart is generated based on the specified NebulaGraph installation path, so you can use systemctl

commands directly.

The systemctl commands cannot be used to manage the Enterprise Edition cluster that is created with Dashboard of the Enterprise

Edition.

Otherwise, users need to move the .service files manually into the directory /usr/lib/systemd/system , and modify the file path of the

parameter ExecStart in the .service files.

Syntax

3.3.3 Start NebulaGraph

In non-container environment

Run the following command to start NebulaGraph.

Users can also run the following command:

If users want to automatically start NebulaGraph when the machine starts, run the following command:

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to start NebulaGraph.

Note

•

•

•

$ systemctl <start | stop | restart | status > <nebula | nebula-metad | nebula-graphd | nebula-storaged>

Parameter Description

start Start the target services.

stop Stop the target services.

restart Restart the target services.

status Check the status of the target services.

nebula Set all the NebulaGraph services as the target services.

nebula-metad Set the Meta Service as the target service.

nebula-graphd Set the Graph Service as the target service.

nebula-storaged Set the Storage Service as the target service.

$ sudo /usr/local/nebula/scripts/nebula.service start all

[INFO] Starting nebula-metad...

[INFO] Done

[INFO] Starting nebula-graphd...

[INFO] Done

[INFO] Starting nebula-storaged...

[INFO] Done

$ systemctl start nebula

$ systemctl enable nebula

[nebula-docker-compose]$ docker-compose up -d

Building with native build. Learn about native build in Compose here: https://docs.docker.com/go/compose-native-build/

Creating network "nebula-docker-compose_nebula-net" with the default driver

Creating nebula-docker-compose_metad0_1 ... done

Creating nebula-docker-compose_metad2_1 ... done

3.3.3 Start NebulaGraph

- 84/927 - 2022 Vesoft Inc.

3.3.4 Stop NebulaGraph

Do not run kill -9 to forcibly terminate the processes. Otherwise, there is a low probability of data loss.

In non-container environment

Run the following command to stop NebulaGraph.

Users can also run the following command:

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to stop NebulaGraph.

If you are using a developing or nightly version for testing and have compatibility issues, try to run docker-compose down -v to DELETE all

data stored in NebulaGraph and import data again.

3.3.5 Check the service status

In non-container environment

Run the following command to check the service status of NebulaGraph.

Creating nebula-docker-compose_metad1_1 ... done

Creating nebula-docker-compose_storaged2_1 ... done

Creating nebula-docker-compose_graphd1_1 ... done

Creating nebula-docker-compose_storaged1_1 ... done

Creating nebula-docker-compose_storaged0_1 ... done

Creating nebula-docker-compose_graphd2_1 ... done

Creating nebula-docker-compose_graphd_1 ... done

Danger

$ sudo /usr/local/nebula/scripts/nebula.service stop all

[INFO] Stopping nebula-metad...

[INFO] Done

[INFO] Stopping nebula-graphd...

[INFO] Done

[INFO] Stopping nebula-storaged...

[INFO] Done

$ systemctl stop nebula

nebula-docker-compose]$ docker-compose down

Stopping nebula-docker-compose_graphd_1 ... done

Stopping nebula-docker-compose_graphd2_1 ... done

Stopping nebula-docker-compose_storaged0_1 ... done

Stopping nebula-docker-compose_storaged1_1 ... done

Stopping nebula-docker-compose_graphd1_1 ... done

Stopping nebula-docker-compose_storaged2_1 ... done

Stopping nebula-docker-compose_metad1_1 ... done

Stopping nebula-docker-compose_metad2_1 ... done

Stopping nebula-docker-compose_metad0_1 ... done

Removing nebula-docker-compose_graphd_1 ... done

Removing nebula-docker-compose_graphd2_1 ... done

Removing nebula-docker-compose_storaged0_1 ... done

Removing nebula-docker-compose_storaged1_1 ... done

Removing nebula-docker-compose_graphd1_1 ... done

Removing nebula-docker-compose_storaged2_1 ... done

Removing nebula-docker-compose_metad1_1 ... done

Removing nebula-docker-compose_metad2_1 ... done

Removing nebula-docker-compose_metad0_1 ... done

Removing network nebula-docker-compose_nebula-net

Note

3.3.4 Stop NebulaGraph

- 85/927 - 2022 Vesoft Inc.

NebulaGraph is running normally if the following information is returned.

After starting NebulaGraph, the port of the nebula-storaged process is shown in red. Because the nebula-storaged process waits for the

nebula-metad to add the current Storage service during the startup process. The Storage works after it receives the ready signal.

Starting from NebulaGraph 3.0.0, the Meta service cannot directly read or write data in the Storage service that you add in the

configuration file. The configuration file only registers the Storage service to the Meta service. You must run the ADD HOSTS

command to enable the Meta to read and write data in the Storage service. For more information, see Manage Storage hosts.

If the returned result is similar to the following one, there is a problem. You may also go to the NebulaGraph community for

help.

Users can also run the following command:

The NebulaGraph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the

returned result to troubleshoot problems.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to check the service status of NebulaGraph.

If the service is abnormal, you can first confirm the abnormal container name (such as nebula-docker-compose_graphd2_1).

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

INFO] nebula-metad(33fd35e): Running as 29020, Listening on 9559

[INFO] nebula-graphd(33fd35e): Running as 29095, Listening on 9669

[WARN] nebula-storaged after v3.0.0 will not start service until it is added to cluster.

[WARN] See Manage Storage hosts:ADD HOSTS in https://docs.nebula-graph.io/

[INFO] nebula-storaged(33fd35e): Running as 29147, Listening on 9779

Note

•

[INFO] nebula-metad: Running as 25600, Listening on 9559

[INFO] nebula-graphd: Exited

[INFO] nebula-storaged: Running as 25646, Listening on 9779

$ systemctl status nebula

● nebula.service

 Loaded: loaded (/usr/lib/systemd/system/nebula.service; disabled; vendor preset: disabled)

 Active: active (exited) since 一 2022-03-28 04:13:24 UTC; 1h 47min ago

 Process: 21772 ExecStart=/usr/local/ent-nightly/scripts/nebula.service start all (code=exited, status=0/SUCCESS)

 Main PID: 21772 (code=exited, status=0/SUCCESS)

 Tasks: 325

 Memory: 424.5M

 CGroup: /system.slice/nebula.service

 ├─21789 /usr/local/ent-nightly/bin/nebula-metad --flagfile /usr/local/ent-nightly/etc/nebula-metad.conf

 ├─21827 /usr/local/ent-nightly/bin/nebula-graphd --flagfile /usr/local/ent-nightly/etc/nebula-graphd.conf

 └─21900 /usr/local/ent-nightly/bin/nebula-storaged --flagfile /usr/local/ent-nightly/etc/nebula-storaged.conf

3月 28 04:13:24 xxxxxx systemd[1]: Started nebula.service.

...

nebula-docker-compose]$ docker-compose ps

 Name Command State Ports

nebula-docker-compose_graphd1_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/tcp, 0.0.0.0:49224->9669/tcp

nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/tcp, 0.0.0.0:49230->9669/tcp

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/tcp, 0.0.0.0:9669->9669/tcp

nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49212->19559/tcp, 0.0.0.0:49211->19560/tcp, 0.0.0.0:49213->9559/tcp,

 9560/tcp

nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49209->19559/tcp, 0.0.0.0:49208->19560/tcp, 0.0.0.0:49210->9559/tcp,

 9560/tcp

nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49206->19559/tcp, 0.0.0.0:49205->19560/tcp, 0.0.0.0:49207->9559/tcp,

 9560/tcp

nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49218->19779/tcp, 0.0.0.0:49217->19780/tcp, 9777/tcp, 9778/tcp,

 0.0.0.0:49219->9779/tcp, 9780/tcp

nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49215->19779/tcp, 0.0.0.0:49214->19780/tcp, 9777/tcp, 9778/tcp,

 0.0.0.0:49216->9779/tcp, 9780/tcp

nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49226->19779/tcp, 0.0.0.0:49225->19780/tcp, 9777/tcp, 9778/tcp,

 0.0.0.0:49227->9779/tcp, 9780/tcp

3.3.5 Check the service status

- 86/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/

Then you can execute docker ps to view the corresponding CONTAINER ID (such as 2a6c56c405f5).

Use the CONTAINER ID to log in the container and troubleshoot.

3.3.6 Next to do

Connect to NebulaGraph

[nebula-docker-compose]$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

2a6c56c405f5 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49230->9669/tcp, 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/

tcp nebula-docker-compose_graphd2_1

7042e0a8e83d vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49227->9779/tcp, 0.0.0.0:49226->19779/

tcp, 0.0.0.0:49225->19780/tcp nebula-docker-compose_storaged2_1

18e3ea63ad65 vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49219->9779/tcp, 0.0.0.0:49218->19779/

tcp, 0.0.0.0:49217->19780/tcp nebula-docker-compose_storaged0_1

4dcabfe8677a vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49224->9669/tcp, 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/

tcp nebula-docker-compose_graphd1_1

a74054c6ae25 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:9669->9669/tcp, 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/

tcp nebula-docker-compose_graphd_1

880025a3858c vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49216->9779/tcp, 0.0.0.0:49215->19779/

tcp, 0.0.0.0:49214->19780/tcp nebula-docker-compose_storaged1_1

45736a32a23a vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49213->9559/tcp, 0.0.0.0:49212->19559/tcp, 0.

0.0.0:49211->19560/tcp nebula-docker-compose_metad0_1

3b2c90eb073e vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49207->9559/tcp, 0.0.0.0:49206->19559/tcp, 0.

0.0.0:49205->19560/tcp nebula-docker-compose_metad2_1

7bb31b7a5b3f vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49210->9559/tcp, 0.0.0.0:49209->19559/tcp, 0.

0.0.0:49208->19560/tcp nebula-docker-compose_metad1_1

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash

[root@2a6c56c405f5 nebula]#

Last update: March 13, 2023

3.3.6 Next to do

- 87/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/3.1.0/2.quick-start/3.connect-to-nebula-graph/

3.4 Step 3: Connect to NebulaGraph

This topic provides basic instruction on how to use the native CLI client Nebula Console to connect to NebulaGraph.

When connecting to NebulaGraph for the first time, you must register the Storage Service before querying data.

NebulaGraph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. For more information, see the client list.

3.4.1 Prerequisites

You have started NebulaGraph services.

The machine on which you plan to run Nebula Console has network access to the Graph Service of NebulaGraph.

The Nebula Console version is compatible with the NebulaGraph version.

Nebula Console and NebulaGraph of the same version number are the most compatible. There may be compatibility issues when

connecting to NebulaGraph with a different version of Nebula Console. The error message incompatible version between client and server

is displayed when there is such an issue.

Steps

On the Nebula Console releases page, select a Nebula Console version and click Assets.

It is recommended to select the latest version.

In the Assets area, find the correct binary file for the machine where you want to run Nebula Console and download the file to the

machine.

(Optional) Rename the binary file to nebula-console for convenience.

For Windows, rename the file to nebula-console.exe .

On the machine to run Nebula Console, grant the execute permission of the nebula-console binary file to the user.

For Windows, skip this step.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Caution

•

•

•

Note

1.

Note

2.

3.

Note

4.

Note

$ chmod 111 nebula-console

5.

3.4 Step 3: Connect to NebulaGraph

- 88/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/3.1.0/4.deployment-and-installation/manage-service/
https://github.com/vesoft-inc/nebula-console/releases

Run the following command to connect to NebulaGraph.

For Linux or macOS:

For Windows:

Parameter descriptions are as follows:

For information on more parameters, see the project repository.

6.

•

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

•

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

Parameter Description

-h/-help Shows the help menu.

-addr/-address Sets the IP address of the Graph service. The default address is 127.0.0.1.

-P/-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your NebulaGraph account. Before enabling authentication, you can use any existing

username. The default username is root .

-p/-password Sets the password of your NebulaGraph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

The result will be returned and the connection stops then.

-enable_ssl Enables SSL encryption when connecting to NebulaGraph.

-ssl_root_ca_path Sets the storage path of the certification authority file.

-ssl_cert_path Sets the storage path of the certificate file.

-

ssl_private_key_path

Sets the storage path of the private key file.

Last update: March 13, 2023

3.4.1 Prerequisites

- 89/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/v3.0.0

3.5 Register the Storage Service

When connecting to NebulaGraph for the first time, you have to add the Storage hosts, and confirm that all the hosts are online.

Starting from NebulaGraph 3.0.0, you have to run ADD HOSTS before reading or writing data into the Storage Service.

In earlier versions, ADD HOSTS is neither needed nor supported.

3.5.1 Prerequisites

You have connnected to NebulaGraph.

3.5.2 Steps

Add the Storage hosts.

Run the following command to add hosts:

Example：

Make sure that the IP you added is the same as the IP configured for local_ip in the nebula-storaged.conf file. Otherwise, the Storage

service will fail to start. For information about configurations, see Configurations.

Check the status of the hosts to make sure that they are all online.

The Status column of the result above shows that all Storage hosts are online.

Compatibility

•

•

1.

ADD HOSTS <ip>:<port> [,<ip>:<port> ...];

nebula> ADD HOSTS 192.168.10.100:9779, 192.168.10.101:9779, 192.168.10.102:9779;

Caution

2.

nebula> SHOW HOSTS;

+------------------+------+-----------+----------+--------------+---------------------- +------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+------------------+------+-----------+----------+--------------+---------------------- +------------------------+---------+

| "192.168.10.100" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "192.168.10.101" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "192.168.10.102" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

+------------------+------+-----------+----------+--------------+---------------------- +------------------------+---------+

Last update: March 13, 2023

3.5 Register the Storage Service

- 90/927 - 2022 Vesoft Inc.

3.6 Step 4: Use nGQL (CRUD)

This topic will describe the basic CRUD operations in NebulaGraph.

For more information, see nGQL guide.

3.6.1 Graph space and NebulaGraph schema

A NebulaGraph instance consists of one or more graph spaces. Graph spaces are physically isolated from each other. You can use

different graph spaces in the same instance to store different datasets.

To insert data into a graph space, define a schema for the graph database. NebulaGraph schema is based on the following

components.

For more information, see Data modeling.

In this topic, we will use the following dataset to demonstrate basic CRUD operations.

Schema

component

Description

Vertex Represents an entity in the real world. A vertex can have zero to multiple tags.

Tag The type of the same group of vertices. It defines a set of properties that describes the types of

vertices.

Edge Represents a directed relationship between two vertices.

Edge type The type of an edge. It defines a group of properties that describes the types of edges.

3.6 Step 4: Use nGQL (CRUD)

- 91/927 - 2022 Vesoft Inc.

3.6.1 Graph space and NebulaGraph schema

- 92/927 - 2022 Vesoft Inc.

Async implementation of CREATE and ALTER

In NebulaGraph, the following CREATE or ALTER commands are implemented in an async way and take effect in the next heartbeat

cycle. Otherwise, an error will be returned. To make sure the follow-up operations work as expected, Wait for two heartbeat cycles,

i.e., 20 seconds.

CREATE SPACE

CREATE TAG

CREATE EDGE

ALTER TAG

ALTER EDGE

CREATE TAG INDEX

CREATE EDGE INDEX

The default heartbeat interval is 10 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the

configuration files for all services.

3.6.2 Create and use a graph space

nGQL syntax

Create a graph space:

For more information on parameters, see CREATE SPACE.

List graph spaces and check if the creation is successful:

Use a graph space:

Examples

Use the following statement to create a graph space named basketballplayer .

Check the partition distribution with SHOW HOSTS to make sure that the partitions are distributed in a balanced way.

Caution

•

•

•

•

•

•

•

Note

•

CREATE SPACE [IF NOT EXISTS] <graph_space_name> (

[partition_num = <partition_number>,]

[replica_factor = <replica_number>,]

vid_type = {FIXED_STRING(<N>) | INT64}

)

[COMMENT = '<comment>'];

•

nebula> SHOW SPACES;

•

USE <graph_space_name>;

1.

nebula> CREATE SPACE basketballplayer(partition_num=15, replica_factor=1, vid_type=fixed_string(30));

2.

nebula> SHOW HOSTS;

+-------------+-----------+-----------+-----------+--------------+----------------------------------+------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+-----------+-----------+-----------+--------------+----------------------------------+------------------------+---------+

| "storaged0" | 9779 | 19669 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" | "3.1.0" |

| "storaged1" | 9779 | 19669 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" | "3.1.0" |

3.6.2 Create and use a graph space

- 93/927 - 2022 Vesoft Inc.

If the Leader distribution is uneven, use BALANCE LEADER to redistribute the partitions. For more information, see BALANCE.

Use the basketballplayer graph space.

You can use SHOW SPACES to check the graph space you created.

3.6.3 Create tags and edge types

nGQL syntax

For more information on parameters, see CREATE TAG and CREATE EDGE.

Examples

Create tags player and team , and edge types follow and serve . Descriptions are as follows.

3.6.4 Insert vertices and edges

You can use the INSERT statement to insert vertices or edges based on existing tags or edge types.

nGQL syntax

Insert vertices:

| "storaged2" | 9779 | 19669 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" | "3.1.0" |

+-------------+-----------+-----------+-----------+--------------+----------------------------------+------------------------+---------+

3.

nebula[(none)]> USE basketballplayer;

nebula> SHOW SPACES;

+--------------------+

| Name |

+--------------------+

| "basketballplayer" |

+--------------------+

CREATE {TAG | EDGE} [IF NOT EXISTS] {<tag_name> | <edge_type_name>}

 (

 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']

 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]

)

 [TTL_DURATION = <ttl_duration>]

 [TTL_COL = <prop_name>]

 [COMMENT = '<comment>'];

Component name Type Property

player Tag name (string), age (int)

team Tag name (string)

follow Edge type degree (int)

serve Edge type start_year (int), end_year (int)

nebula> CREATE TAG player(name string, age int);

nebula> CREATE TAG team(name string);

nebula> CREATE EDGE follow(degree int);

nebula> CREATE EDGE serve(start_year int, end_year int);

•

INSERT VERTEX [IF NOT EXISTS] [tag_props, [tag_props] ...]

VALUES <vid>: ([prop_value_list])

tag_props:

 tag_name ([prop_name_list])

prop_name_list:

 [prop_name [, prop_name] ...]

3.6.3 Create tags and edge types

- 94/927 - 2022 Vesoft Inc.

vid is short for Vertex ID. A vid must be a unique string value in a graph space. For details, see INSERT VERTEX.

Insert edges:

For more information on parameters, see INSERT EDGE.

Examples

Insert vertices representing basketball players and teams:

Insert edges representing the relations between basketball players and teams:

3.6.5 Read data

The GO statement can traverse the database based on specific conditions. A GO traversal starts from one or more vertices,

along one or more edges, and returns information in a form specified in the YIELD clause.

The FETCH statement is used to get properties from vertices or edges.

The LOOKUP statement is based on indexes. It is used together with the WHERE clause to search for the data that meet the

specific conditions.

The MATCH statement is the most commonly used statement for graph data querying. It can describe all kinds of graph

patterns, but it relies on indexes to match data patterns in NebulaGraph. Therefore, its performance still needs optimization.

nGQL syntax

GO

prop_value_list:

 [prop_value [, prop_value] ...]

•

INSERT EDGE [IF NOT EXISTS] <edge_type> (<prop_name_list>) VALUES

<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)

[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>), ...];

<prop_name_list> ::=

[<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=

[<prop_value> [, <prop_value>] ...]

•

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

nebula> INSERT VERTEX team(name) VALUES "team203":("Trail Blazers"), "team204":("Spurs");

•

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player102":(90);

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player100":(75);

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player101" -> "team204":(1999, 2018),"player102" -> "team203":(2006, 2015);

•

•

•

•

•

GO [[<M> TO] <N> STEPS] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

YIELD [DISTINCT] <return_list>

[{ SAMPLE <sample_list> | <limit_by_list_clause> }]

[| GROUP BY {<col_name> | expression> | <position>} YIELD <col_name>]

3.6.5 Read data

- 95/927 - 2022 Vesoft Inc.

FETCH

Fetch properties on tags:

Fetch properties on edges:

LOOKUP

MATCH

Examples of GO statement

Search for the players that the player with VID player101 follows.

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset>,] <number_rows>];

•

•

FETCH PROP ON {<tag_name>[, tag_name ...] | *}

<vid> [, vid ...]

YIELD <return_list> [AS <alias>];

•

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]

YIELD <output>;

•

LOOKUP ON {<vertex_tag> | <edge_type>}

[WHERE <expression> [AND <expression> ...]]

YIELD <return_list> [AS <alias>];

<return_list>

 <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...];

•

MATCH <pattern> [<clause_1>] RETURN <output> [<clause_2>];

•

nebula> GO FROM "player101" OVER follow YIELD id($$);

+-------------+

| id($$) |

+-------------+

| "player100" |

| "player102" |

3.6.5 Read data

- 96/927 - 2022 Vesoft Inc.

Filter the players that the player with VID player101 follows whose age is equal to or greater than 35. Rename the

corresponding columns in the results with Teammate and Age .

| Clause/Sign | Description | |-------------+---| | YIELD | Specifies what values or results

you want to return from the query. | | $$ | Represents the target vertices. | | \ | A line-breaker. |

Search for the players that the player with VID player101 follows. Then retrieve the teams of the players that the player with

VID player100 follows. To combine the two queries, use a pipe or a temporary variable.

With a pipe:

With a temporary variable:

Once a composite statement is submitted to the server as a whole, the life cycle of the temporary variables in the statement ends.

Example of FETCH statement

Use FETCH : Fetch the properties of the player with VID player100 .

| "player125" |

+-------------+

•

nebula> GO FROM "player101" OVER follow WHERE properties($$).age >= 35 \

 YIELD properties($$).name AS Teammate, properties($$).age AS Age;

+-----------------+-----+

| Teammate | Age |

+-----------------+-----+

| "Tim Duncan" | 42 |

| "Manu Ginobili" | 41 |

+-----------------+-----+

•

•

nebula> GO FROM "player101" OVER follow YIELD dst(edge) AS id | \

 GO FROM $-.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------------+---------------------+

| Team | Player |

+-----------------+---------------------+

| "Spurs" | "Tim Duncan" |

| "Trail Blazers" | "LaMarcus Aldridge" |

| "Spurs" | "LaMarcus Aldridge" |

| "Spurs" | "Manu Ginobili" |

+-----------------+---------------------+

Clause/Sign Description

$^ Represents the source vertex of the edge.

| A pipe symbol can combine multiple queries.

$- Represents the outputs of the query before the pipe symbol.

•

Note

nebula> $var = GO FROM "player101" OVER follow YIELD dst(edge) AS id; \

 GO FROM $var.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------------+---------------------+

| Team | Player |

+-----------------+---------------------+

| "Spurs" | "Tim Duncan" |

| "Trail Blazers" | "LaMarcus Aldridge" |

| "Spurs" | "LaMarcus Aldridge" |

| "Spurs" | "Manu Ginobili" |

+-----------------+---------------------+

nebula> FETCH PROP ON player "player100" YIELD properties(vertex);

+-------------------------------+

| properties(VERTEX) |

+-------------------------------+

| {age: 42, name: "Tim Duncan"} |

+-------------------------------+

3.6.5 Read data

- 97/927 - 2022 Vesoft Inc.

The examples of LOOKUP and MATCH statements are in indexes.

3.6.6 Update vertices and edges

Users can use the UPDATE or the UPSERT statements to update existing data.

UPSERT is the combination of UPDATE and INSERT . If you update a vertex or an edge with UPSERT , the database will insert a new vertex

or edge if it does not exist.

UPSERT operates serially in a partition-based order. Therefore, it is slower than INSERT OR UPDATE . And UPSERT has concurrency only

between multiple partitions.

nGQL syntax

UPDATE vertices:

UPDATE edges:

UPSERT vertices or edges:

Examples

UPDATE the name property of the vertex with VID player100 and check the result with the FETCH statement.

Note

Note

•

UPDATE VERTEX <vid> SET <properties to be updated>

[WHEN <condition>] [YIELD <columns>];

•

UPDATE EDGE <source vid> -> <destination vid> [@rank] OF <edge_type>

SET <properties to be updated> [WHEN <condition>] [YIELD <columns to be output>];

•

UPSERT {VERTEX <vid> | EDGE <edge_type>} SET <update_columns>

[WHEN <condition>] [YIELD <columns>];

•

nebula> UPDATE VERTEX "player100" SET player.name = "Tim";

nebula> FETCH PROP ON player "player100" YIELD properties(vertex);

+------------------------+

| properties(VERTEX) |

+------------------------+

3.6.6 Update vertices and edges

- 98/927 - 2022 Vesoft Inc.

UPDATE the degree property of an edge and check the result with the FETCH statement.

Insert a vertex with VID player111 and UPSERT it.

3.6.7 Delete vertices and edges

nGQL syntax

Delete vertices:

Delete edges:

Examples

Delete vertices:

Delete edges:

3.6.8 About indexes

Users can add indexes to tags and edge types with the CREATE INDEX statement.

Both MATCH and LOOKUP statements depend on the indexes. But indexes can dramatically reduce the write performance (as much as

90% or even more). DO NOT use indexes in production environments unless you are fully aware of their influences on your service.

Users MUST rebuild indexes for pre-existing data. Otherwise, the pre-existing data cannot be indexed and therefore cannot be

returned in MATCH or LOOKUP statements. For more information, see REBUILD INDEX.

| {age: 42, name: "Tim"} |

+------------------------+

•

nebula> UPDATE EDGE "player101" -> "player100" OF follow SET degree = 96;

nebula> FETCH PROP ON follow "player101" -> "player100" YIELD properties(edge);

+------------------+

| properties(EDGE) |

+------------------+

| {degree: 96} |

+------------------+

•

nebula> INSERT VERTEX player(name,age) VALUES "player111":("David West", 38);

nebula> UPSERT VERTEX "player111" SET player.name = "David", player.age = $^.player.age + 11 \

 WHEN $^.player.name == "David West" AND $^.player.age > 20 \

 YIELD $^.player.name AS Name, $^.player.age AS Age;

+---------+-----+

| Name | Age |

+---------+-----+

| "David" | 49 |

+---------+-----+

•

DELETE VERTEX <vid1>[, <vid2>...]

•

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>]

[, <src_vid> -> <dst_vid>...]

•

nebula> DELETE VERTEX "player111", "team203";

•

nebula> DELETE EDGE follow "player101" -> "team204";

Must-read for using indexes

3.6.7 Delete vertices and edges

- 99/927 - 2022 Vesoft Inc.

nGQL syntax

Create an index:

Rebuild an index:

Define the index length when creating an index for a variable-length property. In UTF-8 encoding, a non-ascii character occupies 3

bytes. You should set an appropriate index length according to the variable-length property. For example, the index should be 30

bytes for 10 non-ascii characters. For more information, see CREATE INDEX

Examples of LOOKUP and MATCH (index-based)

Make sure there is an index for LOOKUP or MATCH to use. If there is not, create an index first.

Find the information of the vertex with the tag player and its value of the name property is Tony Parker .

This example creates the index player_index_1 on the name property.

This example rebuilds the index to make sure it takes effect on pre-existing data.

This example uses the LOOKUP statement to retrieve the vertex property.

This example uses the MATCH statement to retrieve the vertex property.

•

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name>

ON {<tag_name> | <edge_name>} ([<prop_name_list>]) [COMMENT = '<comment>'];

•

REBUILD {TAG | EDGE} INDEX <index_name>;

Note

nebula> CREATE TAG INDEX IF NOT EXISTS player_index_1 ON player(name(20));

nebula> REBUILD TAG INDEX player_index_1

+------------+

| New Job Id |

+------------+

| 31 |

+------------+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \

 YIELD properties(vertex).name AS name, properties(vertex).age AS age;

+---------------+-----+

| name | age |

+---------------+-----+

| "Tony Parker" | 36 |

+---------------+-----+

nebula> MATCH (v:player{name:"Tony Parker"}) RETURN v;

+---+

| v |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

+---+

Last update: March 13, 2023

3.6.8 About indexes

- 100/927 - 2022 Vesoft Inc.

3.7 nGQL cheatsheet

3.7.1 Functions

3.7 nGQL cheatsheet

- 101/927 - 2022 Vesoft Inc.

Math functions
•

3.7.1 Functions

- 102/927 - 2022 Vesoft Inc.

Function Description

double abs(double x) Returns the absolute value of the argument.

double floor(double x) Returns the largest integer value smaller than or equal to the argument. (Rounds down)

double ceil(double x) Returns the smallest integer greater than or equal to the argument. (Rounds up)

double round(double x) Returns the integer value nearest to the argument. Returns a number farther away from 0

if the argument is in the middle.

double sqrt(double x) Returns the square root of the argument.

double cbrt(double x) Returns the cubic root of the argument.

double hypot(double x,

double y)

Returns the hypotenuse of a right-angled triangle.

double pow(double x,

double y)

Returns the result of x
y
.

double exp(double x) Returns the result of e
x
.

double exp2(double x) Returns the result of 2
x
.

double log(double x) Returns the base-e logarithm of the argument.

double log2(double x) Returns the base-2 logarithm of the argument.

double log10(double x) Returns the base-10 logarithm of the argument.

double sin(double x) Returns the sine of the argument.

double asin(double x) Returns the inverse sine of the argument.

double cos(double x) Returns the cosine of the argument.

double acos(double x) Returns the inverse cosine of the argument.

double tan(double x) Returns the tangent of the argument.

double atan(double x) Returns the inverse tangent of the argument.

double rand() Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.

[0,1).

int rand32(int min, int max) Returns a random 32-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 32-bit integer.

int rand64(int min, int max) Returns a random 64-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 64-bit integer.

collect() Puts all the collected values into a list.

avg() Returns the average value of the argument.

count() Returns the number of records.

max() Returns the maximum value.

min() Returns the minimum value.

std() Returns the population standard deviation.

sum() Returns the sum value.

bit_and() Bitwise AND.

3.7.1 Functions

- 103/927 - 2022 Vesoft Inc.

Function Description

bit_or() Bitwise OR.

bit_xor() Bitwise XOR.

int size() Returns the number of elements in a list or a map.

int range(int start, int end,

int step)

Returns a list of integers from [start,end] in the specified steps. step is 1 by default.

int sign(double x) Returns the signum of the given number.

If the number is 0 , the system returns 0 .

If the number is negative, the system returns -1 .

If the number is positive, the system returns 1 .

double e() Returns the base of the natural logarithm, e (2.718281828459045).

double pi() Returns the mathematical constant pi (3.141592653589793).

double radians() Converts degrees to radians. radians(180) returns 3.141592653589793 .

3.7.1 Functions

- 104/927 - 2022 Vesoft Inc.

String functions

Data and time functions

•

Function Description

int strcasecmp(string a,

string b)

Compares string a and b without case sensitivity. When a = b, the return value is 0. When

a > b, the return value is greater than 0. When a < b, the return value is less than 0.

string lower(string a) Returns the argument in lowercase.

string toLower(string a) The same as lower() .

string upper(string a) Returns the argument in uppercase.

string toUpper(string a) The same as upper() .

int length(string a) Returns the length of the given string in bytes.

string trim(string a) Removes leading and trailing spaces.

string ltrim(string a) Removes leading spaces.

string rtrim(string a) Removes trailing spaces.

string left(string a, int count) Returns a substring consisting of count characters from the left side of string a. If string a

is shorter than count , the system returns string a.

string right(string a, int

count)

Returns a substring consisting of count characters from the right side of string a. If string

a is shorter than count , the system returns string a.

string lpad(string a, int size,

string letters)

Left-pads string a with string letters and returns a substring with the length of size .

string rpad(string a, int size,

string letters)

Right-pads string a with string letters and returns a substring with the length of size .

string substr(string a, int pos,

int count)

Returns a substring extracting count characters starting from the specified position pos of

string a.

string substring(string a, int

pos, int count)

The same as substr() .

string reverse(string) Returns a string in reverse order.

string replace(string a, string

b, string c)

Replaces string b in string a with string c.

list split(string a, string b) Splits string a at string b and returns a list of strings.

string toString() Takes in any data type and converts it into a string.

int hash() Takes in any data type and encodes it into a hash value.

•

Function Description

int now() Returns the current date and time of the system timezone.

timestamp timestamp() Returns the current date and time of the system timezone.

date date() Returns the current UTC date based on the current system.

time time() Returns the current UTC time based on the current system.

datetime datetime() Returns the current UTC date and time based on the current system.

3.7.1 Functions

- 105/927 - 2022 Vesoft Inc.

Schema functions

For nGQL statements

For statements compatible with openCypher

•

•

Function Description

id(vertex) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

map

properties(vertex)

Returns the properties of a vertex.

map properties(edge) Returns the properties of an edge.

string type(edge) Returns the edge type of an edge.

src(edge) Returns the source vertex ID of an edge. The data type of the result is the same as the vertex ID.

dst(edge) Returns the destination vertex ID of an edge. The data type of the result is the same as the vertex

ID.

int rank(edge) Returns the rank value of an edge.

vertex Returns the information of vertices, including VIDs, tags, properties, and values.

edge Returns the information of edges, including edge types, source vertices, destination vertices,

ranks, properties, and values.

vertices Returns the information of vertices in a subgraph. For more information, see GET SUBGRAPH。

edges Returns the information of edges in a subgraph. For more information, see GET SUBGRAPH。

path Returns the information of a path. For more information, see FIND PATH。

•

Function Description

id(<vertex>) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

list tags(<vertex>) Returns the Tag of a vertex, which serves the same purpose as labels().

list labels(<vertex>) Returns the Tag of a vertex, which serves the same purpose as tags(). This function is

used for compatibility with openCypher syntax.

map

properties(<vertex_or_edge>)

Returns the properties of a vertex or an edge.

string type(<edge>) Returns the edge type of an edge.

src(<edge>) Returns the source vertex ID of an edge. The data type of the result is the same as the

vertex ID.

dst(<edge>) Returns the destination vertex ID of an edge. The data type of the result is the same

as the vertex ID.

vertex startNode(<path>) Visits an edge or a path and returns its source vertex ID.

string endNode(<path>) Visits an edge or a path and returns its destination vertex ID.

int rank(<edge>) Returns the rank value of an edge.

3.7.1 Functions

- 106/927 - 2022 Vesoft Inc.

List functions

count() function

collect() function

reduce() function

hash() function

•

Function Description

keys(expr) Returns a list containing the string representations for all the property names of vertices,

edges, or maps.

labels(vertex) Returns the list containing all the tags of a vertex.

nodes(path) Returns the list containing all the vertices in a path.

range(start, end [,

step])

Returns the list containing all the fixed-length steps in [start,end] . step is 1 by default.

relationships(path) Returns the list containing all the relationships in a path.

reverse(list) Returns the list reversing the order of all elements in the original list.

tail(list) Returns all the elements of the original list, excluding the first one.

head(list) Returns the first element of a list.

last(list) Returns the last element of a list.

coalesce(list) Returns the first not null value in a list.

reduce() See reduce() function。

•

Function Description

count() Syntax: count({expr | *}) .

count() returns the number of rows (including NULL).

count(expr) returns the number of non-NULL values that meet the expression.

count() and size() are different.

•

Function Description

collect() The collect() function returns a list containing the values returned by an expression. Using this function

aggregates data by merging multiple records or values into a single list.

•

Function Syntax Description

reduce() reduce(<accumulator> = <initial>,

<variable> IN <list> | <expression>)

The reduce() function applies an expression to each element in a list

one by one, chains the result to the next iteration by taking it as the

initial value, and returns the final result.

•

Function Description

hash() The hash() function returns the hash value of the argument. The argument can be a number, a string, a list,

a boolean, null, or an expression that evaluates to a value of the preceding data types. The source code of

the hash() function (MurmurHash2), seed (0xc70f6907UL), and other parameters can be found in MurmurHash2.h .

3.7.1 Functions

- 107/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h

concat() function

concat_ws() function

Predicate functions

Predicate functions return true or false . They are most commonly used in WHERE clauses.

CASE expressions

The CASE expression uses conditions to filter the result of an nGQL query statement. It is usually used in the YIELD and RETURN

clauses. The CASE expression will traverse all the conditions. When the first condition is met, the CASE expression stops reading

the conditions and returns the result. If no conditions are met, it returns the result in the ELSE clause. If there is no ELSE clause

and no conditions are met, it returns NULL .

Syntax:

3.7.2 General queries statements

MATCH

•

Function Description

concat() The concat() function requires at least two or more strings. All the parameters are concatenated into one

string.

Syntax: concat(string1,string2,...)

•

Function Description

concat_ws() The concat_ws() function connects two or more strings with a predefined separator.

•

<predicate>(<variable> IN <list> WHERE <condition>)

Function Description

exists() Returns true if the specified property exists in the vertex, edge or map. Otherwise, returns false .

any() Returns true if the specified predicate holds for at least one element in the given list. Otherwise, returns

false .

all() Returns true if the specified predicate holds for all elements in the given list. Otherwise, returns false .

none() Returns true if the specified predicate holds for no element in the given list. Otherwise, returns false .

single() Returns true if the specified predicate holds for exactly one of the elements in the given list. Otherwise,

returns false .

•

CASE <comparer>

WHEN <value> THEN <result>

[WHEN ...]

[ELSE <default>]

END

Parameter Description

comparer A value or a valid expression that outputs a value. This value is used to compare with the value .

value It will be compared with the comparer . If the value matches the comparer , then this condition is met.

result The result is returned by the CASE expression if the value matches the comparer .

default The default is returned by the CASE expression if no conditions are met.

•

3.7.2 General queries statements

- 108/927 - 2022 Vesoft Inc.

MATCH <pattern> [<clause_1>] RETURN <output> [<clause_2>];

3.7.2 General queries statements

- 109/927 - 2022 Vesoft Inc.

Pattern Example Description

Match vertices (v) You can use a user-defined variable in a pair of parentheses to

represent a vertex in a pattern. For example: (v) .

Match tags MATCH (v:player) RETURN v You can specify a tag with :<tag_name> after the vertex in a

pattern.

Match multiple

tags

MATCH (v:player:team) RETURN v

LIMIT 10

To match vertices with multiple tags, use colons (:).

Match vertex

properties

MATCH (v:player{name:"Tim Duncan"})

RETURN v

You can specify a vertex property with {<prop_name>: <prop_value>}

after the tag in a pattern.

Match a VID. MATCH (v) WHERE id(v) ==

'player101' RETURN v

You can use the VID to match a vertex. The id() function can

retrieve the VID of a vertex.

Match multiple

VIDs.

MATCH (v:player { name: 'Tim

Duncan' })--(v2) WHERE id(v2) IN

["player101", "player102"] RETURN

v2

To match multiple VIDs, use WHERE id(v) IN [vid_list] .

Match connected

vertices

MATCH (v:player{name:"Tim

Duncan"})--(v2) RETURN

v2.player.name AS Name

You can use the -- symbol to represent edges of both

directions and match vertices connected by these edges. You

can add a > or < to the -- symbol to specify the direction of an

edge.

Match paths MATCH p=(v:player{name:"Tim

Duncan"})-->(v2) RETURN p

Connected vertices and edges form a path. You can use a user-

defined variable to name a path as follows.

Match edges MATCH (v:player{name:"Tim

Duncan"})-[e]-(v2) RETURN e

MATCH ()<-[e]-() RETURN e LIMIT 3

Besides using -- , --> , or <-- to indicate a nameless edge, you

can use a user-defined variable in a pair of square brackets to

represent a named edge. For example: -[e]- .

Match an edge

type

MATCH ()-[e:follow]-() RETURN e

LIMIT 5

Just like vertices, you can specify an edge type with :<edge_type>

in a pattern. For example: -[e:follow]- .

Match edge type

properties

MATCH (v:player{name:"Tim

Duncan"})-[e:follow{degree:95}]-

>(v2) RETURN e

You can specify edge type properties with {<prop_name>:

<prop_value>} in a pattern. For example: [e:follow{likeness:95}] .

Match multiple

edge types

MATCH (v:player{name:"Tim

Duncan"})-[e:follow | :serve]->(v2)

RETURN e

The | symbol can help matching multiple edge types. For

example: [e:follow|:serve] . The English colon (:) before the first

edge type cannot be omitted, but the English colon before the

subsequent edge type can be omitted, such as [e:follow|serve] .

Match multiple

edges

MATCH (v:player{name:"Tim

Duncan"})-[]->(v2)<-[e:serve]-(v3)

RETURN v2, v3

You can extend a pattern to match multiple edges in a path.

Match fixed-length

paths

MATCH p=(v:player{name:"Tim

Duncan"})-[e:follow*2]->(v2) RETURN

DISTINCT v2 AS Friends

You can use the :<edge_type>*<hop> pattern to match a fixed-

length path. hop must be a non-negative integer. The data type

of e is the list.

Match variable-

length paths

MATCH p=(v:player{name:"Tim

Duncan"})-[e:follow*1..3]->(v2)

RETURN v2 AS Friends

minHop : Optional. It represents the minimum length of the path.

minHop : must be a non-negative integer. The default value is 1.

minHop and maxHop are optional and the default value is 1 and

infinity respectively. The data type of e is the list.

Match variable-

length paths with

multiple edge

types

MATCH p=(v:player{name:"Tim

Duncan"})-[e:follow | serve*2]-

>(v2) RETURN DISTINCT v2

You can specify multiple edge types in a fixed-length or

variable-length pattern. In this case, hop , minHop , and maxHop

take effect on all edge types. The data type of e is the list.

MATCH (v:player{name:"Tim Duncan"})

RETURN v

3.7.2 General queries statements

- 110/927 - 2022 Vesoft Inc.

OPTIONAL MATCH

Pattern Example Description

Retrieve vertex or

edge information

MATCH (v:player{name:"Tim

Duncan"})-[e]->(v2) RETURN e

Use RETURN {<vertex_name> | <edge_name>} to retrieve all the

information of a vertex or an edge.

Retrieve VIDs MATCH (v:player{name:"Tim Duncan"})

RETURN id(v)

Use the id() function to retrieve VIDs.

Retrieve tags MATCH (v:player{name:"Tim Duncan"})

RETURN labels(v)

Use the labels() function to retrieve the list of tags on a vertex.

To retrieve the nth element in the labels(v) list, use labels(v)

[n-1] .

Retrieve a single

property on a

vertex or an edge

MATCH (v:player{name:"Tim Duncan"})

RETURN v.player.age

Use RETURN {<vertex_name> | <edge_name>}.<property> to retrieve a

single property.

Use AS to specify an alias for a property.

Retrieve all

properties on a

vertex or an edge

MATCH p=(v:player{name:"Tim

Duncan"})-[]->(v2) RETURN

properties(v2)

Use the properties() function to retrieve all properties on a

vertex or an edge.

Retrieve edge

types

MATCH p=(v:player{name:"Tim

Duncan"})-[e]->() RETURN DISTINCT

type(e)

Use the type() function to retrieve the matched edge types.

Retrieve paths MATCH p=(v:player{name:"Tim

Duncan"})-[*3]->() RETURN p

Use RETURN <path_name> to retrieve all the information of the

matched paths.

Retrieve vertices

in a path

MATCH p=(v:player{name:"Tim

Duncan"})-[]->(v2) RETURN nodes(p)

Use the nodes() function to retrieve all vertices in a path.

Retrieve edges in

a path

MATCH p=(v:player{name:"Tim

Duncan"})-[]->(v2) RETURN

relationships(p)

Use the relationships() function to retrieve all edges in a path.

Retrieve path

length

MATCH p=(v:player{name:"Tim

Duncan"})-[*..2]->(v2) RETURN p AS

Paths, length(p) AS Length

Use the length() function to retrieve the length of a path.

•

Pattern Example Description

Matches patterns against

your graph database, just

like MATCH does.

MATCH (m)-[]->(n) WHERE id(m)=="player100" OPTIONAL

MATCH (n)-[]->(l) WHERE id(n)=="player125" RETURN

id(m),id(n),id(l)

If no matches are found, OPTIONAL MATCH

will use a null for missing parts of the

pattern.

3.7.2 General queries statements

- 111/927 - 2022 Vesoft Inc.

LOOKUP

GO

•

LOOKUP ON {<vertex_tag> | <edge_type>}

[WHERE <expression> [AND <expression> ...]]

YIELD <return_list> [AS <alias>]

Pattern Example Description

Retrieve vertices LOOKUP ON player WHERE player.name == "Tony Parker"

YIELD player.name AS name, player.age AS age

The following example returns vertices whose

name is Tony Parker and the tag is player .

Retrieve edges LOOKUP ON follow WHERE follow.degree == 90 YIELD

follow.degree

Returns edges whose degree is 90 and the edge

type is follow .

List vertices with a

tag

LOOKUP ON player YIELD properties(vertex),id(vertex) Shows how to retrieve the VID of all vertices

tagged with player .

List edges with an

edge types

LOOKUP ON like YIELD edge AS e Shows how to retrieve the source Vertex IDs,

destination vertex IDs, and ranks of all edges of

the like edge type.

Count the numbers

of vertices or

edges

LOOKUP ON player YIELD id(vertex)| YIELD COUNT(*) AS

Player_Count

Shows how to count the number of vertices

tagged with player .

Count the numbers

of edges

LOOKUP ON like YIELD id(vertex)| YIELD COUNT(*) AS

Like_Count

Shows how to count the number of edges of the

like edge type.

•

GO [[<M> TO] <N> STEPS] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

YIELD [DISTINCT] <return_list>

[{SAMPLE <sample_list> | LIMIT <limit_list>}]

[| GROUP BY {col_name | expr | position} YIELD <col_name>]

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset_value>,] <number_rows>]

Example Description

GO FROM "player102" OVER serve YIELD dst(edge) Returns the teams that player 102 serves.

GO 2 STEPS FROM "player102" OVER follow YIELD dst(edge) Returns the friends of player 102 with 2 hops.

GO FROM "player100", "player102" OVER serve WHERE properties(edge).start_year > 1995

YIELD DISTINCT properties($$).name AS team_name, properties(edge).start_year AS

start_year, properties($^).name AS player_name

Adds a filter for the traversal.

GO FROM "player100" OVER follow, serve YIELD properties(edge).degree,

properties(edge).start_year

The following example traverses along with

multiple edge types. If there is no value for a

property, the output is UNKNOWN_PROP .

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS destination The following example returns the neighbor

vertices in the incoming direction of player 100.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id | GO FROM $-.id OVER

serve WHERE properties($^).age > 20 YIELD properties($^).name AS FriendOf,

properties($$).name AS Team

The following example retrieves the friends of

player 100 and the teams that they serve.

GO FROM "player102" OVER follow YIELD dst(edge) AS both The following example returns all the neighbor

vertices of player 102.

GO 2 STEPS FROM "player100" OVER follow YIELD src(edge) AS src, dst(edge) AS dst,

properties($$).age AS age | GROUP BY $-.dst YIELD $-.dst AS dst, collect_set($-.src)

AS src, collect($-.age) AS age

The following example the outputs according to

age.

3.7.2 General queries statements

- 112/927 - 2022 Vesoft Inc.

FETCH

Fetch vertex properties

Fetch edge properties

•

•

FETCH PROP ON {<tag_name>[, tag_name ...] | *}

<vid> [, vid ...]

YIELD <return_list> [AS <alias>]

Example Description

FETCH PROP ON player "player100" YIELD

properties(vertex)

Specify a tag in the FETCH statement to fetch the vertex properties by that

tag.

FETCH PROP ON player "player100" YIELD player.name AS

name

Use a YIELD clause to specify the properties to be returned.

FETCH PROP ON player "player101", "player102",

"player103" YIELD properties(vertex)

Specify multiple VIDs (vertex IDs) to fetch properties of multiple

vertices. Separate the VIDs with commas.

FETCH PROP ON player, t1 "player100", "player103" YIELD

properties(vertex)

Specify multiple tags in the FETCH statement to fetch the vertex

properties by the tags. Separate the tags with commas.

FETCH PROP ON * "player100", "player106", "team200"

YIELD properties(vertex)

Set an asterisk symbol * to fetch properties by all tags in the current

graph space.

•

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]

YIELD <output>;

Example Description

FETCH PROP ON serve "player100" -> "team204" YIELD

properties(edge)

The following statement fetches all the properties of the serve

edge that connects vertex "player100" and vertex "team204" .

FETCH PROP ON serve "player100" -> "team204" YIELD

serve.start_year

Use a YIELD clause to fetch specific properties of an edge.

FETCH PROP ON serve "player100" -> "team204", "player133" ->

"team202" YIELD properties(edge)

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to

fetch properties of multiple edges. Separate the edge patterns

with commas.

FETCH PROP ON serve "player100" -> "team204"@1 YIELD

properties(edge)

To fetch on an edge whose rank is not 0, set its rank in the

FETCH statement.

GO FROM "player101" OVER follow YIELD follow._src AS s,

follow._dst AS d | FETCH PROP ON follow $-.s -> $-.d YIELD

follow.degree

The following statement returns the degree values of the follow

edges that start from vertex "player101" .

$var = GO FROM "player101" OVER follow YIELD follow._src AS s,

follow._dst AS d; FETCH PROP ON follow $var.s -> $var.d YIELD

follow.degree

You can use user-defined variables to construct similar queries.

3.7.2 General queries statements

- 113/927 - 2022 Vesoft Inc.

SHOW
•

Statement Syntax Example Description

SHOW CHARSET SHOW CHARSET SHOW CHARSET Shows the available character sets.

SHOW

COLLATION

SHOW COLLATION SHOW COLLATION Shows the collations supported by

NebulaGraph.

SHOW CREATE

SPACE

SHOW CREATE SPACE

<space_name>

SHOW CREATE SPACE

basketballplayer

Shows the creating statement of the specified

graph space.

SHOW CREATE

TAG/EDGE

SHOW CREATE {TAG

<tag_name> | EDGE

<edge_name>}

SHOW CREATE TAG

player

Shows the basic information of the specified

tag.

SHOW HOSTS SHOW HOSTS [GRAPH |

STORAGE | META]

SHOW HOSTS

SHOW HOSTS GRAPH

Shows the host and version information of

Graph Service, Storage Service, and Meta

Service.

SHOW INDEX

STATUS

SHOW {TAG | EDGE} INDEX

STATUS

SHOW TAG INDEX STATUS Shows the status of jobs that rebuild native

indexes, which helps check whether a native

index is successfully rebuilt or not.

SHOW INDEXES SHOW {TAG | EDGE}

INDEXES

SHOW TAG INDEXES Shows the names of existing native indexes.

SHOW PARTS SHOW PARTS [<part_id>] SHOW PARTS Shows the information of a specified partition or

all partitions in a graph space.

SHOW ROLES SHOW ROLES IN

<space_name>

SHOW ROLES in

basketballplayer

Shows the roles that are assigned to a user

account.

SHOW

SNAPSHOTS

SHOW SNAPSHOTS SHOW SNAPSHOTS Shows the information of all the snapshots.

SHOW SPACES SHOW SPACES SHOW SPACES Shows existing graph spaces in NebulaGraph.

SHOW STATS SHOW STATS SHOW STATS Shows the statistics of the graph space

collected by the latest STATS job.

SHOW TAGS/

EDGES

SHOW TAGS | EDGES SHOW TAGS , SHOW EDGES Shows all the tags in the current graph space.

SHOW USERS SHOW USERS SHOW USERS Shows the user information.

SHOW

SESSIONS

SHOW SESSIONS SHOW SESSIONS Shows the information of all the sessions.

SHOW

SESSIONS

SHOW SESSION

<Session_Id>

SHOW SESSION

1623304491050858

Shows a specified session with its ID.

SHOW QUERIES SHOW [ALL] QUERIES SHOW QUERIES Shows the information of working queries in the

current session.

SHOW META

LEADER

SHOW META LEADER SHOW META LEADER Shows the information of the leader in the

current Meta cluster.

3.7.2 General queries statements

- 114/927 - 2022 Vesoft Inc.

3.7.3 Clauses and options

Clause Syntax Example Description

GROUP

BY

GROUP BY <var> YIELD <var>,

<aggregation_function(var)>

GO FROM "player100" OVER follow

BIDIRECT YIELD $$.player.name as Name |

GROUP BY $-.Name YIELD $-.Name as

Player, count(*) AS Name_Count

Finds all the vertices

connected directly to vertex

"player100" , groups the result

set by player names, and

counts how many times the

name shows up in the result

set.

LIMIT YIELD <var> [| LIMIT [<offset_value>,]

<number_rows>]

GO FROM "player100" OVER follow

REVERSELY YIELD $$.player.name AS

Friend, $$.player.age AS Age | ORDER BY

$-.Age, $-.Friend | LIMIT 1, 3

Returns the 3 rows of data

starting from the second row

of the sorted output.

SKIP RETURN <var> [SKIP <offset>] [LIMIT

<number_rows>]

MATCH (v:player{name:"Tim Duncan"}) -->

(v2) RETURN v2.player.name AS Name,

v2.player.age AS Age ORDER BY Age DESC

SKIP 1

SKIP can be used alone to set

the offset and return the data

after the specified position.

SAMPLE <go_statement> SAMPLE <sample_list>; GO 3 STEPS FROM "player100" OVER *

YIELD properties($$).name AS NAME,

properties($$).age AS Age SAMPLE

[1,2,3];

Takes samples evenly in the

result set and returns the

specified amount of data.

ORDER

BY

<YIELD clause> ORDER BY <expression>

[ASC | DESC] [, <expression> [ASC |

DESC] ...]

FETCH PROP ON player "player100",

"player101", "player102", "player103"

YIELD player.age AS age, player.name AS

name | ORDER BY $-.age ASC, $-.name

DESC

The ORDER BY clause specifies

the order of the rows in the

output.

RETURN RETURN {<vertex_name>|<edge_name>|

<vertex_name>.<property>|

<edge_name>.<property>|...}

MATCH (v:player) RETURN v.player.name,

v.player.age LIMIT 3

Returns the first three rows

with values of the vertex

properties name and age .

TTL CREATE TAG <tag_name>(<property_name_1>

<property_value_1>, <property_name_2>

<property_value_2>, ...) ttl_duration=

<value_int>, ttl_col = <property_name>

CREATE TAG t2(a int, b int, c string)

ttl_duration= 100, ttl_col = "a"

Create a tag and set the TTL

options.

WHERE WHERE {<vertex|

edge_alias>.<property_name> {>|==|<|...}

<value>...}

MATCH (v:player) WHERE v.player.name ==

"Tim Duncan" XOR (v.player.age < 30 AND

v.player.name == "Yao Ming") OR NOT

(v.player.name == "Yao Ming" OR

v.player.name == "Tim Duncan") RETURN

v.player.name, v.player.age

The WHERE clause filters the

output by conditions. The

WHERE clause usually works in

Native nGQL GO and LOOKUP

statements, and OpenCypher

MATCH and WITH statements.

YIELD YIELD [DISTINCT] <col> [AS <alias>] [,

<col> [AS <alias>] ...] [WHERE

<conditions>];

GO FROM "player100" OVER follow YIELD

dst(edge) AS ID | FETCH PROP ON player

$-.ID YIELD player.age AS Age | YIELD

AVG($-.Age) as Avg_age, count(*)as

Num_friends

Finds the players that

"player100" follows and

calculates their average age.

WITH MATCH $expressions WITH {nodes()|

labels()|...}

MATCH p=(v:player{name:"Tim Duncan"})--

() WITH nodes(p) AS n UNWIND n AS n1

RETURN DISTINCT n1

The WITH clause can retrieve

the output from a query part,

process it, and pass it to the

next query part as the input.

UNWIND UNWIND <list> AS <alias> <RETURN

clause>

UNWIND [1,2,3] AS n RETURN n Splits a list into rows.

3.7.3 Clauses and options

- 115/927 - 2022 Vesoft Inc.

3.7.4 Space statements

Statement Syntax Example Description

CREATE

SPACE

CREATE SPACE [IF NOT EXISTS]

<graph_space_name> ([partition_num =

<partition_number>,] [replica_factor =

<replica_number>,] vid_type =

{FIXED_STRING(<N>) | INT[64]}) [COMMENT =

'<comment>']

CREATE SPACE my_space_1

(vid_type=FIXED_STRING(30))

Creates a graph space

with

CREATE

SPACE

CREATE SPACE <new_graph_space_name> AS

<old_graph_space_name>

CREATE SPACE my_space_4 as my_space_3 Clone a graph. space.

USE USE <graph_space_name> USE space1 Specifies a graph

space as the current

working graph space

for subsequent

queries.

SHOW

SPACES

SHOW SPACES SHOW SPACES Lists all the graph

spaces in the

NebulaGraph

examples.

DESCRIBE

SPACE

DESC[RIBE] SPACE <graph_space_name> DESCRIBE SPACE basketballplayer Returns the

information about the

specified graph space.

息。

CLEAR

SPACE

CLEAR SPACE [IF EXISTS] <graph_space_name> Deletes the vertices and edges in a

graph space, but does not delete

the graph space itself and the

schema information.

DROP

SPACE

DROP SPACE [IF EXISTS] <graph_space_name> DROP SPACE basketballplayer Deletes everything in

the specified graph

space.

3.7.4 Space statements

- 116/927 - 2022 Vesoft Inc.

3.7.5 TAG statements

Statement Syntax Example Description

CREATE

TAG

CREATE TAG [IF NOT EXISTS] <tag_name> (<prop_name>

<data_type> [NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT '<comment>'] [{,

<prop_name> <data_type> [NULL | NOT NULL] [DEFAULT

<default_value>] [COMMENT '<comment>']} ...])

[TTL_DURATION = <ttl_duration>] [TTL_COL =

<prop_name>] [COMMENT = '<comment>']

CREATE TAG woman(name

string, age int, married

bool, salary double,

create_time timestamp)

TTL_DURATION = 100,

TTL_COL = "create_time"

Creates a tag with the given

name in a graph space.

DROP TAG DROP TAG [IF EXISTS] <tag_name> DROP TAG test; Drops a tag with the given

name in the current working

graph space.

ALTER TAG ALTER TAG <tag_name> <alter_definition> [,

alter_definition] ...] [ttl_definition [,

ttl_definition] ...] [COMMENT = '<comment>']

ALTER TAG t1 ADD (p3

int, p4 string)

Alters the structure of a tag

with the given name in a graph

space. You can add or drop

properties, and change the data

type of an existing property.

You can also set a TTL（Time-

To-Live）on a property, or

change its TTL duration.

SHOW

TAGS

SHOW TAGS SHOW TAGS Shows the name of all tags in

the current graph space.

DESCRIBE

TAG

DESC[RIBE] TAG <tag_name> DESCRIBE TAG player Returns the information about

a tag with the given name in a

graph space, such as field

names, data type, and so on.

DELETE

TAG

DELETE TAG <tag_name_list> FROM <VID> DELETE TAG test1 FROM

"test"

Deletes a tag with the given

name on a specified vertex.

3.7.5 TAG statements

- 117/927 - 2022 Vesoft Inc.

3.7.6 Edge type statements

3.7.7 Vertex statements

Statement Syntax Example Description

CREATE

EDGE

CREATE EDGE [IF NOT EXISTS] <edge_type_name> (<prop_name>

<data_type> [NULL | NOT NULL] [DEFAULT <default_value>]

[COMMENT '<comment>'] [{, <prop_name> <data_type> [NULL | NOT

NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...])

[TTL_DURATION = <ttl_duration>] [TTL_COL = <prop_name>]

[COMMENT = '<comment>']

CREATE EDGE e1(p1

string, p2 int, p3

timestamp)

TTL_DURATION = 100,

TTL_COL = "p2"

Creates an edge type

with the given name in a

graph space.type。

DROP

EDGE

DROP EDGE [IF EXISTS] <edge_type_name> DROP EDGE e1 Drops an edge type with

the given name in a

graph space.

ALTER

EDGE

ALTER EDGE <edge_type_name> <alter_definition> [,

alter_definition] ...] [ttl_definition [,

ttl_definition] ...] [COMMENT = '<comment>']

ALTER EDGE e1 ADD (p3

int, p4 string)

Alters the structure of an

edge type with the given

name in a graph space.

SHOW

EDGES

SHOW EDGES SHOW EDGES Shows all edge types in

the current graph space.

DESCRIBE

EDGE

DESC[RIBE] EDGE <edge_type_name> DESCRIBE EDGE follow Returns the information

about an edge type with

the given name in a

graph space, such as field

names, data type, and so

on.

Statement Syntax Example Description

INSERT

VERTEX

INSERT VERTEX [IF NOT EXISTS]

[tag_props, [tag_props] ...]

VALUES <vid>: ([prop_value_list])

INSERT VERTEX t2 (name,

age) VALUES "13":("n3",

12), "14":("n4", 8)

Inserts one or more vertices into a graph

space in NebulaGraph.

DELETE

VERTEX

DELETE VERTEX <vid> [, <vid> ...] DELETE VERTEX "team1" Deletes vertices and the related incoming and

outgoing edges of the vertices.

UPDATE

VERTEX

UPDATE VERTEX ON <tag_name> <vid>

SET <update_prop> [WHEN

<condition>] [YIELD <output>]

UPDATE VERTEX ON player

"player101" SET age =

age + 2

Updates properties on tags of a vertex.

UPSERT

VERTEX

UPSERT VERTEX ON <tag> <vid> SET

<update_prop> [WHEN <condition>]

[YIELD <output>]

UPSERT VERTEX ON player

"player667" SET age =

31

The UPSERT statement is a combination of

UPDATE and INSERT . You can use UPSERT VERTEX to

update the properties of a vertex if it exists or

insert a new vertex if it does not exist.

3.7.6 Edge type statements

- 118/927 - 2022 Vesoft Inc.

3.7.8 Edge statements

Statement Syntax Example Description

INSERT

EDGE

INSERT EDGE [IF NOT EXISTS] <edge_type>

(<prop_name_list>) VALUES <src_vid> ->

<dst_vid>[@<rank>] : (<prop_value_list>) [,

<src_vid> -> <dst_vid>[@<rank>] :

(<prop_value_list>), ...]

INSERT EDGE e2 (name,

age) VALUES "11"-

>"13":("n1", 1)

Inserts an edge or multiple edges

into a graph space from a source

vertex (given by src_vid) to a

destination vertex (given by

dst_vid) with a specific rank in

NebulaGraph.

DELETE

EDGE

DELETE EDGE <edge_type> <src_vid> ->

<dst_vid>[@<rank>] [, <src_vid> ->

<dst_vid>[@<rank>] ...]

DELETE EDGE serve

"player100" ->

"team204"@0

Deletes one edge or multiple edges

at a time.

UPDATE

EDGE

UPDATE EDGE ON <edge_type> <src_vid> -> <dst_vid>

[@<rank>] SET <update_prop> [WHEN <condition>]

[YIELD <output>]

UPDATE EDGE ON serve

"player100" ->

"team204"@0 SET

start_year =

start_year + 1

Updates properties on an edge.

UPSERT

EDGE

UPSERT EDGE ON <edge_type> <src_vid> -> <dst_vid>

[@rank] SET <update_prop> [WHEN <condition>]

[YIELD <properties>]

UPSERT EDGE on serve

"player666" ->

"team200"@0 SET

end_year = 2021

The UPSERT statement is a

combination of UPDATE and INSERT .

You can use UPSERT EDGE to update

the properties of an edge if it exists

or insert a new edge if it does not

exist.

3.7.8 Edge statements

- 119/927 - 2022 Vesoft Inc.

3.7.9 Index

Native index

You can use native indexes together with LOOKUP and MATCH statements.

•

Statement Syntax Example Description

CREATE

INDEX

CREATE {TAG | EDGE} INDEX [IF NOT

EXISTS] <index_name> ON {<tag_name>

| <edge_name>} ([<prop_name_list>])

[COMMENT = '<comment>']

CREATE TAG INDEX

player_index on

player()

Add native indexes for the existing tags,

edge types, or properties.

SHOW

CREATE

INDEX

SHOW CREATE {TAG | EDGE} INDEX

<index_name>

show create tag index

index_2

Shows the statement used when creating a

tag or an edge type. It contains detailed

information about the index, such as its

associated properties.

SHOW

INDEXES

SHOW {TAG | EDGE} INDEXES SHOW TAG INDEXES Shows the defined tag or edge type

indexes names in the current graph space.

DESCRIBE

INDEX

DESCRIBE {TAG | EDGE} INDEX

<index_name>

DESCRIBE TAG INDEX

player_index_0

Gets the information about the index with

a given name, including the property name

(Field) and the property type (Type) of the

index.

REBUILD

INDEX

REBUILD {TAG | EDGE} INDEX

[<index_name_list>]

REBUILD TAG INDEX

single_person_index

Rebuilds the created tag or edge type

index. If data is updated or inserted before

the creation of the index, you must rebuild

the indexes manually to make sure that

the indexes contain the previously added

data.

SHOW

INDEX

STATUS

SHOW {TAG | EDGE} INDEX STATUS SHOW TAG INDEX STATUS Returns the name of the created tag or

edge type index and its status.

DROP

INDEX

DROP {TAG | EDGE} INDEX [IF EXISTS]

<index_name>

DROP TAG INDEX

player_index_0

Removes an existing index from the

current graph space.

3.7.9 Index

- 120/927 - 2022 Vesoft Inc.

Full-text index

3.7.10 Subgraph and path statements

3.7.11 Query tuning statements

•

Syntax Example Description

SIGN IN TEXT SERVICE [(<elastic_ip:port>

[,<username>, <password>]),

(<elastic_ip:port>), ...]

SIGN IN TEXT SERVICE

(127.0.0.1:9200)

The full-text indexes is implemented based on

Elasticsearch. After deploying an Elasticsearch

cluster, you can use the SIGN IN statement to log

in to the Elasticsearch client.

SHOW TEXT SEARCH CLIENTS SHOW TEXT SEARCH CLIENTS Shows text search clients.

SIGN OUT TEXT SERVICE SIGN OUT TEXT SERVICE Signs out to the text search clients.

CREATE FULLTEXT {TAG | EDGE} INDEX

<index_name> ON {<tag_name> |

<edge_name>} ([<prop_name_list>])

CREATE FULLTEXT TAG INDEX

nebula_index_1 ON player(name)

Creates full-text indexes.

SHOW FULLTEXT INDEXES SHOW FULLTEXT INDEXES Show full-text indexes.

REBUILD FULLTEXT INDEX REBUILD FULLTEXT INDEX Rebuild full-text indexes.

DROP FULLTEXT INDEX <index_name> DROP FULLTEXT INDEX

nebula_index_1

Drop full-text indexes.

LOOKUP ON {<tag> | <edge_type>} WHERE

<expression> [YIELD <return_list>]

LOOKUP ON player WHERE

FUZZY(player.name, "Tim Dunncan",

AUTO, OR) YIELD player.name

Use query options.

Type Syntax Example Description

GET

SUBGRAPH

GET SUBGRAPH [WITH PROP] [<step_count>

STEPS] FROM {<vid>, <vid>...} [{IN | OUT |

BOTH} <edge_type>, <edge_type>...] YIELD

[VERTICES AS <vertex_alias>] [,EDGES AS

<edge_alias>]

GET SUBGRAPH 1 STEPS

FROM "player100" YIELD

VERTICES AS nodes,

EDGES AS relationships

Retrieves information of vertices and

edges reachable from the source

vertices of the specified edge types

and returns information of the

subgraph.

FIND PATH FIND { SHORTEST | ALL | NOLOOP } PATH [WITH

PROP] FROM <vertex_id_list> TO

<vertex_id_list> OVER <edge_type_list>

[REVERSELY | BIDIRECT] [<WHERE clause>]

[UPTO <N> STEPS] YIELD path as <alias> [|

ORDER BY $-.path] [| LIMIT <M>]

FIND SHORTEST PATH

FROM "player102" TO

"team204" OVER * YIELD

path as p

Finds the paths between the selected

source vertices and destination

vertices. A returned path is like

(<vertex_id>)-[:<edge_type_name>@<rank>]-

>(<vertex_id) .

Type Syntax Example Description

EXPLAIN EXPLAIN [format="row" | "dot"]

<your_nGQL_statement>

EXPLAIN format="row"

SHOW TAGS

EXPLAIN format="dot"

SHOW TAGS

Helps output the execution plan of an nGQL

statement without executing the statement.

PROFILE PROFILE [format="row" | "dot"]

<your_nGQL_statement>

PROFILE format="row"

SHOW TAGS

EXPLAIN format="dot"

SHOW TAGS

Executes the statement, then outputs the

execution plan as well as the execution profile.

3.7.10 Subgraph and path statements

- 121/927 - 2022 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch

3.7.12 Operation and maintenance statements

BALANCE

Job statements

Kill queries

•

Syntax Description

BALANCE LEADER Starts a job to balance the distribution of storage leaders in the current graph space. It returns the job

ID.

•

Syntax Description

SUBMIT JOB

COMPACT

Triggers the long-term RocksDB compact operation.

SUBMIT JOB

FLUSH

Writes the RocksDB memfile in the memory to the hard disk.

SUBMIT JOB

STATS

Starts a job that makes the statistics of the current graph space. Once this job succeeds, you can use the

SHOW STATS statement to list the statistics.

SHOW JOB

<job_id>

Shows the information about a specific job and all its tasks in the current graph space. The Meta Service

parses a SUBMIT JOB request into multiple tasks and assigns them to the nebula-storaged processes.

SHOW JOBS Lists all the unexpired jobs in the current graph space.

STOP JOB Stops jobs that are not finished in the current graph space.

RECOVER JOB Re-executes the failed jobs in the current graph space and returns the number of recovered jobs.

•

Syntax Example Description

KILL QUERY (session=<session_id>,

plan=<plan_id>)

KILL

QUERY(SESSION=1625553545984255,PLAN=163)

Terminates the query being executed, and is

often used to terminate slow queries.

Last update: March 13, 2023

3.7.12 Operation and maintenance statements

- 122/927 - 2022 Vesoft Inc.

4. nGQL guide

4.1 nGQL overview

4.1.1 NebulaGraph Query Language (nGQL)

This topic gives an introduction to the query language of NebulaGraph, nGQL.

What is nGQL

nGQL is a declarative graph query language for NebulaGraph. It allows expressive and efficient graph patterns. nGQL is

designed for both developers and operations professionals. nGQL is an SQL-like query language, so it's easy to learn.

nGQL is a project in progress. New features and optimizations are done steadily. There can be differences between syntax and

implementation. Submit an issue to inform the NebulaGraph team if you find a new issue of this type. NebulaGraph 3.0 or later

releases will support openCypher 9.

What can nGQL do

Supports graph traversals

Supports pattern match

Supports aggregation

Supports graph mutation

Supports access control

Supports composite queries

Supports index

Supports most openCypher 9 graph query syntax (but mutations and controls syntax are not supported)

Example data Basketballplayer

Users can download the example data Basketballplayer in NebulaGraph. After downloading the example data, you can import it

to NebulaGraph by using the -f option in NebulaGraph Console.

Ensure that you have executed the ADD HOSTS command to add the Storage service to your NebulaGraph cluster before importing the

example data. For more information, see Manage Storage hosts.

Placeholder identifiers and values

Refer to the following standards in nGQL:

(Draft) ISO/IEC JTC1 N14279 SC 32 - Database_Languages - GQL

(Draft) ISO/IEC JTC1 SC32 N3228 - SQL_Property_Graph_Queries - SQLPGQ

OpenCypher 9

In template code, any token that is not a keyword, a literal value, or punctuation is a placeholder identifier or a placeholder

value.

•

•

•

•

•

•

•

•

Note

•

•

•

4. nGQL guide

- 123/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues
https://www.opencypher.org/resources
https://docs.nebula-graph.io/2.0/basketballplayer-2.X.ngql

For details of the symbols in nGQL syntax, see the following table:

For example, create vertices in nGQL syntax:

Example statement:

About openCypher compatibility

NATIVE NGQL AND OPENCYPHER

Native nGQL is the part of a graph query language designed and implemented by NebulaGraph. OpenCypher is a graph query

language maintained by openCypher Implementers Group.

The latest release is openCypher 9. The compatible parts of openCypher in nGQL are called openCypher compatible sentences

(short as openCypher).

nGQL = native nGQL + openCypher compatible sentences

Do not put together native nGQL and openCypher compatible sentences in one composite statement because this behavior is undefined.

IS NGQL COMPATIBLE WITH OPENCYPHER 9 COMPLETELY?

NO.

Token Meaning

< > name of a syntactic element

: formula that defines an element

[] optional elements

{ } explicitly specified elements

| complete alternative elements

... may be repeated any number of times

INSERT VERTEX [IF NOT EXISTS] [tag_props, [tag_props] ...]

VALUES <vid>: ([prop_value_list])

tag_props:

 tag_name ([prop_name_list])

prop_name_list:

 [prop_name [, prop_name] ...]

prop_value_list:

 [prop_value [, prop_value] ...]

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

Note

Undefined behavior

4.1.1 NebulaGraph Query Language (nGQL)

- 124/927 - 2022 Vesoft Inc.

nGQL is designed to be compatible with part of DQL (match, optional match, with, etc.).

It is not planned to be compatible with any DDL, DML, or DCL.

It is not planned to be compatible with the Bolt Protocol.

It is not planned to be compatible with APOC and GDS.

Users can search in this manual with the keyword compatibility to find major compatibility issues.

Multiple known incompatible items are listed in NebulaGraph Issues. Submit an issue with the incompatible tag if you find a new issue

of this type.

WHAT ARE THE MAJOR DIFFERENCES BETWEEN NGQL AND OPENCYPHER 9?

The following are some major differences (by design incompatible) between nGQL and openCypher.

OpenCypher 9 and Cypher have some differences in grammar and licence. For example,

Cypher requires that All Cypher statements are explicitly run within a transaction. While openCypher has no such requirement.

And nGQL does not support transactions.

Cypher has a variety of constraints, including Unique node property constraints, Node property existence constraints, Relationship

property existence constraints, and Node key constraints. While OpenCypher has no such constraints. As a strong schema system,

most of the constraints mentioned above can be solved through schema definitions (including NOT NULL) in nGQL. The only function

that cannot be supported is the UNIQUE constraint.

Cypher has APoC, while openCypher 9 does not have APoC. Cypher has Blot protocol support requirements, while openCypher 9 does

not.

WHERE CAN I FIND MORE NGQL EXAMPLES?

Users can find more than 2500 nGQL examples in the features directory on the NebulaGraph GitHub page.

The features directory consists of .feature files. Each file records scenarios that you can use as nGQL examples. Here is an

example:

Compatibility with openCypher

•

•

•

Category openCypher 9 nGQL

Schema Optional Schema Strong Schema

Equality operator = ==

Math exponentiation ^ ^ is not supported. Use pow(x, y) instead.

Edge rank No such concept. edge rank (reference by @)

Statement - All DMLs (CREATE , MERGE , etc) of openCypher 9.

Label and tag A label is used for searching a

vertex, namely an index of vertex.

A tag defines the type of a vertex and its

corresponding properties. It cannot be used as an

index.

Pre-compiling and

parameterized queries

Support Parameterized queries are supported, but

precompiling is not.

Compatibility

1.

2.

3.

Feature: Basic match

 Background:

 Given a graph with space named "basketballplayer"

 Scenario: Single node

 When executing query:

4.1.1 NebulaGraph Query Language (nGQL)

- 125/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues?q=is-3Aissue+is-3Aopen+label-3Aincompatible
http://www.opencypher.org/
https://neo4j.com/developer/cypher/
https://github.com/vesoft-inc/nebula/tree/master/tests/tck/features

The keywords in the preceding example are described as follows.

Welcome to add more tck case and return automatically to the using statements in CI/CD.

DOES IT SUPPORT TINKERPOP GREMLIN?

No. And no plan to support that.

DOES NEBULAGRAPH SUPPORT W3C RDF (SPARQL) OR GRAPHQL?

No. And no plan to support that.

The data model of NebulaGraph is the property graph. And as a strong schema system, NebulaGraph does not support RDF.

NebulaGraph Query Language does not support SPARQL nor GraphQL .

 """

 MATCH (v:player {name: "Yao Ming"}) RETURN v;

 """

 Then the result should be, in any order, with relax comparison:

 | v |

 | ("player133" :player{age: 38, name: "Yao Ming"}) |

 Scenario: One step

 When executing query:

 """

 MATCH (v1:player{name: "LeBron James"}) -[r]-> (v2)

 RETURN type(r) AS Type, v2.player.name AS Name

 """

 Then the result should be, in any order:

 | Type | Name |

 | "follow" | "Ray Allen" |

 | "serve" | "Lakers" |

 | "serve" | "Heat" |

 | "serve" | "Cavaliers" |

Feature: Comparison of where clause

 Background:

 Given a graph with space named "basketballplayer"

 Scenario: push edge props filter down

 When profiling query:

 """

 GO FROM "player100" OVER follow

 WHERE properties(edge).degree IN [v IN [95,99] WHERE v > 0]

 YIELD dst(edge), properties(edge).degree

 """

 Then the result should be, in any order:

 | follow._dst | follow.degree |

 | "player101" | 95 |

 | "player125" | 95 |

 And the execution plan should be:

 | id | name | dependencies | operator info |

 | 0 | Project | 1 | |

 | 1 | GetNeighbors | 2 | {"filter": "(properties(edge).degree IN [v IN [95,99] WHERE (v>0)])"} |

 | 2 | Start | | |

Keyword Description

Feature Describes the topic of the current .feature file.

Background Describes the background information of the current .feature file.

Given Describes the prerequisites of running the test statements in the current .feature file.

Scenario Describes the scenarios. If there is the @skip before one Scenario , this scenario may not work and do not use it

as a working example in a production environment.

When Describes the nGQL statement to be executed. It can be a executing query or profiling query .

Then Describes the expected return results of running the statement in the When clause. If the return results in your

environment do not match the results described in the .feature file, submit an issue to inform the

NebulaGraph team.

And Describes the side effects of running the statement in the When clause.

@skip This test case will be skipped. Commonly, the to-be-tested code is not ready.

4.1.1 NebulaGraph Query Language (nGQL)

- 126/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues
https://github.com/vesoft-inc/nebula-graph/tree/master/tests

Last update: March 13, 2023

4.1.1 NebulaGraph Query Language (nGQL)

- 127/927 - 2022 Vesoft Inc.

4.1.2 Patterns

Patterns and graph pattern matching are the very heart of a graph query language. This topic will describe the patterns in

NebulaGraph, some of which have not yet been implemented.

Patterns for vertices

A vertex is described using a pair of parentheses and is typically given a name. For example:

This simple pattern describes a single vertex and names that vertex using the variable a .

Patterns for related vertices

A more powerful construct is a pattern that describes multiple vertices and edges between them. Patterns describe an edge by

employing an arrow between two vertices. For example:

This pattern describes a very simple data structure: two vertices and a single edge from one to the other. In this example, the

two vertices are named as a and b respectively and the edge is directed : it goes from a to b .

This manner of describing vertices and edges can be extended to cover an arbitrary number of vertices and the edges between

them, for example:

Such a series of connected vertices and edges is called a path .

Note that the naming of the vertices in these patterns is only necessary when one needs to refer to the same vertex again, either

later in the pattern or elsewhere in the query. If not, the name may be omitted as follows:

Patterns for tags

The concept of tag in nGQL has a few differences from that of label in openCypher. For example, users must create a tag before

using it. And a tag also defines the type of properties.

In addition to simply describing the vertices in the graphs, patterns can also describe the tags of the vertices. For example:

Patterns can also describe a vertex that has multiple tags. For example:

Patterns for properties

Vertices and edges are the fundamental elements in a graph. In nGQL, properties are added to them for richer models.

In the patterns, the properties can be expressed as follows: some key-value pairs are enclosed in curly brackets and separated by

commas. For example, a vertex with two properties will be like:

(a)

(a)-[]->(b)

(a)-[]->(b)<-[]-(c)

(a)-[]->()<-[]-(c)

Note

(a:User)-[]->(b)

(a:User:Admin)-[]->(b)

4.1.2 Patterns

- 128/927 - 2022 Vesoft Inc.

One of the edges that connect to this vertex can be like:

Patterns for edges

The simplest way to describe an edge is by using the arrow between two vertices, as in the previous examples.

Users can describe an edge and its direction using the following statement. If users do not care about its direction, the

arrowhead can be omitted. For example:

Like vertices, edges can also be named. A pair of square brackets will be used to separate the arrow and the variable will be

placed between them. For example:

Like the tags on vertices, edges can also have types. To describe an edge with a specific type, use the pattern as follows:

An edge can only have one edge type. But if we'd like to describe some data such that the edge could have a set of types, then

they can all be listed in the pattern, separating them with the pipe symbol | like this:

Like vertices, the name of an edge can be omitted. For example:

Variable-length pattern

Rather than describing a long path using a sequence of many vertex and edge descriptions in a pattern, many edges (and the

intermediate vertices) can be described by specifying a length in the edge description of a pattern. For example:

The following pattern describes a graph of three vertices and two edges, all in one path (a path of length 2). It is equivalent to:

The range of lengths can also be specified. Such edge patterns are called variable-length edges . For example:

The preceding example defines a path with a minimum length of 3 and a maximum length of 5.

It describes a graph of either 4 vertices and 3 edges, 5 vertices and 4 edges, or 6 vertices and 5 edges, all connected in a single

path.

The lower bound can be omitted. For example, to describe paths of length 5 or less, use:

(a {name: 'Andres', sport: 'Brazilian Ju-Jitsu'})

(a)-[{blocked: false}]->(b)

(a)-[]-(b)

(a)-[r]->(b)

(a)-[r:REL_TYPE]->(b)

(a)-[r:TYPE1|TYPE2]->(b)

(a)-[:REL_TYPE]->(b)

(a)-[*2]->(b)

(a)-[]->()-[]->(b)

(a)-[*3..5]->(b)

(a)-[*..5]->(b)

4.1.2 Patterns

- 129/927 - 2022 Vesoft Inc.

The upper bound must be specified. The following are NOT accepted.

Assigning to path variables

As described above, a series of connected vertices and edges is called a path . nGQL allows paths to be named using variables.

For example:

Users can do this in the MATCH statement.

Note

(a)-[*3..]->(b)

(a)-[*]->(b)

p = (a)-[*3..5]->(b)

Last update: March 13, 2023

4.1.2 Patterns

- 130/927 - 2022 Vesoft Inc.

4.1.3 Comments

This topic will describe the comments in nGQL.

In NebulaGraph 1.x, there are four comment styles: # , -- , // , /* */ .

Since NebulaGraph 2.x, -- cannot be used as comments.

Examples

In nGQL statement, the backslash \ in a line indicates a line break.

OpenCypher compatibility

In nGQL, you must add a \ at the end of every line, even in multi-line comments /* */ .

In openCypher, there is no need to use a \ as a line break.

Legacy version compatibility

•

•

nebula> # Do nothing in this line

nebula> RETURN 1+1; # This comment continues to the end of this line.

nebula> RETURN 1+1; // This comment continues to the end of this line.

nebula> RETURN 1 /* This is an in-line comment. */ + 1 == 2;

nebula> RETURN 11 + \

/* Multi-line comment. \

Use a backslash as a line break. \

*/ 12;

•

•

/* openCypher style:

The following comment

spans more than

one line */

MATCH (n:label)

RETURN n;

/* nGQL style: \

The following comment \

spans more than \

one line */ \

MATCH (n:tag) \

RETURN n;

Last update: March 13, 2023

4.1.3 Comments

- 131/927 - 2022 Vesoft Inc.

4.1.4 Identifier case sensitivity

Identifiers are Case-Sensitive

The following statements will not work because they refer to two different spaces, i.e. my_space and MY_SPACE .

Keywords and Reserved Words are Case-Insensitive

The following statements are equivalent since show and spaces are keywords.

Functions are Case-Insensitive

Functions are case-insensitive. For example, count() , COUNT() , and couNT() are equivalent.

nebula> CREATE SPACE IF NOT EXISTS my_space (vid_type=FIXED_STRING(30));

nebula> use MY_SPACE;

[ERROR (-1005)]: SpaceNotFound:

nebula> show spaces;

nebula> SHOW SPACES;

nebula> SHOW spaces;

nebula> show SPACES;

nebula> WITH [NULL, 1, 1, 2, 2] As a \

 UNWIND a AS b \

 RETURN count(b), COUNT(*), couNT(DISTINCT b);

+----------+----------+-------------------+

| count(b) | COUNT(*) | couNT(distinct b) |

+----------+----------+-------------------+

| 4 | 5 | 2 |

+----------+----------+-------------------+

Last update: May 13, 2022

4.1.4 Identifier case sensitivity

- 132/927 - 2022 Vesoft Inc.

4.1.5 Keywords

Keywords have significance in nGQL. It can be classified into reserved keywords and non-reserved keywords. It is not

recommend to use keywords in schema.

If you must use keywords in schema:

Non-reserved keywords are permitted as identifiers without quoting.

To use special characters or reserved keywords as identifiers, quote them with backticks such as AND .

Keywords are case-insensitive.

Reserved keywords

•

•

Note

nebula> CREATE TAG TAG(name string);

[ERROR (-1004)]: SyntaxError: syntax error near `TAG'

nebula> CREATE TAG `TAG` (name string);

Execution succeeded

nebula> CREATE TAG SPACE(name string);

Execution succeeded

nebula> CREATE TAG 中文(简体 string);

Execution succeeded

nebula> CREATE TAG `￥%special characters&*+-*/` (`q~！（）= wer` string);

Execution succeeded

ACROSS

ADD

ALTER

AND

AS

ASC

ASCENDING

BALANCE

BOOL

BY

CASE

CHANGE

COMPACT

CREATE

DATE

DATETIME

DELETE

DESC

DESCENDING

DESCRIBE

DISTINCT

DOUBLE

DOWNLOAD

DROP

EDGE

EDGES

EXISTS

EXPLAIN

FETCH

FIND

FIXED_STRING

FLOAT

FLUSH

FORMAT

FROM

GET

GO

GRANT

IF

IGNORE_EXISTED_INDEX

IN

INDEX

INDEXES

INGEST

INSERT

INT

INT16

4.1.5 Keywords

- 133/927 - 2022 Vesoft Inc.

Non-reserved keywords

INT32

INT64

INT8

INTERSECT

IS

LIMIT

LIST

LOOKUP

MAP

MATCH

MINUS

NO

NOT

NOT_IN

NULL

OF

OFFSET

ON

OR

ORDER

OVER

OVERWRITE

PROFILE

PROP

REBUILD

RECOVER

REMOVE

RESTART

RETURN

REVERSELY

REVOKE

SET

SHOW

STEP

STEPS

STOP

STRING

SUBMIT

TAG

TAGS

TIME

TIMESTAMP

TO

UNION

UPDATE

UPSERT

UPTO

USE

VERTEX

VERTICES

WHEN

WHERE

WITH

XOR

YIELD

ACCOUNT

ADMIN

ALL

ANY

ATOMIC_EDGE

AUTO

BIDIRECT

BOTH

CHARSET

CLIENTS

COLLATE

COLLATION

COMMENT

CONFIGS

CONTAINS

DATA

DBA

DEFAULT

ELASTICSEARCH

ELSE

END

ENDS

ENDS_WITH

FORCE

FULLTEXT

FUZZY

GOD

GRAPH

GROUP

GROUPS

GUEST

HDFS

HOST

4.1.5 Keywords

- 134/927 - 2022 Vesoft Inc.

HOSTS

INTO

IS_EMPTY

IS_NOT_EMPTY

IS_NOT_NULL

IS_NULL

JOB

JOBS

KILL

LEADER

LISTENER

META

NOLOOP

NONE

NOT_CONTAINS

NOT_ENDS_WITH

NOT_STARTS_WITH

OPTIONAL

OUT

PART

PARTITION_NUM

PARTS

PASSWORD

PATH

PLAN

PREFIX

QUERIES

QUERY

REDUCE

REGEXP

REPLICA_FACTOR

RESET

ROLE

ROLES

SAMPLE

SEARCH

SERVICE

SESSION

SESSIONS

SHORTEST

SIGN

SINGLE

SKIP

SNAPSHOT

SNAPSHOTS

SPACE

SPACES

STARTS

STARTS_WITH

STATS

STATUS

STORAGE

SUBGRAPH

TEXT

TEXT_SEARCH

THEN

TOP

TTL_COL

TTL_DURATION

UNWIND

USER

USERS

UUID

VALUE

VALUES

VID_TYPE

WILDCARD

ZONE

ZONES

FALSE

TRUE

Last update: May 13, 2022

4.1.5 Keywords

- 135/927 - 2022 Vesoft Inc.

4.1.6 nGQL style guide

nGQL does not have strict formatting requirements, but creating nGQL statements according to an appropriate and uniform style

can improve readability and avoid ambiguity. Using the same nGQL style in the same organization or project helps reduce

maintenance costs and avoid problems caused by format confusion or misunderstanding. This topic will provide a style guide for

writing nGQL statements.

The styles of nGQL and Cypher Style Guide are different.

Newline

Start a new line to write a clause.

Not recommended:

Recommended:

Start a new line to write different statements in a composite statement.

Not recommended:

Recommended:

If the clause exceeds 80 characters, start a new line at the appropriate place.

Not recommended:

Recommended:

If needed, you can also start a new line for better understanding, even if the clause does not exceed 80 characters.

Compatibility

1.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id;

GO FROM "player100" \

OVER follow REVERSELY \

YIELD src(edge) AS id;

2.

GO FROM "player100" OVER follow REVERSELY YIELD src(edge) AS id | GO FROM $-.id \

OVER serve WHERE properties($^).age > 20 YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

GO FROM "player100" \

OVER follow REVERSELY \

YIELD src(edge) AS id | \

GO FROM $-.id OVER serve \

WHERE properties($^).age > 20 \

YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

3.

MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

WHERE (v2.player.name STARTS WITH "Y" AND v2.player.age > 35 AND v2.player.age < v.player.age) OR (v2.player.name STARTS WITH "T" AND v2.player.age < 45 AND v2.player.age > v.player.age) \

RETURN v2;

MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

WHERE (v2.player.name STARTS WITH "Y" AND v2.player.age > 35 AND v2.player.age < v.player.age) \

OR (v2.player.name STARTS WITH "T" AND v2.player.age < 45 AND v2.player.age > v.player.age) \

RETURN v2;

Note

4.1.6 nGQL style guide

- 136/927 - 2022 Vesoft Inc.

https://s3.amazonaws.com/artifacts.opencypher.org/M15/docs/style-guide.pdf

Identifier naming

In nGQL statements, characters other than keywords, punctuation marks, and blanks are all identifiers. Recommended methods

to name the identifiers are as follows.

Use singular nouns to name tags, and use the base form of verbs or verb phrases to form Edge types.

Not recommended:

Recommended:

Use the snake case to name identifiers, and connect words with underscores (_) with all the letters lowercase.

Not recommended:

Recommended:

Use uppercase keywords and lowercase variables.

Not recommended:

Recommended:

Pattern

Start a new line on the right side of the arrow indicating an edge when writing patterns.

Not recommended:

Recommended:

Anonymize the vertices and edges that do not need to be queried.

Not recommended:

Recommended:

Place named vertices in front of anonymous vertices.

Not recommended:

1.

MATCH p=(v:players)-[e:are_following]-(v2) \

RETURN nodes(p);

MATCH p=(v:player)-[e:follow]-(v2) \

RETURN nodes(p);

2.

MATCH (v:basketballTeam) \

RETURN v;

MATCH (v:basketball_team) \

RETURN v;

3.

match (V:player) return V limit 5;

MATCH (v:player) RETURN v LIMIT 5;

1.

MATCH (v:player{name: "Tim Duncan", age: 42}) \

-[e:follow]->()-[e:serve]->()<--(v2) \

RETURN v, e, v2;

MATCH (v:player{name: "Tim Duncan", age: 42})-[e:follow]-> \

()-[e:serve]->()<--(v2) \

RETURN v, e, v2;

2.

MATCH (v:player)-[e:follow]->(v2) \

RETURN v;

MATCH (v:player)-[:follow]->() \

RETURN v;

3.

4.1.6 nGQL style guide

- 137/927 - 2022 Vesoft Inc.

Recommended:

String

The strings should be surrounded by double quotes.

Not recommended:

Recommended:

When single or double quotes need to be nested in a string, use a backslash () to escape. For example:

Statement termination

End the nGQL statements with an English semicolon (;).

Not recommended:

Recommended:

Use a pipe (|) to separate a composite statement, and end the statement with an English semicolon at the end of the last line. Using

an English semicolon before a pipe will cause the statement to fail.

Not supported:

Supported:

In a composite statement that contains user-defined variables, use an English semicolon to end the statements that define the

variables. If you do not follow the rules to add a semicolon or use a pipe to end the composite statement, the execution will fail.

Not supported:

MATCH ()-[:follow]->(v) \

RETURN v;

MATCH (v)<-[:follow]-() \

RETURN v;

RETURN 'Hello Nebula!';

RETURN "Hello Nebula!\"123\"";

Note

RETURN "\"NebulaGraph is amazing,\" the user says.";

1.

FETCH PROP ON player "player100" YIELD properties(vertex);

FETCH PROP ON player "player100" YIELD properties(vertex);

2.

GO FROM "player100" \

OVER follow \

YIELD dst(edge) AS id; | \

GO FROM $-.id \

OVER serve \

YIELD properties($$).name AS Team, properties($^).name AS Player;

GO FROM "player100" \

OVER follow \

YIELD dst(edge) AS id | \

GO FROM $-.id \

OVER serve \

YIELD properties($$).name AS Team, properties($^).name AS Player;

3.

$var = GO FROM "player100" \

OVER follow \

YIELD follow._dst AS id \

GO FROM $var.id \

4.1.6 nGQL style guide

- 138/927 - 2022 Vesoft Inc.

Not supported:

Supported:

OVER serve \

YIELD $$.team.name AS Team, $^.player.name AS Player;

$var = GO FROM "player100" \

OVER follow \

YIELD follow._dst AS id | \

GO FROM $var.id \

OVER serve \

YIELD $$.team.name AS Team, $^.player.name AS Player;

$var = GO FROM "player100" \

OVER follow \

YIELD follow._dst AS id; \

GO FROM $var.id \

OVER serve \

YIELD $$.team.name AS Team, $^.player.name AS Player;

Last update: March 13, 2023

4.1.6 nGQL style guide

- 139/927 - 2022 Vesoft Inc.

4.2 Data types

4.2.1 Numeric types

nGQL supports both integer and floating-point number.

Integer

Signed 64-bit integer (INT64), 32-bit integer (INT32), 16-bit integer (INT16), and 8-bit integer (INT8) are supported.

Floating-point number

Both single-precision floating-point format (FLOAT) and double-precision floating-point format (DOUBLE) are supported.

Scientific notation is also supported, such as 1e2 , 1.1e2 , .3e4 , 1.e4 , and -1234E-10 .

The data type of DECIMAL in MySQL is not supported.

Reading and writing of data values

When writing and reading different types of data, nGQL complies with the following rules:

Type Declared keywords Range

INT64 INT64 or INT -9,223,372,036,854,775,808 ~ 9,223,372,036,854,775,807

INT32 INT32 -2,147,483,648 ~ 2,147,483,647

INT16 INT16 -32,768 ~ 32,767

INT8 INT8 -128 ~ 127

Type Declared keywords Range Precision

FLOAT FLOAT 3.4E +/- 38 6~7 bits

DOUBLE DOUBLE 1.7E +/- 308 15~16 bits

Note

Data type Set as VID Set as property Resulted data type

INT64 Supported Supported INT64

INT32 Not supported Supported INT64

INT16 Not supported Supported INT64

INT8 Not supported Supported INT64

FLOAT Not supported Supported DOUBLE

DOUBLE Not supported Supported DOUBLE

4.2 Data types

- 140/927 - 2022 Vesoft Inc.

For example, nGQL does not support setting VID as INT8, but supports setting a certain property type of TAG or Edge type as

INT8. When using the nGQL statement to read the property of INT8, the resulted type is INT64.

Multiple formats are supported:

Decimal, such as 123456 .

Hexadecimal, such as 0x1e240 .

Octal, such as 0361100 .

However, NebulaGraph will parse the written non-decimal value into a decimal value and save it. The value read is decimal.

For example, the type of the property score is INT . The value of 0xb is assigned to it through the INSERT statement. If querying

the property value with statements such as FETCH, you will get the result 11 , which is the decimal result of the hexadecimal

0xb .

Round a FLOAT/DOUBLE value when inserting it to an INT column.

•

•

•

•

•

Last update: March 13, 2023

4.2.1 Numeric types

- 141/927 - 2022 Vesoft Inc.

4.2.2 Boolean

A boolean data type is declared with the bool keyword and can only take the values true or false .

nGQL supports using boolean in the following ways:

Define the data type of the property value as a boolean.

Use boolean as judgment conditions in the WHERE clause.

•

•

Last update: August 23, 2021

4.2.2 Boolean

- 142/927 - 2022 Vesoft Inc.

4.2.3 String

Fixed-length strings and variable-length strings are supported.

Declaration and literal representation

The string type is declared with the keywords of:

STRING : Variable-length strings.

FIXED_STRING(<length>) : Fixed-length strings. <length> is the length of the string, such as FIXED_STRING(32) .

A string type is used to store a sequence of characters (text). The literal constant is a sequence of characters of any length

surrounded by double or single quotes. For example, "Hello, Cooper" or 'Hello, Cooper' .

String reading and writing

Nebula Graph supports using string types in the following ways:

Define the data type of VID as a fixed-length string.

Set the variable-length string as the Schema name, including the names of the graph space, tag, edge type, and property.

Define the data type of the property as a fixed-length or variable-length string.

For example:

Define the data type of the property as a fixed-length string

Define the data type of the property as a variable-length string

When the fixed-length string you try to write exceeds the length limit:

If the fixed-length string is a property, the writing will succeed, and NebulaGraph will truncate the string and only store the

part that meets the length limit.

If the fixed-length string is a VID, the writing will fail and NebulaGraph will return an error.

Escape characters

Line breaks are not allowed in a string. Escape characters are supported within strings, for example:

"\n\t\r\b\f"

"\110ello world"

OpenCypher compatibility

There are some tiny differences between openCypher and Cypher, as well as nGQL. The following is what openCypher requires.

Single quotes cannot be converted to double quotes.

•

•

•

•

•

•

nebula> CREATE TAG IF NOT EXISTS t1 (p1 FIXED_STRING(10));

•

nebula> CREATE TAG IF NOT EXISTS t2 (p2 STRING);

•

•

•

•

File: Literals.feature

Feature: Literals

Background:

 Given any graph

 Scenario: Return a single-quoted string

 When executing query:

 """

 RETURN '' AS literal

 """

4.2.3 String

- 143/927 - 2022 Vesoft Inc.

While Cypher accepts both single quotes and double quotes as the return results. nGQL follows the Cypher way.

 Then the result should be, in any order:

 | literal |

 | '' | # Note: it should return single-quotes as openCypher required.

 And no side effects

nebula > YIELD '' AS quote1, "" AS quote2, "'" AS quote3, '"' AS quote4

+--------+--------+--------+--------+

| quote1 | quote2 | quote3 | quote4 |

+--------+--------+--------+--------+

| "" | "" | "'" | """ |

+--------+--------+--------+--------+

Last update: March 13, 2023

4.2.3 String

- 144/927 - 2022 Vesoft Inc.

4.2.4 Date and time types

This topic will describe the DATE , TIME , DATETIME , TIMESTAMP , and DURATION types.

Precautions

While inserting time-type property values with DATE , TIME , and DATETIME , NebulaGraph transforms them to a UTC time according

to the timezone specified with the timezone_name parameter in the configuration files.

To change the timezone, modify the timezone_name value in the configuration files of all NebulaGraph services.

date() , time() , and datetime() can convert a time-type property with a specified timezone. For example, datetime("2017-03-04

22:30:40.003000+08:00") or datetime("2017-03-04T22:30:40.003000[Asia/Shanghai]") .

date() , time() , datetime() , and timestamp() all accept empty parameters to return the current date, time, and datetime.

date() , time() , and datetime() all accept the property name to return a specific property value of itself. For example, date().month

returns the current month, while time("02:59:40").minute returns the minutes of the importing time.

OpenCypher Compatibility

In nGQL:

Year, month, day, hour, minute, second, millisecond, and microsecond are supported, while the nanosecond is not supported.

localdatetime() is not supported.

Most string time formats are not supported. The exceptions are YYYY-MM-DDThh:mm:ss and YYYY-MM-DD hh:mm:ss .

The single-digit string time format is supported. For example, time("1:1:1") .

DATE

The DATE type is used for values with a date part but no time part. Nebula Graph retrieves and displays DATE values in the YYYY-MM-

DD format. The supported range is -32768-01-01 to 32767-12-31 .

The properties of date() include year , month , and day .

TIME

The TIME type is used for values with a time part but no date part. Nebula Graph retrieves and displays TIME values in

hh:mm:ss.msmsmsususus format. The supported range is 00:00:00.000000 to 23:59:59.999999 .

The properties of time() include hour , minute , and second .

DATETIME

The DATETIME type is used for values that contain both date and time parts. Nebula Graph retrieves and displays DATETIME values in

YYYY-MM-DDThh:mm:ss.msmsmsususus format. The supported range is -32768-01-01T00:00:00.000000 to 32767-12-31T23:59:59.999999 .

The properties of datetime() include year , month , day , hour , minute , and second .

•

Note

•

•

•

•

•

•

•

4.2.4 Date and time types

- 145/927 - 2022 Vesoft Inc.

TIMESTAMP

The TIMESTAMP data type is used for values that contain both date and time parts. It has a range of 1970-01-01T00:00:01 UTC to

2262-04-11T23:47:16 UTC.

TIMESTAMP has the following features:

Stored and displayed in the form of a timestamp, such as 1615974839 , which means 2021-03-17T17:53:59 .

Supported TIMESTAMP querying methods: timestamp and timestamp() function.

Supported TIMESTAMP inserting methods: timestamp, timestamp() function, and now() function.

timestamp() function accepts empty parameters to get the timestamp of the current timezone and also accepts a string type

parameter.

In NebulaGraph versions earlier than 3.0.0, the time string passed into the timestamp() function could include milliseconds and

microseconds. As of version 3.0.0, the time string passed into the timestamp() function cannot include milliseconds and

microseconds.

The underlying storage data type is int64.

DURATION

The DURATION data type is used to indicate a period of time. Map data that are freely combined by years , months , days , hours ,

minutes , and seconds indicates the DURATION .

DURATION has the following features:

Creating indexes for DURATION is not supported.

DURATION can be used to calculate the specified time.

Examples

Create a tag named date1 with three properties: DATE , TIME , and DATETIME .

Insert a vertex named test1 .

Return the content of the property p1 on test1 .

•

•

•

•

Return the current time.

nebula> RETURN timestamp();

+-------------+

| timestamp() |

+-------------+

| 1625469277 |

+-------------+

nebula> RETURN timestamp("2022-01-05T06:18:43");

+----------------------------------+

| timestamp("2022-01-05T06:18:43") |

+----------------------------------+

| 1641363523 |

+----------------------------------+

Legacy version compatibility

•

•

•

1.

nebula> CREATE TAG IF NOT EXISTS date1(p1 date, p2 time, p3 datetime);

2.

nebula> INSERT VERTEX date1(p1, p2, p3) VALUES "test1":(date("2021-03-17"), time("17:53:59"), datetime("2017-03-04T22:30:40.003000[Asia/Shanghai]"));

3.

nebula> CREATE TAG INDEX IF NOT EXISTS date1_index ON date1(p1);

nebula> REBUILD TAG INDEX date1_index;

nebula> MATCH (v:date1) RETURN v.date1.p1;

+------------------+

| v.date1.p1.month |

4.2.4 Date and time types

- 146/927 - 2022 Vesoft Inc.

Create a tag named school with the property of TIMESTAMP .

Insert a vertex named DUT with a found-time timestamp of "1988-03-01T08:00:00" .

Insert a vertex named dut and store time with now() or timestamp() functions.

You can also use WITH statement to set a specific date and time, or to perform calculations. For example:

+------------------+

| 3 |

+------------------+

4.

nebula> CREATE TAG IF NOT EXISTS school(name string , found_time timestamp);

5.

Insert as a timestamp. The corresponding timestamp of 1988-03-01T08:00:00 is 573177600, or 573206400 UTC.

nebula> INSERT VERTEX school(name, found_time) VALUES "DUT":("DUT", 573206400);

Insert in the form of date and time.

nebula> INSERT VERTEX school(name, found_time) VALUES "DUT":("DUT", timestamp("1988-03-01T08:00:00"));

6.

Use now() function to store time

nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", now());

Use timestamp() function to store time

nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", timestamp());

nebula> WITH time({hour: 12, minute: 31, second: 14, millisecond:111, microsecond: 222}) AS d RETURN d;

+-----------------+

| d |

+-----------------+

| 12:31:14.111222 |

+-----------------+

nebula> WITH date({year: 1984, month: 10, day: 11}) AS x RETURN x + 1;

+------------+

| (x+1) |

+------------+

| 1984-10-12 |

+------------+

nebula> WITH date('1984-10-11') as x, duration({years: 12, days: 14, hours: 99, minutes: 12}) as d \

 RETURN x + d AS sum, x - d AS diff;

+------------+------------+

| sum | diff |

+------------+------------+

| 1996-10-29 | 1972-09-23 |

+------------+------------+

Last update: March 13, 2023

4.2.4 Date and time types

- 147/927 - 2022 Vesoft Inc.

4.2.5 NULL

You can set the properties for vertices or edges to NULL . Also, you can set the NOT NULL constraint to make sure that the property

values are NOT NULL . If not specified, the property is set to NULL by default.

Logical operations with NULL

Here is the truth table for AND , OR , XOR , and NOT .

OpenCypher compatibility

The comparisons and operations about NULL are different from openCypher. There may be changes later.

COMPARISONS WITH NULL

The comparison operations with NULL are incompatible with openCypher.

OPERATIONS AND RETURN WITH NULL

The NULL operations and RETURN with NULL are incompatible with openCypher.

Examples

USE NOT NULL

Create a tag named player . Specify the property name as NOT NULL .

Use SHOW to create tag statements. The property name is NOT NULL . The property age is NULL by default.

Insert the vertex Kobe . The property age can be NULL .

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

nebula> CREATE TAG IF NOT EXISTS player(name string NOT NULL, age int);

nebula> SHOW CREATE TAG player;

+-----------+-----------------------------------+

| Tag | Create Tag |

+-----------+-----------------------------------+

| "student" | "CREATE TAG `player` (|

| | `name` string NOT NULL, |

| | `age` int64 NULL |

| |) ttl_duration = 0, ttl_col = """ |

+-----------+-----------------------------------+

nebula> INSERT VERTEX player(name, age) VALUES "Kobe":("Kobe",null);

4.2.5 NULL

- 148/927 - 2022 Vesoft Inc.

USE NOT NULL AND SET THE DEFAULT

Create a tag named player . Specify the property age as NOT NULL . The default value is 18 .

Insert the vertex Kobe . Specify the property name only.

Query the vertex Kobe . The property age is 18 by default.

nebula> CREATE TAG IF NOT EXISTS player(name string, age int NOT NULL DEFAULT 18);

nebula> INSERT VERTEX player(name) VALUES "Kobe":("Kobe");

nebula> FETCH PROP ON player "Kobe" YIELD properties(vertex);

+--------------------------+

| properties(VERTEX) |

+--------------------------+

| {age: 18, name: "Kobe"} |

+--------------------------+

Last update: December 8, 2021

4.2.5 NULL

- 149/927 - 2022 Vesoft Inc.

4.2.6 Lists

The list is a composite data type. A list is a sequence of values. Individual elements in a list can be accessed by their positions.

A list starts with a left square bracket [and ends with a right square bracket] . A list contains zero, one, or more expressions.

List elements are separated from each other with commas (,). Whitespace around elements is ignored in the list, thus line

breaks, tab stops, and blanks can be used for formatting.

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

List operations

You can use the preset list function to operate the list, or use the index to filter the elements in the list.

INDEX SYNTAX

The index of nGQL supports queries from front to back, starting from 0. 0 means the first element, 1 means the second element,

and so on. It also supports queries from back to front, starting from -1. -1 means the last element, -2 means the penultimate

element, and so on.

[M]: represents the element whose index is M.

[M..N]: represents the elements whose indexes are greater or equal to M but smaller than N . Return empty when N is 0.

[M..]: represents the elements whose indexes are greater or equal to M .

[..N]: represents the elements whose indexes are smaller than N . Return empty when N is 0.

Return empty if the index is out of bounds, while return normally if the index is within the bound.

Return empty if M ≥ N .

When querying a single element, if M is null, return BAD_TYPE . When conducting a range query, if M or N is null, return null .

Examples

[M]

[M..N]

[M..]

[..N]

•

•

•

•

Note

•

•

•

The following query returns the list [1,2,3].

nebula> RETURN list[1, 2, 3] AS a;

+-----------+

| a |

+-----------+

| [1, 2, 3] |

+-----------+

The following query returns the element whose index is 3 in the list [1,2,3,4,5]. In a list, the index starts from 0, and thus the return element is 4.

nebula> RETURN range(1,5)[3];

+---------------+

| range(1,5)[3] |

+---------------+

| 4 |

+---------------+

The following query returns the element whose index is -2 in the list [1,2,3,4,5]. The index of the last element in a list is -1, and thus the return element is 4.

nebula> RETURN range(1,5)[-2];

+------------------+

| range(1,5)[-(2)] |

+------------------+

| 4 |

+------------------+

The following query returns the elements whose indexes are from 0 to 3 (not including 3) in the list [1,2,3,4,5].

nebula> RETURN range(1,5)[0..3];

4.2.6 Lists

- 150/927 - 2022 Vesoft Inc.

+------------------+

| range(1,5)[0..3] |

+------------------+

| [1, 2, 3] |

+------------------+

The following query returns the elements whose indexes are greater than 2 in the list [1,2,3,4,5].

nebula> RETURN range(1,5)[3..] AS a;

+--------+

| a |

+--------+

| [4, 5] |

+--------+

The following query returns the elements whose indexes are smaller than 3.

nebula> WITH list[1, 2, 3, 4, 5] AS a \

 RETURN a[..3] AS r;

+-----------+

| r |

+-----------+

| [1, 2, 3] |

+-----------+

The following query filters the elements whose indexes are greater than 2 in the list [1,2,3,4,5], calculate them respectively, and returns them.

nebula> RETURN [n IN range(1,5) WHERE n > 2 | n + 10] AS a;

+--------------+

| a |

+--------------+

| [13, 14, 15] |

+--------------+

The following query returns the elements from the first to the penultimate (inclusive) in the list [1, 2, 3].

nebula> YIELD list[1, 2, 3][0..-1] AS a;

+--------+

| a |

+--------+

| [1, 2] |

+--------+

The following query returns the elements from the first (exclusive) to the third backward in the list [1, 2, 3, 4, 5].

nebula> YIELD list[1, 2, 3, 4, 5][-3..-1] AS a;

+--------+

| a |

+--------+

| [3, 4] |

+--------+

The following query sets the variables and returns the elements whose indexes are 1 and 2.

nebula> $var = YIELD 1 AS f, 3 AS t; \

 YIELD list[1, 2, 3][$var.f..$var.t] AS a;

+--------+

| a |

+--------+

| [2, 3] |

+--------+

The following query returns empty because the index is out of bound. It will return normally when the index is within the bound.

nebula> RETURN list[1, 2, 3, 4, 5] [0..10] AS a;

+-----------------+

| a |

+-----------------+

| [1, 2, 3, 4, 5] |

+-----------------+

nebula> RETURN list[1, 2, 3] [-5..5] AS a;

+-----------+

| a |

+-----------+

| [1, 2, 3] |

+-----------+

The following query returns empty because there is a [0..0].

nebula> RETURN list[1, 2, 3, 4, 5] [0..0] AS a;

+----+

| a |

+----+

| [] |

+----+

The following query returns empty because of M ≥ N.

nebula> RETURN list[1, 2, 3, 4, 5] [3..1] AS a;

+----+

| a |

+----+

| [] |

+----+

When conduct a range query, if `M` or `N` is null, return `null`.

nebula> WITH list[1,2,3] AS a \

 RETURN a[0..null] as r;

+----------+

| r |

+----------+

| __NULL__ |

4.2.6 Lists

- 151/927 - 2022 Vesoft Inc.

OpenCypher compatibility

In openCypher, return null when querying a single out-of-bound element. However, in nGQL, return OUT_OF_RANGE when querying

a single out-of-bound element.

A composite data type (i.e., set, map, and list) CAN NOT be stored as properties for vertices or edges.

It is recommended to modify the graph modeling method. The composite data type should be modeled as an adjacent edge of a

vertex, rather than its property. Each adjacent edge can be dynamically added or deleted. The rank values of the adjacent

edges can be used for sequencing.

Patterns are not supported in the list. For example, [(src)-[]->(m) | m.name] .

+----------+

The following query calculates the elements in the list [1,2,3,4,5] respectively and returns them without the list head.

nebula> RETURN tail([n IN range(1, 5) | 2 * n - 10]) AS a;

+-----------------+

| a |

+-----------------+

| [-6, -4, -2, 0] |

+-----------------+

The following query takes the elements in the list [1,2,3] as true and return.

nebula> RETURN [n IN range(1, 3) WHERE true | n] AS r;

+-----------+

| r |

+-----------+

| [1, 2, 3] |

+-----------+

The following query returns the length of the list [1,2,3].

nebula> RETURN size(list[1,2,3]);

+-------------------+

| size(list[1,2,3]) |

+-------------------+

| 3 |

+-------------------+

The following query calculates the elements in the list [92,90] and runs a conditional judgment in a where clause.

nebula> GO FROM "player100" OVER follow WHERE properties(edge).degree NOT IN [x IN [92, 90] | x + $$.player.age] \

 YIELD dst(edge) AS id, properties(edge).degree AS degree;

+-------------+--------+

| id | degree |

+-------------+--------+

| "player101" | 95 |

| "player102" | 90 |

+-------------+--------+

The following query takes the query result of the MATCH statement as the elements in a list. Then it calculates and returns them.

nebula> MATCH p = (n:player{name:"Tim Duncan"})-[:follow]->(m) \

 RETURN [n IN nodes(p) | n.age + 100] AS r;

+------------+

| r |

+------------+

| [142, 136] |

| [142, 133] |

+------------+

•

nebula> RETURN range(0,5)[-12];

+-------------------+

| range(0,5)[-(12)] |

+-------------------+

| OUT_OF_RANGE |

+-------------------+

•

•

Last update: January 13, 2022

4.2.6 Lists

- 152/927 - 2022 Vesoft Inc.

4.2.7 Sets

The set is a composite data type. A set is a set of values. Unlike a List, values in a set are unordered and each value must be

unique.

A set starts with a left curly bracket { and ends with a right curly bracket } . A set contains zero, one, or more expressions. Set

elements are separated from each other with commas (,). Whitespace around elements is ignored in the set, thus line breaks,

tab stops, and blanks can be used for formatting.

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

A set is not a data type in openCypher, but in nGQL, users can use the set.

Examples

•

•

The following query returns the set {1,2,3}.

nebula> RETURN set{1, 2, 3} AS a;

+-----------+

| a |

+-----------+

| {3, 2, 1} |

+-----------+

The following query returns the set {1,2}, Because the set does not allow repeating elements, and the order is unordered.

nebula> RETURN set{1, 2, 1} AS a;

+--------+

| a |

+--------+

| {2, 1} |

+--------+

The following query checks whether the set has the specified element 1.

nebula> RETURN 1 IN set{1, 2} AS a;

+------+

| a |

+------+

| true |

+------+

The following query counts the number of elements in the set.

nebula> YIELD size(set{1, 2, 1}) AS a;

+---+

| a |

+---+

| 2 |

+---+

The following query returns a set of target vertex property values.

nebula> GO FROM "player100" OVER follow \

 YIELD set{properties($$).name,properties($$).age} as a;

+-----------------------+

| a |

+-----------------------+

| {36, "Tony Parker"} |

| {41, "Manu Ginobili"} |

+-----------------------+

Last update: January 13, 2022

4.2.7 Sets

- 153/927 - 2022 Vesoft Inc.

4.2.8 Maps

The map is a composite data type. Maps are unordered collections of key-value pairs. In maps, the key is a string. The value can

have any data type. You can get the map element by using map['key'] .

A map starts with a left curly bracket { and ends with a right curly bracket } . A map contains zero, one, or more key-value

pairs. Map elements are separated from each other with commas (,). Whitespace around elements is ignored in the map, thus

line breaks, tab stops, and blanks can be used for formatting.

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

Map projection is not supported.

Examples

•

•

The following query returns the simple map.

nebula> YIELD map{key1: 'Value1', Key2: 'Value2'} as a;

+----------------------------------+

| a |

+----------------------------------+

| {Key2: "Value2", key1: "Value1"} |

+----------------------------------+

The following query returns the list type map.

nebula> YIELD map{listKey: [{inner: 'Map1'}, {inner: 'Map2'}]} as a;

+---+

| a |

+---+

| {listKey: [{inner: "Map1"}, {inner: "Map2"}]} |

+---+

The following query returns the hybrid type map.

nebula> RETURN map{a: LIST[1,2], b: SET{1,2,1}, c: "hee"} as a;

+----------------------------------+

| a |

+----------------------------------+

| {a: [1, 2], b: {2, 1}, c: "hee"} |

+----------------------------------+

The following query returns the specified element in a map.

nebula> RETURN map{a: LIST[1,2], b: SET{1,2,1}, c: "hee"}["b"] AS b;

+--------+

| b |

+--------+

| {2, 1} |

+--------+

The following query checks whether the map has the specified key, not support checks whether the map has the specified value yet.

nebula> RETURN "a" IN MAP{a:1, b:2} AS a;

+------+

| a |

+------+

| true |

+------+

Last update: January 13, 2022

4.2.8 Maps

- 154/927 - 2022 Vesoft Inc.

4.2.9 Type Conversion/Type coercions

Converting an expression of a given type to another type is known as type conversion.

Type coercions functions

Examples

Function Description

toBoolean() Converts a string value to a boolean value.

toFloat() Converts an integer or string value to a floating point number.

toInteger() Converts a floating point or string value to an integer value.

toString() Converts non-compound types of data, such as numbers, booleans, and so on, to strings.

toSet() Converts a list or set value to a set value.

type() Returns the string representation of the relationship type.

nebula> UNWIND [true, false, 'true', 'false', NULL] AS b \

 RETURN toBoolean(b) AS b;

+----------+

| b |

+----------+

| true |

| false |

| true |

| false |

| __NULL__ |

+----------+

nebula> RETURN toFloat(1), toFloat('1.3'), toFloat('1e3'), toFloat('not a number');

+------------+----------------+----------------+-------------------------+

| toFloat(1) | toFloat("1.3") | toFloat("1e3") | toFloat("not a number") |

+------------+----------------+----------------+-------------------------+

| 1.0 | 1.3 | 1000.0 | __NULL__ |

+------------+----------------+----------------+-------------------------+

nebula> RETURN toInteger(1), toInteger('1'), toInteger('1e3'), toInteger('not a number');

+--------------+----------------+------------------+---------------------------+

| toInteger(1) | toInteger("1") | toInteger("1e3") | toInteger("not a number") |

+--------------+----------------+------------------+---------------------------+

| 1 | 1 | 1000 | __NULL__ |

+--------------+----------------+------------------+---------------------------+

nebula> MATCH (a:player)-[e]-() \

 RETURN type(e);

+----------+

| type(e) |

+----------+

| "follow" |

| "follow" |

+----------+

nebula> MATCH (a:player {name: "Tim Duncan"}) \

 WHERE toInteger(right(id(a),3)) == 100 \

 RETURN a;

+--+

| a |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> MATCH (n:player) \

 WITH n LIMIT toInteger(ceil(1.8)) \

 RETURN count(*) AS count;

+-------+

| count |

+-------+

| 2 |

+-------+

nebula> RETURN toString(9669) AS int2str, toString(null) AS null2str;

+---------+----------+

| int2str | null2str |

+---------+----------+

| "9669" | __NULL__ |

+---------+----------+

4.2.9 Type Conversion/Type coercions

- 155/927 - 2022 Vesoft Inc.

nebula> RETURN toSet(list[1,2,3,1,2]) AS list2set;

+-----------+

| list2set |

+-----------+

| {3, 1, 2} |

+-----------+

nebula> RETURN toSet(set{1,2,3,1,2}) AS set2set;

+-----------+

| set2set |

+-----------+

| {3, 2, 1} |

+-----------+

Last update: May 26, 2022

4.2.9 Type Conversion/Type coercions

- 156/927 - 2022 Vesoft Inc.

4.2.10 Geography

Geography is a data type composed of latitude and longitude that represents geospatial information. NebulaGraph currently

supports Point, LineString, and Polygon in Simple Features and some functions in SQL-MM 3, such as part of the core geo

parsing, construction, formatting, conversion, predicates, and dimensions.

Type description

A point is the basic data type of geography, which is determined by a latitude and a longitude. For example, "POINT(3 8)" means

that the longitude is 3° and the latitude is 8° . Multiple points can form a linestring or a polygon.

Examples

For functions about the geography data type, see Geography functions.

Shape Example Description

Point "POINT(3 8)" Specifies the data type as a point.

LineString "LINESTRING(3 8, 4.7 73.23)" Specifies the data type as a linestring.

Polygon "POLYGON((0 1, 1 2, 2 3, 0 1))" Specifies the data type as a polygon.

//Create a Tag to allow storing any geography data type.

nebula> CREATE TAG IF NOT EXISTS any_shape(geo geography);

//Create a Tag to allow storing a point only.

nebula> CREATE TAG IF NOT EXISTS only_point(geo geography(point));

//Create a Tag to allow storing a linestring only.

nebula> CREATE TAG IF NOT EXISTS only_linestring(geo geography(linestring));

//Create a Tag to allow storing a polygon only.

nebula> CREATE TAG IF NOT EXISTS only_polygon(geo geography(polygon));

//Create an Edge type to allow storing any geography data type.

nebula> CREATE EDGE IF NOT EXISTS any_shape_edge(geo geography);

//Create a vertex to store the geography of a polygon.

nebula> INSERT VERTEX any_shape(geo) VALUES "103":(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

//Create an edge to store the geography of a polygon.

nebula> INSERT EDGE any_shape_edge(geo) VALUES "201"->"302":(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

//Query the geography of Vertex 103.

nebula> FETCH PROP ON any_shape "103" YIELD ST_ASText(any_shape.geo);

+---------------------------------+

| ST_ASText(any_shape.geo) |

+---------------------------------+

| "POLYGON((0 1, 1 2, 2 3, 0 1))" |

+---------------------------------+

//Query the geography of the edge which traverses from Vertex 201 to Vertex 302.

nebula> FETCH PROP ON any_shape_edge "201"->"302" YIELD ST_ASText(any_shape_edge.geo);

+---------------------------------+

| ST_ASText(any_shape_edge.geo) |

+---------------------------------+

| "POLYGON((0 1, 1 2, 2 3, 0 1))" |

+---------------------------------+

//Create an index for the geography of the Tag any_shape and run LOOKUP.

nebula> CREATE TAG INDEX IF NOT EXISTS any_shape_geo_index ON any_shape(geo);

nebula> REBUILD TAG INDEX any_shape_geo_index;

nebula> LOOKUP ON any_shape YIELD ST_ASText(any_shape.geo);

+---------------------------------+

| ST_ASText(any_shape.geo) |

+---------------------------------+

| "POLYGON((0 1, 1 2, 2 3, 0 1))" |

+---------------------------------+

4.2.10 Geography

- 157/927 - 2022 Vesoft Inc.

https://en.wikipedia.org/wiki/Simple_Features
https://www.techrepublic.com/index.php/resource-library/whitepapers/sql-mm-spatial-the-standard-to-manage-spatial-data-in-relational-database-systems/

When creating an index for geography properties, you can specify the parameters for the index.

Specifying the above two parameters does not affect the Point type of property. The s2_max_level value of the Point type is forced to be

30 .

Parameter Default

value

Description

s2_max_level 30 The maximum level of S2 cell used in the covering. Allowed values: 1 ~ 30 . Setting it to less

than the default means that NebulaGraph will be forced to generate coverings using larger

cells.

s2_max_cells 8 The maximum number of S2 cells used in the covering. Provides a limit on how much work

is done exploring the possible coverings. Allowed values: 1 ~ 30 . You may want to use

higher values for odd-shaped regions such as skinny rectangles.

Note

nebula> CREATE TAG INDEX IF NOT EXISTS any_shape_geo_index ON any_shape(geo) with (s2_max_level=30, s2_max_cells=8);

Last update: March 13, 2023

4.2.10 Geography

- 158/927 - 2022 Vesoft Inc.

4.3 Variables and composite queries

4.3.1 Composite queries (clause structure)

Composite queries put data from different queries together. They then use filters, group-bys, or sorting before returning the

combined return results.

Nebula Graph supports three methods to run composite queries (or sub-queries):

(openCypher) Clauses are chained together, and they feed intermediate result sets between each other.

(Native nGQL) More than one query can be batched together, separated by semicolons (;). The result of the last query is

returned as the result of the batch.

(Native nGQL) Queries can be piped together by using the pipe (|). The result of the previous query can be used as the input

of the next query.

OpenCypher compatibility

In a composite query, do not put together openCypher and native nGQL clauses in one statement. For example, this statement is

undefined: MATCH ... | GO ... | YIELD

If you are in the openCypher way (MATCH , RETURN , WITH , etc), do not introduce any pipe or semicolons to combine the sub-clauses.

If you are in the native nGQL way (FETCH , GO , LOOKUP , etc), you must use pipe or semicolons to combine the sub-clauses.

Do not put together native nGQL and openCypher compatible sentences in one composite statement because this behavior is undefined.

Composite queries are not transactional queries (as in SQL/Cypher)

For example, a query is composed of three sub-queries: A B C , A | B | C or A; B; C . In that A is a read operation, B is a

computation operation, and C is a write operation. If any part fails in the execution, the whole result will be undefined. There is

no rollback. What is written depends on the query executor.

OpenCypher has no requirement of transaction .

Examples

OpenCypher compatibility statement

•

•

•

•

•

Undefined behavior

Note

•

Connect multiple queries with clauses.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \

 WITH nodes(p) AS n \

4.3 Variables and composite queries

- 159/927 - 2022 Vesoft Inc.

Native nGQL (Semicolon queries)

Native nGQL (Pipe queries)

 UNWIND n AS n1 \

 RETURN DISTINCT n1;

•

Only return edges.

nebula> SHOW TAGS; SHOW EDGES;

Insert multiple vertices.

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42); \

 INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36); \

 INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

•

Connect multiple queries with pipes.

nebula> GO FROM "player100" OVER follow YIELD dst(edge) AS id | \

 GO FROM $-.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------+-----------------+

| Team | Player |

+-----------+-----------------+

| "Spurs" | "Tony Parker" |

| "Hornets" | "Tony Parker" |

| "Spurs" | "Manu Ginobili" |

+-----------+-----------------+

Last update: October 27, 2021

4.3.1 Composite queries (clause structure)

- 160/927 - 2022 Vesoft Inc.

4.3.2 User-defined variables

User-defined variables allow passing the result of one statement to another.

OpenCypher compatibility

In openCypher, when you refer to the vertex, edge, or path of a variable, you need to name it first. For example:

The user-defined variable in the preceding query is v .

Native nGQL

User-defined variables are written as $var_name . The var_name consists of letters, numbers, or underline characters. Any other

characters are not permitted.

The user-defined variables are valid only at the current execution (namely, in this composite query). When the execution ends,

the user-defined variables will be automatically expired. The user-defined variables in one statement CANNOT be used in any

other clients, executions, or sessions.

You can use user-defined variables in composite queries. Details about composite queries, see Composite queries.

User-defined variables are case-sensitive.

Example

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;

+--+

| v |

+--+

| ("player100" :player{name: "Tim Duncan", age: 42}) |

+--+

Note

nebula> $var = GO FROM "player100" OVER follow YIELD dst(edge) AS id; \

 GO FROM $var.id OVER serve YIELD properties($$).name AS Team, \

 properties($^).name AS Player;

+-----------+-----------------+

| Team | Player |

+-----------+-----------------+

| "Spurs" | "Tony Parker" |

| "Hornets" | "Tony Parker" |

| "Spurs" | "Manu Ginobili" |

+-----------+-----------------+

Last update: October 27, 2021

4.3.2 User-defined variables

- 161/927 - 2022 Vesoft Inc.

4.3.3 Property reference

You can refer to the properties of a vertex or an edge in WHERE and YIELD syntax.

This function applies to native nGQL only.

Property reference for vertex

FOR SOURCE VERTEX

FOR DESTINATION VERTEX

Property reference for edge

FOR USER-DEFINED EDGE PROPERTY

FOR BUILT-IN PROPERTIES

Apart from the user-defined edge property, there are four built-in properties in each edge:

Note

$^.<tag_name>.<prop_name>

Parameter Description

$^ is used to get the property of the source vertex.

tag_name is the tag name of the vertex.

prop_name specifies the property name.

$$.<tag_name>.<prop_name>

Parameter Description

$$ is used to get the property of the destination vertex.

tag_name is the tag name of the vertex.

prop_name specifies the property name.

<edge_type>.<prop_name>

Parameter Description

edge_type is the edge type of the edge.

prop_name specifies the property name of the edge type.

Parameter Description

_src source vertex ID of the edge

_dst destination vertex ID of the edge

_type edge type

_rank the rank value for the edge

4.3.3 Property reference

- 162/927 - 2022 Vesoft Inc.

Examples

The following query returns the name property of the player tag on the source vertex and the age property of the player tag on the

destination vertex.

The following query returns the degree property of the edge type follow .

The following query returns the source vertex, the destination vertex, the edge type, and the edge rank value of the edge type

follow .

NebulaGraph 2.6.0 and later versions support the new Schema function. Similar statements as the above examples are written as

follows in 3.1.0.

In 3.1.0, NebulaGraph is still compatible with the old syntax.

nebula> GO FROM "player100" OVER follow YIELD $^.player.name AS startName, $$.player.age AS endAge;

+--------------+--------+

| startName | endAge |

+--------------+--------+

| "Tim Duncan" | 36 |

| "Tim Duncan" | 41 |

+--------------+--------+

nebula> GO FROM "player100" OVER follow YIELD follow.degree;

+---------------+

| follow.degree |

+---------------+

| 95 |

+---------------+

nebula> GO FROM "player100" OVER follow YIELD follow._src, follow._dst, follow._type, follow._rank;

+-------------+-------------+--------------+--------------+

| follow._src | follow._dst | follow._type | follow._rank |

+-------------+-------------+--------------+--------------+

| "player100" | "player101" | 17 | 0 |

| "player100" | "player125" | 17 | 0 |

+-------------+-------------+--------------+--------------+

Legacy version compatibility

GO FROM "player100" OVER follow YIELD properties($^).name AS startName, properties($$).age AS endAge;

GO FROM "player100" OVER follow YIELD properties(edge).degree;

GO FROM "player100" OVER follow YIELD src(edge), dst(edge), type(edge), rank(edge);

Last update: March 13, 2023

4.3.3 Property reference

- 163/927 - 2022 Vesoft Inc.

4.4 Operators

4.4.1 Comparison operators

NebulaGraph supports the following comparison operators.

The result of the comparison operation is true or false .

Comparability between values of different types is often undefined. The result could be NULL or others.

EMPTY is currently used only for checking, and does not support functions or operations such as GROUP BY , count() , sum() , max() , hash() ,

collect() , + or * .

OpenCypher compatibility

openCypher does not have EMPTY . Thus EMPTY is not supported in MATCH statements.

Examples

==

String comparisons are case-sensitive. Values of different types are not equal.

Name Description

= Assigns a value

+ Addition operator

- Minus operator

* Multiplication operator

/ Division operator

== Equal operator

!= , <> Not equal operator

> Greater than operator

>= Greater than or equal operator

< Less than operator

<= Less than or equal operator

% Modulo operator

- Changes the sign of the argument

IS NULL NULL check

IS NOT NULL Not NULL check

IS EMPTY EMPTY check

IS NOT EMPTY Not EMPTY check

Note

•

•

4.4 Operators

- 164/927 - 2022 Vesoft Inc.

The equal operator is == in nGQL, while in openCypher it is = .

>

>=

<

<=

!=

IS [NOT] NULL

Note

nebula> RETURN 'A' == 'a', toUpper('A') == toUpper('a'), toLower('A') == toLower('a');

+------------+------------------------------+------------------------------+

| ("A"=="a") | (toUpper("A")==toUpper("a")) | (toLower("A")==toLower("a")) |

+------------+------------------------------+------------------------------+

| false | true | true |

+------------+------------------------------+------------------------------+

nebula> RETURN '2' == 2, toInteger('2') == 2;

+----------+---------------------+

| ("2"==2) | (toInteger("2")==2) |

+----------+---------------------+

| false | true |

+----------+---------------------+

nebula> RETURN 3 > 2;

+-------+

| (3>2) |

+-------+

| true |

+-------+

nebula> WITH 4 AS one, 3 AS two \

 RETURN one > two AS result;

+--------+

| result |

+--------+

| true |

+--------+

nebula> RETURN 2 >= "2", 2 >= 2;

+----------+--------+

| (2>="2") | (2>=2) |

+----------+--------+

| __NULL__ | true |

+----------+--------+

nebula> YIELD 2.0 < 1.9;

+---------+

| (2<1.9) |

+---------+

| false |

+---------+

nebula> YIELD 0.11 <= 0.11;

+--------------+

| (0.11<=0.11) |

+--------------+

| true |

+--------------+

nebula> YIELD 1 != '1';

+----------+

| (1!="1") |

+----------+

| true |

+----------+

nebula> RETURN null IS NULL AS value1, null == null AS value2, null != null AS value3;

+--------+----------+----------+

| value1 | value2 | value3 |

+--------+----------+----------+

| true | __NULL__ | __NULL__ |

+--------+----------+----------+

4.4.1 Comparison operators

- 165/927 - 2022 Vesoft Inc.

IS [NOT] EMPTY

nebula> RETURN length(NULL), size(NULL), count(NULL), NULL IS NULL, NULL IS NOT NULL, sin(NULL), NULL + NULL, [1, NULL] IS NULL;

+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

| length(NULL) | size(NULL) | count(NULL) | NULL IS NULL | NULL IS NOT NULL | sin(NULL) | (NULL+NULL) | [1,NULL] IS NULL |

+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

| __NULL__ | __NULL__ | 0 | true | false | __NULL__ | __NULL__ | false |

+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

nebula> WITH {name: null} AS `map` \

 RETURN `map`.name IS NOT NULL;

+----------------------+

| map.name IS NOT NULL |

+----------------------+

| false |

+----------------------+

nebula> WITH {name: 'Mats', name2: 'Pontus'} AS map1, \

 {name: null} AS map2, {notName: 0, notName2: null } AS map3 \

 RETURN map1.name IS NULL, map2.name IS NOT NULL, map3.name IS NULL;

+-------------------+-----------------------+-------------------+

| map1.name IS NULL | map2.name IS NOT NULL | map3.name IS NULL |

+-------------------+-----------------------+-------------------+

| false | false | true |

+-------------------+-----------------------+-------------------+

nebula> MATCH (n:player) \

 RETURN n.player.age IS NULL, n.player.name IS NOT NULL, n.player.empty IS NULL;

+----------------------+---------------------------+------------------------+

| n.player.age IS NULL | n.player.name IS NOT NULL | n.player.empty IS NULL |

+----------------------+---------------------------+------------------------+

| false | true | true |

| false | true | true |

...

nebula> RETURN null IS EMPTY;

+---------------+

| NULL IS EMPTY |

+---------------+

| false |

+---------------+

nebula> RETURN "a" IS NOT EMPTY;

+------------------+

| "a" IS NOT EMPTY |

+------------------+

| true |

+------------------+

nebula> GO FROM "player100" OVER * WHERE properties($$).name IS NOT EMPTY YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "team204" |

| "player101" |

| "player125" |

+-------------+

Last update: March 13, 2023

4.4.1 Comparison operators

- 166/927 - 2022 Vesoft Inc.

4.4.2 Boolean operators

NebulaGraph supports the following boolean operators.

For the precedence of the operators, refer to Operator Precedence.

For the logical operations with NULL , refer to NULL.

Legacy version compatibility

Non-zero numbers cannot be converted to boolean values.

Name Description

AND Logical AND

NOT Logical NOT

OR Logical OR

XOR Logical XOR

•

Last update: March 13, 2023

4.4.2 Boolean operators

- 167/927 - 2022 Vesoft Inc.

4.4.3 Pipe operators

Multiple queries can be combined using pipe operators in nGQL.

OpenCypher compatibility

Pipe operators apply to native nGQL only.

Syntax

One major difference between nGQL and SQL is how sub-queries are composed.

In SQL, sub-queries are nested in the query statements.

In nGQL, the shell style PIPE (|) is introduced into the sub-queries.

Examples

If there is no YIELD clause to define the output, the destination vertex ID is returned by default. If a YIELD clause is applied, the

output is defined by the YIELD clause.

Users must define aliases in the YIELD clause for the reference operator $- to use, just like $-.dstid in the preceding example.

Performance tips

In NebulaGraph, pipes will affect the performance. Take A | B as an example, the effects are as follows:

Pipe operators operate synchronously. That is, the data can enter the pipe clause as a whole after the execution of clause A before

the pipe operator is completed.

Pipe operators need to be serialized and deserialized, which is executed in a single thread.

If A sends a large amount of data to | , the entire query request may be very slow. You can try to split this statement.

Send A from the application,

Split the return results on the application,

Send to multiple graphd processes concurrently,

Every graphd process executes part of B.

This is usually much faster than executing a complete A | B with a single graphd process.

•

•

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS dstid, properties($$).name AS Name | \

 GO FROM $-.dstid OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player102" |

| "player125" |

| "player100" |

+-------------+

1.

2.

3.

a.

b.

c.

d.

Last update: March 13, 2023

4.4.3 Pipe operators

- 168/927 - 2022 Vesoft Inc.

4.4.4 Reference operators

NGQL provides reference operators to represent a property in a WHERE or YIELD clause, or the output of the statement before the

pipe operator in a composite query.

OpenCypher compatibility

Reference operators apply to native nGQL only.

Reference operator List

Examples

Reference

operator

Description

$^ Refers to a source vertex property. For more information, see Property reference.

$$ Refers to a destination vertex property. For more information, see Property reference.

$- Refers to the output of the statement before the pipe operator in a composite query. For more

information, see Pipe.

The following example returns the age of the source vertex and the destination vertex.

nebula> GO FROM "player100" OVER follow YIELD properties($^).age AS SrcAge, properties($$).age AS DestAge;

+--------+---------+

| SrcAge | DestAge |

+--------+---------+

| 42 | 36 |

| 42 | 41 |

+--------+---------+

The following example returns the name and team of the players that player100 follows.

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id | \

 GO FROM $-.id OVER serve \

 YIELD $^.player.name AS Player, properties($$).name AS Team;

+-----------------+-----------+

| Player | Team |

+-----------------+-----------+

| "Tony Parker" | "Spurs" |

| "Tony Parker" | "Hornets" |

| "Manu Ginobili" | "Spurs" |

+-----------------+-----------+

Last update: December 1, 2021

4.4.4 Reference operators

- 169/927 - 2022 Vesoft Inc.

4.4.5 Set operators

This topic will describe the set operators, including UNION , UNION ALL , INTERSECT , and MINUS . To combine multiple queries, use these

set operators.

All set operators have equal precedence. If a nGQL statement contains multiple set operators, NebulaGraph will evaluate them

from left to right unless parentheses explicitly specify another order.

OpenCypher compatibility

Set operators apply to native nGQL only.

UNION, UNION DISTINCT, and UNION ALL

Operator UNION DISTINCT (or by short UNION) returns the union of two sets A and B without duplicated elements.

Operator UNION ALL returns the union of two sets A and B with duplicated elements.

The <left> and <right> must have the same number of columns and data types. Different data types are converted according to

the Type Conversion.

EXAMPLES

INTERSECT

Operator INTERSECT returns the intersection of two sets A and B (denoted by A ⋂ B).

Similar to UNION , the left and right must have the same number of columns and data types. Different data types are converted

according to the Type Conversion.

<left> UNION [DISTINCT | ALL] <right> [UNION [DISTINCT | ALL] <right> ...]

•

•

•

The following statement returns the union of two query results without duplicated elements.

nebula> GO FROM "player102" OVER follow YIELD dst(edge) \

 UNION \

 GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player101" |

| "player125" |

+-------------+

The following statement returns the union of two query results with duplicated elements.

nebula> GO FROM "player102" OVER follow YIELD dst(edge) \

 UNION ALL \

 GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

| "player101" |

| "player101" |

| "player125" |

+-------------+

UNION can also work with the YIELD statement. The DISTINCT keyword will check duplication by all the columns for every line, and remove duplicated lines if every column is the same.

nebula> GO FROM "player102" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age \

 UNION /* DISTINCT */ \

 GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age;

+-------------+--------+-----+

| id | Degree | Age |

+-------------+--------+-----+

| "player100" | 75 | 42 |

| "player101" | 75 | 36 |

| "player101" | 95 | 36 |

| "player125" | 95 | 41 |

+-------------+--------+-----+

<left> INTERSECT <right>

•

•

4.4.5 Set operators

- 170/927 - 2022 Vesoft Inc.

EXAMPLE

MINUS

Operator MINUS returns the subtraction (or difference) of two sets A and B (denoted by A-B). Always pay attention to the order of

left and right . The set A-B consists of elements that are in A but not in B.

EXAMPLE

Precedence of the set operators and pipe operators

Please note that when a query contains a pipe | and a set operator, the pipe takes precedence. Refer to Pipe for details. The

query GO FROM 1 UNION GO FROM 2 | GO FROM 3 is the same as the query GO FROM 1 UNION (GO FROM 2 | GO FROM 3) .

EXAMPLES

The above query executes the statements in the red bar first and then executes the statement in the green box.

The parentheses can change the execution priority. For example:

nebula> GO FROM "player102" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age \

 INTERSECT \

 GO FROM "player100" OVER follow \

 YIELD dst(edge) AS id, properties(edge).degree AS Degree, properties($$).age AS Age;

+----+--------+-----+

| id | Degree | Age |

+----+--------+-----+

+----+--------+-----+

<left> MINUS <right>

nebula> GO FROM "player100" OVER follow YIELD dst(edge) \

 MINUS \

 GO FROM "player102" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player125" |

+-------------+

nebula> GO FROM "player102" OVER follow YIELD dst(edge) \

 MINUS \

 GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

+-------------+

nebula> GO FROM "player102" OVER follow \

 YIELD dst(edge) AS play_dst \

 UNION \

 GO FROM "team200" OVER serve REVERSELY \

 YIELD src(edge) AS play_src \

 | GO FROM $-.play_src OVER follow YIELD dst(edge) AS play_dst;

+-------------+

| play_dst |

+-------------+

| "player100" |

| "player101" |

| "player117" |

| "player105" |

+-------------+

nebula> (GO FROM "player102" OVER follow \

 YIELD dst(edge) AS play_dst \

4.4.5 Set operators

- 171/927 - 2022 Vesoft Inc.

In the above query, the statements within the parentheses take precedence. That is, the UNION operation will be executed first,

and its output will be executed as the input of the next operation with pipes.

 UNION \

 GO FROM "team200" OVER serve REVERSELY \

 YIELD src(edge) AS play_dst) \

 | GO FROM $-.play_dst OVER follow YIELD dst(edge) AS play_dst;

Last update: March 13, 2023

4.4.5 Set operators

- 172/927 - 2022 Vesoft Inc.

4.4.6 String operators

You can use the following string operators for concatenating, querying, and matching.

All the string searchings or matchings are case-sensitive.

Examples

+

CONTAINS

The CONTAINS operator requires string types on both left and right sides.

(NOT) IN

Name Description

+ Concatenates strings.

CONTAINS Performs searchings in strings.

(NOT) IN Checks whether a value is within a set of values.

(NOT) STARTS WITH Performs matchings at the beginning of a string.

(NOT) ENDS WITH Performs matchings at the end of a string.

Regular expressions Perform string matchings using regular expressions.

Note

nebula> RETURN 'a' + 'b';

+-----------+

| ("a"+"b") |

+-----------+

| "ab" |

+-----------+

nebula> UNWIND 'a' AS a UNWIND 'b' AS b RETURN a + b;

+-------+

| (a+b) |

+-------+

| "ab" |

+-------+

nebula> MATCH (s:player)-[e:serve]->(t:team) WHERE id(s) == "player101" \

 AND t.team.name CONTAINS "ets" RETURN s.player.name, e.start_year, e.end_year, t.team.name;

+---------------+--------------+------------+-------------+

| s.player.name | e.start_year | e.end_year | t.team.name |

+---------------+--------------+------------+-------------+

| "Tony Parker" | 2018 | 2019 | "Hornets" |

+---------------+--------------+------------+-------------+

nebula> GO FROM "player101" OVER serve WHERE (STRING)properties(edge).start_year CONTAINS "19" AND \

 properties($^).name CONTAINS "ny" \

 YIELD properties($^).name, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+---------------------+-----------------------------+---------------------------+---------------------+

| properties($^).name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+---------------------+-----------------------------+---------------------------+---------------------+

| "Tony Parker" | 1999 | 2018 | "Spurs" |

+---------------------+-----------------------------+---------------------------+---------------------+

nebula> GO FROM "player101" OVER serve WHERE !(properties($$).name CONTAINS "ets") \

 YIELD properties($^).name, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+---------------------+-----------------------------+---------------------------+---------------------+

| properties($^).name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+---------------------+-----------------------------+---------------------------+---------------------+

| "Tony Parker" | 1999 | 2018 | "Spurs" |

+---------------------+-----------------------------+---------------------------+---------------------+

nebula> RETURN 1 IN [1,2,3], "Yao" NOT IN ["Yi", "Tim", "Kobe"], NULL IN ["Yi", "Tim", "Kobe"];

+----------------+------------------------------------+-------------------------------+

| (1 IN [1,2,3]) | ("Yao" NOT IN ["Yi","Tim","Kobe"]) | (NULL IN ["Yi","Tim","Kobe"]) |

+----------------+------------------------------------+-------------------------------+

4.4.6 String operators

- 173/927 - 2022 Vesoft Inc.

(NOT) STARTS WITH

(NOT) ENDS WITH

REGULAR EXPRESSIONS

Regular expressions cannot work with native nGQL statements (GO , FETCH , LOOKUP , etc.). Use it in openCypher only (MATCH , WHERE , etc.).

NebulaGraph supports filtering by using regular expressions. The regular expression syntax is inherited from std::regex . You can

match on regular expressions by using =~ 'regexp' . For example:

| true | true | __NULL__ |

+----------------+------------------------------------+-------------------------------+

nebula> RETURN 'apple' STARTS WITH 'app', 'apple' STARTS WITH 'a', 'apple' STARTS WITH toUpper('a');

+-----------------------------+---------------------------+------------------------------------+

| ("apple" STARTS WITH "app") | ("apple" STARTS WITH "a") | ("apple" STARTS WITH toUpper("a")) |

+-----------------------------+---------------------------+------------------------------------+

| true | true | false |

+-----------------------------+---------------------------+------------------------------------+

nebula> RETURN 'apple' STARTS WITH 'b','apple' NOT STARTS WITH 'app';

+---------------------------+---------------------------------+

| ("apple" STARTS WITH "b") | ("apple" NOT STARTS WITH "app") |

+---------------------------+---------------------------------+

| false | false |

+---------------------------+---------------------------------+

nebula> RETURN 'apple' ENDS WITH 'app', 'apple' ENDS WITH 'e', 'apple' ENDS WITH 'E', 'apple' ENDS WITH 'b';

+---------------------------+-------------------------+-------------------------+-------------------------+

| ("apple" ENDS WITH "app") | ("apple" ENDS WITH "e") | ("apple" ENDS WITH "E") | ("apple" ENDS WITH "b") |

+---------------------------+-------------------------+-------------------------+-------------------------+

| false | true | false | false |

+---------------------------+-------------------------+-------------------------+-------------------------+

Note

nebula> RETURN "384748.39" =~ "\\d+(\\.\\d{2})?";

+--------------------------------+

| ("384748.39"=~"\d+(\.\d{2})?") |

+--------------------------------+

| true |

+--------------------------------+

nebula> MATCH (v:player) WHERE v.player.name =~ 'Tony.*' RETURN v.player.name;

+---------------+

| v.player.name |

+---------------+

| "Tony Parker" |

+---------------+

Last update: March 13, 2023

4.4.6 String operators

- 174/927 - 2022 Vesoft Inc.

4.4.7 List operators

NebulaGraph supports the following list operators:

Examples

List operator Description

+ Concatenates lists.

IN Checks if an element exists in a list.

[] Accesses an element(s) in a list using the index operator.

nebula> YIELD [1,2,3,4,5]+[6,7] AS myList;

+-----------------------+

| myList |

+-----------------------+

| [1, 2, 3, 4, 5, 6, 7] |

+-----------------------+

nebula> RETURN size([NULL, 1, 2]);

+------------------+

| size([NULL,1,2]) |

+------------------+

| 3 |

+------------------+

nebula> RETURN NULL IN [NULL, 1];

+--------------------+

| (NULL IN [NULL,1]) |

+--------------------+

| __NULL__ |

+--------------------+

nebula> WITH [2, 3, 4, 5] AS numberlist \

 UNWIND numberlist AS number \

 WITH number \

 WHERE number IN [2, 3, 8] \

 RETURN number;

+--------+

| number |

+--------+

| 2 |

| 3 |

+--------+

nebula> WITH ['Anne', 'John', 'Bill', 'Diane', 'Eve'] AS names RETURN names[1] AS result;

+--------+

| result |

+--------+

| "John" |

+--------+

Last update: March 13, 2023

4.4.7 List operators

- 175/927 - 2022 Vesoft Inc.

4.4.8 Operator precedence

The following list shows the precedence of nGQL operators in descending order. Operators that are shown together on a line

have the same precedence.

- (negative number)

! , NOT

* , / , %

- , +

== , >= , > , <= , < , <> , !=

AND

OR , XOR

= (assignment)

For operators that occur at the same precedence level within an expression, evaluation proceeds left to right, with the exception

that assignments evaluate right to left.

The precedence of operators determines the order of evaluation of terms in an expression. To modify this order and group terms

explicitly, use parentheses.

Examples

OpenCypher compatibility

In openCypher, comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z in openCypher.

But in nGQL, x < y <= z is equivalent to (x < y) <= z . The result of (x < y) is a boolean. Compare it with an integer z , and you will

get the final result NULL .

•

•

•

•

•

•

•

•

nebula> RETURN 2+3*5;

+-----------+

| (2+(3*5)) |

+-----------+

| 17 |

+-----------+

nebula> RETURN (2+3)*5;

+-----------+

| ((2+3)*5) |

+-----------+

| 25 |

+-----------+

Last update: September 6, 2021

4.4.8 Operator precedence

- 176/927 - 2022 Vesoft Inc.

4.5 Functions and expressions

4.5 Functions and expressions

- 177/927 - 2022 Vesoft Inc.

4.5.1 Built-in math functions

Function descriptions

NebulaGraph supports the following built-in math functions:

4.5.1 Built-in math functions

- 178/927 - 2022 Vesoft Inc.

Function Description

double abs(double x) Returns the absolute value of the argument.

double floor(double

x)

Returns the largest integer value smaller than or equal to the argument. (Rounds down)

double ceil(double x) Returns the smallest integer greater than or equal to the argument. (Rounds up)

double round(double

x, int y)

Returns the rounded value of x. y specifies the rounding index (position). If y is greater than 0,

round at the yth position to the right of the decimal point. If y is less than 0, round at the yth

position to the left of the decimal point.

Pay attention to the floating-point precision when using this function.

double sqrt(double x) Returns the square root of the argument.

double cbrt(double x) Returns the cubic root of the argument.

double hypot(double

x, double y)

Returns the hypotenuse of a right-angled triangle.

double pow(double x,

double y)

Returns the result of x
y
.

double exp(double x) Returns the result of e
x
.

double exp2(double

x)

Returns the result of 2
x
.

double log(double x) Returns the base-e logarithm of the argument.

double log2(double x) Returns the base-2 logarithm of the argument.

double log10(double

x)

Returns the base-10 logarithm of the argument.

double sin(double x) Returns the sine of the argument.

double asin(double x) Returns the inverse sine of the argument.

double cos(double x) Returns the cosine of the argument.

double acos(double

x)

Returns the inverse cosine of the argument.

double tan(double x) Returns the tangent of the argument.

double atan(double x) Returns the inverse tangent of the argument.

double rand() Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.[0,1).

int rand32(int min,

int max)

Returns a random 32-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 32-bit integer.

int rand64(int min,

int max)

Returns a random 64-bit integer in [min, max) .

If you set only one argument, it is parsed as max and min is 0 by default.

If you set no argument, the system returns a random signed 64-bit integer.

collect() Puts all the collected values into a list.

avg() Returns the average value of the argument.

count() Returns the number of records.

max() Returns the maximum value.

min() Returns the minimum value.

4.5.1 Built-in math functions

- 179/927 - 2022 Vesoft Inc.

If the argument is NULL , the output is undefined.

Example

Function Description

std() Returns the population standard deviation.

sum() Returns the sum value.

bit_and() Bitwise AND.

bit_or() Bitwise OR.

bit_xor() Bitwise XOR.

int size() Returns the number of elements in a list or a map.

int range(int start, int

end, int step)

Returns a list of integers from [start,end] in the specified steps. step is 1 by default.

int sign(double x) Returns the signum of the given number.

If the number is 0, the system returns 0.

If the number is negative, the system returns -1.

If the number is positive, the system returns 1.

double e() Returns the base of the natural logarithm, e (2.718281828459045).

double pi() Returns the mathematical constant pi (3.141592653589793).

double radians() Converts degrees to radians. radians(180) returns 3.141592653589793 .

Note

The following statement supports aggregate functions.

nebula> GO FROM "player100" OVER follow YIELD dst(edge) AS dst, properties($$).age AS age \

 | GROUP BY $-.dst \

 YIELD \

 $-.dst AS dst, \

 toInteger((sum($-.age)/count($-.age)))+avg(distinct $-.age+1)+1 AS statistics;

+-------------+------------+

| dst | statistics |

+-------------+------------+

| "player125" | 84.0 |

| "player101" | 74.0 |

+-------------+------------+

Got 2 rows (time spent 4739/5064 us)

Last update: March 13, 2023

4.5.1 Built-in math functions

- 180/927 - 2022 Vesoft Inc.

4.5.2 Built-in string functions

NebulaGraph supports the following built-in string functions:

Like SQL, the position index of nGQL starts from 1 , while in C language it starts from 0 .

If the argument is NULL , the return is undefined.

Note

Function Description

int strcasecmp(string a,

string b)

Compares string a and b without case sensitivity. When a = b, the return value is 0. When a

> b, the return value is greater than 0. When a < b, the return value is less than 0.

string lower(string a) Returns the argument in lowercase.

string toLower(string a) The same as lower() .

string upper(string a) Returns the argument in uppercase.

string toUpper(string a) The same as upper() .

int length(string a) Returns the length of the given string in bytes.

string trim(string a) Removes leading and trailing spaces.

string ltrim(string a) Removes leading spaces.

string rtrim(string a) Removes trailing spaces.

string left(string a, int count) Returns a substring consisting of count characters from the left side of string a. If string a is

shorter than count , the system returns string a.

string right(string a, int

count)

Returns a substring consisting of count characters from the right side of string a. If string a

is shorter than count , the system returns string a.

string lpad(string a, int size,

string letters)

Left-pads string a with string letters and returns a substring with the length of size .

string rpad(string a, int size,

string letters)

Right-pads string a with string letters and returns a substring with the length of size .

string substr(string a, int pos,

int count)

Returns a substring extracting count characters starting from the specified position pos of

string a.

string substring(string a, int

pos, int count)

The same as substr() .

string reverse(string) Returns a string in reverse order.

string replace(string a, string

b, string c)

Replaces string b in string a with string c.

list split(string a, string b) Splits string a at string b and returns a list of strings.

string toString() Takes in any data type and converts it into a string.

int hash() Takes in any data type and encodes it into a hash value.

Note

4.5.2 Built-in string functions

- 181/927 - 2022 Vesoft Inc.

Explanations for the return of substr() and substring()

The position index starts from 0 .

If pos is 0, the whole string is returned.

If pos is greater than the maximum string index, an empty string is returned.

If pos is a negative number, BAD_DATA is returned.

If count is omitted, the function returns the substring starting at the position given by pos and extending to the end of the

string.

If count is 0, an empty string is returned.

Using NULL as any of the argument of substr() will cause an issue.

In openCypher, if a is null , null is returned.

In openCypher, if pos is 0, the returned substring starts from the first character, and extend to count characters.

In openCypher, if either pos or count is null or a negative integer, an issue is raised.

•

•

•

•

•

•

•

OpenCypher compatibility

•

•

•

Last update: March 13, 2023

4.5.2 Built-in string functions

- 182/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/878

4.5.3 Built-in date and time functions

NebulaGraph supports the following built-in date and time functions:

For more information, see Date and time types.

Examples

Function Description

int now() Returns the current date and time of the system time zone.

timestamp timestamp() Returns the current date and time of the system time zone.

date date() Returns the current UTC date based on the current system.

time time() Returns the current UTC time based on the current system.

datetime datetime() Returns the current UTC date and time based on the current system.

map duration() Returns the period of time. It can be used to calculate the specified time.

nebula> RETURN now(), timestamp(), date(), time(), datetime();

+------------+-------------+------------+-----------------+----------------------------+

| now() | timestamp() | date() | time() | datetime() |

+------------+-------------+------------+-----------------+----------------------------+

| 1640057560 | 1640057560 | 2021-12-21 | 03:32:40.351000 | 2021-12-21T03:32:40.351000 |

+------------+-------------+------------+-----------------+----------------------------+

Last update: March 13, 2023

4.5.3 Built-in date and time functions

- 183/927 - 2022 Vesoft Inc.

4.5.4 Schema functions

NebulaGraph supports the following schema functions.

For nGQL statements

The following functions are available in YIELD and WHERE clauses.

Since vertex, edge, vertices, edges, and path are keywords, you need to use AS <alias> to set the alias, such as GO FROM "player100" OVER

follow YIELD edge AS e; .

Note

•

Function Description

id(vertex) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

map

properties(vertex)

Returns the properties of a vertex.

map properties(edge) Returns the properties of an edge.

string type(edge) Returns the edge type of an edge.

src(edge) Returns the source vertex ID of an edge. The data type of the result is the same as the vertex ID.

dst(edge) Returns the destination vertex ID of an edge. The data type of the result is the same as the vertex

ID.

int rank(edge) Returns the rank value of an edge.

vertex Returns the information of vertices, including VIDs, tags, properties, and values.

edge Returns the information of edges, including edge types, source vertices, destination vertices, ranks,

properties, and values.

vertices Returns the information of vertices in a subgraph. For more information, see GET SUBGRAPH。

edges Returns the information of edges in a subgraph. For more information, see GET SUBGRAPH。

path Returns the information of a path. For more information, see FIND PATH。

Note

4.5.4 Schema functions

- 184/927 - 2022 Vesoft Inc.

For statements compatible with openCypher

Examples

Function Description

id(<vertex>) Returns the ID of a vertex. The data type of the result is the same as the vertex ID.

list tags(<vertex>) Returns the Tag of a vertex, which serves the same purpose as labels().

list labels(<vertex>) Returns the Tag of a vertex, which serves the same purpose as tags(). This function is

used for compatibility with openCypher syntax.

map

properties(<vertex_or_edge>)

Returns the properties of a vertex or an edge.

string type(<edge>) Returns the edge type of an edge.

src(<edge>) Returns the source vertex ID of an edge. The data type of the result is the same as the

vertex ID.

dst(<edge>) Returns the destination vertex ID of an edge. The data type of the result is the same as

the vertex ID.

vertex startNode(<path>) Visits a path and returns its source vertex ID.

string endNode(<path>) Visits a path and returns its destination vertex ID.

int rank(<edge>) Returns the rank value of an edge.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD src(edge) AS destination;

+-------------+

| destination |

+-------------+

| "player101" |

| "player102" |

...

nebula> LOOKUP ON player WHERE player.age > 45 YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player144" |

| "player140" |

+-------------+

nebula> MATCH (a:player) WHERE id(a) == "player100" \

 RETURN tags(a), labels(a), properties(a);

+------------+------------+-------------------------------+

| tags(a) | labels(a) | properties(a) |

+------------+------------+-------------------------------+

| ["player"] | ["player"] | {age: 42, name: "Tim Duncan"} |

+------------+------------+-------------------------------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) \

 RETURN type(r), rank(r);

+---------+---------+

| type(r) | rank(r) |

+---------+---------+

| "serve" | 0 |

+---------+---------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) \

 RETURN startNode(p), endNode(p);

+--+----------------------------------+

| startNode(p) | endNode(p) |

+--+----------------------------------+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("team204" :team{name: "Spurs"}) |

+--+----------------------------------+

Last update: March 13, 2023

4.5.4 Schema functions

- 185/927 - 2022 Vesoft Inc.

4.5.5 CASE expressions

The CASE expression uses conditions to filter the result of an nGQL query statement. It is usually used in the YIELD and RETURN

clauses. nGQL provides two forms of CASE expressions just like openCypher: the simple form and the generic form.

The CASE expression will traverse all the conditions. When the first condition is met, the CASE expression stops reading the

conditions and returns the result. If no conditions are met, it returns the result in the ELSE clause. If there is no ELSE clause and

no conditions are met, it returns NULL .

The simple form of CASE expressions

SYNTAX

Always remember to end the CASE expression with an END .

EXAMPLES

The generic form of CASE expressions

SYNTAX

CASE <comparer>

WHEN <value> THEN <result>

[WHEN ...]

[ELSE <default>]

END

Caution

Parameter Description

comparer A value or a valid expression that outputs a value. This value is used to compare with the value .

value It will be compared with the comparer . If the value matches the comparer , then this condition is met.

result The result is returned by the CASE expression if the value matches the comparer .

default The default is returned by the CASE expression if no conditions are met.

nebula> RETURN \

 CASE 2+3 \

 WHEN 4 THEN 0 \

 WHEN 5 THEN 1 \

 ELSE -1 \

 END \

 AS result;

+--------+

| result |

+--------+

| 1 |

+--------+

nebula> GO FROM "player100" OVER follow \

 YIELD properties($$).name AS Name, \

 CASE properties($$).age > 35 \

 WHEN true THEN "Yes" \

 WHEN false THEN "No" \

 ELSE "Nah" \

 END \

 AS Age_above_35;

+-----------------+--------------+

| Name | Age_above_35 |

+-----------------+--------------+

| "Tony Parker" | "Yes" |

| "Manu Ginobili" | "Yes" |

+-----------------+--------------+

CASE

WHEN <condition> THEN <result>

[WHEN ...]

4.5.5 CASE expressions

- 186/927 - 2022 Vesoft Inc.

EXAMPLES

Differences between the simple form and the generic form

To avoid the misuse of the simple form and the generic form, it is important to understand their differences. The following

example can help explain them.

The preceding GO query is intended to output Yes when the player's age is above 35. However, in this example, when the player's

age is 36, the actual output is not as expected: It is No instead of Yes .

This is because the query uses the CASE expression in the simple form, and a comparison between the values of $$.player.age and

$$.player.age > 35 is made. When the player age is 36:

The value of $$.player.age is 36 . It is an integer.

$$.player.age > 35 is evaluated to be true . It is a boolean.

The values of $$.player.age and $$.player.age > 35 do not match. Therefore, the condition is not met and No is returned.

[ELSE <default>]

END

Parameter Description

condition If the condition is evaluated as true, the result is returned by the CASE expression.

result The result is returned by the CASE expression if the condition is evaluated as true.

default The default is returned by the CASE expression if no conditions are met.

nebula> YIELD \

 CASE WHEN 4 > 5 THEN 0 \

 WHEN 3+4==7 THEN 1 \

 ELSE 2 \

 END \

 AS result;

+--------+

| result |

+--------+

| 1 |

+--------+

nebula> MATCH (v:player) WHERE v.player.age > 30 \

 RETURN v.player.name AS Name, \

 CASE \

 WHEN v.player.name STARTS WITH "T" THEN "Yes" \

 ELSE "No" \

 END \

 AS Starts_with_T;

+---------------------+---------------+

| Name | Starts_with_T |

+---------------------+---------------+

| "Tim" | "Yes" |

| "LaMarcus Aldridge" | "No" |

| "Tony Parker" | "Yes" |

+---------------------+---------------+

nebula> GO FROM "player100" OVER follow \

 YIELD properties($$).name AS Name, properties($$).age AS Age, \

 CASE properties($$).age \

 WHEN properties($$).age > 35 THEN "Yes" \

 ELSE "No" \

 END \

 AS Age_above_35;

+-----------------+-----+--------------+

| Name | Age | Age_above_35 |

+-----------------+-----+--------------+

| "Tony Parker" | 36 | "No" |

| "Manu Ginobili" | 41 | "No" |

+-----------------+-----+--------------+

•

•

Last update: March 8, 2022

4.5.5 CASE expressions

- 187/927 - 2022 Vesoft Inc.

4.5.6 List functions

NebulaGraph supports the following list functions:

If the argument is NULL , the output is undefined.

Examples

Function Description

keys(expr) Returns a list containing the string representations for all the property names of vertices, edges,

or maps.

labels(vertex) Returns the list containing all the tags of a vertex.

nodes(path) Returns the list containing all the vertices in a path.

range(start, end [,

step])

Returns the list containing all the fixed-length steps in [start,end] . step is 1 by default.

relationships(path) Returns the list containing all the relationships in a path.

reverse(list) Returns the list reversing the order of all elements in the original list.

tail(list) Returns all the elements of the original list, excluding the first one.

head(list) Returns the first element of a list.

last(list) Returns the last element of a list.

coalesce(list) Returns the first not null value in a list.

reduce() See reduce() function.

Note

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids \

 RETURN reverse(ids), tail(ids), head(ids), last(ids), coalesce(ids);

+-----------------------------------+-------------------------+-----------+-----------+---------------+

| reverse(ids) | tail(ids) | head(ids) | last(ids) | coalesce(ids) |

+-----------------------------------+-------------------------+-----------+-----------+---------------+

| [487, 521, "abc", 4923, __NULL__] | [4923, "abc", 521, 487] | __NULL__ | 487 | 4923 |

+-----------------------------------+-------------------------+-----------+-----------+---------------+

nebula> MATCH (a:player)-[r]->() \

 WHERE id(a) == "player100" \

 RETURN labels(a), keys(r);

+------------+----------------------------+

| labels(a) | keys(r) |

+------------+----------------------------+

| ["player"] | ["degree"] |

| ["player"] | ["degree"] |

| ["player"] | ["end_year", "start_year"] |

+------------+----------------------------+

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) \

 WHERE a.player.name == "Tim Duncan" AND c.team.name == "Spurs" \

 RETURN nodes(p);

+---+

| nodes(p) |

+---+

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}), ("team204" :team{name: "Spurs"})] |

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player125" :player{age: 41, name: "Manu Ginobili"}), ("team204" :team{name: "Spurs"})] |

+---+

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) WHERE a.player.name == "Tim Duncan" AND c.team.name == "Spurs" RETURN relationships(p);

+---+

| relationships(p) |

+---+

| [[:follow "player100"->"player101" @0 {degree: 95}], [:serve "player101"->"team204" @0 {end_year: 2018, start_year: 1999}]] |

| [[:follow "player100"->"player125" @0 {degree: 95}], [:serve "player125"->"team204" @0 {end_year: 2018, start_year: 2002}]] |

+---+

4.5.6 List functions

- 188/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

4.5.6 List functions

- 189/927 - 2022 Vesoft Inc.

4.5.7 count() function

The count() function counts the number of the specified values or rows.

(Native nGQL) You can use count() and GROUP BY together to group and count the number of specific values. Use YIELD to return.

(OpenCypher style) You can use count() and RETURN . GROUP BY is not necessary.

Syntax

count(*) returns the number of rows (including NULL).

count(expr) returns the number of non-NULL values that meet the expression.

count() and size() are different.

EXAMPLES

The preceding example retrieves two columns:

$-.Name : the names of the people.

count(*) : how many times the names show up.

Because there are no duplicate names in the basketballplayer dataset, the number 2 in the column count(*) shows that the person

in that row and player101 have followed each other.

•

•

count({expr | *})

•

•

•

nebula> WITH [NULL, 1, 1, 2, 2] As a UNWIND a AS b \

 RETURN count(b), count(*), count(DISTINCT b);

+----------+----------+-------------------+

| count(b) | count(*) | count(distinct b) |

+----------+----------+-------------------+

| 4 | 5 | 2 |

+----------+----------+-------------------+

The statement in the following example searches for the people whom `player101` follows and people who follow `player101`, i.e. a bidirectional query.

nebula> GO FROM "player101" OVER follow BIDIRECT \

 YIELD properties($$).name AS Name \

 | GROUP BY $-.Name YIELD $-.Name, count(*);

+---------------------+----------+

| $-.Name | count(*) |

+---------------------+----------+

| "LaMarcus Aldridge" | 2 |

| "Tim Duncan" | 2 |

| "Marco Belinelli" | 1 |

| "Manu Ginobili" | 1 |

| "Boris Diaw" | 1 |

| "Dejounte Murray" | 1 |

+---------------------+----------+

•

•

a: The statement in the following example retrieves the age distribution of the players in the dataset.

nebula> LOOKUP ON player \

 YIELD player.age As playerage \

 | GROUP BY $-.playerage \

 YIELD $-.playerage as age, count(*) AS number \

 | ORDER BY $-.number DESC, $-.age DESC;

+-----+--------+

| age | number |

+-----+--------+

| 34 | 4 |

| 33 | 4 |

| 30 | 4 |

| 29 | 4 |

| 38 | 3 |

+-----+--------+

...

b: The statement in the following example retrieves the age distribution of the players in the dataset.

nebula> MATCH (n:player) \

 RETURN n.player.age as age, count(*) as number \

 ORDER BY number DESC, age DESC;

+-----+--------+

| age | number |

+-----+--------+

| 34 | 4 |

4.5.7 count() function

- 190/927 - 2022 Vesoft Inc.

| 33 | 4 |

| 30 | 4 |

| 29 | 4 |

| 38 | 3 |

+-----+--------+

...

The statement in the following example counts the number of edges that Tim Duncan relates.

nebula> MATCH (v:player{name:"Tim Duncan"}) -- (v2) \

 RETURN count(DISTINCT v2);

+--------------------+

| count(distinct v2) |

+--------------------+

| 11 |

+--------------------+

The statement in the following example counts the number of edges that Tim Duncan relates and returns two columns (no DISTINCT and DISTINCT) in multi-hop queries.

nebula> MATCH (n:player {name : "Tim Duncan"})-[]->(friend:player)-[]->(fof:player) \

 RETURN count(fof), count(DISTINCT fof);

+------------+---------------------+

| count(fof) | count(distinct fof) |

+------------+---------------------+

| 4 | 3 |

+------------+---------------------+

Last update: January 13, 2022

4.5.7 count() function

- 191/927 - 2022 Vesoft Inc.

4.5.8 collect()

The collect() function returns a list containing the values returned by an expression. Using this function aggregates data by

merging multiple records or values into a single list.

The aggregate function collect() works like GROUP BY in SQL.

Examples

nebula> UNWIND [1, 2, 1] AS a \

 RETURN a;

+---+

| a |

+---+

| 1 |

| 2 |

| 1 |

+---+

nebula> UNWIND [1, 2, 1] AS a \

 RETURN collect(a);

+------------+

| collect(a) |

+------------+

| [1, 2, 1] |

+------------+

nebula> UNWIND [1, 2, 1] AS a \

 RETURN a, collect(a), size(collect(a));

+---+------------+------------------+

| a | collect(a) | size(COLLECT(a)) |

+---+------------+------------------+

| 2 | [2] | 1 |

| 1 | [1, 1] | 2 |

+---+------------+------------------+

The following examples sort the results in descending order, limit output rows to 3, and collect the output into a list.œ

nebula> UNWIND ["c", "b", "a", "d"] AS p \

 WITH p AS q \

 ORDER BY q DESC LIMIT 3 \

 RETURN collect(q);

+-----------------+

| collect(q) |

+-----------------+

| ["d", "c", "b"] |

+-----------------+

nebula> WITH [1, 1, 2, 2] AS coll \

 UNWIND coll AS x \

 WITH DISTINCT x \

 RETURN collect(x) AS ss;

+--------+

| ss |

+--------+

| [1, 2] |

+--------+

nebula> MATCH (n:player) \

 RETURN collect(n.player.age);

+---+

| collect(n.player.age) |

+---+

| [32, 32, 34, 29, 41, 40, 33, 25, 40, 37, ...

...

The following example aggregates all the players' names by their ages.

nebula> MATCH (n:player) \

 RETURN n.player.age AS age, collect(n.player.name);

+-----+--+

| age | collect(n.player.name) |

+-----+--+

| 24 | ["Giannis Antetokounmpo"] |

| 20 | ["Luka Doncic"] |

| 25 | ["Joel Embiid", "Kyle Anderson"] |

+-----+--+

...

Last update: January 13, 2022

4.5.8 collect()

- 192/927 - 2022 Vesoft Inc.

4.5.9 reduce() function

This topic will describe the reduce function.

OpenCypher Compatibility

In openCypher, the reduce() function is not defined. nGQL will implement the reduce() function in the Cypher way.

Syntax

The reduce() function applies an expression to each element in a list one by one, chains the result to the next iteration by taking it

as the initial value, and returns the final result. This function iterates each element e in the given list, runs the expression on e ,

accumulates the result with the initial value, and store the new result in the accumulator as the initial value of the next iteration.

It works like the fold or reduce method in functional languages such as Lisp and Scala.

The type of the value returned depends on the parameters provided, along with the semantics of the expression.

Examples

reduce(<accumulator> = <initial>, <variable> IN <list> | <expression>)

Parameter Description

accumulator A variable that will hold the accumulated results as the list is iterated.

initial An expression that runs once to give an initial value to the accumulator .

variable A variable in the list that will be applied to the expression successively.

list A list or a list of expressions.

expression This expression will be run on each element in the list once and store the result value in the accumulator .

Note

nebula> RETURN reduce(totalNum = 10, n IN range(1, 3) | totalNum + n) AS r;

+----+

| r |

+----+

| 16 |

+----+

nebula> RETURN reduce(totalNum = -4 * 5, n IN [1, 2] | totalNum + n * 2) AS r;

+-----+

| r |

+-----+

| -14 |

+-----+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \

 RETURN nodes(p)[0].age AS src1, nodes(p)[1].age AS dst2, \

 reduce(totalAge = 100, n IN nodes(p) | totalAge + n.age) AS sum;

+------+------+-----+

| src1 | dst2 | sum |

+------+------+-----+

| 34 | 31 | 165 |

| 34 | 29 | 163 |

| 34 | 33 | 167 |

| 34 | 26 | 160 |

| 34 | 34 | 168 |

| 34 | 37 | 171 |

+------+------+-----+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" YIELD id(vertex) AS VertexID \

 | GO FROM $-.VertexID over follow \

 WHERE properties(edge).degree != reduce(totalNum = 5, n IN range(1, 3) | properties($$).age + totalNum + n) \

 YIELD properties($$).name AS id, properties($$).age AS age, properties(edge).degree AS degree;

+---------------------+-----+--------+

| id | age | degree |

+---------------------+-----+--------+

| "Tim Duncan" | 42 | 95 |

4.5.9 reduce() function

- 193/927 - 2022 Vesoft Inc.

| "LaMarcus Aldridge" | 33 | 90 |

| "Manu Ginobili" | 41 | 95 |

+---------------------+-----+--------+

Last update: December 8, 2021

4.5.9 reduce() function

- 194/927 - 2022 Vesoft Inc.

4.5.10 hash function

The hash() function returns the hash value of the argument. The argument can be a number, a string, a list, a boolean, null, or an

expression that evaluates to a value of the preceding data types.

The source code of the hash() function (MurmurHash2), seed (0xc70f6907UL), and other parameters can be found in MurmurHash2.h .

For Java, the hash function operates as follows.

Legacy version compatibility

In nGQL 1.0, when nGQL does not support string VIDs, a common practice is to hash the strings first and then use the values as

VIDs. But in nGQL 2.0, both string VIDs and integer VIDs are supported, so there is no need to use hash() to set VIDs.

Hash a number

Hash a string

Hash a list

Hash a boolean

Hash NULL

MurmurHash2.hash64("to_be_hashed".getBytes(),"to_be_hashed".getBytes().length, 0xc70f6907)

nebula> YIELD hash(-123);

+--------------+

| hash(-(123)) |

+--------------+

| -123 |

+--------------+

nebula> YIELD hash("to_be_hashed");

+----------------------+

| hash(to_be_hashed) |

+----------------------+

| -1098333533029391540 |

+----------------------+

nebula> YIELD hash([1,2,3]);

+----------------+

| hash([1,2,3]) |

+----------------+

| 11093822460243 |

+----------------+

nebula> YIELD hash(true);

+------------+

| hash(true) |

+------------+

| 1 |

+------------+

nebula> YIELD hash(false);

+-------------+

| hash(false) |

+-------------+

| 0 |

+-------------+

nebula> YIELD hash(NULL);

+------------+

| hash(NULL) |

+------------+

| -1 |

+------------+

4.5.10 hash function

- 195/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula/blob/master/src/common/base/MurmurHash2.h

Hash an expression

nebula> YIELD hash(toLower("HELLO NEBULA"));

+-------------------------------+

| hash(toLower("HELLO NEBULA")) |

+-------------------------------+

| -8481157362655072082 |

+-------------------------------+

Last update: August 27, 2021

4.5.10 hash function

- 196/927 - 2022 Vesoft Inc.

4.5.11 concat function

The concat() and concat_ws() functions return strings concatenated by one or more strings.

concat() function

The concat() function requires at least two or more strings. All the parameters are concatenated into one string.

If there is only one string, the string itself is returned.

If any one of the strings is NULL , NULL is returned.

SYNTAX

EXAMPLES

concat_ws() function

The concat_ws() function connects two or more strings with a predefined separator.

If the separator is NULL , the concat_ws() function returns NULL .

If the separator is not NULL and there is only one string, the string itself is returned.

If the separator is not NULL and there is a NULL in the strings, NULL is ignored during the concatenation.

SYNTAX

EXAMPLES

•

•

concat(string1,string2,...)

//This example concatenates 1, 2, and 3.

nebula> RETURN concat("1","2","3") AS r;

+-------+

| r |

+-------+

| "123" |

+-------+

//In this example, one of the string is NULL.

nebula> RETURN concat("1","2",NULL) AS r;

+----------+

| r |

+----------+

| __NULL__ |

+----------+

nebula> GO FROM "player100" over follow \

 YIELD concat(src(edge), properties($^).age, properties($$).name, properties(edge).degree) AS A;

+------------------------------+

| A |

+------------------------------+

| "player10042Tony Parker95" |

| "player10042Manu Ginobili95" |

+------------------------------+

•

•

•

concat_ws(separator,string1,string2,...)

//This example concatenates a, b, and c with the separator +.

nebula> RETURN concat_ws("+","a","b","c") AS r;

+---------+

| r |

+---------+

| "a+b+c" |

+---------+

//In this example, the separator is NULL.

neubla> RETURN concat_ws(NULL,"a","b","c") AS r;

+----------+

| r |

+----------+

| __NULL__ |

+----------+

//In this example, the separator is + and there is a NULL in the strings.

4.5.11 concat function

- 197/927 - 2022 Vesoft Inc.

nebula> RETURN concat_ws("+","a",NULL,"b","c") AS r;

+---------+

| r |

+---------+

| "a+b+c" |

+---------+

//In this example, the separator is + and there is only one string.

nebula> RETURN concat_ws("+","a") AS r;

+-----+

| r |

+-----+

| "a" |

+-----+

nebula> GO FROM "player100" over follow \

 YIELD concat_ws(" ",src(edge), properties($^).age, properties($$).name, properties(edge).degree) AS A;

+---------------------------------+

| A |

+---------------------------------+

| "player100 42 Tony Parker 95" |

| "player100 42 Manu Ginobili 95" |

+---------------------------------+

Last update: October 27, 2021

4.5.11 concat function

- 198/927 - 2022 Vesoft Inc.

4.5.12 Predicate functions

Predicate functions return true or false . They are most commonly used in WHERE clauses.

NebulaGraph supports the following predicate functions:

NULL is returned if the list is NULL or all of its elements are NULL.

In openCypher, only function exists() is defined and specified. The other functions are implement-dependent.

Syntax

Examples

Functions Description

exists() Returns true if the specified property exists in the vertex, edge or map. Otherwise, returns false .

any() Returns true if the specified predicate holds for at least one element in the given list. Otherwise, returns

false .

all() Returns true if the specified predicate holds for all elements in the given list. Otherwise, returns false .

none() Returns true if the specified predicate holds for no element in the given list. Otherwise, returns false .

single() Returns true if the specified predicate holds for exactly one of the elements in the given list. Otherwise,

returns false .

Note

Compatibility

<predicate>(<variable> IN <list> WHERE <condition>)

nebula> RETURN any(n IN [1, 2, 3, 4, 5, NULL] \

 WHERE n > 2) AS r;

+------+

| r |

+------+

| true |

+------+

nebula> RETURN single(n IN range(1, 5) \

 WHERE n == 3) AS r;

+------+

| r |

+------+

| true |

+------+

nebula> RETURN none(n IN range(1, 3) \

 WHERE n == 0) AS r;

+------+

| r |

+------+

| true |

+------+

nebula> WITH [1, 2, 3, 4, 5, NULL] AS a \

 RETURN any(n IN a WHERE n > 2);

+-------------------------+

| any(n IN a WHERE (n>2)) |

+-------------------------+

| true |

+-------------------------+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \

 RETURN nodes(p)[0].name AS n1, nodes(p)[1].name AS n2, \

 all(n IN nodes(p) WHERE n.name NOT STARTS WITH "D") AS b;

+----------------+-------------------+-------+

4.5.12 Predicate functions

- 199/927 - 2022 Vesoft Inc.

| n1 | n2 | b |

+----------------+-------------------+-------+

| "LeBron James" | "Danny Green" | false |

| "LeBron James" | "Dejounte Murray" | false |

| "LeBron James" | "Chris Paul" | true |

| "LeBron James" | "Kyrie Irving" | true |

| "LeBron James" | "Carmelo Anthony" | true |

| "LeBron James" | "Dwyane Wade" | false |

+----------------+-------------------+-------+

nebula> MATCH p = (n:player{name:"LeBron James"})-[:follow]->(m) \

 RETURN single(n IN nodes(p) WHERE n.age > 40) AS b;

+------+

| b |

+------+

| true |

+------+

nebula> MATCH (n:player) \

 RETURN exists(n.player.id), n IS NOT NULL;

+--------------+---------------+

| exists(n.id) | n IS NOT NULL |

+--------------+---------------+

| false | true |

...

nebula> MATCH (n:player) \

 WHERE exists(n['name']) RETURN n;

+---+

| n |

+---+

| ("Grant Hill" :player{age: 46, name: "Grant Hill"}) |

| ("Marc Gasol" :player{age: 34, name: "Marc Gasol"}) |

+---+

...

Last update: March 13, 2023

4.5.12 Predicate functions

- 200/927 - 2022 Vesoft Inc.

4.5.13 Geography functions

Geography functions are used to generate or perform operations on the value of the geography data type.

For descriptions of the geography data types, see Geography.

Descriptions

Examples

Function Return

Type

Description

ST_Point(longitude, latitude) GEOGRAPHY Creates the geography that contains a point.

ST_GeogFromText(wkt_string) GEOGRAPHY Returns the geography corresponding to the input WKT

string.

ST_ASText(geography) STRING Returns the WKT string of the input geography.

ST_Centroid(geography) GEOGRAPHY Returns the centroid of the input geography in the form of

the single point geography.

ST_ISValid(geography) BOOL Returns whether the input geography is valid.

ST_Intersects(geography_1,

geography_2)

BOOL Returns whether geography_1 and geography_2 have

intersections.

ST_Covers(geography_1, geography_2) BOOL Returns whether geography_1 completely contains

geography_2. If there is no point outside geography_1 in

geography_2, return True.

ST_CoveredBy(geography_1,

geography_2)

BOOL Returns whether geography_2 completely contains

geography_1.If there is no point outside geography_2 in

geography_1, return True.

ST_DWithin(geography_1, geography_2,

distance)

BOOL If the distance between one point (at least) in geography_1

and one point in geography_2 is less than or equal to the

distance specified by the distance parameter (measured by

meters), return True.

ST_Distance(geography_1, geography_2) FLOAT Returns the smallest possible distance (measured by meters)

between two non-empty geographies.

S2_CellIdFromPoint(point_geography) INT Returns the S2 Cell ID that covers the point geography.

S2_CoveringCellIds(geography) ARRAY<INT64> Returns an array of S2 Cell IDs that cover the input

geography.

nebula> RETURN ST_ASText(ST_Point(1,1));

+--------------------------+

| ST_ASText(ST_Point(1,1)) |

+--------------------------+

| "POINT(1 1)" |

+--------------------------+

nebula> RETURN ST_ASText(ST_GeogFromText("POINT(3 8)"));

+--+

| ST_ASText(ST_GeogFromText("POINT(3 8)")) |

+--+

| "POINT(3 8)" |

+--+

nebula> RETURN ST_ASTEXT(ST_Centroid(ST_GeogFromText("LineString(0 1,1 0)")));

+--+

| ST_ASTEXT(ST_Centroid(ST_GeogFromText("LineString(0 1,1 0)"))) |

+--+

| "POINT(0.5000380800773782 0.5000190382261059)" |

+--+

4.5.13 Geography functions

- 201/927 - 2022 Vesoft Inc.

https://s2geometry.io/devguide/s2cell_hierarchy

nebula> RETURN ST_ISValid(ST_GeogFromText("POINT(3 8)"));

+---+

| ST_ISValid(ST_GeogFromText("POINT(3 8)")) |

+---+

| true |

+---+

nebula> RETURN ST_Intersects(ST_GeogFromText("LineString(0 1,1 0)"),ST_GeogFromText("LineString(0 0,1 1)"));

+--+

| ST_Intersects(ST_GeogFromText("LineString(0 1,1 0)"),ST_GeogFromText("LineString(0 0,1 1)")) |

+--+

| true |

+--+

nebula> RETURN ST_Covers(ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"),ST_Point(1,2));

+--+

| ST_Covers(ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"),ST_Point(1,2)) |

+--+

| true |

+--+

nebula> RETURN ST_CoveredBy(ST_Point(1,2),ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))"));

+---+

| ST_CoveredBy(ST_Point(1,2),ST_GeogFromText("POLYGON((0 0,10 0,10 10,0 10,0 0))")) |

+---+

| true |

+---+

nebula> RETURN ST_dwithin(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"),20000000000.0);

+---+

| ST_dwithin(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"),20000000000) |

+---+

| true |

+---+

nebula> RETURN ST_Distance(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)"));

+--+

| ST_Distance(ST_GeogFromText("Point(0 0)"),ST_GeogFromText("Point(10 10)")) |

+--+

| 1.5685230187677438e+06 |

+--+

nebula> RETURN S2_CellIdFromPoint(ST_GeogFromText("Point(1 1)"));

+---+

| S2_CellIdFromPoint(ST_GeogFromText("Point(1 1)")) |

+---+

| 1153277837650709461 |

+---+

nebula> RETURN S2_CoveringCellIds(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))"));

+--+

| S2_CoveringCellIds(ST_GeogFromText("POLYGON((0 1, 1 2, 2 3, 0 1))")) |

+--+

| [1152391494368201343, 1153466862374223872, 1153554823304445952, 1153836298281156608, 1153959443583467520, 1154240918560178176, 1160503736791990272, 1160591697722212352] |

+--+

Last update: May 5, 2022

4.5.13 Geography functions

- 202/927 - 2022 Vesoft Inc.

4.5.14 User-defined functions

OpenCypher compatibility

User-defined functions (UDF) and storage processes are not yet supported nor designed in NebulaGraph 3.1.0.

Last update: March 13, 2023

4.5.14 User-defined functions

- 203/927 - 2022 Vesoft Inc.

4.6 General queries statements

4.6.1 MATCH

The MATCH statement supports searching based on pattern matching.

A MATCH statement defines a search pattern and uses it to match data stored in NebulaGraph and to retrieve them in the form

defined in the RETURN clause.

The examples in this topic use the basketballplayer dataset as the sample dataset.

Syntax

The syntax of MATCH is relatively more flexible compared with that of other query statements such as GO or LOOKUP . But generally, it

can be summarized as follows.

pattern : For the detailed description of patterns, see Patterns. The MATCH statement supports matching one or multiple patterns.

Multiple patterns are separated by commas (,). For example: (a)-[]->(b),(c)-[]->(d) .

clause_1 : The WHERE , WITH , UNWIND , and OPTIONAL MATCH clauses are supported, and the MATCH clause can also be used.

output : Define the output to be returned. You can rename the output column by using AS .

clause_2 : The ORDER BY and LIMIT clauses are supported.

Precautions

Starting from NebulaGraph version 3.0.0, in order to distinguish the properties of different tags, you need to specify a tag name when

querying properties. The original statement RETURN variable_name.property_name is changed to RETURN variable_name.<tag_name>.property_name .

Currently the match statement cannot find dangling edges.

The MATCH statement retrieves data according to the RETURN clause.

The path type of the MATCH statement is trail . That is, only vertices can be repeatedly visited in the graph traversal. Edges

cannot be repeatedly visited. For details, see path.

In a valid MATCH statement, the VID of a specific vertex must be specified with the id() function in the WHERE clause. There is no

need to create an index.

When traversing all vertices and edges with MATCH , such as MATCH (v) RETURN v LIMIT N , there is no need to create an index, but you

need to use LIMIT to limit the number of output results.

When traversing all vertices of the specified Tag or edge of the specified Edge Type, such as MATCH (v:player) RETURN v LIMIT N ,

there is no need to create an index, but you need to use LIMIT to limit the number of output results.

In addition to the foregoing, make sure there is at least one index in the MATCH statement. How to create native indexes, see

CREATE INDEX.

MATCH <pattern> [<clause_1>] RETURN <output> [<clause_2>];

•

•

•

•

Legacy version compatibility

Note

•

•

•

•

•

•

4.6 General queries statements

- 204/927 - 2022 Vesoft Inc.

Using patterns in MATCH statements

CREATE INDEXES

MATCH VERTICES

As of version 3.0.0, nGQL support MATCH (v) RETURN v LIMIT n , there is no need to create an index. But you must use LIMIT to limit the

number of output results.

nGQL still does not support MATCH (v) RETURN v .

You can use a user-defined variable in a pair of parentheses to represent a vertex in a pattern. For example: (v) .

MATCH TAGS

In NebulaGraph versions earlier than 3.0.0, the prerequisite for matching a tag is that the tag itself has an index or a certain property

of the tag has an index. As of version 3.0.0, there is no need to create an index for matching a tag, but you need to use LIMIT to limit

the number of output results.

You can specify a tag with :<tag_name> after the vertex in a pattern.

The following example creates an index on both the name property of the tag player and the edge type follow.

nebula> CREATE TAG INDEX IF NOT EXISTS name ON player(name(20));

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index on follow();

The following example rebuilds the index.

nebula> REBUILD TAG INDEX name;

+------------+

| New Job Id |

+------------+

| 121 |

+------------+

nebula> REBUILD EDGE INDEX follow_index;

+------------+

| New Job Id |

+------------+

| 122 |

+------------+

The following example makes sure the index is rebuilt successfully.

nebula> SHOW JOB 121;

+----------------+---------------------+------------+----------------------------+----------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+---------------------+------------+----------------------------+----------------------------+-------------+

| 121 | "REBUILD_TAG_INDEX" | "FINISHED" | 2021-05-27T02:18:02.000000 | 2021-05-27T02:18:02.000000 | "SUCCEEDED" |

| 0 | "storaged1" | "FINISHED" | 2021-05-27T02:18:02.000000 | 2021-05-27T02:18:02.000000 | "SUCCEEDED" |

| 1 | "storaged0" | "FINISHED" | 2021-05-27T02:18:02.000000 | 2021-05-27T02:18:02.000000 | "SUCCEEDED" |

| 2 | "storaged2" | "FINISHED" | 2021-05-27T02:18:02.000000 | 2021-05-27T02:18:02.000000 | "SUCCEEDED" |

+----------------+---------------------+------------+----------------------------+----------------------------+-------------+

nebula> SHOW JOB 122;

+----------------+----------------------+------------+----------------------------+----------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+----------------------+------------+----------------------------+----------------------------+-------------+

| 122 | "REBUILD_EDGE_INDEX" | "FINISHED" | 2021-05-27T02:18:11.000000 | 2021-05-27T02:18:11.000000 | "SUCCEEDED" |

| 0 | "storaged1" | "FINISHED" | 2021-05-27T02:18:11.000000 | 2021-05-27T02:18:21.000000 | "SUCCEEDED" |

| 1 | "storaged0" | "FINISHED" | 2021-05-27T02:18:11.000000 | 2021-05-27T02:18:21.000000 | "SUCCEEDED" |

| 2 | "storaged2" | "FINISHED" | 2021-05-27T02:18:11.000000 | 2021-05-27T02:18:21.000000 | "SUCCEEDED" |

+----------------+----------------------+------------+----------------------------+----------------------------+-------------+

Legacy version compatibility

nebula> MATCH (v) \

 RETURN v \

 LIMIT 3;

+---+

| v |

+---+

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

| ("player106" :player{age: 25, name: "Kyle Anderson"}) |

| ("player115" :player{age: 40, name: "Kobe Bryant"}) |

+---+

Note

4.6.1 MATCH

- 205/927 - 2022 Vesoft Inc.

To match vertices with multiple tags, use colons (:).

It is not yet supported to add property conditions when matching vertices with multiple tags.

For example, the statement match (v1:player:team) where v1.player.name=="Tim Duncan" return v1 limit 10; does not work.

MATCH VERTEX PROPERTIES

The prerequisite for matching a vertex property is that the tag itself has an index of the corresponding property. Otherwise, you

cannot execute the MATCH statement to match the property.

You can specify a vertex property with {<prop_name>: <prop_value>} after the tag in a pattern.

The WHERE clause can do the same thing:

In openCypher 9, = is the equality operator. However, in nGQL, == is the equality operator and = is the assignment operator (as in

C++ or Java).

MATCH VIDS

You can use the VID to match a vertex. The id() function can retrieve the VID of a vertex.

nebula> MATCH (v:player) \

 RETURN v;

+---+

| v |

+---+

| ("player105" :player{age: 31, name: "Danny Green"}) |

| ("player109" :player{age: 34, name: "Tiago Splitter"}) |

| ("player111" :player{age: 38, name: "David West"}) |

...

Note

nebula> CREATE TAG actor (name string, age int);

nebula> INSERT VERTEX actor(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> MATCH (v:player:actor) \

 RETURN v \

 LIMIT 10;

+--+

| v |

+--+

| ("player100" :actor{age: 42, name: "Tim Duncan"} :player{age: 42, name: "Tim Duncan"}) |

+--+

Note

The following example uses the name property to match a vertex.

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> MATCH (v:player) \

 WHERE v.player.name == "Tim Duncan" \

 RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

OpenCypher compatibility

nebula> MATCH (v) \

 WHERE id(v) == 'player101' \

 RETURN v;

4.6.1 MATCH

- 206/927 - 2022 Vesoft Inc.

To match multiple VIDs, use WHERE id(v) IN [vid_list] .

MATCH CONNECTED VERTICES

You can use the -- symbol to represent edges of both directions and match vertices connected by these edges.

In nGQL 1.x, the -- symbol is used for inline comments. Starting from nGQL 2.x, the -- symbol represents an incoming or outgoing

edge.

You can add a > or < to the -- symbol to specify the direction of an edge.

In the following example, --> represents an edge that starts from v and points to v2 . To v , this is an outgoing edge, and to v2

this is an incoming edge.

To query the properties of the target vertices, use the CASE expression.

To extend the pattern, you can add more vertices and edges.

+---+

| v |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

+---+

nebula> MATCH (v:player { name: 'Tim Duncan' })--(v2) \

 WHERE id(v2) IN ["player101", "player102"] \

 RETURN v2;

+---+

| v2 |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

+---+

Legacy version compatibility

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) \

 RETURN v2.player.name AS Name;

+---------------------+

| Name |

+---------------------+

| "Manu Ginobili" |

| "Manu Ginobili" |

| "Tiago Splitter" |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2:player) \

 RETURN v2.player.name AS Name;

+-----------------+

| Name |

+-----------------+

| "Manu Ginobili" |

| "Tony Parker" |

+-----------------+

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) \

 RETURN \

 CASE WHEN v2.team.name IS NOT NULL \

 THEN v2.team.name \

 WHEN v2.player.name IS NOT NULL \

 THEN v2.player.name END AS Name;

+---------------------+

| Name |

+---------------------+

| "Manu Ginobili" |

| "Manu Ginobili" |

| "Spurs" |

| "Dejounte Murray" |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2)<--(v3) \

 RETURN v3.player.name AS Name;

+---------------------+

| Name |

+---------------------+

| "Dejounte Murray" |

| "LaMarcus Aldridge" |

4.6.1 MATCH

- 207/927 - 2022 Vesoft Inc.

If you do not need to refer to a vertex, you can omit the variable representing it in the parentheses.

MATCH PATHS

Connected vertices and edges form a path. You can use a user-defined variable to name a path as follows.

In nGQL, the @ symbol represents the rank of an edge, but openCypher has no such concept.

MATCH EDGES

In NebulaGraph versions earlier than 3.0.0, the prerequisite for matching a edge is that the edge itself has an index or a certain

property of the edge has an index. As of version 3.0.0, there is no need to create an index for matching a edge, but you need to use

LIMIT to limit the number of output results and you must specify the direction of the edge.

MATCH EDGE TYPES

Just like vertices, you can specify edge types with :<edge_type> in a pattern. For example: -[e:follow]- .

In NebulaGraph versions earlier than 3.0.0, the prerequisite for matching a edge type is that the edge type itself has an index or a

certain property of the edge type has an index. As of version 3.0.0, there is no need to create an index for matching a edge type, but

you need to use LIMIT to limit the number of output results and you must specify the direction of the edge.

| "Marco Belinelli" |

...

nebula> MATCH (v:player{name:"Tim Duncan"})-->()<--(v3) \

 RETURN v3.player.name AS Name;

+---------------------+

| Name |

+---------------------+

| "Dejounte Murray" |

| "LaMarcus Aldridge" |

| "Marco Belinelli" |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) \

 RETURN p;

+--+

| p |

+--+

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})> |

+--+

OpenCypher compatibility

OpenCypher compatibility

nebula> MATCH ()<-[e]-() \

 RETURN e \

 LIMIT 3;

+--+

| e |

+--+

| [:follow "player101"->"player102" @0 {degree: 90}] |

| [:follow "player103"->"player102" @0 {degree: 70}] |

| [:follow "player135"->"player102" @0 {degree: 80}] |

+--+

OpenCypher compatibility

nebula> MATCH ()-[e:follow]->() \

 RETURN e \

 limit 3;

+--+

| e |

+--+

| [:follow "player102"->"player100" @0 {degree: 75}] |

| [:follow "player102"->"player101" @0 {degree: 75}] |

4.6.1 MATCH

- 208/927 - 2022 Vesoft Inc.

MATCH EDGE TYPE PROPERTIES

The prerequisite for matching an edge type property is that the edge type itself has an index of the corresponding property.

Otherwise, you cannot execute the MATCH statement to match the property.

You can specify edge type properties with {<prop_name>: <prop_value>} in a pattern. For example: [e:follow{likeness:95}] .

MATCH MULTIPLE EDGE TYPES

The | symbol can help matching multiple edge types. For example: [e:follow|:serve] . The English colon (:) before the first edge

type cannot be omitted, but the English colon before the subsequent edge type can be omitted, such as [e:follow|serve] .

It is not yet supported to add property conditions when matching data with multiple tags and multiple edge types at the same time.

For example, the statement MATCH (v)-[e:follow|serve]->(v2) where v.player.name=="Tim Duncan" RETURN e limit 10; does not work. (v) represents a

vertex with all its tags.

MATCH MULTIPLE EDGES

You can extend a pattern to match multiple edges in a path.

MATCH FIXED-LENGTH PATHS

You can use the :<edge_type>*<hop> pattern to match a fixed-length path. hop must be a non-negative integer.

| [:follow "player129"->"player116" @0 {degree: 90}] |

+--+

Before you execute the following statement, you must create an index on the edge type itself or a certain property of the edge type

nebula> MATCH ()-[e:follow]-() \

 RETURN e;

+---+

| e |

+---+

| [:follow "player126"->"player116" @0 {degree: 13}] |

| [:follow "player142"->"player117" @0 {degree: 90}] |

| [:follow "player136"->"player117" @0 {degree: 90}] |

| [:follow "player136"->"player148" @0 {degree: 85}] |

···

Note

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow{degree:95}]->(v2) \

 RETURN e;

+--+

| e |

+--+

| [:follow "player100"->"player101" @0 {degree: 95}] |

| [:follow "player100"->"player125" @0 {degree: 95}] |

+--+

Note

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow|:serve]->(v2) \

 RETURN e;

+---+

| e |

+---+

| [:follow "player100"->"player101" @0 {degree: 95}] |

| [:follow "player100"->"player125" @0 {degree: 95}] |

| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |

+---+

nebula> MATCH (v:player{name:"Tim Duncan"})-[]->(v2)<-[e:serve]-(v3) \

 RETURN v2, v3;

+----------------------------------+---+

| v2 | v3 |

+----------------------------------+---+

| ("team204" :team{name: "Spurs"}) | ("player104" :player{age: 32, name: "Marco Belinelli"}) |

| ("team204" :team{name: "Spurs"}) | ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("team204" :team{name: "Spurs"}) | ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

...

4.6.1 MATCH

- 209/927 - 2022 Vesoft Inc.

If hop is 0, the pattern will match the source vertex of the path.

When you conditionally filter on multi-hop edges, such as -[e:follow*2]-> , note that the e is a list of edges instead of a single edge.

For example, the following statement is correct from the syntax point of view which may not get your expected query result, because

the e is a list without the .degree property.

The correct statement is as follows:

Further, the following statement is for filtering the properties of the first-hop edge in multi-hop edges:

MATCH VARIABLE-LENGTH PATHS

You can use the :<edge_type>*[minHop..maxHop] pattern to match variable-length paths. minHop and maxHop are optional and default to 1

and infinity respectively.

When setting bounds, at least one of minHop and maxHop exists.

If maxHop is not set, it may cause the Graph service to OOM, execute this command with caution.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 RETURN DISTINCT v2 AS Friends;

+---+

| Friends |

+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

+---+

nebula> MATCH (v:player{name:"Tim Duncan"}) -[*0]-> (v2) \

 RETURN v2;

+--+

| v2 |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

Note

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 WHERE e.degree > 1 \

 RETURN DISTINCT v2 AS Friends;

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 WHERE ALL(e_ in e WHERE e_.degree > 0) \

 RETURN DISTINCT v2 AS Friends;

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) \

 WHERE e[0].degree > 98 \

 RETURN DISTINCT v2 AS Friends;

Note

Caution

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*]->(v2) \

 RETURN v2 AS Friends;

+---+

| Friends |

+---+

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2) \

 RETURN v2 AS Friends;

+---+

| Friends |

+---+

| ("player101" :player{age: 36, name: "Tony Parker"}) |

4.6.1 MATCH

- 210/927 - 2022 Vesoft Inc.

You can use the DISTINCT keyword to aggregate duplicate results.

If minHop is 0 , the pattern will match the source vertex of the path. Compared to the preceding statement, the following example

uses 0 as the minHop . So in the following result set, "Tim Duncan" is counted one more time than it is in the preceding result set

because it is the source vertex.

MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

You can specify multiple edge types in a fixed-length or variable-length pattern. In this case, hop , minHop , and maxHop take effect on

all edge types.

MATCH MULTIPLE PATTERNS

You can separate multiple patterns with commas (,).

Retrieve with multiple match

Multiple MATCH can be used when different patterns have different filtering criteria and return the rows that exactly match the

pattern.

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..]->(v2) \

 RETURN v2 AS Friends;

+---+

| Friends |

+---+

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2:player) \

 RETURN DISTINCT v2 AS Friends, count(v2);

+---+-----------+

| Friends | count(v2) |

+---+-----------+

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | 4 |

| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |

+---+-----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*0..3]->(v2:player) \

 RETURN DISTINCT v2 AS Friends, count(v2);

+---+-----------+

| Friends | count(v2) |

+---+-----------+

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | 5 |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |

| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |

+---+-----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow|serve*2]->(v2) \

 RETURN DISTINCT v2;

+---+

| v2 |

+---+

| ("team204" :team{name: "Spurs"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

| ("team215" :team{name: "Hornets"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

+---+

nebula> MATCH (v1:player{name:"Tim Duncan"}), (v2:team{name:"Spurs"}) \

 RETURN v1,v2;

+--+----------------------------------+

| v1 | v2 |

+--+----------------------------------+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("team204" :team{name: "Spurs"}) |

+--+----------------------------------+

nebula> MATCH (m)-[]->(n) WHERE id(m)=="player100" \

 MATCH (n)-[]->(l) WHERE id(n)=="player125" \

 RETURN id(m),id(n),id(l);

4.6.1 MATCH

- 211/927 - 2022 Vesoft Inc.

Retrieve with optional match

See OPTIONAL MATCH。

In NebulaGraph, the performance and resource usage of the MATCH statement have been optimized. But we still recommend to use GO ,

LOOKUP , | , and FETCH instead of MATCH when high performance is required.

+-------------+-------------+-------------+

| id(m) | id(n) | id(l) |

+-------------+-------------+-------------+

| "player100" | "player125" | "team204" |

| "player100" | "player125" | "player100" |

+-------------+-------------+-------------+

Performance

Last update: March 13, 2023

4.6.1 MATCH

- 212/927 - 2022 Vesoft Inc.

4.6.2 OPTIONAL MATCH

The OPTIONAL MATCH clause is used to search for the pattern described in it. OPTIONAL MATCH matches patterns against your graph

database, just like MATCH does. The difference is that if no matches are found, OPTIONAL MATCH will use a null for missing parts of the

pattern.

OpenCypher Compatibility

This topic applies to the openCypher syntax in nGQL only.

Example

The example of the use of OPTIONAL MATCH in the MATCH statement is as follows:

Using multiple MATCH instead of OPTIONAL MATCH returns rows that match the pattern exactly. The example is as follows:

nebula> MATCH (m)-[]->(n) WHERE id(m)=="player100" \

 OPTIONAL MATCH (n)-[]->(l) WHERE id(n)=="player125" \

 RETURN id(m),id(n),id(l);

+-------------+-------------+-------------+

| id(m) | id(n) | id(l) |

+-------------+-------------+-------------+

| "player100" | "team204" | __NULL__ |

| "player100" | "player101" | __NULL__ |

| "player100" | "player125" | "team204" |

| "player100" | "player125" | "player100" |

+-------------+-------------+-------------+

nebula> MATCH (m)-[]->(n) WHERE id(m)=="player100" \

 MATCH (n)-[]->(l) WHERE id(n)=="player125" \

 RETURN id(m),id(n),id(l);

+-------------+-------------+-------------+

| id(m) | id(n) | id(l) |

+-------------+-------------+-------------+

| "player100" | "player125" | "team204" |

| "player100" | "player125" | "player100" |

+-------------+-------------+-------------+

Last update: January 11, 2022

4.6.2 OPTIONAL MATCH

- 213/927 - 2022 Vesoft Inc.

4.6.3 LOOKUP

The LOOKUP statement traverses data based on indexes. You can use LOOKUP for the following purposes:

Search for the specific data based on conditions defined by the WHERE clause.

List vertices with a tag: retrieve the VID of all vertices with a tag.

List edges with an edge type: retrieve the source vertex IDs, destination vertex IDs, and ranks of all edges with an edge type.

Count the number of vertices or edges with a tag or an edge type.

OpenCypher compatibility

This topic applies to native nGQL only.

Precautions

Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance

reduction can be 90% or even more. DO NOT use indexes in production environments unless you are fully aware of their

influences on your service.

If the specified property is not indexed when using the LOOKUP statement, NebulaGraph randomly selects one of the available

indexes.

For example, the tag player has two properties, name and age . Both the tag player itself and the property name have indexes, but

the property age has no indexes. When running LOOKUP ON player WHERE player.age == 36 YIELD player.name; , NebulaGraph randomly uses

one of the indexes of the tag player and the property name .

Before the release 2.5.0, if the specified property is not indexed when using the LOOKUP statement, NebulaGraph reports an error

and does not use other indexes.

Prerequisites

Before using the LOOKUP statement, make sure that at least one index is created. If there are already related vertices, edges, or

properties before an index is created, the user must rebuild the index after creating the index to make it valid.

Syntax

WHERE <expression> : filters data with specified conditions. Both AND and OR are supported between different expressions. For more

information, see WHERE.

YIELD : Define the output to be returned. For details, see YIELD .

AS : Set an alias.

•

•

•

•

•

•

Legacy version compatibility

LOOKUP ON {<vertex_tag> | <edge_type>}

[WHERE <expression> [AND <expression> ...]]

YIELD <return_list> [AS <alias>];

<return_list>

 <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...];

•

•

•

4.6.3 LOOKUP

- 214/927 - 2022 Vesoft Inc.

Limitations of using WHERE in LOOKUP

The WHERE clause in a LOOKUP statement does not support the following operations:

$- and $^ .

In relational expressions, operators are not supported to have field names on both sides, such as tagName.prop1> tagName.prop2 .

Nested AliasProp expressions in operation expressions and function expressions are not supported.

The XOR operation is not supported.

Retrieve vertices

The following example returns vertices whose name is Tony Parker and the tag is player .

Retrieve edges

The following example returns edges whose degree is 90 and the edge type is follow .

•

•

•

•

nebula> CREATE TAG INDEX IF NOT EXISTS index_player ON player(name(30), age);

nebula> REBUILD TAG INDEX index_player;

+------------+

| New Job Id |

+------------+

| 15 |

+------------+

nebula> LOOKUP ON player \

 WHERE player.name == "Tony Parker" \

 YIELD id(vertex);

+---------------+

| id(VERTEX) |

+---------------+

| "player101" |

+---------------+

nebula> LOOKUP ON player \

 WHERE player.name == "Tony Parker" \

 YIELD properties(vertex).name AS name, properties(vertex).age AS age;

+---------------+-----+

| name | age |

+---------------+-----+

| "Tony Parker" | 36 |

+---------------+-----+

nebula> LOOKUP ON player \

 WHERE player.age > 45 \

 YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player144" |

| "player140" |

+-------------+

nebula> LOOKUP ON player \

 WHERE player.name STARTS WITH "B" \

 AND player.age IN [22,30] \

 YIELD properties(vertex).name, properties(vertex).age;

+-------------------------+------------------------+

| properties(VERTEX).name | properties(VERTEX).age |

+-------------------------+------------------------+

| "Ben Simmons" | 22 |

| "Blake Griffin" | 30 |

+-------------------------+------------------------+

nebula> LOOKUP ON player \

 WHERE player.name == "Kobe Bryant"\

 YIELD id(vertex) AS VertexID, properties(vertex).name AS name |\

 GO FROM $-.VertexID OVER serve \

 YIELD $-.name, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+---------------+-----------------------------+---------------------------+---------------------+

| $-.name | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+---------------+-----------------------------+---------------------------+---------------------+

| "Kobe Bryant" | 1996 | 2016 | "Lakers" |

+---------------+-----------------------------+---------------------------+---------------------+

nebula> CREATE EDGE INDEX IF NOT EXISTS index_follow ON follow(degree);

nebula> REBUILD EDGE INDEX index_follow;

+------------+

| New Job Id |

4.6.3 LOOKUP

- 215/927 - 2022 Vesoft Inc.

List vertices or edges with a tag or an edge type

To list vertices or edges with a tag or an edge type, at least one index must exist on the tag, the edge type, or its property.

+------------+

| 62 |

+------------+

nebula> LOOKUP ON follow \

 WHERE follow.degree == 90 YIELD edge AS e;

+--+

| e |

+--+

| [:follow "player109"->"player125" @0 {degree: 90}] |

| [:follow "player118"->"player120" @0 {degree: 90}] |

| [:follow "player118"->"player131" @0 {degree: 90}] |

...

nebula> LOOKUP ON follow \

 WHERE follow.degree == 90 \

 YIELD properties(edge).degree;

+-------------+-------------+---------+-------------------------+

| SrcVID | DstVID | Ranking | properties(EDGE).degree |

+-------------+-------------+---------+-------------------------+

| "player150" | "player143" | 0 | 90 |

| "player150" | "player137" | 0 | 90 |

| "player148" | "player136" | 0 | 90 |

...

nebula> LOOKUP ON follow \

 WHERE follow.degree == 60 \

 YIELD dst(edge) AS DstVID, properties(edge).degree AS Degree |\

 GO FROM $-.DstVID OVER serve \

 YIELD $-.DstVID, properties(edge).start_year, properties(edge).end_year, properties($$).name;

+-------------+-----------------------------+---------------------------+---------------------+

| $-.DstVID | properties(EDGE).start_year | properties(EDGE).end_year | properties($$).name |

+-------------+-----------------------------+---------------------------+---------------------+

| "player105" | 2010 | 2018 | "Spurs" |

| "player105" | 2009 | 2010 | "Cavaliers" |

| "player105" | 2018 | 2019 | "Raptors" |

+-------------+-----------------------------+---------------------------+---------------------+

4.6.3 LOOKUP

- 216/927 - 2022 Vesoft Inc.

For example, if there is a player tag with a name property and an age property, to retrieve the VID of all vertices tagged with

player , there has to be an index on the player tag itself, the name property, or the age property.

The following example shows how to retrieve the VID of all vertices tagged with player .

The following example shows how to retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges of the follow

edge type.

Count the numbers of vertices or edges

The following example shows how to count the number of vertices tagged with player and edges of the follow edge type.

•

nebula> CREATE TAG IF NOT EXISTS player(name string,age int);

nebula> CREATE TAG INDEX IF NOT EXISTS player_index on player();

nebula> REBUILD TAG INDEX player_index;

+------------+

| New Job Id |

+------------+

| 66 |

+------------+

nebula> INSERT VERTEX player(name,age) \

 VALUES "player100":("Tim Duncan", 42), "player101":("Tony Parker", 36);

The following statement retrieves the VID of all vertices with the tag `player`. It is similar to `MATCH (n:player) RETURN id(n) /*, n */`.

nebula> LOOKUP ON player YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player100" |

| "player101" |

...

•

nebula> CREATE EDGE IF NOT EXISTS follow(degree int);

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index on follow();

nebula> REBUILD EDGE INDEX follow_index;

+------------+

| New Job Id |

+------------+

| 88 |

+------------+

nebula> INSERT EDGE follow(degree) \

 VALUES "player100"->"player101":(95);

The following statement retrieves all edges with the edge type `follow`. It is similar to `MATCH (s)-[e:follow]->(d) RETURN id(s), rank(e), id(d) /*, type(e) */`.

nebula)> LOOKUP ON follow YIELD edge AS e;

+---+

| e |

+---+

| [:follow "player105"->"player100" @0 {degree: 70}] |

| [:follow "player105"->"player116" @0 {degree: 80}] |

| [:follow "player109"->"player100" @0 {degree: 80}] |

...

nebula> LOOKUP ON player YIELD id(vertex)|\

 YIELD COUNT(*) AS Player_Number;

+---------------+

| Player_Number |

+---------------+

| 51 |

+---------------+

nebula> LOOKUP ON follow YIELD edge AS e| \

 YIELD COUNT(*) AS Follow_Number;

+---------------+

| Follow_Number |

+---------------+

| 81 |

+---------------+

4.6.3 LOOKUP

- 217/927 - 2022 Vesoft Inc.

You can also use SHOW STATS to count the numbers of vertices or edges.

Note

Last update: March 13, 2023

4.6.3 LOOKUP

- 218/927 - 2022 Vesoft Inc.

4.6.4 GO

GO traverses in a graph with specified filters and returns results.

OpenCypher compatibility

This topic applies to native nGQL only.

Syntax

GO [[<M> TO] <N> STEPS] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

YIELD [DISTINCT] <return_list>

[{SAMPLE <sample_list> | <limit_by_list_clause>}]

[| GROUP BY {col_name | expr | position} YIELD <col_name>]

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset>,] <number_rows>];

<vertex_list> ::=

 <vid> [, <vid> ...]

<edge_type_list> ::=

 edge_type [, edge_type ...]

 | *

4.6.4 GO

- 219/927 - 2022 Vesoft Inc.

<N> STEPS : specifies the hop number. If not specified, the default value for N is one . When N is zero , NebulaGraph does not

traverse any edges and returns nothing.

The path type of the GO statement is walk , which means both vertices and edges can be repeatedly visited in graph traversal. For

more information, see Path.

M TO N STEPS : traverses from M to N hops. When M is zero , the output is the same as that of M is one . That is, the output of

GO 0 TO 2 and GO 1 TO 2 are the same.

<vertex_list> : represents a list of vertex IDs separated by commas, or a special place holder $-.id . For more information, see

Pipe.

<edge_type_list> : represents a list of edge types which the traversal can go through.

REVERSELY | BIDIRECT : defines the direction of the query. By default, the GO statement searches for outgoing edges of <vertex_list> .

If REVERSELY is set, GO searches for incoming edges. If BIDIRECT is set, GO searches for edges of both directions.

WHERE <expression> : specifies the traversal filters. You can use the WHERE clause for the source vertices, the edges, and the

destination vertices. You can use it together with AND , OR , NOT , and XOR . For more information, see WHERE.

There are some restrictions for the WHERE clause when you traverse along with multiple edge types. For example, WHERE edge1.prop1 >

edge2.prop2 is not supported.

YIELD [DISTINCT] <return_list> : defines the output to be returned. It is recommended to use the Schema function to fill in

<return_list> . src(edge) , dst(edge) , type(edge)) , rank(edge) , etc., are currently supported, while nested functions are not. For more

information, see YIELD.

SAMPLE <sample_list> : takes samples from the result set. For more information, see SAMPLE.

<limit_by_list_clause> : limits the number of outputs during the traversal process. For more information, see LIMIT.

GROUP BY : groups the output into subgroups based on the value of the specified property. For more information, see GROUP BY.

After grouping, you need to use YIELD again to define the output that needs to be returned.

ORDER BY : sorts outputs with specified orders. For more information, see ORDER BY.

When the sorting method is not specified, the output orders can be different for the same query.

LIMIT [<offset>,] <number_rows>] : limits the number of rows of the output. For more information, see LIMIT.

Examples

<return_list> ::=

 <col_name> [AS <col_alias>] [, <col_name> [AS <col_alias>] ...]

•

Note

•

•

•

•

•

Note

•

•

•

•

•

Note

•

The following example returns the teams that player 102 serves.

nebula> GO FROM "player102" OVER serve YIELD dst(edge);

+-----------+

| dst(EDGE) |

+-----------+

| "team203" |

4.6.4 GO

- 220/927 - 2022 Vesoft Inc.

| "team204" |

+-----------+

The following example returns the friends of player 102 with 2 hops.

nebula> GO 2 STEPS FROM "player102" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

| "player100" |

| "player102" |

| "player125" |

+-------------+

The following example adds a filter for the traversal.

nebula> GO FROM "player100", "player102" OVER serve \

 WHERE properties(edge).start_year > 1995 \

 YIELD DISTINCT properties($$).name AS team_name, properties(edge).start_year AS start_year, properties($^).name AS player_name;

+-----------------+------------+---------------------+

| team_name | start_year | player_name |

+-----------------+------------+---------------------+

| "Spurs" | 1997 | "Tim Duncan" |

| "Trail Blazers" | 2006 | "LaMarcus Aldridge" |

| "Spurs" | 2015 | "LaMarcus Aldridge" |

+-----------------+------------+---------------------+

The following example traverses along with multiple edge types. If there is no value for a property, the output is UNKNOWN_PROP.

nebula> GO FROM "player100" OVER follow, serve \

 YIELD properties(edge).degree, properties(edge).start_year;

+-------------------------+-----------------------------+

| properties(EDGE).degree | properties(EDGE).start_year |

+-------------------------+-----------------------------+

| 95 | UNKNOWN_PROP |

| 95 | UNKNOWN_PROP |

| UNKNOWN_PROP | 1997 |

+-------------------------+-----------------------------+

The following example returns the neighbor vertices in the incoming direction of player 100.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD src(edge) AS destination;

+-------------+

| destination |

+-------------+

| "player101" |

| "player102" |

...

This MATCH query shares the same semantics with the preceding GO query.

nebula> MATCH (v)<-[e:follow]- (v2) WHERE id(v) == 'player100' \

 RETURN id(v2) AS destination;

+-------------+

| destination |

+-------------+

| "player101" |

| "player102" |

+-------------+

...

The following example retrieves the friends of player 100 and the teams that they serve.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD src(edge) AS id | \

 GO FROM $-.id OVER serve \

 WHERE properties($^).age > 20 \

 YIELD properties($^).name AS FriendOf, properties($$).name AS Team;

+---------------------+-----------------+

| FriendOf | Team |

+---------------------+-----------------+

| "Boris Diaw" | "Spurs" |

| "Boris Diaw" | "Jazz" |

| "Boris Diaw" | "Suns" |

...

This MATCH query shares the same semantics with the preceding GO query.

nebula> MATCH (v)<-[e:follow]- (v2)-[e2:serve]->(v3) \

 WHERE id(v) == 'player100' \

 RETURN v2.player.name AS FriendOf, v3.team.name AS Team;

+---------------------+-----------------+

| FriendOf | Team |

+---------------------+-----------------+

| "Boris Diaw" | "Spurs" |

| "Boris Diaw" | "Jazz" |

| "Boris Diaw" | "Suns" |

...

The following example retrieves the friends of player 100 within 1 or 2 hops.

nebula> GO 1 TO 2 STEPS FROM "player100" OVER follow \

 YIELD dst(edge) AS destination;

4.6.4 GO

- 221/927 - 2022 Vesoft Inc.

+-------------+

| destination |

+-------------+

| "player101" |

| "player125" |

...

This MATCH query shares the same semantics with the preceding GO query.

nebula> MATCH (v) -[e:follow*1..2]->(v2) \

 WHERE id(v) == "player100" \

 RETURN id(v2) AS destination;

+-------------+

| destination |

+-------------+

| "player100" |

| "player102" |

...

The following example the outputs according to age.

nebula> GO 2 STEPS FROM "player100" OVER follow \

 YIELD src(edge) AS src, dst(edge) AS dst, properties($$).age AS age \

 | GROUP BY $-.dst \

 YIELD $-.dst AS dst, collect_set($-.src) AS src, collect($-.age) AS age;

+-------------+----------------------------+----------+

| dst | src | age |

+-------------+----------------------------+----------+

| "player125" | ["player101"] | [41] |

| "player100" | ["player125", "player101"] | [42, 42] |

| "player102" | ["player101"] | [33] |

+-------------+----------------------------+----------+

The following example groups the outputs and restricts the number of rows of the outputs.

nebula> $a = GO FROM "player100" OVER follow YIELD src(edge) AS src, dst(edge) AS dst; \

 GO 2 STEPS FROM $a.dst OVER follow \

 YIELD $a.src AS src, $a.dst, src(edge), dst(edge) \

 | ORDER BY $-.src | OFFSET 1 LIMIT 2;

+-------------+-------------+-------------+-------------+

| src | $a.dst | follow._src | follow._dst |

+-------------+-------------+-------------+-------------+

| "player100" | "player125" | "player100" | "player101" |

| "player100" | "player101" | "player100" | "player125" |

+-------------+-------------+-------------+-------------+

The following example determines if $$.player.name IS NOT EMPTY.

nebula> GO FROM "player100" OVER follow WHERE properties($$).name IS NOT EMPTY YIELD dst(edge);

+-------------+

| follow._dst |

+-------------+

| "player125" |

| "player101" |

+-------------+

Last update: March 13, 2023

4.6.4 GO

- 222/927 - 2022 Vesoft Inc.

4.6.5 FETCH

The FETCH statement retrieves the properties of the specified vertices or edges.

OpenCypher Compatibility

This topic applies to native nGQL only.

Fetch vertex properties

SYNTAX

FETCH VERTEX PROPERTIES BY ONE TAG

Specify a tag in the FETCH statement to fetch the vertex properties by that tag.

FETCH SPECIFIC PROPERTIES OF A VERTEX

Use a YIELD clause to specify the properties to be returned.

FETCH PROPERTIES OF MULTIPLE VERTICES

Specify multiple VIDs (vertex IDs) to fetch properties of multiple vertices. Separate the VIDs with commas.

FETCH VERTEX PROPERTIES BY MULTIPLE TAGS

Specify multiple tags in the FETCH statement to fetch the vertex properties by the tags. Separate the tags with commas.

FETCH PROP ON {<tag_name>[, tag_name ...] | *}

<vid> [, vid ...]

YIELD <return_list> [AS <alias>];

Parameter Description

tag_name The name of the tag.

* Represents all the tags in the current graph space.

vid The vertex ID.

YIELD Define the output to be returned. For details, see YIELD .

AS Set an alias.

nebula> FETCH PROP ON player "player100" YIELD properties(vertex);

+-------------------------------+

| properties(VERTEX) |

+-------------------------------+

| {age: 42, name: "Tim Duncan"} |

+-------------------------------+

nebula> FETCH PROP ON player "player100" \

 YIELD properties(vertex).name AS name;

+--------------+

| name |

+--------------+

| "Tim Duncan" |

+--------------+

nebula> FETCH PROP ON player "player101", "player102", "player103" YIELD properties(vertex);

+--------------------------------------+

| properties(VERTEX) |

+--------------------------------------+

| {age: 33, name: "LaMarcus Aldridge"} |

| {age: 40, name: "Tony Parker"} |

| {age: 32, name: "Rudy Gay"} |

+--------------------------------------+

The following example creates a new tag t1.

nebula> CREATE TAG IF NOT EXISTS t1(a string, b int);

4.6.5 FETCH

- 223/927 - 2022 Vesoft Inc.

You can combine multiple tags with multiple VIDs in a FETCH statement.

FETCH VERTEX PROPERTIES BY ALL TAGS

Set an asterisk symbol * to fetch properties by all tags in the current graph space.

Fetch edge properties

SYNTAX

FETCH ALL PROPERTIES OF AN EDGE

The following statement fetches all the properties of the serve edge that connects vertex "player100" and vertex "team204" .

FETCH SPECIFIC PROPERTIES OF AN EDGE

Use a YIELD clause to fetch specific properties of an edge.

The following example attaches t1 to the vertex "player100".

nebula> INSERT VERTEX t1(a, b) VALUES "player100":("Hello", 100);

The following example fetches the properties of vertex "player100" by the tags player and t1.

nebula> FETCH PROP ON player, t1 "player100" YIELD vertex AS v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :t1{a: "Hello", b: 100}) |

+--+

nebula> FETCH PROP ON player, t1 "player100", "player103" YIELD vertex AS v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :t1{a: "Hello", b: 100}) |

| ("player103" :player{age: 32, name: "Rudy Gay"}) |

+--+

nebula> FETCH PROP ON * "player100", "player106", "team200" YIELD vertex AS v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :t1{a: "Hello", b: 100}) |

| ("player106" :player{age: 25, name: "Kyle Anderson"}) |

| ("team200" :team{name: "Warriors"}) |

+--+

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]

YIELD <output>;

Parameter Description

edge_type The name of the edge type.

src_vid The VID of the source vertex. It specifies the start of an edge.

dst_vid The VID of the destination vertex. It specifies the end of an edge.

rank The rank of the edge. It is optional and defaults to 0 . It distinguishes an edge from other edges with the

same edge type, source vertex, destination vertex, and rank.

YIELD Define the output to be returned. For details, see YIELD .

nebula> FETCH PROP ON serve "player100" -> "team204" YIELD properties(edge);

+------------------------------------+

| properties(EDGE) |

+------------------------------------+

| {end_year: 2016, start_year: 1997} |

+------------------------------------+

nebula> FETCH PROP ON serve "player100" -> "team204" \

 YIELD properties(edge).start_year;

+-----------------------------+

| properties(EDGE).start_year |

+-----------------------------+

| 1997 |

+-----------------------------+

4.6.5 FETCH

- 224/927 - 2022 Vesoft Inc.

FETCH PROPERTIES OF MULTIPLE EDGES

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to fetch properties of multiple edges. Separate the edge patterns

with commas.

Fetch properties based on edge rank

If there are multiple edges with the same edge type, source vertex, and destination vertex, you can specify the rank to fetch the

properties on the correct edge.

Use FETCH in composite queries

A common way to use FETCH is to combine it with native nGQL such as GO .

The following statement returns the degree values of the follow edges that start from vertex "player101" .

Or you can use user-defined variables to construct similar queries.

For more information about composite queries, see Composite queries (clause structure).

nebula> FETCH PROP ON serve "player100" -> "team204", "player133" -> "team202" YIELD edge AS e;

+---+

| e |

+---+

| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |

| [:serve "player133"->"team202" @0 {end_year: 2011, start_year: 2002}] |

+---+

The following example inserts edges with different ranks and property values.

nebula> insert edge serve(start_year,end_year) \

 values "player100"->"team204"@1:(1998, 2017);

nebula> insert edge serve(start_year,end_year) \

 values "player100"->"team204"@2:(1990, 2018);

By default, the FETCH statement returns the edge whose rank is 0.

nebula> FETCH PROP ON serve "player100" -> "team204" YIELD edge AS e;

+---+

| e |

+---+

| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |

+---+

To fetch on an edge whose rank is not 0, set its rank in the FETCH statement.

nebula> FETCH PROP ON serve "player100" -> "team204"@1 YIELD edge AS e;

+---+

| e |

+---+

| [:serve "player100"->"team204" @1 {end_year: 2017, start_year: 1998}] |

+---+

nebula> GO FROM "player101" OVER follow \

 YIELD src(edge) AS s, dst(edge) AS d \

 | FETCH PROP ON follow $-.s -> $-.d \

 YIELD properties(edge).degree;

+-------------------------+

| properties(EDGE).degree |

+-------------------------+

| 95 |

| 90 |

| 95 |

+-------------------------+

nebula> $var = GO FROM "player101" OVER follow \

 YIELD src(edge) AS s, dst(edge) AS d; \

 FETCH PROP ON follow $var.s -> $var.d \

 YIELD properties(edge).degree;

+-------------------------+

| properties(EDGE).degree |

+-------------------------+

| 95 |

| 90 |

| 95 |

+-------------------------+

Last update: December 8, 2021

4.6.5 FETCH

- 225/927 - 2022 Vesoft Inc.

4.6.6 SHOW

SHOW CHARSET

The SHOW CHARSET statement shows the available character sets.

Currently available types are utf8 and utf8mb4 . The default charset type is utf8 . NebulaGraph extends the uft8 to support four-

byte characters. Therefore utf8 and utf8mb4 are equivalent.

SYNTAX

EXAMPLE

SHOW CHARSET;

nebula> SHOW CHARSET;

+---------+-----------------+-------------------+--------+

| Charset | Description | Default collation | Maxlen |

+---------+-----------------+-------------------+--------+

| "utf8" | "UTF-8 Unicode" | "utf8_bin" | 4 |

+---------+-----------------+-------------------+--------+

Parameter Description

Charset The name of the character set.

Description The description of the character set.

Default collation The default collation of the character set.

Maxlen The maximum number of bytes required to store one character.

Last update: March 13, 2023

4.6.6 SHOW

- 226/927 - 2022 Vesoft Inc.

SHOW COLLATION

The SHOW COLLATION statement shows the collations supported by NebulaGraph.

Currently available types are: utf8_bin , utf8_general_ci , utf8mb4_bin , and utf8mb4_general_ci .

When the character set is utf8 , the default collate is utf8_bin .

When the character set is utf8mb4 , the default collate is utf8mb4_bin .

Both utf8mb4_bin and utf8mb4_general_ci are case-insensitive.

SYNTAX

EXAMPLE

•

•

•

SHOW COLLATION;

nebula> SHOW COLLATION;

+------------+---------+

| Collation | Charset |

+------------+---------+

| "utf8_bin" | "utf8" |

+------------+---------+

Parameter Description

Collation The name of the collation.

Charset The name of the character set with which the collation is associated.

Last update: March 13, 2023

4.6.6 SHOW

- 227/927 - 2022 Vesoft Inc.

SHOW CREATE SPACE

The SHOW CREATE SPACE statement shows the creating statement of the specified graph space.

For details about the graph space information, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW CREATE SPACE <space_name>;

nebula> SHOW CREATE SPACE basketballplayer;

+--------------------

+---

+

| Space | Create

Space |

+--------------------

+---

+

| "basketballplayer" | "CREATE SPACE `basketballplayer` (partition_num = 10, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(32), atomic_edge = false) ON

default_zone_192.168.8.132_9779" |

+--------------------

+---

+

Last update: May 5, 2022

4.6.6 SHOW

- 228/927 - 2022 Vesoft Inc.

SHOW CREATE TAG/EDGE

The SHOW CREATE TAG statement shows the basic information of the specified tag. For details about the tag, see CREATE TAG.

The SHOW CREATE EDGE statement shows the basic information of the specified edge type. For details about the edge type, see

CREATE EDGE.

SYNTAX

EXAMPLES

SHOW CREATE {TAG <tag_name> | EDGE <edge_name>};

nebula> SHOW CREATE TAG player;

+----------+-----------------------------------+

| Tag | Create Tag |

+----------+-----------------------------------+

| "player" | "CREATE TAG `player` (|

| | `name` string NULL, |

| | `age` int64 NULL |

| |) ttl_duration = 0, ttl_col = """ |

+----------+-----------------------------------+

nebula> SHOW CREATE EDGE follow;

+----------+-----------------------------------+

| Edge | Create Edge |

+----------+-----------------------------------+

| "follow" | "CREATE EDGE `follow` (|

| | `degree` int64 NULL |

| |) ttl_duration = 0, ttl_col = """ |

+----------+-----------------------------------+

Last update: December 1, 2021

4.6.6 SHOW

- 229/927 - 2022 Vesoft Inc.

SHOW HOSTS

The SHOW HOSTS statement shows the cluster information, including the port, status, leader, partition, and version information. You

can also add the service type in the statement to view the information of the specific service.

SYNTAX

For a NebulaGraph cluster installed with the source code, the version of the cluster will not be displayed in the output after executing

the command SHOW HOSTS (GRAPH | STORAGE | META) with the service name.

EXAMPLES

SHOW HOSTS [GRAPH | STORAGE | META];

Note

nebula> SHOW HOSTS;

+-------------+-------+-----------+----------+--------------+----------------------------------+------------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+-------+-----------+----------+--------------+----------------------------------+------------------------------+---------+

| "storaged0" | 9779 | 19669 | "ONLINE" | 8 | "docs:5, basketballplayer:3" | "docs:5, basketballplayer:3" | "3.1.0" |

| "storaged1" | 9779 | 19669 | "ONLINE" | 9 | "basketballplayer:4, docs:5" | "docs:5, basketballplayer:4" | "3.1.0" |

| "storaged2" | 9779 | 19669 | "ONLINE" | 8 | "basketballplayer:3, docs:5" | "docs:5, basketballplayer:3" | "3.1.0" |

+-------------+-------+-----------+----------+--------------+----------------------------------+------------------------------+---------+

nebula> SHOW HOSTS GRAPH;

+-----------+------+----------+---------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-----------+------+----------+---------+--------------+---------+

| "graphd" | 9669 | "ONLINE" | "GRAPH" | "3ba41bd" | "3.1.0" |

| "graphd1" | 9669 | "ONLINE" | "GRAPH" | "3ba41bd" | "3.1.0" |

| "graphd2" | 9669 | "ONLINE" | "GRAPH" | "3ba41bd" | "3.1.0" |

+-----------+------+----------+---------+--------------+---------+

nebula> SHOW HOSTS STORAGE;

+-------------+------+----------+-----------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-------------+------+----------+-----------+--------------+---------+

| "storaged0" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.1.0" |

| "storaged1" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.1.0" |

| "storaged2" | 9779 | "ONLINE" | "STORAGE" | "3ba41bd" | "3.1.0" |

+-------------+------+----------+-----------+--------------+---------+

nebula> SHOW HOSTS META;

+----------+------+----------+--------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+----------+------+----------+--------+--------------+---------+

| "metad2" | 9559 | "ONLINE" | "META" | "3ba41bd" | "3.1.0" |

| "metad0" | 9559 | "ONLINE" | "META" | "3ba41bd" | "3.1.0" |

| "metad1" | 9559 | "ONLINE" | "META" | "3ba41bd" | "3.1.0" |

+----------+------+----------+--------+--------------+---------+

Last update: March 13, 2023

4.6.6 SHOW

- 230/927 - 2022 Vesoft Inc.

SHOW INDEX STATUS

The SHOW INDEX STATUS statement shows the status of jobs that rebuild native indexes, which helps check whether a native index is

successfully rebuilt or not.

SYNTAX

EXAMPLES

RELATED TOPICS

Job manager and the JOB statements

REBUILD NATIVE INDEX

SHOW {TAG | EDGE} INDEX STATUS;

nebula> SHOW TAG INDEX STATUS;

+------------------------------------+--------------+

| Name | Index Status |

+------------------------------------+--------------+

| "date1_index" | "FINISHED" |

| "basketballplayer_all_tag_indexes" | "FINISHED" |

| "any_shape_geo_index" | "FINISHED" |

+------------------------------------+--------------+

nebula> SHOW EDGE INDEX STATUS;

+----------------+--------------+

| Name | Index Status |

+----------------+--------------+

| "follow_index" | "FINISHED" |

+----------------+--------------+

•

•

Last update: March 23, 2022

4.6.6 SHOW

- 231/927 - 2022 Vesoft Inc.

SHOW INDEXES

The SHOW INDEXES statement shows the names of existing native indexes.

SYNTAX

EXAMPLES

In NebulaGraph 2.x, SHOW TAG/EDGE INDEXES only returns Names .

SHOW {TAG | EDGE} INDEXES;

nebula> SHOW TAG INDEXES;

+------------------+--------------+-----------------+

| Index Name | By Tag | Columns |

+------------------+--------------+-----------------+

| "fix" | "fix_string" | ["p1"] |

| "player_index_0" | "player" | ["name"] |

| "player_index_1" | "player" | ["name", "age"] |

| "var" | "var_string" | ["p1"] |

+------------------+--------------+-----------------+

nebula> SHOW EDGE INDEXES;

+----------------+----------+---------+

| Index Name | By Edge | Columns |

+----------------+----------+---------+

| "follow_index" | "follow" | [] |

+----------------+----------+---------+

Legacy version compatibility

Last update: March 13, 2023

4.6.6 SHOW

- 232/927 - 2022 Vesoft Inc.

SHOW PARTS

The SHOW PARTS statement shows the information of a specified partition or all partitions in a graph space.

SYNTAX

EXAMPLES

The descriptions are as follows.

SHOW PARTS [<part_id>];

nebula> SHOW PARTS;

+--------------+--------------------+--------------------+-------+

| Partition ID | Leader | Peers | Losts |

+--------------+--------------------+--------------------+-------+

| 1 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

| 2 | "192.168.2.2:9779" | "192.168.2.2:9779" | "" |

| 3 | "192.168.2.3:9779" | "192.168.2.3:9779" | "" |

| 4 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

| 5 | "192.168.2.2:9779" | "192.168.2.2:9779" | "" |

| 6 | "192.168.2.3:9779" | "192.168.2.3:9779" | "" |

| 7 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

| 8 | "192.168.2.2:9779" | "192.168.2.2:9779" | "" |

| 9 | "192.168.2.3:9779" | "192.168.2.3:9779" | "" |

| 10 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

+--------------+--------------------+--------------------+-------+

nebula> SHOW PARTS 1;

+--------------+--------------------+--------------------+-------+

| Partition ID | Leader | Peers | Losts |

+--------------+--------------------+--------------------+-------+

| 1 | "192.168.2.1:9779" | "192.168.2.1:9779" | "" |

+--------------+--------------------+--------------------+-------+

Parameter Description

Partition ID The ID of the partition.

Leader The IP address and the port of the leader.

Peers The IP addresses and the ports of all the replicas.

Losts The IP addresses and the ports of replicas at fault.

Last update: October 27, 2021

4.6.6 SHOW

- 233/927 - 2022 Vesoft Inc.

SHOW ROLES

The SHOW ROLES statement shows the roles that are assigned to a user account.

The return message differs according to the role of the user who is running this statement:

If the user is a GOD or ADMIN and is granted access to the specified graph space, NebulaGraph shows all roles in this graph

space except for GOD .

If the user is a DBA , USER , or GUEST and is granted access to the specified graph space, NebulaGraph shows the user's own role

in this graph space.

If the user does not have access to the specified graph space, NebulaGraph returns PermissionError .

For more information about roles, see Roles and privileges.

SYNTAX

EXAMPLE

•

•

•

SHOW ROLES IN <space_name>;

nebula> SHOW ROLES in basketballplayer;

+---------+-----------+

| Account | Role Type |

+---------+-----------+

| "user1" | "ADMIN" |

+---------+-----------+

Last update: March 13, 2023

4.6.6 SHOW

- 234/927 - 2022 Vesoft Inc.

SHOW SNAPSHOTS

The SHOW SNAPSHOTS statement shows the information of all the snapshots.

For how to create a snapshot and backup data, see Snapshot.

ROLE REQUIREMENT

Only the root user who has the GOD role can use the SHOW SNAPSHOTS statement.

SYNTAX

EXAMPLE

SHOW SNAPSHOTS;

nebula> SHOW SNAPSHOTS;

+--------------------------------+---------+---+

| Name | Status | Hosts |

+--------------------------------+---------+---+

| "SNAPSHOT_2020_12_16_11_13_55" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |

| "SNAPSHOT_2020_12_16_11_14_10" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |

+--------------------------------+---------+---+

Last update: March 23, 2022

4.6.6 SHOW

- 235/927 - 2022 Vesoft Inc.

SHOW SPACES

The SHOW SPACES statement shows existing graph spaces in NebulaGraph.

For how to create a graph space, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW SPACES;

nebula> SHOW SPACES;

+---------------------+

| Name |

+---------------------+

| "docs" |

| "basketballplayer" |

+---------------------+

Last update: March 13, 2023

4.6.6 SHOW

- 236/927 - 2022 Vesoft Inc.

SHOW STATS

The SHOW STATS statement shows the statistics of the graph space collected by the latest STATS job.

The statistics include the following information:

The number of vertices in the graph space

The number of edges in the graph space

The number of vertices of each tag

The number of edges of each edge type

PREREQUISITES

You have to run the SUBMIT JOB STATS statement in the graph space where you want to collect statistics. For more information, see

SUBMIT JOB STATS.

The result of the SHOW STATS statement is based on the last executed SUBMIT JOB STATS statement. If you want to update the result, run

SUBMIT JOB STATS again. Otherwise the statistics will be wrong.

SYNTAX

EXAMPLES

•

•

•

•

Caution

SHOW STATS;

Choose a graph space.

nebula> USE basketballplayer;

Start SUBMIT JOB STATS.

nebula> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 98 |

+------------+

Make sure the job executes successfully.

nebula> SHOW JOB 98;

+----------------+---------------+------------+----------------------------+----------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+---------------+------------+----------------------------+----------------------------+-------------+

| 98 | "STATS" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| 0 | "storaged2" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| 1 | "storaged0" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

| 2 | "storaged1" | "FINISHED" | 2021-11-01T09:33:21.000000 | 2021-11-01T09:33:21.000000 | "SUCCEEDED" |

+----------------+---------------+------------+----------------------------+----------------------------+-------------+

Show the statistics of the graph space.

nebula> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 51 |

| "Tag" | "team" | 30 |

| "Edge" | "follow" | 81 |

| "Edge" | "serve" | 152 |

| "Space" | "vertices" | 81 |

| "Space" | "edges" | 233 |

+---------+------------+-------+

Last update: April 21, 2022

4.6.6 SHOW

- 237/927 - 2022 Vesoft Inc.

SHOW TAGS/EDGES

The SHOW TAGS statement shows all the tags in the current graph space.

The SHOW EDGES statement shows all the edge types in the current graph space.

SYNTAX

EXAMPLES

SHOW {TAGS | EDGES};

nebula> SHOW TAGS;

+----------+

| Name |

+----------+

| "player" |

| "star" |

| "team" |

+----------+

nebula> SHOW EDGES;

+----------+

| Name |

+----------+

| "follow" |

| "serve" |

+----------+

Last update: December 1, 2021

4.6.6 SHOW

- 238/927 - 2022 Vesoft Inc.

SHOW USERS

The SHOW USERS statement shows the user information.

ROLE REQUIREMENT

Only the root user who has the GOD role can use the SHOW USERS statement.

SYNTAX

EXAMPLE

SHOW USERS;

nebula> SHOW USERS;

+---------+-----------------+

| Account | IP Whitelist |

+---------+-----------------+

| "root" | "" |

| "user1" | "" |

| "user2" | "192.168.10.10" |

+---------+-----------------+

Last update: March 17, 2022

4.6.6 SHOW

- 239/927 - 2022 Vesoft Inc.

SHOW SESSIONS

When a user logs in to the database, a corresponding session will be created and users can query for session information.

The SHOW SESSIONS statement shows the information of all the sessions. It can also show a specified session with its ID.

PRECAUTIONS

The client will call the API release to release the session and clear the session information when you run exit after the

operation ends. If you exit the database in an unexpected way and the session timeout duration is not set via

session_idle_timeout_secs in nebula-graphd.conf, the session will not be released automatically. For those sessions that are not

automatically released, you need to delete them manually (TODO: coding).

SHOW SESSIONS queries the session information of all the Graph services.

SHOW LOCAL SESSIONS queries the session information of the currently connected Graph service and does not query the session

information of other Graph services.

SHOW SESSION <Session_Id> queries the session information with a specific session id.

SYNTAX

EXAMPLES

•

•

•

•

SHOW [LOCAL] SESSIONS;

SHOW SESSION <Session_Id>;

nebula> SHOW SESSIONS;

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| SessionId | UserName | SpaceName | CreateTime | UpdateTime | GraphAddr | Timezone | ClientIp |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| 1651220858102296 | "root" | "basketballplayer" | 2022-04-29T08:27:38.102296 | 2022-04-29T08:50:46.282921 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

| 1651199330300991 | "root" | "basketballplayer" | 2022-04-29T02:28:50.300991 | 2022-04-29T08:16:28.339038 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

| 1651112899847744 | "root" | "basketballplayer" | 2022-04-28T02:28:19.847744 | 2022-04-28T08:17:44.470210 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

| 1651041092662100 | "root" | "basketballplayer" | 2022-04-27T06:31:32.662100 | 2022-04-27T07:01:25.200978 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

| 1650959429593975 | "root" | "basketballplayer" | 2022-04-26T07:50:29.593975 | 2022-04-26T07:51:47.184810 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

| 1650958897679595 | "root" | "" | 2022-04-26T07:41:37.679595 | 2022-04-26T07:41:37.683802 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

nebula> SHOW SESSION 1635254859271703;

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| SessionId | UserName | SpaceName | CreateTime | UpdateTime | GraphAddr | Timezone | ClientIp |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

| 1651220858102296 | "root" | "basketballplayer" | 2022-04-29T08:27:38.102296 | 2022-04-29T08:50:54.254384 | "127.0.0.1:9669" | 0 | "::ffff:127.0.0.1" |

+------------------+----------+--------------------+----------------------------+----------------------------+------------------+----------+--------------------+

Parameter Description

SessionId The session ID, namely the identifier of a session.

UserName The username in a session.

SpaceName The name of the graph space that the user uses currently. It is null ("") when you first log in because there

is no specified graph space.

CreateTime The time when the session is created, namely the time when the user logs in. The time zone is specified by

timezone_name in the configuration file.

UpdateTime The system will update the time when there is an operation. The time zone is specified by timezone_name in the

configuration file.

GraphAddr The IP address and port of the Graph server that hosts the session.

Timezone A reserved parameter that has no specified meaning for now.

ClientIp The IP address of the client.

Last update: May 5, 2022

4.6.6 SHOW

- 240/927 - 2022 Vesoft Inc.

SHOW QUERIES

The SHOW QUERIES statement shows the information of working queries in the current session.

To terminate queries, see Kill Query.

PRECAUTIONS

The SHOW LOCAL QUERIES statement gets the status of queries in the current session from the local cache with almost no latency.

The SHOW QUERIES statement gets the information of queries in all the sessions from the Meta Service. The information will be

synchronized to the Meta Service according to the interval defined by session_reclaim_interval_secs . Therefore the information that

you get from the client may belong to the last synchronization interval.

SYNTAX

EXAMPLES

The descriptions are as follows.

Note

•

•

SHOW [LOCAL] QUERIES;

nebula> SHOW LOCAL QUERIES;

+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------------+

| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |

+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------------+

| 1625463842921750 | 46 | "root" | ""192.168.x.x":9669" | 2021-07-05T05:44:19.502903 | 0 | "RUNNING" | "SHOW LOCAL QUERIES;" |

+------------------+-----------------+--------+----------------------+----------------------------+----------------+-----------+-----------------------+

nebula> SHOW QUERIES;

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| 1625456037718757 | 54 | "user1" | ""192.168.x.x":9669" | 2021-07-05T05:51:08.691318 | 1504502 | "RUNNING" | "MATCH p=(v:player)-[*1..4]-(v2) RETURN v2 AS Friends;" |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

The following statement returns the top 10 queries that have the longest duration.

nebula> SHOW QUERIES | ORDER BY $-.DurationInUSec DESC | LIMIT 10;

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| SessionID | ExecutionPlanID | User | Host | StartTime | DurationInUSec | Status | Query |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

| 1625471375320831 | 98 | "user2" | ""192.168.x.x":9669" | 2021-07-05T07:50:24.461779 | 2608176 | "RUNNING" | "MATCH (v:player)-[*1..4]-(v2) RETURN v2 AS Friends;" |

| 1625456037718757 | 99 | "user1" | ""192.168.x.x":9669" | 2021-07-05T07:50:24.910616 | 2159333 | "RUNNING" | "MATCH (v:player)-[*1..4]-(v2) RETURN v2 AS Friends;" |

+------------------+-----------------+---------+----------------------+----------------------------+----------------+-----------+---+

Parameter Description

SessionID The session ID.

ExecutionPlanID The ID of the execution plan.

User The username that executes the query.

Host The IP address and port of the Graph server that hosts the session.

StartTime The time when the query starts.

DurationInUSec The duration of the query. The unit is microsecond.

Status The current status of the query.

Query The query statement.

Last update: May 5, 2022

4.6.6 SHOW

- 241/927 - 2022 Vesoft Inc.

SHOW META LEADER

The SHOW META LEADER statement shows the information of the leader in the current Meta cluster.

For more information about the Meta service, see Meta service.

SYNTAX

EXAMPLE

SHOW META LEADER;

nebula> SHOW META LEADER;

+------------------+---------------------------+

| Meta Leader | secs from last heart beat |

+------------------+---------------------------+

| "127.0.0.1:9559" | 3 |

+------------------+---------------------------+

Parameter Description

Meta Leader Shows the information of the leader in the Meta cluster, including the IP address and port of the

server where the leader is located.

secs from last heart

beat

Indicates the time interval since the last heartbeat. This parameter is measured in seconds.

Last update: October 27, 2021

4.6.6 SHOW

- 242/927 - 2022 Vesoft Inc.

4.7 Clauses and options

4.7.1 GROUP BY

The GROUP BY clause can be used to aggregate data.

OpenCypher Compatibility

This topic applies to native nGQL only.

You can also use the count() function to aggregate data.

Syntax

The GROUP BY clause groups the rows with the same value. Then operations such as counting, sorting, and calculation can be

applied.

The GROUP BY clause works after the pipe symbol (|) and before a YIELD clause.

The aggregation_function() function supports avg() , sum() , max() , min() , count() , collect() , and std() .

Examples

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by player names, and

counts how many times the name shows up in the result set.

Group and calculate with functions

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by source vertices,

and returns the sum of degree values.

nebula> MATCH (v:player)<-[:follow]-(:player) RETURN v.player.name AS Name, count(*) as cnt ORDER BY cnt DESC;

+----------------------+-----+

| Name | cnt |

+----------------------+-----+

| "Tim Duncan" | 10 |

| "LeBron James" | 6 |

| "Tony Parker" | 5 |

| "Chris Paul" | 4 |

| "Manu Ginobili" | 4 |

+----------------------+-----+

...

| GROUP BY <var> YIELD <var>, <aggregation_function(var)>

nebula> GO FROM "player100" OVER follow BIDIRECT \

 YIELD properties($$).name as Name \

 | GROUP BY $-.Name \

 YIELD $-.Name as Player, count(*) AS Name_Count;

+---------------------+------------+

| Player | Name_Count |

+---------------------+------------+

| "Shaquille O'Neal" | 1 |

| "Tiago Splitter" | 1 |

| "Manu Ginobili" | 2 |

| "Boris Diaw" | 1 |

| "LaMarcus Aldridge" | 1 |

| "Tony Parker" | 2 |

| "Marco Belinelli" | 1 |

| "Dejounte Murray" | 1 |

| "Danny Green" | 1 |

| "Aron Baynes" | 1 |

+---------------------+------------+

nebula> GO FROM "player100" OVER follow \

 YIELD src(edge) AS player, properties(edge).degree AS degree \

 | GROUP BY $-.player \

 YIELD sum($-.degree);

4.7 Clauses and options

- 243/927 - 2022 Vesoft Inc.

For more information about the sum() function, see Built-in math functions.

+----------------+

| sum($-.degree) |

+----------------+

| 190 |

+----------------+

Last update: January 13, 2022

4.7.1 GROUP BY

- 244/927 - 2022 Vesoft Inc.

4.7.2 LIMIT AND SKIP

The LIMIT clause constrains the number of rows in the output. The usage of LIMIT in native nGQL statements and openCypher

compatible statements is different.

Native nGQL: Generally, a pipe | needs to be used before the LIMIT clause. The offset parameter can be set or omitted directly

after the LIMIT statement.

OpenCypher compatible statements: No pipes are permitted before the LIMIT clause. And you can use SKIP to indicate an

offset.

When using LIMIT in either syntax above, it is important to use an ORDER BY clause that constrains the output into a unique order.

Otherwise, you will get an unpredictable subset of the output.

LIMIT in native nGQL statements

In native nGQL, LIMIT has general syntax and exclusive syntax in GO statements.

GENERAL LIMIT SYNTAX IN NATIVE NGQL STATEMENTS

In native nGQL, the general LIMIT syntax works the same as in SQL . The LIMIT clause accepts one or two parameters. The values

of both parameters must be non-negative integers and be used after a pipe. The syntax and description are as follows:

For example:

LIMIT IN GO STATEMENTS

In addition to the general syntax in the native nGQL, the LIMIT in the GO statement also supports limiting the number of output

results based on edges.

Syntax:

•

•

Note

... | LIMIT [<offset>,] <number_rows>;

Parameter Description

offset The offset value. It defines the row from which to start returning. The offset starts from 0 . The default

value is 0 , which returns from the first row.

number_rows It constrains the total number of returned rows.

The following example returns the top 3 rows of data from the result.

nebula> LOOKUP ON player YIELD id(vertex)|\

 LIMIT 3;

+-------------+

| id(VERTEX) |

+-------------+

| "player100" |

| "player101" |

| "player102" |

+-------------+

The following example returns the 3 rows of data starting from the second row of the sorted output.

nebula> GO FROM "player100" OVER follow REVERSELY \

 YIELD properties($$).name AS Friend, properties($$).age AS Age \

 | ORDER BY $-.Age, $-.Friend \

 | LIMIT 1, 3;

+-------------------+-----+

| Friend | Age |

+-------------------+-----+

| "Danny Green" | 31 |

| "Aron Baynes" | 32 |

| "Marco Belinelli" | 32 |

+-------------------+-----+

4.7.2 LIMIT AND SKIP

- 245/927 - 2022 Vesoft Inc.

limit_list is a list. Elements in the list must be natural numbers, and the number of elements must be the same as the maximum

number of STEPS in the GO statement. The following takes GO 1 TO 3 STEPS FROM "A" OVER * LIMIT <limit_list> as an example to introduce

this usage of LIMIT in detail.

The list limit_list must contain 3 natural numbers, such as GO 1 TO 3 STEPS FROM "A" OVER * LIMIT [1,2,4] .

1 in LIMIT [1,2,4] means that the system automatically selects 1 edge to continue traversal in the first step. 2 means to select 2

edges to continue traversal in the second step. 4 indicates that 4 edges are selected to continue traversal in the third step.

Because GO 1 TO 3 STEPS means to return all the traversal results from the first to third steps, all the red edges and their source

and destination vertices in the figure below will be matched by this GO statement. And the yellow edges represent there is no

path selected when the GO statement traverses. If it is not GO 1 TO 3 STEPS but GO 3 STEPS , it will only match the red edges of the

third step and the vertices at both ends.

In the basketballplayer dataset, the example is as follows:

<go_statement> LIMIT <limit_list>;

•

•

•

nebula> GO 3 STEPS FROM "player100" \

 OVER * \

 YIELD properties($$).name AS NAME, properties($$).age AS Age \

 LIMIT [3,3,3];

+-----------------+--------------+

| NAME | Age |

+-----------------+--------------+

| "Spurs" | UNKNOWN_PROP |

| "Tony Parker" | 36 |

| "Manu Ginobili" | 41 |

+-----------------+--------------+

nebula> GO 3 STEPS FROM "player102" OVER * BIDIRECT\

 YIELD dst(edge) \

 LIMIT [rand32(5),rand32(5),rand32(5)];

+-------------+

| dst(EDGE) |

+-------------+

4.7.2 LIMIT AND SKIP

- 246/927 - 2022 Vesoft Inc.

LIMIT in openCypher compatible statements

In openCypher compatible statements such as MATCH , there is no need to use a pipe when LIMIT is used. The syntax and

description are as follows:

Both offset and number_rows accept expressions, but the result of the expression must be a non-negative integer.

Fraction expressions composed of two integers are automatically floored to integers. For example, 8/6 is floored to 1.

EXAMPLES OF LIMIT

LIMIT can be used alone to return a specified number of results.

EXAMPLES OF SKIP

SKIP can be used alone to set the offset and return the data after the specified position.

| "player100" |

| "player100" |

+-------------+

... [SKIP <offset>] [LIMIT <number_rows>];

Parameter Description

offset The offset value. It defines the row from which to start returning. The offset starts from 0 . The default

value is 0 , which returns from the first row.

number_rows It constrains the total number of returned rows.

Note

nebula> MATCH (v:player) RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Age LIMIT 5;

+-------------------------+-----+

| Name | Age |

+-------------------------+-----+

| "Luka Doncic" | 20 |

| "Ben Simmons" | 22 |

| "Kristaps Porzingis" | 23 |

| "Giannis Antetokounmpo" | 24 |

| "Kyle Anderson" | 25 |

+-------------------------+-----+

nebula> MATCH (v:player) RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Age LIMIT rand32(5);

+-------------------------+-----+

| Name | Age |

+-------------------------+-----+

| "Luka Doncic" | 20 |

| "Ben Simmons" | 22 |

| "Kristaps Porzingis" | 23 |

| "Giannis Antetokounmpo" | 24 |

+-------------------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC SKIP 1;

+-----------------+-----+

| Name | Age |

+-----------------+-----+

| "Manu Ginobili" | 41 |

| "Tony Parker" | 36 |

+-----------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC SKIP 1+1;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 36 |

+---------------+-----+

4.7.2 LIMIT AND SKIP

- 247/927 - 2022 Vesoft Inc.

EXAMPLE OF SKIP AND LIMIT

SKIP and LIMIT can be used together to return the specified amount of data starting from the specified position.

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC SKIP 1 LIMIT 1;

+-----------------+-----+

| Name | Age |

+-----------------+-----+

| "Manu Ginobili" | 41 |

+-----------------+-----+

Last update: March 13, 2023

4.7.2 LIMIT AND SKIP

- 248/927 - 2022 Vesoft Inc.

4.7.3 SAMPLE

The SAMPLE clause takes samples evenly in the result set and returns the specified amount of data.

SAMPLE can be used in GO statements only. The syntax is as follows:

sample_list is a list. Elements in the list must be natural numbers, and the number of elements must be the same as the maximum

number of STEPS in the GO statement. The following takes GO 1 TO 3 STEPS FROM "A" OVER * SAMPLE <sample_list> as an example to introduce

this usage of SAMPLE in detail.

The list sample_list must contain 3 natural numbers, such as GO 1 TO 3 STEPS FROM "A" OVER * SAMPLE [1,2,4] .

1 in SAMPLE [1,2,4] means that the system automatically selects 1 edge to continue traversal in the first step. 2 means to select

2 edges to continue traversal in the second step. 4 indicates that 4 edges are selected to continue traversal in the third step. If

there is no matched edge in a certain step or the number of matched edges is less than the specified number, the actual

number will be returned.

Because GO 1 TO 3 STEPS means to return all the traversal results from the first to third steps, all the red edges and their source

and destination vertices in the figure below will be matched by this GO statement. And the yellow edges represent there is no

path selected when the GO statement traverses. If it is not GO 1 TO 3 STEPS but GO 3 STEPS , it will only match the red edges of the

third step and the vertices at both ends.

In the basketballplayer dataset, the example is as follows:

<go_statement> SAMPLE <sample_list>;

•

•

•

nebula> GO 3 STEPS FROM "player100" \

 OVER * \

4.7.3 SAMPLE

- 249/927 - 2022 Vesoft Inc.

 YIELD properties($$).name AS NAME, properties($$).age AS Age \

 SAMPLE [1,2,3];

+-----------------+--------------+

| NAME | Age |

+-----------------+--------------+

| "Spurs" | UNKNOWN_PROP |

| "Tony Parker" | 36 |

| "Manu Ginobili" | 41 |

+-----------------+--------------+

nebula> GO 1 TO 3 STEPS FROM "player100" \

 OVER * \

 YIELD properties($$).name AS NAME, properties($$).age AS Age \

 SAMPLE [2,2,2];

+---------------------+-----+

| NAME | Age |

+---------------------+-----+

| "Manu Ginobili" | 41 |

| "Tony Parker" | 36 |

| "Tim Duncan" | 42 |

| "LaMarcus Aldridge" | 33 |

| "Tony Parker" | 36 |

| "Tim Duncan" | 42 |

+---------------------+-----+

Last update: March 23, 2022

4.7.3 SAMPLE

- 250/927 - 2022 Vesoft Inc.

4.7.4 ORDER BY

The ORDER BY clause specifies the order of the rows in the output.

Native nGQL: You must use a pipe (|) and an ORDER BY clause after YIELD clause.

OpenCypher style: No pipes are permitted. The ORDER BY clause follows a RETURN clause.

There are two order options:

ASC : Ascending. ASC is the default order.

DESC : Descending.

Native nGQL Syntax

In the native nGQL syntax, $-. must be used after ORDER BY . But it is not required in releases prior to 2.5.0.

EXAMPLES

OpenCypher Syntax

EXAMPLES

•

•

•

•

<YIELD clause>

ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...];

Compatibility

nebula> FETCH PROP ON player "player100", "player101", "player102", "player103" \

 YIELD player.age AS age, player.name AS name \

 | ORDER BY $-.age ASC, $-.name DESC;

+-----+---------------------+

| age | name |

+-----+---------------------+

| 32 | "Rudy Gay" |

| 33 | "LaMarcus Aldridge" |

| 36 | "Tony Parker" |

| 42 | "Tim Duncan" |

+-----+---------------------+

nebula> $var = GO FROM "player100" OVER follow \

 YIELD dst(edge) AS dst; \

 ORDER BY $var.dst DESC;

+-------------+

| dst |

+-------------+

| "player125" |

| "player101" |

+-------------+

<RETURN clause>

ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...];

nebula> MATCH (v:player) RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Name DESC;

+-----------------+-----+

| Name | Age |

+-----------------+-----+

| "Yao Ming" | 38 |

| "Vince Carter" | 42 |

| "Tracy McGrady" | 39 |

| "Tony Parker" | 36 |

| "Tim Duncan" | 42 |

+-----------------+-----+

...

In the following example, nGQL sorts the rows by age first. If multiple people are of the same age, nGQL will then sort them by name.

nebula> MATCH (v:player) RETURN v.player.age AS Age, v.player.name AS Name \

 ORDER BY Age DESC, Name ASC;

+-----+-------------------+

| Age | Name |

+-----+-------------------+

| 47 | "Shaquille O'Neal" |

4.7.4 ORDER BY

- 251/927 - 2022 Vesoft Inc.

Order of NULL values

nGQL lists NULL values at the end of the output for ascending sorting, and at the start for descending sorting.

| 46 | "Grant Hill" |

| 45 | "Jason Kidd" |

| 45 | "Steve Nash" |

+-----+-------------------+

...

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age;

+-----------------+----------+

| Name | Age |

+-----------------+----------+

| "Tony Parker" | 36 |

| "Manu Ginobili" | 41 |

| __NULL__ | __NULL__ |

+-----------------+----------+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \

 RETURN v2.player.name AS Name, v2.player.age AS Age \

 ORDER BY Age DESC;

+-----------------+----------+

| Name | Age |

+-----------------+----------+

| __NULL__ | __NULL__ |

| "Manu Ginobili" | 41 |

| "Tony Parker" | 36 |

+-----------------+----------+

Last update: May 6, 2022

4.7.4 ORDER BY

- 252/927 - 2022 Vesoft Inc.

4.7.5 RETURN

The RETURN clause defines the output of an nGQL query. To return multiple fields, separate them with commas.

RETURN can lead a clause or a statement:

A RETURN clause can work in openCypher statements in nGQL, such as MATCH or UNWIND .

A RETURN statement can work independently to output the result of an expression.

OpenCypher compatibility

This topic applies to the openCypher syntax in nGQL only. For native nGQL, use YIELD .

RETURN does not support the following openCypher features yet.

Return variables with uncommon characters, for example:

Set a pattern in the RETURN clause and return all elements that this pattern matches, for example:

Map order description

When RETURN returns the map data structure, the order of key-value pairs is undefined.

Return vertices or edges

Use the RETURN {<vertex_name> | <edge_name>} to return vertices and edges all information.

•

•

•

MATCH (`non-english_characters`:player) \

RETURN `non-english_characters`;

•

MATCH (v:player) \

RETURN (v)-[e]->(v2);

nebula> RETURN {age: 32, name: "Marco Belinelli"};

+------------------------------------+

| {age:32,name:"Marco Belinelli"} |

+------------------------------------+

| {age: 32, name: "Marco Belinelli"} |

+------------------------------------+

nebula> RETURN {zage: 32, name: "Marco Belinelli"};

+-------------------------------------+

| {zage:32,name:"Marco Belinelli"} |

+-------------------------------------+

| {name: "Marco Belinelli", zage: 32} |

+-------------------------------------+

// Return vertices

nebula> MATCH (v:player) \

 RETURN v;

+---+

| v |

+---+

| ("player104" :player{age: 32, name: "Marco Belinelli"}) |

| ("player107" :player{age: 32, name: "Aron Baynes"}) |

| ("player116" :player{age: 34, name: "LeBron James"}) |

| ("player120" :player{age: 29, name: "James Harden"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

+---+

...

// Return edges

nebula> MATCH (v:player)-[e]->() \

 RETURN e;

+--+

| e |

+--+

| [:follow "player104"->"player100" @0 {degree: 55}] |

| [:follow "player104"->"player101" @0 {degree: 50}] |

| [:follow "player104"->"player105" @0 {degree: 60}] |

| [:serve "player104"->"team200" @0 {end_year: 2009, start_year: 2007}] |

4.7.5 RETURN

- 253/927 - 2022 Vesoft Inc.

Return VIDs

Use the id() function to retrieve VIDs.

Return Tag

Use the labels() function to return the list of tags on a vertex.

To retrieve the nth element in the labels(v) list, use labels(v)[n-1] . The following example shows how to use labels(v)[0] to return

the first tag in the list.

Return properties

To return a vertex or edge property, use the {<vertex_name>|<edge_name>}.<property> syntax.

Use the properties() function to return all properties on a vertex or an edge.

Return edge type

Use the type() function to return the matched edge types.

| [:serve "player104"->"team208" @0 {end_year: 2016, start_year: 2015}] |

+--+

...

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN id(v);

+-------------+

| id(v) |

+-------------+

| "player100" |

+-------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN labels(v);

+------------+

| labels(v) |

+------------+

| ["player"] |

+------------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN labels(v)[0];

+--------------+

| labels(v)[0] |

+--------------+

| "player" |

+--------------+

nebula> MATCH (v:player) \

 RETURN v.player.name, v.player.age \

 LIMIT 3;

+------------------+--------------+

| v.player.name | v.player.age |

+------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

+------------------+--------------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \

 RETURN properties(v2);

+----------------------------------+

| properties(v2) |

+----------------------------------+

| {name: "Spurs"} |

| {age: 36, name: "Tony Parker"} |

| {age: 41, name: "Manu Ginobili"} |

+----------------------------------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e]->() \

 RETURN DISTINCT type(e);

+----------+

| type(e) |

4.7.5 RETURN

- 254/927 - 2022 Vesoft Inc.

Return paths

Use RETURN <path_name> to return all the information of the matched paths.

RETURN VERTICES IN A PATH

Use the nodes() function to return all vertices in a path.

RETURN EDGES IN A PATH

Use the relationships() function to return all edges in a path.

RETURN PATH LENGTH

Use the length() function to return the length of a path.

+----------+

| "serve" |

| "follow" |

+----------+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*3]->() \

 RETURN p;

+--

+

|

p

|

+--

+

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2019, start_year: 2015}]->("team204" :team{name: "Spurs"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2015, start_year: 2006}]->("team203" :team{name: "Trail Blazers"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})-[:follow@0 {degree: 75}]->("player101" :player{age: 36, name: "Tony Parker"})> |

+--

+

...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \

 RETURN nodes(p);

+---+

| nodes(p) |

+---+

| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player204" :team{name: "Spurs"})] |

| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player101" :player{name: "Tony Parker", age: 36})] |

| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player125" :player{name: "Manu Ginobili", age: 41})] |

+---+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) \

 RETURN relationships(p);

+---+

| relationships(p) |

+---+

| [[:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}]] |

| [[:follow "player100"->"player101" @0 {degree: 95}]] |

| [[:follow "player100"->"player125" @0 {degree: 95}]] |

+---+

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*..2]->(v2) \

 RETURN p AS Paths, length(p) AS Length;

+--

+--------+

|

Paths

| Length |

+--

+--------+

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name:

"Spurs"})> | 1 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony

Parker"})> | 1 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu

Ginobili"})> | 1 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year: 2018, start_year: 1999}]-

>("team204" :team{name: "Spurs"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year: 2019, start_year: 2018}]-

>("team215" :team{name: "Hornets"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]->("player100" :player{age: 42,

name: "Tim Duncan"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]->("player102" :player{age: 33,

name: "LaMarcus Aldridge"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41,

4.7.5 RETURN

- 255/927 - 2022 Vesoft Inc.

Return all elements

To return all the elements that this pattern matches, use an asterisk (*).

Rename a field

Use the AS <alias> syntax to rename a field in the output.

Return a non-existing property

If a property matched does not exist, NULL is returned.

Return expression results

To return the results of expressions such as literals, functions, or predicates, set them in a RETURN clause.

name: "Manu Ginobili"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:serve@0 {end_year: 2018, start_year: 2002}]-

>("team204" :team{name: "Spurs"})> | 2 |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:follow@0 {degree: 90}]->("player100" :player{age: 42,

name: "Tim Duncan"})> | 2 |

+--

+--------+

nebula> MATCH (v:player{name:"Tim Duncan"}) \

 RETURN *;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

+--+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

 RETURN *;

+--+---+---+

| v | e | v2 |

+--+---+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player101" @0 {degree: 95}] | ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player125" @0 {degree: 95}] | ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] | ("team204" :team{name: "Spurs"}) |

+--+---+---+

nebula> MATCH (v:player{name:"Tim Duncan"})-[:serve]->(v2) \

 RETURN v2.team.name AS Team;

+---------+

| Team |

+---------+

| "Spurs" |

+---------+

nebula> RETURN "Amber" AS Name;

+---------+

| Name |

+---------+

| "Amber" |

+---------+

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

 RETURN v2.player.name, type(e), v2.player.age;

+-----------------+----------+---------------+

| v2.player.name | type(e) | v2.player.age |

+-----------------+----------+---------------+

| "Manu Ginobili" | "follow" | 41 |

| __NULL__ | "serve" | __NULL__ |

| "Tony Parker" | "follow" | 36 |

+-----------------+----------+---------------+

nebula> MATCH (v:player{name:"Tony Parker"})-->(v2:player) \

 RETURN DISTINCT v2.player.name, "Hello"+" graphs!", v2.player.age > 35;

+---------------------+----------------------+--------------------+

| v2.player.name | ("Hello"+" graphs!") | (v2.player.age>35) |

+---------------------+----------------------+--------------------+

| "LaMarcus Aldridge" | "Hello graphs!" | false |

| "Tim Duncan" | "Hello graphs!" | true |

| "Manu Ginobili" | "Hello graphs!" | true |

+---------------------+----------------------+--------------------+

nebula> RETURN 1+1;

+-------+

4.7.5 RETURN

- 256/927 - 2022 Vesoft Inc.

Return unique fields

Use DISTINCT to remove duplicate fields in the result set.

| (1+1) |

+-------+

| 2 |

+-------+

nebula> RETURN 3 > 1;

+-------+

| (3>1) |

+-------+

| true |

+-------+

nebula> RETURN 1+1, rand32(1, 5);

+-------+-------------+

| (1+1) | rand32(1,5) |

+-------+-------------+

| 2 | 1 |

+-------+-------------+

Before using DISTINCT.

nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \

 RETURN v2.player.name, v2.player.age;

+---------------------+---------------+

| v2.player.name | v2.player.age |

+---------------------+---------------+

| "Manu Ginobili" | 41 |

| "Boris Diaw" | 36 |

| "Marco Belinelli" | 32 |

| "Dejounte Murray" | 29 |

| "Tim Duncan" | 42 |

| "Tim Duncan" | 42 |

| "LaMarcus Aldridge" | 33 |

| "LaMarcus Aldridge" | 33 |

+---------------------+---------------+

After using DISTINCT.

nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \

 RETURN DISTINCT v2.player.name, v2.player.age;

+---------------------+---------------+

| v2.player.name | v2.player.age |

+---------------------+---------------+

| "Manu Ginobili" | 41 |

| "Boris Diaw" | 36 |

| "Marco Belinelli" | 32 |

| "Dejounte Murray" | 29 |

| "Tim Duncan" | 42 |

| "LaMarcus Aldridge" | 33 |

+---------------------+---------------+

Last update: May 6, 2022

4.7.5 RETURN

- 257/927 - 2022 Vesoft Inc.

4.7.6 TTL

TTL (Time To Live) specifies a timeout for a property. Once timed out, the property expires.

OpenCypher Compatibility

This topic applies to native nGQL only.

Precautions

You CANNOT modify a property schema with TTL options on it.

TTL options and indexes have coexistence issues.

TTL options and indexes CANNOT coexist on a tag or an edge type. If there is an index on a property, you cannot set TTL

options on other properties.

If there are TTL options on a tag, an edge type, or a property, you can still add an index on them.

Data expiration and deletion

VERTEX PROPERTY EXPIRATION

Vertex property expiration has the following impact.

If a vertex has only one tag, once a property of the vertex expires, the vertex expires.

If a vertex has multiple tags, once a property of the vertex expires, properties bound to the same tag with the expired property

also expire, but the vertex does not expire and other properties of it remain untouched.

EDGE PROPERTY EXPIRATION

Since an edge can have only one edge type, once an edge property expires, the edge expires.

DATA DELETION

The expired data are still stored on the disk, but queries will filter them out.

NebulaGraph automatically deletes the expired data and reclaims the disk space during the next compaction.

If TTL is disabled, the corresponding data deleted after the last compaction can be queried again.

TTL options

The native nGQL TTL feature has the following options.

Use TTL options

You must use the TTL options together to set a valid timeout on a property.

•

•

•

•

•

•

Note

Option Description

ttl_col Specifies the property to set a timeout on. The data type of the property must be int or timestamp .

ttl_duration Specifies the timeout adds-on value in seconds. The value must be a non-negative int64 number. A property

expires if the sum of its value and the ttl_duration value is smaller than the current timestamp. If the

ttl_duration value is 0 , the property never expires.

4.7.6 TTL

- 258/927 - 2022 Vesoft Inc.

SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS

If a tag or an edge type is already created, to set a timeout on a property bound to the tag or edge type, use ALTER to update the

tag or edge type.

SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

Use TTL options in the CREATE statement to set a timeout when creating a tag or an edge type. For more information, see CREATE

TAG and CREATE EDGE.

Remove a timeout

To disable TTL and remove the timeout on a property, you can use the following approaches.

Drop the property with the timeout.

Set ttl_col to an empty string.

Set ttl_duration to 0 . This operation keeps the TTL options and prevents the property from expiring and the property schema

from being modified.

Create a tag.

nebula> CREATE TAG IF NOT EXISTS t1 (a timestamp);

Use ALTER to update the tag and set the TTL options.

nebula> ALTER TAG t1 TTL_COL = "a", TTL_DURATION = 5;

Insert a vertex with tag t1. The vertex expires 5 seconds after the insertion.

nebula> INSERT VERTEX t1(a) VALUES "101":(now());

Create a tag and set the TTL options.

nebula> CREATE TAG IF NOT EXISTS t2(a int, b int, c string) TTL_DURATION= 100, TTL_COL = "a";

Insert a vertex with tag t2. The timeout timestamp is 1648197238 (1648197138 + 100).

nebula> INSERT VERTEX t2(a, b, c) VALUES "102":(1648197138, 30, "Hello");

•

nebula> ALTER TAG t1 DROP (a);

•

nebula> ALTER TAG t1 TTL_COL = "";

•

nebula> ALTER TAG t1 TTL_DURATION = 0;

Last update: March 13, 2023

4.7.6 TTL

- 259/927 - 2022 Vesoft Inc.

4.7.7 WHERE

The WHERE clause filters the output by conditions.

The WHERE clause usually works in the following queries:

Native nGQL: such as GO and LOOKUP .

OpenCypher syntax: such as MATCH and WITH .

OpenCypher compatibility

Filtering on edge rank is a native nGQL feature. To retrieve the rank value in openCypher statements, use the rank() function,

such as MATCH (:player)-[e:follow]->() RETURN rank(e); .

Basic usage

In the following examples, $$ and $^ are reference operators. For more information, see Operators.

DEFINE CONDITIONS WITH BOOLEAN OPERATORS

Use the boolean operators NOT , AND , OR , and XOR to define conditions in WHERE clauses. For the precedence of the operators, see

Precedence.

•

•

Note

nebula> MATCH (v:player) \

 WHERE v.player.name == "Tim Duncan" \

 XOR (v.player.age < 30 AND v.player.name == "Yao Ming") \

 OR NOT (v.player.name == "Yao Ming" OR v.player.name == "Tim Duncan") \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

...

nebula> GO FROM "player100" \

 OVER follow \

 WHERE properties(edge).degree > 90 \

 OR properties($$).age != 33 \

 AND properties($$).name != "Tony Parker" \

 YIELD properties($$);

+----------------------------------+

| properties($$) |

+----------------------------------+

| {age: 41, name: "Manu Ginobili"} |

+----------------------------------+

4.7.7 WHERE

- 260/927 - 2022 Vesoft Inc.

FILTER ON PROPERTIES

Use vertex or edge properties to define conditions in WHERE clauses.

Filter on a vertex property:

Filter on an edge property:

FILTER ON DYNAMICALLY-CALCULATED PROPERTIES

FILTER ON EXISTING PROPERTIES

FILTER ON EDGE RANK

In nGQL, if a group of edges has the same source vertex, destination vertex, and properties, the only thing that distinguishes

them is the rank. Use rank conditions in WHERE clauses to filter such edges.

•

nebula> MATCH (v:player)-[e]->(v2) \

 WHERE v2.player.age < 25 \

 RETURN v2.player.name, v2.player.age;

+----------------------+---------------+

| v2.player.name | v2.player.age |

+----------------------+---------------+

| "Ben Simmons" | 22 |

| "Luka Doncic" | 20 |

| "Kristaps Porzingis" | 23 |

+----------------------+---------------+

nebula> GO FROM "player100" OVER follow \

 WHERE $^.player.age >= 42 \

 YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

+-------------+

| "player101" |

| "player125" |

+-------------+

•

nebula> MATCH (v:player)-[e]->() \

 WHERE e.start_year < 2000 \

 RETURN DISTINCT v.player.name, v.player.age;

+--------------------+--------------+

| v.player.name | v.player.age |

+--------------------+--------------+

| "Tony Parker" | 36 |

| "Tim Duncan" | 42 |

| "Grant Hill" | 46 |

...

nebula> GO FROM "player100" OVER follow \

 WHERE follow.degree > 90 \

 YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

nebula> MATCH (v:player) \

 WHERE v[toLower("AGE")] < 21 \

 RETURN v.player.name, v.player.age;

+---------------+-------+

| v.name | v.age |

+---------------+-------+

| "Luka Doncic" | 20 |

+---------------+-------+

nebula> MATCH (v:player) \

 WHERE exists(v.player.age) \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

...

4.7.7 WHERE

- 261/927 - 2022 Vesoft Inc.

Filter on strings

Use STARTS WITH , ENDS WITH , or CONTAINS in WHERE clauses to match a specific part of a string. String matching is case-sensitive.

STARTS WITH

STARTS WITH will match the beginning of a string.

The following example uses STARTS WITH "T" to retrieve the information of players whose name starts with T .

If you use STARTS WITH "t" in the preceding statement, an empty set is returned because no name in the dataset starts with the

lowercase t .

ENDS WITH

ENDS WITH will match the ending of a string.

The following example uses ENDS WITH "r" to retrieve the information of players whose name ends with r .

The following example creates test data.

nebula> CREATE SPACE IF NOT EXISTS test (vid_type=FIXED_STRING(30));

nebula> USE test;

nebula> CREATE EDGE IF NOT EXISTS e1(p1 int);

nebula> CREATE TAG IF NOT EXISTS person(p1 int);

nebula> INSERT VERTEX person(p1) VALUES "1":(1);

nebula> INSERT VERTEX person(p1) VALUES "2":(2);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@0:(10);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@1:(11);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@2:(12);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@3:(13);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@4:(14);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@5:(15);

nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@6:(16);

The following example use rank to filter edges and retrieves edges with a rank greater than 2.

nebula> GO FROM "1" \

 OVER e1 \

 WHERE rank(edge) > 2 \

 YIELD src(edge), dst(edge), rank(edge) AS Rank, properties(edge).p1 | \

 ORDER BY $-.Rank DESC;

+-----------+-----------+------+---------------------+

| src(EDGE) | dst(EDGE) | Rank | properties(EDGE).p1 |

+-----------+-----------+------+---------------------+

| "1" | "2" | 6 | 16 |

| "1" | "2" | 5 | 15 |

| "1" | "2" | 4 | 14 |

| "1" | "2" | 3 | 13 |

+-----------+-----------+------+---------------------+

nebula> MATCH (v:player) \

 WHERE v.player.name STARTS WITH "T" \

 RETURN v.player.name, v.player.age;

+------------------+--------------+

| v.player.name | v.player.age |

+------------------+--------------+

| "Tony Parker" | 36 |

| "Tiago Splitter" | 34 |

| "Tim Duncan" | 42 |

| "Tracy McGrady" | 39 |

+------------------+--------------+

nebula> MATCH (v:player) \

 WHERE v.player.name STARTS WITH "t" \

 RETURN v.player.name, v.player.age;

+---------------+--------------+

| v.player.name | v.player.age |

+---------------+--------------+

+---------------+--------------+

Empty set (time spent 5080/6474 us)

nebula> MATCH (v:player) \

 WHERE v.player.name ENDS WITH "r" \

 RETURN v.player.name, v.player.age;

+------------------+--------------+

| v.player.name | v.player.age |

+------------------+--------------+

| "Tony Parker" | 36 |

| "Tiago Splitter" | 34 |

| "Vince Carter" | 42 |

+------------------+--------------+

4.7.7 WHERE

- 262/927 - 2022 Vesoft Inc.

CONTAINS

CONTAINS will match a certain part of a string.

The following example uses CONTAINS "Pa" to match the information of players whose name contains Pa .

NEGATIVE STRING MATCHING

You can use the boolean operator NOT to negate a string matching condition.

Filter on lists

MATCH VALUES IN A LIST

Use the IN operator to check if a value is in a specific list.

MATCH VALUES NOT IN A LIST

Use NOT before IN to rule out the values in a list.

nebula> MATCH (v:player) \

 WHERE v.player.name CONTAINS "Pa" \

 RETURN v.player.name, v.player.age;

+---------------+--------------+

| v.player.name | v.player.age |

+---------------+--------------+

| "Paul George" | 28 |

| "Tony Parker" | 36 |

| "Paul Gasol" | 38 |

| "Chris Paul" | 33 |

+---------------+--------------+

nebula> MATCH (v:player) \

 WHERE NOT v.player.name ENDS WITH "R" \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Danny Green" | 31 |

| "Tiago Splitter" | 34 |

| "David West" | 38 |

| "Russell Westbrook" | 30 |

...

nebula> MATCH (v:player) \

 WHERE v.player.age IN range(20,25) \

 RETURN v.player.name, v.player.age;

+-------------------------+--------------+

| v.player.name | v.player.age |

+-------------------------+--------------+

| "Ben Simmons" | 22 |

| "Giannis Antetokounmpo" | 24 |

| "Kyle Anderson" | 25 |

| "Joel Embiid" | 25 |

| "Kristaps Porzingis" | 23 |

| "Luka Doncic" | 20 |

+-------------------------+--------------+

nebula> LOOKUP ON player \

 WHERE player.age IN [25,28] \

 YIELD properties(vertex).name, properties(vertex).age;

+-------------------------+------------------------+

| properties(VERTEX).name | properties(VERTEX).age |

+-------------------------+------------------------+

| "Kyle Anderson" | 25 |

| "Damian Lillard" | 28 |

| "Joel Embiid" | 25 |

| "Paul George" | 28 |

| "Ricky Rubio" | 28 |

+-------------------------+------------------------+

nebula> MATCH (v:player) \

 WHERE v.player.age NOT IN range(20,25) \

 RETURN v.player.name AS Name, v.player.age AS Age \

 ORDER BY Age;

+---------------------+-----+

| Name | Age |

+---------------------+-----+

| "Kyrie Irving" | 26 |

| "Cory Joseph" | 27 |

| "Damian Lillard" | 28 |

| "Paul George" | 28 |

| "Ricky Rubio" | 28 |

4.7.7 WHERE

- 263/927 - 2022 Vesoft Inc.

+---------------------+-----+

...

Last update: May 6, 2022

4.7.7 WHERE

- 264/927 - 2022 Vesoft Inc.

4.7.8 YIELD

YIELD defines the output of an nGQL query.

YIELD can lead a clause or a statement:

A YIELD clause works in nGQL statements such as GO , FETCH , or LOOKUP and must be defined to return the result.

A YIELD statement works in a composite query or independently.

OpenCypher compatibility

This topic applies to native nGQL only. For the openCypher syntax, use RETURN .

YIELD has different functions in openCypher and nGQL.

In openCypher, YIELD is used in the CALL[…YIELD] clause to specify the output of the procedure call.

NGQL does not support CALL[…YIELD] yet.

In nGQL, YIELD works like RETURN in openCypher.

In the following examples, $$ and $- are reference operators. For more information, see Operators.

YIELD clauses

SYNTAX

USE A YIELD CLAUSE IN A STATEMENT

Use YIELD with GO :

•

•

•

Note

•

Note

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...];

Parameter Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

•

nebula> GO FROM "player100" OVER follow \

 YIELD properties($$).name AS Friend, properties($$).age AS Age;

+-----------------+-----+

| Friend | Age |

+-----------------+-----+

| "Tony Parker" | 36 |

4.7.8 YIELD

- 265/927 - 2022 Vesoft Inc.

Use YIELD with FETCH :

Use YIELD with LOOKUP :

YIELD statements

SYNTAX

USE A YIELD STATEMENT IN A COMPOSITE QUERY

In a composite query, a YIELD statement accepts, filters, and modifies the result set of the preceding statement, and then outputs

it.

The following query finds the players that "player100" follows and calculates their average age.

The following query finds the players that "player101" follows with the follow degrees greater than 90.

USE A STANDALONE YIELD STATEMENT

A YIELD statement can calculate a valid expression and output the result.

| "Manu Ginobili" | 41 |

+-----------------+-----+

•

nebula> FETCH PROP ON player "player100" \

 YIELD properties(vertex).name;

+-------------------------+

| properties(VERTEX).name |

+-------------------------+

| "Tim Duncan" |

+-------------------------+

•

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \

 YIELD properties(vertex).name, properties(vertex).age;

+-------------------------+------------------------+

| properties(VERTEX).name | properties(VERTEX).age |

+-------------------------+------------------------+

| "Tony Parker" | 36 |

+-------------------------+------------------------+

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]

[WHERE <conditions>];

Parameter Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

conditions Conditions set in a WHERE clause to filter the output. For more information, see WHERE .

nebula> GO FROM "player100" OVER follow \

 YIELD dst(edge) AS ID \

 | FETCH PROP ON player $-.ID \

 YIELD properties(vertex).age AS Age \

 | YIELD AVG($-.Age) as Avg_age, count(*)as Num_friends;

+---------+-------------+

| Avg_age | Num_friends |

+---------+-------------+

| 38.5 | 2 |

+---------+-------------+

nebula> $var1 = GO FROM "player101" OVER follow \

 YIELD properties(edge).degree AS Degree, dst(edge) as ID; \

 YIELD $var1.ID AS ID WHERE $var1.Degree > 90;

+-------------+

| ID |

+-------------+

| "player100" |

| "player125" |

+-------------+

4.7.8 YIELD

- 266/927 - 2022 Vesoft Inc.

nebula> YIELD rand32(1, 6);

+-------------+

| rand32(1,6) |

+-------------+

| 3 |

+-------------+

nebula> YIELD "Hel" + "\tlo" AS string1, ", World!" AS string2;

+-------------+------------+

| string1 | string2 |

+-------------+------------+

| "Hel lo" | ", World!" |

+-------------+------------+

nebula> YIELD hash("Tim") % 100;

+-----------------+

| (hash(Tim)%100) |

+-----------------+

| 42 |

+-----------------+

nebula> YIELD \

 CASE 2+3 \

 WHEN 4 THEN 0 \

 WHEN 5 THEN 1 \

 ELSE -1 \

 END \

 AS result;

+--------+

| result |

+--------+

| 1 |

+--------+

Last update: May 6, 2022

4.7.8 YIELD

- 267/927 - 2022 Vesoft Inc.

4.7.9 WITH

The WITH clause can retrieve the output from a query part, process it, and pass it to the next query part as the input.

OpenCypher compatibility

This topic applies to openCypher syntax only.

WITH has a similar function with the Pipe symbol in native nGQL, but they work in different ways. DO NOT use pipe symbols in the

openCypher syntax or use WITH in native nGQL statements.

Combine statements and form a composite query

Use a WITH clause to combine statements and transfer the output of a statement as the input of another statement.

EXAMPLE 1

The following statement:

Matches a path.

Outputs all the vertices on the path to a list with the nodes() function.

Unwinds the list into rows.

Removes duplicated vertices and returns a set of distinct vertices.

EXAMPLE 2

The following statement:

Matches the vertex with the VID player100 .

Outputs all the tags of the vertex into a list with the labels() function.

Unwinds the list into rows.

Returns the output.

Note

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \

 WITH nodes(p) AS n \

 UNWIND n AS n1 \

 RETURN DISTINCT n1;

+---+

| n1 |

+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

| ("player101" :player{age: 36, name: "Tony Parker"}) |

| ("team204" :team{name: "Spurs"}) |

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

| ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player104" :player{age: 32, name: "Marco Belinelli"}) |

| ("player144" :player{age: 47, name: "Shaquille O'Neal"}) |

| ("player105" :player{age: 31, name: "Danny Green"}) |

| ("player113" :player{age: 29, name: "Dejounte Murray"}) |

| ("player107" :player{age: 32, name: "Aron Baynes"}) |

| ("player109" :player{age: 34, name: "Tiago Splitter"}) |

| ("player108" :player{age: 36, name: "Boris Diaw"}) |

+---+

1.

2.

3.

4.

nebula> MATCH (v) \

 WHERE id(v)=="player100" \

 WITH labels(v) AS tags_unf \

 UNWIND tags_unf AS tags_f \

 RETURN tags_f;

+----------+

| tags_f |

+----------+

| "player" |

+----------+

4.7.9 WITH

- 268/927 - 2022 Vesoft Inc.

Filter composite queries

WITH can work as a filter in the middle of a composite query.

Process the output before using collect()

Use a WITH clause to sort and limit the output before using collect() to transform the output into a list.

Use with RETURN

Set an alias using a WITH clause, and then output the result through a RETURN clause.

nebula> MATCH (v:player)-->(v2:player) \

 WITH DISTINCT v2 AS v2, v2.player.age AS Age \

 ORDER BY Age \

 WHERE Age<25 \

 RETURN v2.player.name AS Name, Age;

+----------------------+-----+

| Name | Age |

+----------------------+-----+

| "Luka Doncic" | 20 |

| "Ben Simmons" | 22 |

| "Kristaps Porzingis" | 23 |

+----------------------+-----+

nebula> MATCH (v:player) \

 WITH v.player.name AS Name \

 ORDER BY Name DESC \

 LIMIT 3 \

 RETURN collect(Name);

+---+

| collect(Name) |

+---+

| ["Yao Ming", "Vince Carter", "Tracy McGrady"] |

+---+

nebula> WITH [1, 2, 3] AS `list` RETURN 3 IN `list` AS r;

+------+

| r |

+------+

| true |

+------+

nebula> WITH 4 AS one, 3 AS two RETURN one > two AS result;

+--------+

| result |

+--------+

| true |

+--------+

Last update: May 6, 2022

4.7.9 WITH

- 269/927 - 2022 Vesoft Inc.

4.7.10 UNWIND

The UNWIND statement splits a list into separated rows.

UNWIND can function as an individual statement or a clause in a statement.

Syntax

Split a list

The following example splits the list [1,2,3] into three rows.

Return a list with distinct items

Use WITH DISTINCT in the UNWIND statement to return a list with distinct items.

EXAMPLE 1

The following statement:

Splits the list [1,1,2,2,3,3] into rows.

Removes duplicated rows.

Sorts the rows.

Transforms the rows to a list.

Example 2

The following statement:

Outputs the vertices on the matched path into a list.

Splits the list into rows.

Removes duplicated rows.

Transforms the rows to a list.

UNWIND <list> AS <alias> <RETURN clause>;

nebula> UNWIND [1,2,3] AS n RETURN n;

+---+

| n |

+---+

| 1 |

| 2 |

| 3 |

+---+

1.

2.

3.

4.

nebula> WITH [1,1,2,2,3,3] AS n \

 UNWIND n AS r \

 WITH DISTINCT r AS r \

 ORDER BY r \

 RETURN collect(r);

+------------+

| collect(r) |

+------------+

| [1, 2, 3] |

+------------+

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--(v2) \

 WITH nodes(p) AS n \

 UNWIND n AS r \

 WITH DISTINCT r AS r \

 RETURN collect(r);

+--+

| collect(r) |

+--+

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}), |

|("team204" :team{name: "Spurs"}), ("player102" :player{age: 33, name: "LaMarcus Aldridge"}), |

4.7.10 UNWIND

- 270/927 - 2022 Vesoft Inc.

|("player125" :player{age: 41, name: "Manu Ginobili"}), ("player104" :player{age: 32, name: "Marco Belinelli"}), |

|("player144" :player{age: 47, name: "Shaquile O'Neal"}), ("player105" :player{age: 31, name: "Danny Green"}), |

|("player113" :player{age: 29, name: "Dejounte Murray"}), ("player107" :player{age: 32, name: "Aron Baynes"}), |

|("player109" :player{age: 34, name: "Tiago Splitter"}), ("player108" :player{age: 36, name: "Boris Diaw"})] |

+--+

Last update: March 8, 2022

4.7.10 UNWIND

- 271/927 - 2022 Vesoft Inc.

4.8 Space statements

4.8.1 CREATE SPACE

Graph spaces are used to store data in a physically isolated way in NebulaGraph, which is similar to the database concept in

MySQL. The CREATE SPACE statement can create a new graph space or clone the schema of an existing graph space.

Prerequisites

Only the God role can use the CREATE SPACE statement. For more information, see AUTHENTICATION.

Syntax

CREATE GRAPH SPACES

CREATE SPACE [IF NOT EXISTS] <graph_space_name> (

 [partition_num = <partition_number>,]

 [replica_factor = <replica_number>,]

 vid_type = {FIXED_STRING(<N>) | INT[64]}

)

 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the related graph space exists. If it does not exist, a new one will be created. The graph space

existence detection here only compares the graph space name (excluding properties).

<graph_space_name> Uniquely identifies a graph space in a NebulaGraph instance. The name of the graph space starts with a

letter, supports 1 to 4 bytes UTF-8 encoded characters, such as English letters (case-sensitive), digits, and

Chinese characters, but does not support special characters except underscores. To use special

characters or reserved keywords as identifiers, quote them with backticks. For more information, see

Keywords and reserved words.

partition_num Specifies the number of partitions in each replica. The suggested value is 20 times (2 times for HDD) the

number of the hard disks in the cluster. For example, if you have three hard disks in the cluster, we

recommend that you set 60 partitions. The default value is 100.

replica_factor Specifies the number of replicas in the cluster. The suggested number is 3 in a production environment

and 1 in a test environment. The replica number must be an odd number for the need of quorum-based

voting. The default value is 1.

vid_type A required parameter. Specifies the VID type in a graph space. Available values are FIXED_STRING(N) and

INT64 . INT equals to INT64 . FIXED_STRING(<N>) specifies the VID as a string, while INT64 specifies it as an

integer. N represents the maximum length of the VIDs. If you set a VID that is longer than N characters,

NebulaGraph throws an error.

COMMENT The remarks of the graph space. The maximum length is 256 bytes. By default, there is no comments on a

space.

4.8 Space statements

- 272/927 - 2022 Vesoft Inc.

If the replica number is set to one, you will not be able to load balance or scale out the NebulaGraph Storage Service with the

BALANCE statement.

Restrictions on VID type change and VID length:

For NebulaGraph v1.x, the type of VIDs can only be INT64 , and the String type is not allowed. For NebulaGraph v2.x, both INT64 and

FIXED_STRING(<N>) VID types are allowed. You must specify the VID type when creating a graph space, and use the same VID type in

INSERT statements, otherwise, an error message Wrong vertex id type: 1001 occurs.

The length of the VID should not be longer than N characters. If it exceeds N , NebulaGraph throws The VID must be a 64-bit integer or a

string fitting space vertex id length limit. .

For NebulaGraph v2.x before v2.5.0, vid_type is optional and defaults to FIXED_STRING(8) .

graph_space_name , partition_num , replica_factor , vid_type , and comment cannot be modified once set. To modify them, drop the current

working graph space with DROP SPACE and create a new one with CREATE SPACE .

CLONE GRAPH SPACES

Examples

Caution

•

•

•

•

Legacy version compatibility

Note

CREATE SPACE <new_graph_space_name> AS <old_graph_space_name>;

Parameter Description

<new_graph_space_name> The name of the graph space that is newly created. The name of the graph space starts with a letter,

supports 1 to 4 bytes UTF-8 encoded characters, such as English letters (case-sensitive), digits, and

Chinese characters, but does not support special characters except underscores. For more

information, see Keywords and reserved words. When a new graph space is created, the schema of the

old graph space <old_graph_space_name> will be cloned, including its parameters (the number of partitions

and replicas, etc.), Tag, Edge type and native indexes.

<old_graph_space_name> The name of the graph space that already exists.

The following example creates a graph space with a specified VID type and the maximum length. Other fields still use the default values.

nebula> CREATE SPACE IF NOT EXISTS my_space_1 (vid_type=FIXED_STRING(30));

The following example creates a graph space with a specified partition number, replica number, and VID type.

nebula> CREATE SPACE IF NOT EXISTS my_space_2 (partition_num=15, replica_factor=1, vid_type=FIXED_STRING(30));

The following example creates a graph space with a specified partition number, replica number, and VID type, and adds a comment on it.

nebula> CREATE SPACE IF NOT EXISTS my_space_3 (partition_num=15, replica_factor=1, vid_type=FIXED_STRING(30)) comment="Test the graph space";

Clone a graph space.

nebula> CREATE SPACE IF NOT EXISTS my_space_4 as my_space_3;

nebula> SHOW CREATE SPACE my_space_4;

+--------------+---+

| Space | Create Space |

+--------------+---+

| "my_space_4" | "CREATE SPACE `my_space_4` (partition_num = 15, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(30)) ON default comment = 'Test the graph

space'" |

+--------------+---+

4.8.1 CREATE SPACE

- 273/927 - 2022 Vesoft Inc.

Implementation of the operation

Trying to use a newly created graph space may fail because the creation is implemented asynchronously. To make sure the follow-up

operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds. To change the heartbeat interval, modify the

heartbeat_interval_secs parameter in the configuration files for all services. If the heartbeat interval is too short (i.e., less than 5

seconds), disconnection between peers may happen because of the misjudgment of machines in the distributed system.

Check partition distribution

On some large clusters, the partition distribution is possibly unbalanced because of the different startup times. You can run the

following command to do a check of the machine distribution.

To balance the request loads, use the following command.

Caution

nebula> SHOW HOSTS;

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

| "storaged0" | 9779 | 19669 | "ONLINE" | 8 | "basketballplayer:3, test:5" | "basketballplayer:10, test:10" | "3.1.0" |

| "storaged1" | 9779 | 19669 | "ONLINE" | 9 | "basketballplayer:4, test:5" | "basketballplayer:10, test:10" | "3.1.0" |

| "storaged2" | 9779 | 19669 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:10, test:10" | "3.1.0" |

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

nebula> BALANCE LEADER;

nebula> SHOW HOSTS;

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

| "storaged0" | 9779 | 19669 | "ONLINE" | 7 | "basketballplayer:3, test:4" | "basketballplayer:10, test:10" | "3.1.0" |

| "storaged1" | 9779 | 19669 | "ONLINE" | 7 | "basketballplayer:4, test:3" | "basketballplayer:10, test:10" | "3.1.0" |

| "storaged2" | 9779 | 19669 | "ONLINE" | 6 | "basketballplayer:3, test:3" | "basketballplayer:10, test:10" | "3.1.0" |

+-------------+------+-----------+----------+--------------+--------------------------------+--------------------------------+---------+

Last update: March 13, 2023

4.8.1 CREATE SPACE

- 274/927 - 2022 Vesoft Inc.

4.8.2 USE

USE specifies a graph space as the current working graph space for subsequent queries.

Prerequisites

Running the USE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

Examples

You cannot use two graph spaces in one statement.

Different from Fabric Cypher, graph spaces in NebulaGraph are fully isolated from each other. Making a graph space as the working

graph space prevents you from accessing other spaces. The only way to traverse in a new graph space is to switch by the USE

statement. In Fabric Cypher, you can use two graph spaces in one statement (using the USE + CALL syntax). But in NebulaGraph, you

can only use one graph space in one statement.

USE <graph_space_name>;

The following example creates two sample spaces.

nebula> CREATE SPACE IF NOT EXISTS space1 (vid_type=FIXED_STRING(30));

nebula> CREATE SPACE IF NOT EXISTS space2 (vid_type=FIXED_STRING(30));

The following example specifies space1 as the current working graph space.

nebula> USE space1;

The following example specifies space2 as the current working graph space. Hereafter, you cannot read any data from space1, because these vertices and edges being traversed have no

relevance with space1.

nebula> USE space2;

Caution

Last update: March 13, 2023

4.8.2 USE

- 275/927 - 2022 Vesoft Inc.

4.8.3 SHOW SPACES

SHOW SPACES lists all the graph spaces in the NebulaGraph examples.

Syntax

Example

To create graph spaces, see CREATE SPACE.

SHOW SPACES;

nebula> SHOW SPACES;

+--------------------+

| Name |

+--------------------+

| "cba" |

| "basketballplayer" |

+--------------------+

Last update: March 13, 2023

4.8.3 SHOW SPACES

- 276/927 - 2022 Vesoft Inc.

4.8.4 DESCRIBE SPACE

DESCRIBE SPACE returns the information about the specified graph space.

Syntax

You can use DESC instead of DESCRIBE for short.

The DESCRIBE SPACE statement is different from the SHOW SPACES statement. For details about SHOW SPACES , see SHOW SPACES.

Example

DESC[RIBE] SPACE <graph_space_name>;

nebula> DESCRIBE SPACE basketballplayer;

+----+--------------------+------------------+----------------+---------+------------+--------------------+---------+

| ID | Name | Partition Number | Replica Factor | Charset | Collate | Vid Type | Comment |

+----+--------------------+------------------+----------------+---------+------------+--------------------+---------+

| 1 | "basketballplayer" | 10 | 1 | "utf8" | "utf8_bin" | "FIXED_STRING(32)" | |

+----+--------------------+------------------+----------------+---------+------------+--------------------+---------+

Last update: May 7, 2022

4.8.4 DESCRIBE SPACE

- 277/927 - 2022 Vesoft Inc.

4.8.5 CLEAR SPACE

CLEAR SPACE deletes the vertices and edges in a graph space, but does not delete the graph space itself and the schema

information.

Permission requirements

Only the God role has the permission to run CLEAR SPACE .

Caution

Once cleared, the data CANNOT be recovered. Use CLEAR SPACE with caution.

CLEAR SPACE is not an atomic operation. If an error occurs, re-run CLEAR SPACE to avoid data remaining.

The larger the amount of data in the graph space, the longer it takes to clear it. If the execution fails due to client connection

timeout, increase the value of the storage_client_timeout_ms parameter in the Graph Service configuration.

During the execution of CLEAR SPACE , writing data into the graph space is not automatically prohibited. Such write operations

can result in incomplete data clearing, and the residual data can be damaged.

The NebulaGraph Community Edition does not support blocking data writing while allowing CLEAR SPACE .

The NebulaGraph Enterprise Edition supports blocking data writing by setting VARIABLE read_only=true before running CLEAR SPACE .

After the data are cleared successfully, run SET VARIABLE read_only=false to allow data writing again.

Syntax

Example:

Data reserved

CLEAR SPACE does not delete the following data in a graph space:

Tag information.

Edge type information.

The metadata of native indexes and full-text indexes.

The following example shows what CLEAR SPACE deletes and reserves.

•

•

•

•

Enterpriseonly

•

•

CLEAR SPACE [IF EXISTS] <space_name>;

Parameter/

Option

Description

IF EXISTS Check whether the graph space to be cleared exists. If it exists, continue to clear it. If it does not exist,

the execution finishes, and a message indicating that the execution succeeded is displayed.

If IF EXISTS is not set and the graph space does not exist, the CLEAR SPACE statement fails to execute, and an

error occurs.

space_name The name of the space to be cleared.

CLEAR SPACE basketballplayer;

•

•

•

Enter the graph space basketballplayer.

nebula [(none)]> use basketballplayer;

Execution succeeded

4.8.5 CLEAR SPACE

- 278/927 - 2022 Vesoft Inc.

List tags and Edge types.

nebula[basketballplayer]> SHOW TAGS;

+----------+

| Name |

+----------+

| "player" |

| "team" |

+----------+

Got 2 rows

nebula[basketballplayer]> SHOW EDGES;

+----------+

| Name |

+----------+

| "follow" |

| "serve" |

+----------+

Got 2 rows

Submit a job to make statistics of the graph space.

nebula[basketballplayer]> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 4 |

+------------+

Got 1 rows

Check the statistics.

nebula[basketballplayer]> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 51 |

| "Tag" | "team" | 30 |

| "Edge" | "follow" | 81 |

| "Edge" | "serve" | 152 |

| "Space" | "vertices" | 81 |

| "Space" | "edges" | 233 |

+---------+------------+-------+

Got 6 rows

List tag indexes.

nebula[basketballplayer]> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

+------------------+----------+----------+

Got 2 rows

----------------------- Dividing line for CLEAR SPACE -----------------------

Run CLEAR SPACE to clear the graph space basketballplayer.

nebula[basketballplayer]> CLEAR SPACE basketballplayer;

Execution succeeded

Update the statistics.

nebula[basketballplayer]> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 5 |

+------------+

Got 1 rows

Check the statistics. The tags and edge types still exist, but all the vertices and edges are gone.

nebula[basketballplayer]> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 0 |

| "Tag" | "team" | 0 |

| "Edge" | "follow" | 0 |

| "Edge" | "serve" | 0 |

| "Space" | "vertices" | 0 |

| "Space" | "edges" | 0 |

+---------+------------+-------+

Got 6 rows

Try to list the tag indexes. They still exist.

nebula[basketballplayer]> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

+------------------+----------+----------+

Got 2 rows (time spent 523/978 us)

4.8.5 CLEAR SPACE

- 279/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

4.8.5 CLEAR SPACE

- 280/927 - 2022 Vesoft Inc.

4.8.6 DROP SPACE

DROP SPACE deletes the specified graph space and everything in it.

Prerequisites

Only the God role can use the DROP SPACE statement. For more information, see AUTHENTICATION.

Syntax

You can use the IF EXISTS keywords when dropping spaces. These keywords automatically detect if the related graph space exists.

If it exists, it will be deleted. Otherwise, no graph space will be deleted.

In NebulaGraph versions earlier than 3.1.0, the DROP SPACE statement does not remove all the files and directories from the disk by

default.

BE CAUTIOUS about running the DROP SPACE statement.

DROP SPACE [IF EXISTS] <graph_space_name>;

Legacy version compatibility

Caution

Last update: March 13, 2023

4.8.6 DROP SPACE

- 281/927 - 2022 Vesoft Inc.

4.9 Tag statements

4.9.1 CREATE TAG

CREATE TAG creates a tag with the given name in a graph space.

OpenCypher compatibility

Tags in nGQL are similar to labels in openCypher. But they are also quite different. For example, the ways to create them are

different.

In openCypher, labels are created together with vertices in CREATE statements.

In nGQL, tags are created separately using CREATE TAG statements. Tags in nGQL are more like tables in MySQL.

Prerequisites

Running the CREATE TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

To create a tag in a specific graph space, you must specify the current working space with the USE statement.

•

•

CREATE TAG [IF NOT EXISTS] <tag_name>

 (

 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']

 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]

)

 [TTL_DURATION = <ttl_duration>]

4.9 Tag statements

- 282/927 - 2022 Vesoft Inc.

EXAMPLES

Implementation of the operation

Trying to use a newly created tag may fail because the creation of the tag is implemented asynchronously. To make sure the

follow-up operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

 [TTL_COL = <prop_name>]

 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the tag that you want to create exists. If it does not exist, a new one will be created. The tag

existence detection here only compares the tag names (excluding properties).

<tag_name> The tag name must be unique in a graph space. Once the tag name is set, it can not be altered. The name of

the tag starts with a letter, supports 1 to 4 bytes UTF-8 encoded characters, such as English letters (case-

sensitive), digits, and Chinese characters, but does not support special characters except underscores. To use

special characters or reserved keywords as identifiers, quote them with backticks. For more information, see

Keywords and reserved words.

<prop_name> The name of the property. It must be unique for each tag. The rules for permitted property names are the

same as those for tag names.

<data_type> Shows the data type of each property. For a full description of the property data types, see Data types and

Boolean.

NULL \| NOT

NULL

Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT Specifies a default value for a property. The default value can be a literal value or an expression supported by

NebulaGraph. If no value is specified, the default value is used when inserting a new vertex.

COMMENT The remarks of a certain property or the tag itself. The maximum length is 256 bytes. By default, there will be

no comments on a tag.

TTL_DURATION Specifies the life cycle for the property. The property that exceeds the specified TTL expires. The expiration

threshold is the TTL_COL value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It means the data

never expires.

TTL_COL Specifies the property to set a timeout on. The data type of the property must be int or timestamp . A tag can

only specify one field as TTL_COL . For more information on TTL, see TTL options.

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

The following example creates a tag with no properties.

nebula> CREATE TAG IF NOT EXISTS no_property();

The following example creates a tag with a default value.

nebula> CREATE TAG IF NOT EXISTS player_with_default(name string, age int DEFAULT 20);

In the following example, the TTL of the create_time field is set to be 100 seconds.

nebula> CREATE TAG IF NOT EXISTS woman(name string, age int, \

 married bool, salary double, create_time timestamp) \

 TTL_DURATION = 100, TTL_COL = "create_time";

Last update: March 13, 2023

4.9.1 CREATE TAG

- 283/927 - 2022 Vesoft Inc.

4.9.2 DROP TAG

DROP TAG drops a tag with the given name in the current working graph space.

A vertex can have one or more tags.

If a vertex has only one tag, the vertex will become a vertex without tag.

If a vertex has multiple tags, the vertex is still accessible after you drop one of them. But all the properties defined by this

dropped tag CANNOT be accessed.

This operation only deletes the Schema data. All the files or directories in the disk will not be deleted directly until the next

compaction.

Prerequisites

Running the DROP TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you drop a tag, make sure that the tag does not have any indexes. Otherwise, the conflict error ([ERROR (-1005)]: Conflict!)

will be returned when you run the DROP TAG statement. To drop an index, see DROP INDEX.

Syntax

IF NOT EXISTS : Detects if the tag that you want to drop exists. Only when it exists will it be dropped.

tag_name : Specifies the tag name that you want to drop. You can drop only one tag in one statement.

Example

•

•

•

•

DROP TAG [IF EXISTS] <tag_name>;

•

•

nebula> CREATE TAG IF NOT EXISTS test(p1 string, p2 int);

nebula> DROP TAG test;

Last update: March 13, 2023

4.9.2 DROP TAG

- 284/927 - 2022 Vesoft Inc.

4.9.3 ALTER TAG

ALTER TAG alters the structure of a tag with the given name in a graph space. You can add or drop properties, and change the data

type of an existing property. You can also set a TTL (Time-To-Live) on a property, or change its TTL duration.

Prerequisites

Running the ALTER TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you alter properties for a tag, make sure that the properties are not indexed. If the properties contain any indexes, the

conflict error [ERROR (-1005)]: Conflict! will occur when you ALTER TAG . For more information on dropping an index, see DROP

INDEX.

Syntax

tag_name : Specifies the tag name that you want to alter. You can alter only one tag in one statement. Before you alter a tag,

make sure that the tag exists in the current working graph space. If the tag does not exist, an error will occur when you alter

it.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER TAG statement, separated by commas.

Examples

Implementation of the operation

Trying to use a newly altered tag may fail because the alteration of the tag is implemented asynchronously. To make sure the

follow-up operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

ALTER TAG <tag_name>

 <alter_definition> [[, alter_definition] ...]

 [ttl_definition [, ttl_definition] ...]

 [COMMENT '<comment>'];

alter_definition:

| ADD (prop_name data_type [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>'])

| DROP (prop_name)

| CHANGE (prop_name data_type [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>'])

ttl_definition:

 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

•

nebula> CREATE TAG IF NOT EXISTS t1 (p1 string, p2 int);

nebula> ALTER TAG t1 ADD (p3 int, p4 string);

nebula> ALTER TAG t1 TTL_DURATION = 2, TTL_COL = "p2";

nebula> ALTER TAG t1 COMMENT = 'test1';

nebula> ALTER TAG t1 ADD (p5 double NOT NULL DEFAULT 0.4 COMMENT 'p5') COMMENT='test2';

Last update: March 13, 2023

4.9.3 ALTER TAG

- 285/927 - 2022 Vesoft Inc.

4.9.4 SHOW TAGS

The SHOW TAGS statement shows the name of all tags in the current graph space.

You do not need any privileges for the graph space to run the SHOW TAGS statement. But the returned results are different based on

role privileges.

Syntax

Examples

SHOW TAGS;

nebula> SHOW TAGS;

+----------+

| Name |

+----------+

| "player" |

| "team" |

+----------+

Last update: October 27, 2021

4.9.4 SHOW TAGS

- 286/927 - 2022 Vesoft Inc.

4.9.5 DESCRIBE TAG

DESCRIBE TAG returns the information about a tag with the given name in a graph space, such as field names, data type, and so on.

Prerequisite

Running the DESCRIBE TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

You can use DESC instead of DESCRIBE for short.

Example

DESC[RIBE] TAG <tag_name>;

nebula> DESCRIBE TAG player;

+--------+----------+-------+---------+---------+

| Field | Type | Null | Default | Comment |

+--------+----------+-------+---------+---------+

| "name" | "string" | "YES" | | |

| "age" | "int64" | "YES" | | |

+--------+----------+-------+---------+---------+

Last update: March 13, 2023

4.9.5 DESCRIBE TAG

- 287/927 - 2022 Vesoft Inc.

4.9.6 DELETE TAG

DELETE TAG deletes a tag with the given name on a specified vertex.

Prerequisites

Running the DELETE TAG statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

tag_name_list : Specifies the name of the tag. Multiple tags are separated with commas (,). * means all tags.

VID : Specifies the VID of the tag to delete.

Example

In openCypher, you can use the statement REMOVE v:LABEL to delete the tag LABEL of the vertex v .

DELETE TAG and DROP TAG have the same semantics but different syntax. In nGQL, use DELETE TAG .

DELETE TAG <tag_name_list> FROM <VID>;

•

•

nebula> CREATE TAG IF NOT EXISTS test1(p1 string, p2 int);

nebula> CREATE TAG IF NOT EXISTS test2(p3 string, p4 int);

nebula> INSERT VERTEX test1(p1, p2),test2(p3, p4) VALUES "test":("123", 1, "456", 2);

nebula> FETCH PROP ON * "test" YIELD vertex AS v;

+--+

| v |

+--+

| ("test" :test1{p1: "123", p2: 1} :test2{p3: "456", p4: 2}) |

+--+

nebula> DELETE TAG test1 FROM "test";

nebula> FETCH PROP ON * "test" YIELD vertex AS v;

+-----------------------------------+

| v |

+-----------------------------------+

| ("test" :test2{p3: "456", p4: 2}) |

+-----------------------------------+

nebula> DELETE TAG * FROM "test";

nebula> FETCH PROP ON * "test" YIELD vertex AS v;

+---+

| v |

+---+

+---+

Compatibility

•

•

Last update: March 13, 2023

4.9.6 DELETE TAG

- 288/927 - 2022 Vesoft Inc.

4.9.7 Add and delete tags

OpenCypher has the features of SET label and REMOVE label to speed up the process of querying or labeling.

NebulaGraph achieves the same operations by creating and inserting tags to an existing vertex, which can quickly query vertices

based on the tag name. Users can also run DELETE TAG to delete some vertices that are no longer needed.

Examples

For example, in the basketballplayer data set, some basketball players are also team shareholders. Users can create an index for

the shareholder tag shareholder for quick search. If the player is no longer a shareholder, users can delete the shareholder tag of

the corresponding player by DELETE TAG .

If the index is created after inserting the test data, use the REBUILD TAG INDEX <index_name_list>; statement to rebuild the index.

//This example creates the shareholder tag and index.

nebula> CREATE TAG IF NOT EXISTS shareholder();

nebula> CREATE TAG INDEX IF NOT EXISTS shareholder_tag on shareholder();

//This example adds a tag on the vertex.

nebula> INSERT VERTEX shareholder() VALUES "player100":();

nebula> INSERT VERTEX shareholder() VALUES "player101":();

//This example queries all the shareholders.

nebula> MATCH (v:shareholder) RETURN v;

+--+

| v |

+--+

| ("player100" :player{age: 42, name: "Tim Duncan"} :shareholder{}) |

| ("player101" :player{age: 36, name: "Tony Parker"} :shareholder{}) |

+--+

nebula> LOOKUP ON shareholder YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player100" |

| "player101" |

+-------------+

//In this example, the "player100" is no longer a shareholder.

nebula> DELETE TAG shareholder FROM "player100";

nebula> LOOKUP ON shareholder YIELD id(vertex);

+-------------+

| id(VERTEX) |

+-------------+

| "player101" |

+-------------+

Note

Last update: March 13, 2023

4.9.7 Add and delete tags

- 289/927 - 2022 Vesoft Inc.

4.10 Edge type statements

4.10.1 CREATE EDGE

CREATE EDGE creates an edge type with the given name in a graph space.

OpenCypher compatibility

Edge types in nGQL are similar to relationship types in openCypher. But they are also quite different. For example, the ways to

create them are different.

In openCypher, relationship types are created together with vertices in CREATE statements.

In nGQL, edge types are created separately using CREATE EDGE statements. Edge types in nGQL are more like tables in MySQL.

Prerequisites

Running the CREATE EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

To create an edge type in a specific graph space, you must specify the current working space with the USE statement.

•

•

CREATE EDGE [IF NOT EXISTS] <edge_type_name>

 (

 <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']

 [{, <prop_name> <data_type> [NULL | NOT NULL] [DEFAULT <default_value>] [COMMENT '<comment>']} ...]

)

 [TTL_DURATION = <ttl_duration>]

 [TTL_COL = <prop_name>]

 [COMMENT = '<comment>'];

Parameter Description

IF NOT EXISTS Detects if the edge type that you want to create exists. If it does not exist, a new one will be created. The

edge type existence detection here only compares the edge type names (excluding properties).

<edge_type_name> The edge type name must be unique in a graph space. Once the edge type name is set, it can not be

altered. The name of the edge type starts with a letter, supports 1 to 4 bytes UTF-8 encoded characters,

such as English letters (case-sensitive), digits, and Chinese characters, but does not support special

characters except underscores. To use special characters or reserved keywords as identifiers, quote them

with backticks. For more information, see Keywords and reserved words.

<prop_name> The name of the property. It must be unique for each edge type. The rules for permitted property names

are the same as those for edge type names.

<data_type> Shows the data type of each property. For a full description of the property data types, see Data types and

Boolean.

NULL \| NOT NULL Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT Specifies a default value for a property. The default value can be a literal value or an expression supported

by NebulaGraph. If no value is specified, the default value is used when inserting a new edge.

COMMENT The remarks of a certain property or the edge type itself. The maximum length is 256 bytes. By default,

there will be no comments on an edge type.

TTL_DURATION Specifies the life cycle for the property. The property that exceeds the specified TTL expires. The expiration

threshold is the TTL_COL value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It means the data

never expires.

TTL_COL Specifies the property to set a timeout on. The data type of the property must be int or timestamp . An edge

type can only specify one field as TTL_COL . For more information on TTL, see TTL options.

4.10 Edge type statements

- 290/927 - 2022 Vesoft Inc.

EXAMPLES

nebula> CREATE EDGE IF NOT EXISTS follow(degree int);

The following example creates an edge type with no properties.

nebula> CREATE EDGE IF NOT EXISTS no_property();

The following example creates an edge type with a default value.

nebula> CREATE EDGE IF NOT EXISTS follow_with_default(degree int DEFAULT 20);

In the following example, the TTL of the p2 field is set to be 100 seconds.

nebula> CREATE EDGE IF NOT EXISTS e1(p1 string, p2 int, p3 timestamp) \

 TTL_DURATION = 100, TTL_COL = "p2";

Last update: March 13, 2023

4.10.1 CREATE EDGE

- 291/927 - 2022 Vesoft Inc.

4.10.2 DROP EDGE

DROP EDGE drops an edge type with the given name in a graph space.

An edge can have only one edge type. After you drop it, the edge CANNOT be accessed. The edge will be deleted in the next

compaction.

This operation only deletes the Schema data. All the files or directories in the disk will not be deleted directly until the next

compaction.

Prerequisites

Running the DROP EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you drop an edge type, make sure that the edge type does not have any indexes. Otherwise, the conflict error ([ERROR

(-1005)]: Conflict!) will be returned. To drop an index, see DROP INDEX.

Syntax

IF NOT EXISTS : Detects if the edge type that you want to drop exists. Only when it exists will it be dropped.

edge_type_name : Specifies the edge type name that you want to drop. You can drop only one edge type in one statement.

Example

•

•

DROP EDGE [IF EXISTS] <edge_type_name>

•

•

nebula> CREATE EDGE IF NOT EXISTS e1(p1 string, p2 int);

nebula> DROP EDGE e1;

Last update: March 13, 2023

4.10.2 DROP EDGE

- 292/927 - 2022 Vesoft Inc.

4.10.3 ALTER EDGE

ALTER EDGE alters the structure of an edge type with the given name in a graph space. You can add or drop properties, and change

the data type of an existing property. You can also set a TTL (Time-To-Live) on a property, or change its TTL duration.

Prerequisites

Running the ALTER EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Before you alter properties for an edge type, make sure that the properties are not indexed. If the properties contain any

indexes, the conflict error [ERROR (-1005)]: Conflict! will occur when you ALTER EDGE . For more information on dropping an index,

see DROP INDEX.

Syntax

edge_type_name : Specifies the edge type name that you want to alter. You can alter only one edge type in one statement. Before

you alter an edge type, make sure that the edge type exists in the graph space. If the edge type does not exist, an error occurs

when you alter it.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER EDGE statement, separated by commas.

Example

Implementation of the operation

Trying to use a newly altered edge type may fail because the alteration of the edge type is implemented asynchronously. To make

sure the follow-up operations work as expected, Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

ALTER EDGE <edge_type_name>

 <alter_definition> [, alter_definition] ...]

 [ttl_definition [, ttl_definition] ...]

 [COMMENT = '<comment>'];

alter_definition:

| ADD (prop_name data_type)

| DROP (prop_name)

| CHANGE (prop_name data_type)

ttl_definition:

 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

•

nebula> CREATE EDGE IF NOT EXISTS e1(p1 string, p2 int);

nebula> ALTER EDGE e1 ADD (p3 int, p4 string);

nebula> ALTER EDGE e1 TTL_DURATION = 2, TTL_COL = "p2";

nebula> ALTER EDGE e1 COMMENT = 'edge1';

Last update: March 13, 2023

4.10.3 ALTER EDGE

- 293/927 - 2022 Vesoft Inc.

4.10.4 SHOW EDGES

SHOW EDGES shows all edge types in the current graph space.

You do not need any privileges for the graph space to run the SHOW EDGES statement. But the returned results are different based

on role privileges.

Syntax

Example

SHOW EDGES;

nebula> SHOW EDGES;

+----------+

| Name |

+----------+

| "follow" |

| "serve" |

+----------+

Last update: October 27, 2021

4.10.4 SHOW EDGES

- 294/927 - 2022 Vesoft Inc.

4.10.5 DESCRIBE EDGE

DESCRIBE EDGE returns the information about an edge type with the given name in a graph space, such as field names, data type,

and so on.

Prerequisites

Running the DESCRIBE EDGE statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

You can use DESC instead of DESCRIBE for short.

Example

DESC[RIBE] EDGE <edge_type_name>

nebula> DESCRIBE EDGE follow;

+----------+---------+-------+---------+---------+

| Field | Type | Null | Default | Comment |

+----------+---------+-------+---------+---------+

| "degree" | "int64" | "YES" | | |

+----------+---------+-------+---------+---------+

Last update: March 13, 2023

4.10.5 DESCRIBE EDGE

- 295/927 - 2022 Vesoft Inc.

4.11 Vertex statements

4.11.1 INSERT VERTEX

The INSERT VERTEX statement inserts one or more vertices into a graph space in NebulaGraph.

Prerequisites

Running the INSERT VERTEX statement requires some privileges for the graph space. Otherwise, NebulaGraph throws an error.

Syntax

IF NOT EXISTS detects if the VID that you want to insert exists. If it does not exist, a new one will be inserted.

IF NOT EXISTS only compares the names of the VID and the tag (excluding properties).

IF NOT EXISTS will read to check whether the data exists, which will have a significant impact on performance.

tag_name denotes the tag (vertex type), which must be created before INSERT VERTEX . For more information, see CREATE TAG.

NebulaGraph 3.1.0 supports inserting vertices without tags.

prop_name_list contains the names of the properties on the tag.

VID is the vertex ID. In NebulaGraph 2.0, string and integer VID types are supported. The VID type is set when a graph space

is created. For more information, see CREATE SPACE.

prop_value_list must provide the property values according to the prop_name_list . When the NOT NULL constraint is set for a given

property, an error is returned if no property is given. When the default value for a property is NULL , you can omit to specify the

property value. For details, see CREATE TAG.

INSERT VERTEX and CREATE have different semantics.

The semantics of INSERT VERTEX is closer to that of INSERT in NoSQL (key-value), or UPSERT (UPDATE or INSERT) in SQL.

When two INSERT statements (neither uses IF NOT EXISTS) with the same VID and TAG are operated at the same time, the latter

INSERT will overwrite the former.

When two INSERT statements with the same VID but different TAGS are operated at the same time, the operation of different tags will

not overwrite each other.

INSERT VERTEX [IF NOT EXISTS] [tag_props, [tag_props] ...]

VALUES VID: ([prop_value_list])

tag_props:

 tag_name ([prop_name_list])

prop_name_list:

 [prop_name [, prop_name] ...]

prop_value_list:

 [prop_value [, prop_value] ...]

•

Note

•

•

•

Caution

•

•

•

Caution

•

•

•

4.11 Vertex statements

- 296/927 - 2022 Vesoft Inc.

Examples are as follows.

Examples

A vertex can be inserted/written with new values multiple times. Only the last written values can be read.

If you insert a vertex that already exists with IF NOT EXISTS , there will be no modification.

Insert a vertex without tag.

nebula> INSERT VERTEX VALUES "1":();

The following examples create tag t1 with no property and inserts vertex "10" with no property.

nebula> CREATE TAG IF NOT EXISTS t1();

nebula> INSERT VERTEX t1() VALUES "10":();

nebula> CREATE TAG IF NOT EXISTS t2 (name string, age int);

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n1", 12);

In the following example, the insertion fails because "a13" is not int.

nebula> INSERT VERTEX t2 (name, age) VALUES "12":("n1", "a13");

The following example inserts two vertices at one time.

nebula> INSERT VERTEX t2 (name, age) VALUES "13":("n3", 12), "14":("n4", 8);

nebula> CREATE TAG IF NOT EXISTS t3(p1 int);

nebula> CREATE TAG IF NOT EXISTS t4(p2 string);

The following example inserts vertex "21" with two tags.

nebula> INSERT VERTEX t3 (p1), t4(p2) VALUES "21": (321, "hello");

The following examples insert vertex "11" with new values for multiple times.

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n2", 13);

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n3", 14);

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n4", 15);

nebula> FETCH PROP ON t2 "11" YIELD properties(vertex);

+-----------------------+

| properties(VERTEX) |

+-----------------------+

| {age: 15, name: "n4"} |

+-----------------------+

nebula> CREATE TAG IF NOT EXISTS t5(p1 fixed_string(5) NOT NULL, p2 int, p3 int DEFAULT NULL);

nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "001":("Abe", 2, 3);

In the following example, the insertion fails because the value of p1 cannot be NULL.

nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "002":(NULL, 4, 5);

[ERROR (-1009)]: SemanticError: No schema found for `t5'

In the following example, the value of p3 is the default NULL.

nebula> INSERT VERTEX t5(p1, p2) VALUES "003":("cd", 5);

nebula> FETCH PROP ON t5 "003" YIELD properties(vertex);

+---------------------------------+

| properties(VERTEX) |

+---------------------------------+

| {p1: "cd", p2: 5, p3: __NULL__} |

+---------------------------------+

In the following example, the allowed maximum length of p1 is 5.

nebula> INSERT VERTEX t5(p1, p2) VALUES "004":("shalalalala", 4);

nebula> FETCH PROP on t5 "004" YIELD properties(vertex);

+------------------------------------+

| properties(VERTEX) |

+------------------------------------+

| {p1: "shala", p2: 4, p3: __NULL__} |

+------------------------------------+

The following example inserts vertex "1".

nebula> INSERT VERTEX t2 (name, age) VALUES "1":("n2", 13);

Modify vertex "1" with IF NOT EXISTS. But there will be no modification as vertex "1" already exists.

nebula> INSERT VERTEX IF NOT EXISTS t2 (name, age) VALUES "1":("n3", 14);

nebula> FETCH PROP ON t2 "1" YIELD properties(vertex);

+-----------------------+

| properties(VERTEX) |

+-----------------------+

| {age: 13, name: "n2"} |

+-----------------------+

Last update: March 13, 2023

4.11.1 INSERT VERTEX

- 297/927 - 2022 Vesoft Inc.

4.11.2 DELETE VERTEX

By default, the DELETE VERTEX statement deletes vertices but the incoming and outgoing edges of the vertices.

NebulaGraph 2.x deletes vertices and their incoming and outgoing edges.

NebulaGraph 3.1.0 only deletes the vertices, and does not delete the related outgoing and incoming edges of the vertices. At this

time, there will be dangling edges by default.

The DELETE VERTEX statement deletes one vertex or multiple vertices at a time. You can use DELETE VERTEX together with pipes. For

more information about pipe, see Pipe operator.

DELETE VERTEX deletes vertices directly.

DELETE TAG deletes a tag with the given name on a specified vertex.

Syntax

WITH EDGE: deletes vertices and the related incoming and outgoing edges of the vertices.

Examples

This query deletes the vertex whose ID is "team1".

This query shows that you can use DELETE VERTEX together with pipe to delete vertices.

Process of deleting vertices

Once NebulaGraph deletes the vertices, all edges (incoming and outgoing edges) of the target vertex will become dangling

edges. When NebulaGraph deletes the vertices WITH EDGE , NebulaGraph traverses the incoming and outgoing edges related to the

vertices and deletes them all. Then NebulaGraph deletes the vertices.

Atomic deletion is not supported during the entire process for now. Please retry when a failure occurs to avoid partial deletion, which

will cause pendent edges.

Deleting a supernode takes a lot of time. To avoid connection timeout before the deletion is complete, you can modify the parameter

--storage_client_timeout_ms in nebula-graphd.conf to extend the timeout period.

Compatibility

•

•

Note

•

•

DELETE VERTEX <vid> [, <vid> ...] [WITH EDGE];

•

Delete the vertex whose VID is `team1` but the related incoming and outgoing edges are not deleted.

nebula> DELETE VERTEX "team1";

Delete the vertex whose VID is `team1` and the related incoming and outgoing edges.

nebula> DELETE VERTEX "team1" WITH EDGE;

nebula> GO FROM "player100" OVER serve WHERE properties(edge).start_year == "2021" YIELD dst(edge) AS id | DELETE VERTEX $-.id;

Caution

•

•

Last update: March 13, 2023

4.11.2 DELETE VERTEX

- 298/927 - 2022 Vesoft Inc.

4.11.3 UPDATE VERTEX

The UPDATE VERTEX statement updates properties on tags of a vertex.

In NebulaGraph, UPDATE VERTEX supports compare-and-set (CAS).

An UPDATE VERTEX statement can only update properties on ONE TAG of a vertex.

Syntax

Example

Note

UPDATE VERTEX ON <tag_name> <vid>

SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Parameter Required Description Example

ON <tag_name> Yes Specifies the tag of the vertex. The properties to be updated must

be on this tag.

ON player

<vid> Yes Specifies the ID of the vertex to be updated. "player100"

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET age = age +1

WHEN <condition> No Specifies the filter conditions. If <condition> evaluates to false ,

the SET clause will not take effect.

WHEN name ==

"Tim"

YIELD <output> No Specifies the output format of the statement. YIELD name AS

Name

// This query checks the properties of vertex "player101".

nebula> FETCH PROP ON player "player101" YIELD properties(vertex);

+--------------------------------+

| properties(VERTEX) |

+--------------------------------+

| {age: 36, name: "Tony Parker"} |

+--------------------------------+

// This query updates the age property and returns name and the new age.

nebula> UPDATE VERTEX ON player "player101" \

 SET age = age + 2 \

 WHEN name == "Tony Parker" \

 YIELD name AS Name, age AS Age;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 38 |

+---------------+-----+

Last update: March 13, 2023

4.11.3 UPDATE VERTEX

- 299/927 - 2022 Vesoft Inc.

4.11.4 UPSERT VERTEX

The UPSERT statement is a combination of UPDATE and INSERT . You can use UPSERT VERTEX to update the properties of a vertex if it

exists or insert a new vertex if it does not exist.

An UPSERT VERTEX statement can only update the properties on ONE TAG of a vertex.

The performance of UPSERT is much lower than that of INSERT because UPSERT is a read-modify-write serialization operation at the

partition level.

Don't use UPSERT for scenarios with highly concurrent writes. You can use UPDATE or INSERT instead.

Syntax

Insert a vertex if it does not exist

If a vertex does not exist, it is created no matter the conditions in the WHEN clause are met or not, and the SET clause always takes

effect. The property values of the new vertex depend on:

How the SET clause is defined.

Whether the property has a default value.

For example, if:

The vertex to be inserted will have properties name and age based on the tag player .

The SET clause specifies that age = 30 .

Note

Danger

UPSERT VERTEX ON <tag> <vid>

SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Parameter Required Description Example

ON <tag> Yes Specifies the tag of the vertex. The properties to be updated

must be on this tag.

ON player

<vid> Yes Specifies the ID of the vertex to be updated or inserted. "player100"

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET age = age +1

WHEN <condition> No Specifies the filter conditions. WHEN name ==

"Tim"

YIELD <output> No Specifies the output format of the statement. YIELD name AS

Name

•

•

•

•

4.11.4 UPSERT VERTEX

- 300/927 - 2022 Vesoft Inc.

Then the property values in different cases are listed as follows:

Here are some examples:

In the last query of the preceding examples, since age has no default value, when the vertex is created, age is NULL , and

age = age + 1 does not take effect. But if age has a default value, age = age + 1 will take effect. For example:

Update a vertex if it exists

If the vertex exists and the WHEN conditions are met, the vertex is updated.

Are WHEN conditions met If properties have default values Value of name Value of age

Yes Yes The default value 30

Yes No NULL 30

No Yes The default value 30

No No NULL 30

// This query checks if the following three vertices exist. The result "Empty set" indicates that the vertices do not exist.

nebula> FETCH PROP ON * "player666", "player667", "player668" YIELD properties(vertex);

+--------------------+

| properties(VERTEX) |

+--------------------+

+--------------------+

Empty set

nebula> UPSERT VERTEX ON player "player666" \

 SET age = 30 \

 WHEN name == "Joe" \

 YIELD name AS Name, age AS Age;

+----------+----------+

| Name | Age |

+----------+----------+

| __NULL__ | 30 |

+----------+----------+

nebula> UPSERT VERTEX ON player "player666" \

 SET age = 31 \

 WHEN name == "Joe" \

 YIELD name AS Name, age AS Age;

+----------+-----+

| Name | Age |

+----------+-----+

| __NULL__ | 30 |

+----------+-----+

nebula> UPSERT VERTEX ON player "player667" \

 SET age = 31 \

 YIELD name AS Name, age AS Age;

+----------+-----+

| Name | Age |

+----------+-----+

| __NULL__ | 31 |

+----------+-----+

nebula> UPSERT VERTEX ON player "player668" \

 SET name = "Amber", age = age + 1 \

 YIELD name AS Name, age AS Age;

+---------+----------+

| Name | Age |

+---------+----------+

| "Amber" | __NULL__ |

+---------+----------+

nebula> CREATE TAG IF NOT EXISTS player_with_default(name string, age int DEFAULT 20);

Execution succeeded

nebula> UPSERT VERTEX ON player_with_default "player101" \

 SET age = age + 1 \

 YIELD name AS Name, age AS Age;

+----------+-----+

| Name | Age |

+----------+-----+

| __NULL__ | 21 |

+----------+-----+

nebula> FETCH PROP ON player "player101" YIELD properties(vertex);

+--------------------------------+

4.11.4 UPSERT VERTEX

- 301/927 - 2022 Vesoft Inc.

If the vertex exists and the WHEN conditions are not met, the update does not take effect.

| properties(VERTEX) |

+--------------------------------+

| {age: 36, name: "Tony Parker"} |

+--------------------------------+

nebula> UPSERT VERTEX ON player "player101" \

 SET age = age + 2 \

 WHEN name == "Tony Parker" \

 YIELD name AS Name, age AS Age;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 38 |

+---------------+-----+

nebula> FETCH PROP ON player "player101" YIELD properties(vertex);

+--------------------------------+

| properties(VERTEX) |

+--------------------------------+

| {age: 38, name: "Tony Parker"} |

+--------------------------------+

nebula> UPSERT VERTEX ON player "player101" \

 SET age = age + 2 \

 WHEN name == "Someone else" \

 YIELD name AS Name, age AS Age;

+---------------+-----+

| Name | Age |

+---------------+-----+

| "Tony Parker" | 38 |

+---------------+-----+

Last update: March 8, 2022

4.11.4 UPSERT VERTEX

- 302/927 - 2022 Vesoft Inc.

4.12 Edge statements

4.12.1 INSERT EDGE

The INSERT EDGE statement inserts an edge or multiple edges into a graph space from a source vertex (given by src_vid) to a

destination vertex (given by dst_vid) with a specific rank in NebulaGraph.

When inserting an edge that already exists, INSERT VERTEX overrides the edge.

Syntax

IF NOT EXISTS detects if the edge that you want to insert exists. If it does not exist, a new one will be inserted.

IF NOT EXISTS only detects whether exist and does not detect whether the property values overlap.

IF NOT EXISTS will read to check whether the data exists, which will have a significant impact on performance.

<edge_type> denotes the edge type, which must be created before INSERT EDGE . Only one edge type can be specified in this

statement.

<prop_name_list> is the property name list in the given <edge_type> .

src_vid is the VID of the source vertex. It specifies the start of an edge.

dst_vid is the VID of the destination vertex. It specifies the end of an edge.

rank is optional. It specifies the edge rank of the same edge type. If not specified, the default value is 0 . You can insert many

edges with the same edge type, source vertex, and destination vertex by using different rank values.

OpenCypher has no such concept as rank.

<prop_value_list> must provide the value list according to <prop_name_list> . If the property values do not match the data type in the

edge type, an error is returned. When the NOT NULL constraint is set for a given property, an error is returned if no property is

given. When the default value for a property is NULL , you can omit to specify the property value. For details, see CREATE

EDGE.

Examples

INSERT EDGE [IF NOT EXISTS] <edge_type> (<prop_name_list>) VALUES

<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)

[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>), ...];

<prop_name_list> ::=

 [<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=

 [<prop_value> [, <prop_value>] ...]

•

Note

•

•

•

•

•

•

•

OpenCypher compatibility

•

The following example creates edge type e1 with no property and inserts an edge from vertex "10" to vertex "11" with no property.

nebula> CREATE EDGE IF NOT EXISTS e1();

nebula> INSERT EDGE e1 () VALUES "10"->"11":();

The following example inserts an edge from vertex "10" to vertex "11" with no property. The edge rank is 1.

nebula> INSERT EDGE e1 () VALUES "10"->"11"@1:();

4.12 Edge statements

- 303/927 - 2022 Vesoft Inc.

An edge can be inserted/written with property values multiple times. Only the last written values can be read.

If you insert an edge that already exists with IF NOT EXISTS , there will be no modification.

NebulaGraph 3.1.0 allows dangling edges. Therefore, you can write the edge before the source vertex or the destination vertex exists.

At this time, you can get the (not written) vertex VID through <edgetype>._src or <edgetype>._dst (which is not recommended).

Atomic operation is not guaranteed during the entire process for now. If it fails, please try again. Otherwise, partial writing will occur.

At this time, the behavior of reading the data is undefined.

Concurrently writing the same edge will cause an edge conflict error, so please try again later.

The inserting speed of an edge is about half that of a vertex. Because in the storaged process, the insertion of an edge involves two

tasks, while the insertion of a vertex involves only one task.

nebula> CREATE EDGE IF NOT EXISTS e2 (name string, age int);

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 1);

The following example creates edge type e2 with two properties.

nebula> INSERT EDGE e2 (name, age) VALUES \

 "12"->"13":("n1", 1), "13"->"14":("n2", 2);

In the following example, the insertion fails because "a13" is not int.

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", "a13");

The following examples insert edge e2 with the new values for multiple times.

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 12);

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 13);

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 14);

nebula> FETCH PROP ON e2 "11"->"13" YIELD edge AS e;

+---+

| e |

+---+

| [:e2 "11"->"13" @0 {age: 14, name: "n1"}] |

+---+

The following example inserts edge e2 from vertex "14" to vertex "15".

nebula> INSERT EDGE e2 (name, age) VALUES "14"->"15"@1:("n1", 12);

The following example alters the edge with IF NOT EXISTS. But there will be no alteration because edge e2 already exists.

nebula> INSERT EDGE IF NOT EXISTS e2 (name, age) VALUES "14"->"15"@1:("n2", 13);

nebula> FETCH PROP ON e2 "14"->"15"@1 YIELD edge AS e;

+---+

| e |

+---+

| [:e2 "14"->"15" @1 {age: 12, name: "n1"}] |

+---+

Note

•

•

•

•

Last update: March 13, 2023

4.12.1 INSERT EDGE

- 304/927 - 2022 Vesoft Inc.

4.12.2 DELETE EDGE

The DELETE EDGE statement deletes one edge or multiple edges at a time. You can use DELETE EDGE together with pipe operators. For

more information, see PIPE OPERATORS.

To delete all the outgoing edges for a vertex, please delete the vertex. For more information, see DELETE VERTEX.

Syntax

If no rank is specified, NebulaGraph only deletes the edge with rank 0. Delete edges with all ranks, as shown in the following

example.

Examples

The following example shows that you can use DELETE EDGE together with pipe operators to delete edges that meet the conditions.

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid>[@<rank>] ...]

Caution

nebula> DELETE EDGE serve "player100" -> "team204"@0;

nebula> GO FROM "player100" OVER follow \

 WHERE dst(edge) == "team204" \

 YIELD src(edge) AS src, dst(edge) AS dst, rank(edge) AS rank \

 | DELETE EDGE follow $-.src->$-.dst @ $-.rank;

Last update: March 13, 2023

4.12.2 DELETE EDGE

- 305/927 - 2022 Vesoft Inc.

4.12.3 UPDATE EDGE

The UPDATE EDGE statement updates properties on an edge.

In NebulaGraph, UPDATE EDGE supports compare-and-swap (CAS).

Syntax

Example

The following example checks the properties of the edge with the GO statement.

The following example updates the start_year property and returns the end_year and the new start_year .

UPDATE EDGE ON <edge_type>

<src_vid> -> <dst_vid> [@<rank>]

SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Parameter Required Description Example

ON <edge_type> Yes Specifies the edge type. The properties to be updated must

be on this edge type.

ON serve

<src_vid> Yes Specifies the source vertex ID of the edge. "player100"

<dst_vid> Yes Specifies the destination vertex ID of the edge. "team204"

<rank> No Specifies the rank of the edge. 10

SET

<update_prop>

Yes Specifies the properties to be updated and how they will be

updated.

SET start_year =

start_year +1

WHEN

<condition>

No Specifies the filter conditions. If <condition> evaluates to

false , the SET clause does not take effect.

WHEN end_year < 2010

YIELD <output> No Specifies the output format of the statement. YIELD start_year AS

Start_Year

nebula> GO FROM "player100" \

 OVER serve \

 YIELD properties(edge).start_year, properties(edge).end_year;

+------------------+----------------+

| serve.start_year | serve.end_year |

+------------------+----------------+

| 1997 | 2016 |

+------------------+----------------+

nebula> UPDATE EDGE on serve "player100" -> "team204"@0 \

 SET start_year = start_year + 1 \

 WHEN end_year > 2010 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 1998 | 2016 |

+------------+----------+

Last update: March 13, 2023

4.12.3 UPDATE EDGE

- 306/927 - 2022 Vesoft Inc.

4.12.4 UPSERT EDGE

The UPSERT statement is a combination of UPDATE and INSERT . You can use UPSERT EDGE to update the properties of an edge if it exists

or insert a new edge if it does not exist.

The performance of UPSERT is much lower than that of INSERT because UPSERT is a read-modify-write serialization operation at the

partition level.

Do not use UPSERT for scenarios with highly concurrent writes. You can use UPDATE or INSERT instead.

Syntax

Insert an edge if it does not exist

If an edge does not exist, it is created no matter the conditions in the WHEN clause are met or not, and the SET clause takes effect.

The property values of the new edge depend on:

How the SET clause is defined.

Whether the property has a default value.

For example, if:

The edge to be inserted will have properties start_year and end_year based on the edge type serve .

The SET clause specifies that end_year = 2021 .

Danger

UPSERT EDGE ON <edge_type>

<src_vid> -> <dst_vid> [@rank]

SET <update_prop>

[WHEN <condition>]

[YIELD <properties>]

Parameter Required Description Example

ON <edge_type> Yes Specifies the edge type. The properties to be updated

must be on this edge type.

ON serve

<src_vid> Yes Specifies the source vertex ID of the edge. "player100"

<dst_vid> Yes Specifies the destination vertex ID of the edge. "team204"

<rank> No Specifies the rank of the edge. 10

SET

<update_prop>

Yes Specifies the properties to be updated and how they will

be updated.

SET start_year =

start_year +1

WHEN <condition> No Specifies the filter conditions. WHEN end_year < 2010

YIELD <output> No Specifies the output format of the statement. YIELD start_year AS

Start_Year

•

•

•

•

4.12.4 UPSERT EDGE

- 307/927 - 2022 Vesoft Inc.

Then the property values in different cases are listed as follows:

Here are some examples:

In the last query of the preceding example, since end_year has no default value, when the edge is created, end_year is NULL , and

end_year = end_year + 1 does not take effect. But if end_year has a default value, end_year = end_year + 1 will take effect. For example:

Are WHEN conditions met If properties have default values Value of start_year Value of end_year

Yes Yes The default value 2021

Yes No NULL 2021

No Yes The default value 2021

No No NULL 2021

// This example checks if the following three vertices have any outgoing serve edge. The result "Empty set" indicates that such an edge does not exist.

nebula> GO FROM "player666", "player667", "player668" \

 OVER serve \

 YIELD properties(edge).start_year, properties(edge).end_year;

+-----------------------------+---------------------------+

| properties(EDGE).start_year | properties(EDGE).end_year |

+-----------------------------+---------------------------+

+-----------------------------+---------------------------+

Empty set

nebula> UPSERT EDGE on serve \

 "player666" -> "team200"@0 \

 SET end_year = 2021 \

 WHEN end_year == 2010 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2021 |

+------------+----------+

nebula> UPSERT EDGE on serve \

 "player666" -> "team200"@0 \

 SET end_year = 2022 \

 WHEN end_year == 2010 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2021 |

+------------+----------+

nebula> UPSERT EDGE on serve \

 "player667" -> "team200"@0 \

 SET end_year = 2022 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2022 |

+------------+----------+

nebula> UPSERT EDGE on serve \

 "player668" -> "team200"@0 \

 SET start_year = 2000, end_year = end_year + 1 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 2000 | __NULL__ |

+------------+----------+

nebula> CREATE EDGE IF NOT EXISTS serve_with_default(start_year int, end_year int DEFAULT 2010);

Execution succeeded

nebula> UPSERT EDGE on serve_with_default \

 "player668" -> "team200" \

 SET end_year = end_year + 1 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| __NULL__ | 2011 |

+------------+----------+

4.12.4 UPSERT EDGE

- 308/927 - 2022 Vesoft Inc.

Update an edge if it exists

If the edge exists and the WHEN conditions are met, the edge is updated.

If the edge exists and the WHEN conditions are not met, the update does not take effect.

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \

 RETURN e;

+---+

| e |

+---+

| [:serve "player149"->"team219" @0 {end_year: 2019, start_year: 2016}] |

+---+

nebula> UPSERT EDGE on serve \

 "player149" -> "team219" \

 SET end_year = end_year + 1 \

 WHEN start_year == 2016 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 2016 | 2020 |

+------------+----------+

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \

 RETURN e;

+---+

| e |

+---+

| [:serve "player149"->"team219" @0 {end_year: 2020, start_year: 2016}] |

+---+

nebula> UPSERT EDGE on serve \

 "player149" -> "team219" \

 SET end_year = end_year + 1 \

 WHEN start_year != 2016 \

 YIELD start_year, end_year;

+------------+----------+

| start_year | end_year |

+------------+----------+

| 2016 | 2020 |

+------------+----------+

Last update: March 8, 2022

4.12.4 UPSERT EDGE

- 309/927 - 2022 Vesoft Inc.

4.13 Native index statements

4.13.1 Index overview

Indexes are built to fast process graph queries. Nebula Graph supports two kinds of indexes: native indexes and full-text indexes.

This topic introduces the index types and helps choose the right index.

Native indexes

Native indexes allow querying data based on a given property. Features are as follows.

There are two kinds of native indexes: tag index and edge type index.

Native indexes must be updated manually. You can use the REBUILD INDEX statement to update native indexes.

Native indexes support indexing multiple properties on a tag or an edge type (composite indexes), but do not support indexing

across multiple tags or edge types.

OPERATIONS ON NATIVE INDEXES

CREATE INDEX

SHOW CREATE INDEX

SHOW INDEXES

DESCRIBE INDEX

REBUILD INDEX

SHOW INDEX STATUS

DROP INDEX

LOOKUP

MATCH

Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property. Features are as follows.

Full-text indexes allow indexing just one property.

Only strings within a specified length (no longer than 256 bytes) are indexed.

Full-text indexes do not support logical operations such as AND , OR , and NOT .

To do complete string matches, use native indexes.

OPERATIONS ON FULL-TEXT INDEXES

Before doing any operations on full-text indexes, please make sure that you deploy full-text indexes. Details on full-text indexes

deployment, see Deploy Elasticsearch and Deploy Listener.

At this time, full-text indexes are created automatically on the Elasticsearch cluster. And rebuilding or altering full-text indexes

are not supported. To drop full-text indexes, you need to drop them on the Elasticsearch cluster manually.

To query full-text indexes, see Search with full-text indexes.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Note

4.13 Native index statements

- 310/927 - 2022 Vesoft Inc.

Null values

Indexes do not support indexing null values.

Range queries

In addition to querying single results from native indexes, you can also do range queries. Not all the native indexes support

range queries. You can only do range searches for numeric, date, and time type properties.

Last update: October 15, 2021

4.13.1 Index overview

- 311/927 - 2022 Vesoft Inc.

4.13.2 CREATE INDEX

Prerequisites

Before you create an index, make sure that the relative tag or edge type is created. For how to create tags or edge types, see

CREATE TAG and CREATE EDGE.

For how to create full-text indexes, see Deploy full-text index.

Must-read for using indexes

The concept and using restrictions of indexes are comparatively complex. You can use it together with LOOKUP and MATCH

statements.

You can use CREATE INDEX to add native indexes for the existing tags, edge types, or properties. They are usually called as tag

indexes, edge type indexes, and property indexes.

Tag indexes and edge type indexes apply to queries related to the tag and the edge type, but do not apply to queries that are

based on certain properties on the tag. For example, you can use LOOKUP to retrieve all the vertices with the tag player .

Property indexes apply to property-based queries. For example, you can use the age property to retrieve the VID of all vertices

that meet age == 19 .

If a property index i_TA is created for the property A of the tag T , the indexes can be replaced as follows (the same for edge type

indexes):

The query engine can use i_TA to replace i_T .

In the MATCH statement, i_T cannot replace i_TA for querying properties.

In the LOOKUP statement, i_T may replace i_TA for querying properties.

In previous releases, the tag or edge type index in the LOOKUP statement cannot replace the property index for property queries.

Although the same results can be obtained by using alternative indexes for queries, the query performance varies according to

the selected index.

Indexes can dramatically reduce the write performance. The performance reduction can be as much as 90% or even more. DO NOT

use indexes in production environments unless you are fully aware of their influences on your service.

Indexes cannot make queries faster. It can only locate a vertex or an edge according to properties or count the number of vertices or

edges.

Long indexes decrease the scan performance of the Storage Service and use more memory. We suggest that you set the indexing

length the same as that of the longest string to be indexed. The longest index length is 256 bytes.

•

•

•

•

•

Legacy version compatibility

Caution

4.13.2 CREATE INDEX

- 312/927 - 2022 Vesoft Inc.

If you must use indexes, we suggest that you:

Import the data into NebulaGraph.

Create indexes.

Rebuild indexes.

After the index is created and the data is imported, you can use LOOKUP or MATCH to retrieve the data. You do not need to specify

which indexes to use in a query, NebulaGraph figures that out by itself.

If you create an index before importing the data, the importing speed will be extremely slow due to the reduction in the write

performance.

Keep --disable_auto_compaction = false during daily incremental writing.

The newly created index will not take effect immediately. Trying to use a newly created index (such as LOOKUP or REBUILD INDEX) may fail

and return can't find xxx in the space because the creation is implemented asynchronously. To make sure the follow-up operations work

as expected, Wait for two heartbeat cycles, i.e., 20 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs in the

configuration files for all services.

After creating a new index, or dropping the old index and creating a new one with the same name again, you must REBUILD INDEX .

Otherwise, these data cannot be returned in the MATCH and LOOKUP statements.

Syntax

Create tag/edge type indexes

After indexing a tag or an edge type, you can use the LOOKUP statement to retrieve the VID of all vertices with the tag , or the source

vertex ID, destination vertex ID, and ranks of all edges with the edge type . For more information, see LOOKUP.

1.

2.

3.

4.

Note

Danger

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name> ON {<tag_name> | <edge_name>} ([<prop_name_list>]) [COMMENT '<comment>'];

Parameter Description

TAG | EDGE Specifies the index type that you want to create.

IF NOT EXISTS Detects if the index that you want to create exists. If it does not exist, a new one will be created.

<index_name> The name of the index. It must be unique in a graph space. A recommended way of naming is

i_tagName_propName . The name of the index starts with a letter, supports 1 to 4 bytes UTF-8 encoded

characters, such as English letters (case-sensitive), digits, and Chinese characters, but does not support

special characters except underscores. To use special characters or reserved keywords as identifiers,

quote them with backticks. For more information, see Keywords and reserved words.

<tag_name> |

<edge_name>

Specifies the name of the tag or edge associated with the index.

<prop_name_list> To index a variable-length string property, you must use prop_name(length) to specify the index length. To

index a tag or an edge type, ignore the prop_name_list .

COMMENT The remarks of the index. The maximum length is 256 bytes. By default, there will be no comments on an

index.

nebula> CREATE TAG INDEX IF NOT EXISTS player_index on player();

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index on follow();

4.13.2 CREATE INDEX

- 313/927 - 2022 Vesoft Inc.

Create single-property indexes

The preceding example creates an index for the name property on all vertices carrying the player tag. This example creates an

index using the first 10 characters of the name property.

Create composite property indexes

An index on multiple properties on a tag (or an edge type) is called a composite property index.

Creating composite property indexes across multiple tags or edge types is not supported.

NebulaGraph follows the left matching principle to select indexes.

nebula> CREATE TAG INDEX IF NOT EXISTS player_index_0 on player(name(10));

To index a variable-length string property, you need to specify the index length.

nebula> CREATE TAG IF NOT EXISTS var_string(p1 string);

nebula> CREATE TAG INDEX IF NOT EXISTS var ON var_string(p1(10));

To index a fixed-length string property, you do not need to specify the index length.

nebula> CREATE TAG IF NOT EXISTS fix_string(p1 FIXED_STRING(10));

nebula> CREATE TAG INDEX IF NOT EXISTS fix ON fix_string(p1);

nebula> CREATE EDGE INDEX IF NOT EXISTS follow_index_0 on follow(degree);

nebula> CREATE TAG INDEX IF NOT EXISTS player_index_1 on player(name(10), age);

Caution

Note

Last update: March 13, 2023

4.13.2 CREATE INDEX

- 314/927 - 2022 Vesoft Inc.

4.13.3 SHOW INDEXES

SHOW INDEXES shows the defined tag or edge type indexes names in the current graph space.

Syntax

Examples

In NebulaGraph 2.x, the SHOW TAG/EDGE INDEXES statement only returns Names .

SHOW {TAG | EDGE} INDEXES

nebula> SHOW TAG INDEXES;

+------------------+--------------+-----------------+

| Index Name | By Tag | Columns |

+------------------+--------------+-----------------+

| "fix" | "fix_string" | ["p1"] |

| "player_index_0" | "player" | ["name"] |

| "player_index_1" | "player" | ["name", "age"] |

| "var" | "var_string" | ["p1"] |

+------------------+--------------+-----------------+

nebula> SHOW EDGE INDEXES;

+----------------+----------+---------+

| Index Name | By Edge | Columns |

| "follow_index" | "follow" | [] |

+----------------+----------+---------+

Legacy version compatibility

Last update: March 13, 2023

4.13.3 SHOW INDEXES

- 315/927 - 2022 Vesoft Inc.

4.13.4 SHOW CREATE INDEX

SHOW CREATE INDEX shows the statement used when creating a tag or an edge type. It contains detailed information about the index,

such as its associated properties.

Syntax

Examples

You can run SHOW TAG INDEXES to list all tag indexes, and then use SHOW CREATE TAG INDEX to show the information about the creation of

the specified index.

Edge indexes can be queried through a similar approach.

SHOW CREATE {TAG | EDGE} INDEX <index_name>;

nebula> SHOW TAG INDEXES;

+------------------+----------+----------+

| Index Name | By Tag | Columns |

+------------------+----------+----------+

| "player_index_0" | "player" | [] |

| "player_index_1" | "player" | ["name"] |

+------------------+----------+----------+

nebula> SHOW CREATE TAG INDEX player_index_1;

+------------------+--+

| Tag Index Name | Create Tag Index |

+------------------+--+

| "player_index_1" | "CREATE TAG INDEX `player_index_1` ON `player` (|

| | `name`(20) |

| |)" |

+------------------+--+

nebula> SHOW EDGE INDEXES;

+----------------+----------+---------+

| Index Name | By Edge | Columns |

+----------------+----------+---------+

| "follow_index" | "follow" | [] |

+----------------+----------+---------+

nebula> SHOW CREATE EDGE INDEX follow_index;

+-----------------+---+

| Edge Index Name | Create Edge Index |

+-----------------+---+

| "follow_index" | "CREATE EDGE INDEX `follow_index` ON `follow` (|

| |)" |

+-----------------+---+

Last update: April 27, 2022

4.13.4 SHOW CREATE INDEX

- 316/927 - 2022 Vesoft Inc.

4.13.5 DESCRIBE INDEX

DESCRIBE INDEX can get the information about the index with a given name, including the property name (Field) and the property

type (Type) of the index.

Syntax

Examples

DESCRIBE {TAG | EDGE} INDEX <index_name>;

nebula> DESCRIBE TAG INDEX player_index_0;

+--------+--------------------+

| Field | Type |

+--------+--------------------+

| "name" | "fixed_string(30)" |

+--------+--------------------+

nebula> DESCRIBE TAG INDEX player_index_1;

+--------+--------------------+

| Field | Type |

+--------+--------------------+

| "name" | "fixed_string(10)" |

| "age" | "int64" |

+--------+--------------------+

Last update: October 27, 2021

4.13.5 DESCRIBE INDEX

- 317/927 - 2022 Vesoft Inc.

4.13.6 REBUILD INDEX

If data is updated or inserted before the creation of the index, you must rebuild the indexes manually to make sure that the indexes

contain the previously added data. Otherwise, you cannot use LOOKUP and MATCH to query the data based on the index. If the index is

created before any data insertion, there is no need to rebuild the index.

When the rebuild of an index is incomplete, queries that rely on the index can use only part of the index and therefore cannot obtain

accurate results.

You can use REBUILD INDEX to rebuild the created tag or edge type index. For details on how to create an index, see CREATE

INDEX.

Syntax

Multiple indexes are permitted in a single REBUILD statement, separated by commas. When the index name is not specified, all

tag or edge indexes are rebuilt.

After the rebuilding is complete, you can use the SHOW {TAG | EDGE} INDEX STATUS command to check if the index is successfully

rebuilt. For details on index status, see SHOW INDEX STATUS.

Examples

NebulaGraph creates a job to rebuild the index. The job ID is displayed in the preceding return message. To check if the

rebuilding process is complete, use the SHOW JOB <job_id> statement. For more information, see SHOW JOB.

Danger

•

•

REBUILD {TAG | EDGE} INDEX [<index_name_list>];

<index_name_list>::=

 [index_name [, index_name] ...]

•

•

nebula> CREATE TAG IF NOT EXISTS person(name string, age int, gender string, email string);

nebula> CREATE TAG INDEX IF NOT EXISTS single_person_index ON person(name(10));

The following example rebuilds an index and returns the job ID.

nebula> REBUILD TAG INDEX single_person_index;

+------------+

| New Job Id |

+------------+

| 31 |

+------------+

The following example checks the index status.

nebula> SHOW TAG INDEX STATUS;

+-----------------------+--------------+

| Name | Index Status |

+-----------------------+--------------+

| "single_person_index" | "FINISHED" |

+-----------------------+--------------+

You can also use "SHOW JOB <job_id>" to check if the rebuilding process is complete.

nebula> SHOW JOB 31;

+----------------+---------------------+------------+-------------------------+-------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+---------------------+------------+-------------------------+-------------------------+-------------+

| 31 | "REBUILD_TAG_INDEX" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:24.000 | "SUCCEEDED" |

| 0 | "storaged1" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:28.000 | "SUCCEEDED" |

| 1 | "storaged2" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:28.000 | "SUCCEEDED" |

| 2 | "storaged0" | "FINISHED" | 2021-07-07T09:04:24.000 | 2021-07-07T09:04:28.000 | "SUCCEEDED" |

+----------------+---------------------+------------+-------------------------+-------------------------+-------------+

Last update: March 13, 2023

4.13.6 REBUILD INDEX

- 318/927 - 2022 Vesoft Inc.

4.13.7 SHOW INDEX STATUS

SHOW INDEX STATUS returns the name of the created tag or edge type index and its status of job.

The index status includes:

QUEUE : The job is in a queue.

RUNNING : The job is running.

FINISHED : The job is finished.

FAILED : The job has failed.

STOPPED : The job has stopped.

INVALID : The job is invalid.

For details on how to create an index, see CREATE INDEX.

Syntax

Example

•

•

•

•

•

•

Note

SHOW {TAG | EDGE} INDEX STATUS;

nebula> SHOW TAG INDEX STATUS;

+----------------------+--------------+

| Name | Index Status |

+----------------------+--------------+

| "player_index_0" | "FINISHED" |

| "player_index_1" | "FINISHED" |

+----------------------+--------------+

Last update: January 14, 2022

4.13.7 SHOW INDEX STATUS

- 319/927 - 2022 Vesoft Inc.

4.13.8 DROP INDEX

DROP INDEX removes an existing index from the current graph space.

Prerequisite

Running the DROP INDEX statement requires some privileges of DROP TAG INDEX and DROP EDGE INDEX in the given graph space. Otherwise,

NebulaGraph throws an error.

Syntax

IF NOT EXISTS : Detects whether the index that you want to drop exists. If it exists, it will be dropped.

Example

DROP {TAG | EDGE} INDEX [IF EXISTS] <index_name>;

nebula> DROP TAG INDEX player_index_0;

Last update: March 13, 2023

4.13.8 DROP INDEX

- 320/927 - 2022 Vesoft Inc.

4.14 Full-text index statements

4.14.1 Full-text index restrictions

This topic introduces the restrictions for full-text indexes. Please read the restrictions very carefully before using the full-text indexes.

For now, full-text search has the following limitations:

Currently, full-text search supports LOOKUP statements only.

The maximum indexing string length is 256 bytes. The part of data that exceeds 256 bytes will not be indexed.

If there is a full-text index on the tag/edge type, the tag/edge type cannot be deleted or modified.

One tag/edge type can only have one full-text index.

The type of properties must be string .

Full-text index can not be applied to search multiple tags/edge types.

Sorting for the returned results of the full-text search is not supported. Data is returned in the order of data insertion.

Full-text index can not search properties with value NULL .

Altering Elasticsearch indexes is not supported at this time.

The pipe operator is not supported.

WHERE clauses supports full-text search only working on single terms.

Full-text indexes are not deleted together with the graph space.

Make sure that you start the Elasticsearch cluster and Nebula Graph at the same time. If not, the data writing on the Elasticsearch

cluster can be incomplete.

Do not contain ' or \ in the vertex or edge values. If not, an error will be caused in the Elasticsearch cluster storage.

It may take a while for Elasticsearch to create indexes. If Nebula Graph warns no index is found, wait for the index to take effect

(however, the waiting time is unknown and there is no code to check).

NebulaGraph clusters deployed with K8s do not support the full-text search feature.

Caution

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Last update: March 13, 2023

4.14 Full-text index statements

- 321/927 - 2022 Vesoft Inc.

4.14.2 Deploy full-text index

Nebula Graph full-text indexes are powered by Elasticsearch. This means that you can use Elasticsearch full-text query language

to retrieve what you want. Full-text indexes are managed through built-in procedures. They can be created only for variable

STRING and FIXED_STRING properties when the listener cluster and the Elasticsearch cluster are deployed.

Precaution

Before you start using the full-text index, please make sure that you know the restrictions.

Deploy Elasticsearch cluster

To deploy an Elasticsearch cluster, see Kubernetes Elasticsearch deployment or Elasticsearch installation.

When the Elasticsearch cluster is started, add the template file for the Nebula Graph full-text index. For more information on

index templates, see Elasticsearch Document.

Take the following sample template for example:

Make sure that you specify the following fields in strict accordance with the preceding template format:

When creating a full-text index, start the index name with nebula .

For example:

You can configure the Elasticsearch to meet your business needs. To customize the Elasticsearch, see Elasticsearch Document.

{

 "template": "nebula*",

 "settings": {

 "index": {

 "number_of_shards": 3,

 "number_of_replicas": 1

 }

 },

 "mappings": {

 "properties" : {

 "tag_id" : { "type" : "long" },

 "column_id" : { "type" : "text" },

 "value" :{ "type" : "keyword"}

 }

 }

}

"template": "nebula*"

"tag_id" : { "type" : "long" },

"column_id" : { "type" : "text" },

"value" :{ "type" : "keyword"}

Caution

curl -H "Content-Type: application/json; charset=utf-8" -XPUT http://127.0.0.1:9200/_template/nebula_index_template -d '

{

 "template": "nebula*",

 "settings": {

 "index": {

 "number_of_shards": 3,

 "number_of_replicas": 1

 }

 },

 "mappings": {

 "properties" : {

 "tag_id" : { "type" : "long" },

 "column_id" : { "type" : "text" },

 "value" :{ "type" : "keyword"}

 }

 }

}'

4.14.2 Deploy full-text index

- 322/927 - 2022 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.15/targz.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index-templates.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html

Sign in to the text search clients

When the Elasticsearch cluster is deployed, use the SIGN IN statement to sign in to the Elasticsearch clients. Multiple

elastic_ip:port pairs are separated with commas. You must use the IPs and the port number in the configuration file for the

Elasticsearch.

SYNTAX

EXAMPLE

Elasticsearch does not have a username or password by default. If you configured a username and password, you need to specify

them in the SIGN IN statement.

Show text search clients

The SHOW TEXT SEARCH CLIENTS statement can list the text search clients.

SYNTAX

EXAMPLE

Sign out to the text search clients

The SIGN OUT TEXT SERVICE statement can sign out all the text search clients.

SYNTAX

EXAMPLE

SIGN IN TEXT SERVICE (<elastic_ip:port>, {HTTP | HTTPS} [,"<username>", "<password>"]) [, (<elastic_ip:port>, ...)];

nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200, HTTP);

Note

SHOW TEXT SEARCH CLIENTS;

nebula> SHOW TEXT SEARCH CLIENTS;

+-------------+------+

| Host | Port |

+-------------+------+

| "127.0.0.1" | 9200 |

| "127.0.0.1" | 9200 |

| "127.0.0.1" | 9200 |

+-------------+------+

SIGN OUT TEXT SERVICE;

nebula> SIGN OUT TEXT SERVICE;

Last update: March 8, 2022

4.14.2 Deploy full-text index

- 323/927 - 2022 Vesoft Inc.

4.14.3 Deploy Raft Listener for Nebula Storage service

Full-text index data is written to the Elasticsearch cluster asynchronously. The Raft Listener (Listener for short) is a separate

process that fetches data from the Storage Service and writes them into the Elasticsearch cluster.

Prerequisites

You have read and fully understood the restrictions for using full-text indexes.

You have deployed a NebulaGraph cluster.

You have deploy a Elasticsearch cluster.

You have prepared at least one extra Storage Server. To use the full-text search, you must run one or more Storage Server as

the Raft Listener.

Precautions

The Storage Service that you want to run as the Listener must have the same or later release with all the other Nebula Graph

services in the cluster.

For now, you can only add all Listeners to a graph space once and for all. Trying to add a new Listener to a graph space that

already has a Listener will fail. To add all Listeners, set them in one statement.

Deployment process

STEP 1: INSTALL THE STORAGE SERVICE

The Listener process and the storaged process use the same binary file. However, their configuration files and using ports are

different. You can install NebulaGraph on all servers that need to deploy a Listener, but only the Storage service can be used. For

details, see Install NebulaGraph by RPM or DEB Package.

STEP 2: PREPARE THE CONFIGURATION FILE FOR THE LISTENER

You have to prepare a corresponding configuration file on the machine that you want to deploy a Listener. The file must be

named as nebula-storaged-listener.conf and stored in the etc directory. A template is provided for your reference. Note that the file

suffix .production should be removed.

•

•

•

•

•

•

4.14.3 Deploy Raft Listener for Nebula Storage service

- 324/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-storage/blob/master/conf/nebula-storaged-listener.conf.production

Most configurations are the same as the configurations of Storage Service. This topic only introduces the differences.

Use real IP addresses in the configuration file instead of domain names or loopback IP addresses such as 127.0.0.1 .

STEP 3: START LISTENERS

Run the following command to start the Listener.

${listener_config_path} is the path where you store the Listener configuration file.

STEP 4: ADD LISTENERS TO NEBULAGRAPH

Connect to NebulaGraph and run USE <space> to enter the graph space that you want to create full-text indexes for. Then run the

following statement to add a Listener into NebulaGraph.

You must use real IPs for a Listener.

Add all Listeners in one statement completely.

Name Default value Description

daemonize true When set to true , the process is a daemon process.

pid_file pids_listener/nebula-

storaged.pid

The file that records the process ID.

meta_server_addrs - IP addresses and ports of all Meta services. Multiple Meta services are

separated by commas.

local_ip - The local IP address of the Listener service.

port - The listening port of the RPC daemon of the Listener service.

heartbeat_interval_secs 10 The heartbeat interval of the Meta service. The unit is second (s).

listener_path data/listener The WAL directory of the Listener. Only one directory is allowed.

data_path data For compatibility reasons, this parameter can be ignored. Fill in the

default value data .

part_man_type memory The type of the part manager. Optional values are memory and meta .

rocksdb_batch_size 4096 The default reserved bytes for batch operations.

rocksdb_block_cache 4 The default block cache size of BlockBasedTable. The unit is Megabyte

(MB).

engine_type rocksdb The type of the Storage engine, such as rocksdb , memory , etc.

part_type simple The type of the part, such as simple , consensus , etc.

Note

./bin/nebula-storaged --flagfile <listener_config_path>/nebula-storaged-listener.conf

ADD LISTENER ELASTICSEARCH <listener_ip:port> [,<listener_ip:port>, ...]

Warning

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:9789,192.168.8.6:9789;

4.14.3 Deploy Raft Listener for Nebula Storage service

- 325/927 - 2022 Vesoft Inc.

Show Listeners

Run the SHOW LISTENER statement to list all Listeners.

EXAMPLE

Remove Listeners

Run the REMOVE LISTENER ELASTICSEARCH statement to remove all Listeners in a graph space.

EXAMPLE

After the Listener is deleted, it cannot be added again. Therefore, the synchronization to the ES cluster cannot be continued and the

text index data will be incomplete. If needed, you can only recreate the graph space.

Next

After deploying the Elasticsearch cluster and the Listener, full-text indexes are created automatically on the Elasticsearch

cluster. Users can do full-text search now. For more information, see Full-Text search.

nebula> SHOW LISTENER;

+--------+-----------------+-----------------------+----------+

| PartId | Type | Host | Status |

+--------+-----------------+-----------------------+----------+

| 1 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |

| 2 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |

| 3 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |

+--------+-----------------+-----------------------+----------+

nebula> REMOVE LISTENER ELASTICSEARCH;

Danger

Last update: March 13, 2023

4.14.3 Deploy Raft Listener for Nebula Storage service

- 326/927 - 2022 Vesoft Inc.

4.14.4 Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property.

You can use the WHERE clause to specify the search strings in LOOKUP statements.

Prerequisite

Before using the full-text index, make sure that you have deployed a Elasticsearch cluster and a Listener cluster. For more

information, see Deploy Elasticsearch and Deploy Listener.

Precaution

Before using the full-text index, make sure that you know the restrictions.

Natural language full-text search

A natural language search interprets the search string as a phrase in natural human language. The search is case-insensitive. By

default, each substring (separated by spaces) will be searched separately. For example, there are three vertices with the tag

player . The tag player contains the property name . The name of these three vertices are Kevin Durant , Tim Duncan , and David Beckham .

Now that the full-text index of player.name is established, these three vertices will be queried when using the prefix search

statement LOOKUP ON player WHERE PREFIX(player.name,"d"); .

Syntax

CREATE FULL-TEXT INDEXES

SHOW FULL-TEXT INDEXES

REBUILD FULL-TEXT INDEXES

DROP FULL-TEXT INDEXES

USE QUERY OPTIONS

CREATE FULLTEXT {TAG | EDGE} INDEX <index_name> ON {<tag_name> | <edge_name>} ([<prop_name_list>]);

SHOW FULLTEXT INDEXES;

REBUILD FULLTEXT INDEX;

DROP FULLTEXT INDEX <index_name>;

LOOKUP ON {<tag> | <edge_type>} WHERE <expression> [YIELD <return_list>];

<expression> ::=

 PREFIX | WILDCARD | REGEXP | FUZZY

4.14.4 Full-text indexes

- 327/927 - 2022 Vesoft Inc.

PREFIX(schema_name.prop_name, prefix_string, row_limit, timeout)

WILDCARD(schema_name.prop_name, wildcard_string, row_limit, timeout)

REGEXP(schema_name.prop_name, regexp_string, row_limit, timeout)

FUZZY(schema_name.prop_name, fuzzy_string, fuzziness, operator, row_limit, timeout)

fuzziness (optional): Maximum edit distance allowed for matching. The default value is AUTO . For other valid values and more

information, see Elasticsearch document.

operator (optional): Boolean logic used to interpret the text. Valid values are OR (default) and AND .

row_limit (optional): Specifies the number of rows to return. The default value is 100 .

timeout (optional): Specifies the timeout time. The default value is 200ms .

Examples

<return_list>

 <prop_name> [AS <prop_alias>] [, <prop_name> [AS <prop_alias>] ...]

•

•

•

•

•

•

•

•

// This example creates the graph space.

nebula> CREATE SPACE IF NOT EXISTS basketballplayer (partition_num=3,replica_factor=1, vid_type=fixed_string(30));

// This example signs in the text service.

nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200, HTTP);

// This example switches the graph space.

nebula> USE basketballplayer;

// This example adds the listener to the NebulaGraph cluster.

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:9789;

// This example creates the tag.

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

// This example creates the native index.

nebula> CREATE TAG INDEX IF NOT EXISTS name ON player(name(20));

// This example rebuilds the native index.

nebula> REBUILD TAG INDEX;

// This example creates the full-text index. The index name starts with "nebula".

nebula> CREATE FULLTEXT TAG INDEX nebula_index_1 ON player(name);

// This example rebuilds the full-text index.

nebula> REBUILD FULLTEXT INDEX;

// This example shows the full-text index.

nebula> SHOW FULLTEXT INDEXES;

+------------------+-------------+-------------+--------+

| Name | Schema Type | Schema Name | Fields |

+------------------+-------------+-------------+--------+

| "nebula_index_1" | "Tag" | "player" | "name" |

+------------------+-------------+-------------+--------+

// This example inserts the test data.

nebula> INSERT VERTEX player(name, age) VALUES \

 "Russell Westbrook": ("Russell Westbrook", 30), \

 "Chris Paul": ("Chris Paul", 33),\

 "Boris Diaw": ("Boris Diaw", 36),\

 "David West": ("David West", 38),\

 "Danny Green": ("Danny Green", 31),\

 "Tim Duncan": ("Tim Duncan", 42),\

 "James Harden": ("James Harden", 29),\

 "Tony Parker": ("Tony Parker", 36),\

 "Aron Baynes": ("Aron Baynes", 32),\

 "Ben Simmons": ("Ben Simmons", 22),\

 "Blake Griffin": ("Blake Griffin", 30);

// These examples run test queries.

nebula> LOOKUP ON player WHERE PREFIX(player.name, "B") YIELD id(vertex);

+-----------------+

| id(VERTEX) |

+-----------------+

| "Boris Diaw" |

| "Ben Simmons" |

| "Blake Griffin" |

+-----------------+

nebula> LOOKUP ON player WHERE WILDCARD(player.name, "*ri*") YIELD player.name, player.age;

+-----------------+-----+

| name | age |

+-----------------+-----+

4.14.4 Full-text indexes

- 328/927 - 2022 Vesoft Inc.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/common-options.html#fuzziness

| "Chris Paul" | 33 |

| "Boris Diaw" | 36 |

| "Blake Griffin" | 30 |

+-----------------+-----+

nebula> LOOKUP ON player WHERE WILDCARD(player.name, "*ri*") | YIELD count(*);

+----------+

| count(*) |

+----------+

| 3 |

+----------+

nebula> LOOKUP ON player WHERE REGEXP(player.name, "R.*") YIELD player.name, player.age;

+---------------------+-----+

| name | age |

+---------------------+-----+

| "Russell Westbrook" | 30 |

+---------------------+-----+

nebula> LOOKUP ON player WHERE REGEXP(player.name, ".*") YIELD id(vertex);

+---------------------+

| id(VERTEX) |

+---------------------+

| "Danny Green" |

| "David West" |

...

nebula> LOOKUP ON player WHERE FUZZY(player.name, "Tim Dunncan", AUTO, OR) YIELD player.name;

+--------------+

| name |

+--------------+

| "Tim Duncan" |

+--------------+

// This example drops the full-text index.

nebula> DROP FULLTEXT INDEX nebula_index_1;

Last update: March 13, 2023

4.14.4 Full-text indexes

- 329/927 - 2022 Vesoft Inc.

4.15 Subgraph and path

4.15.1 GET SUBGRAPH

The GET SUBGRAPH statement retrieves information of vertices and edges reachable from the source vertices of the specified edge

types and returns information of the subgraph.

Syntax

WITH PROP shows the properties. If not specified, the properties will be hidden.

step_count specifies the number of hops from the source vertices and returns the subgraph from 0 to step_count hops. It must be

a non-negative integer. Its default value is 1.

vid specifies the vertex IDs.

edge_type specifies the edge type. You can use IN , OUT , and BOTH to specify the traversal direction of the edge type. The default

is BOTH .

YIELD defines the output that needs to be returned. You can return only vertices or edges. A column alias must be set.

The path type of GET SUBGRAPH is trail . Only vertices can be repeatedly visited in graph traversal. For more information, see Path.

Examples

The following graph is used as the sample.

GET SUBGRAPH [WITH PROP] [<step_count> STEPS] FROM {<vid>, <vid>...}

[{IN | OUT | BOTH} <edge_type>, <edge_type>...]

YIELD {[VERTICES AS <vertex_alias>] [,EDGES AS <edge_alias>]};

•

•

•

•

•

Note

4.15 Subgraph and path

- 330/927 - 2022 Vesoft Inc.

Insert the test data:

nebula> CREATE SPACE IF NOT EXISTS subgraph(partition_num=15, replica_factor=1, vid_type=fixed_string(30));

nebula> USE subgraph;

nebula> CREATE TAG IF NOT EXISTS player(name string, age int);

nebula> CREATE TAG IF NOT EXISTS team(name string);

nebula> CREATE EDGE IF NOT EXISTS follow(degree int);

nebula> CREATE EDGE IF NOT EXISTS serve(start_year int, end_year int);

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);

nebula> INSERT VERTEX team(name) VALUES "team203":("Trail Blazers"), "team204":("Spurs");

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player102":(90);

4.15.1 GET SUBGRAPH

- 331/927 - 2022 Vesoft Inc.

This example goes one step from the vertex player101 over all edge types and gets the subgraph.

The returned subgraph is as follows.

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player100":(75);

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player101" -> "team204":(1999, 2018),"player102" -> "team203":(2006, 2015);

•

nebula> GET SUBGRAPH 1 STEPS FROM "player101" YIELD VERTICES AS nodes, EDGES AS relationships;

+---

+---+

| nodes |

relationships |

+---

+---+

| [("player101" :player{})] | [[:serve "player101"->"team204" @0 {}], [:follow "player101"->"player100" @0 {}], [:follow "player101"-

>"player102" @0 {}]] |

| [("team204" :team{}), ("player100" :player{}), ("player102" :player{})] | [[:follow "player102"->"player100" @0

{}]] |

+---

+---+

4.15.1 GET SUBGRAPH

- 332/927 - 2022 Vesoft Inc.

This example goes one step from the vertex player101 over incoming follow edges and gets the subgraph.

There is no incoming follow edge to player101 , so only the vertex player101 is returned.

This example goes one step from the vertex player101 over outgoing serve edges, gets the subgraph, and shows the property of

the edge.

The returned subgraph is as follows.

FAQ

WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT GREATER THAN STEP_COUNT ?

To show the completeness of the subgraph, an additional hop is made on all vertices that meet the conditions. The following

graph is used as the sample.

•

nebula> GET SUBGRAPH 1 STEPS FROM "player101" IN follow YIELD VERTICES AS nodes, EDGES AS relationships;

+---------------------------+---------------+

| nodes | relationships |

+---------------------------+---------------+

| [("player101" :player{})] | [] |

| [] | [] |

+---------------------------+---------------+

•

nebula> GET SUBGRAPH WITH PROP 1 STEPS FROM "player101" OUT serve YIELD VERTICES AS nodes, EDGES AS relationships;

+---+---+

| nodes | relationships |

+---+---+

| [("player101" :player{age: 36, name: "Tony Parker"})] | [[:serve "player101"->"team204" @0 {end_year: 2018, start_year: 1999}]] |

| [("team204" :team{name: "Spurs"})] | [] |

+---+---+

4.15.1 GET SUBGRAPH

- 333/927 - 2022 Vesoft Inc.

The returned paths of GET SUBGRAPH 1 STEPS FROM "A"; are A->B , B->A , and A->C . To show the completeness of the subgraph, an

additional hop is made on all vertices that meet the conditions, namely B->C .

The returned path of GET SUBGRAPH 1 STEPS FROM "A" IN follow; is B->A . To show the completeness of the subgraph, an additional hop

is made on all vertices that meet the conditions, namely A->B .

If you only query paths or vertices that meet the conditions, we suggest you use MATCH or GO. The example is as follows.

WHY IS THE NUMBER OF HOPS IN THE RETURNED RESULT LOWER THAN STEP_COUNT ?

The query stops when there is not enough subgraph data and will not return the null value.

•

•

nebula> MATCH p= (v:player) -- (v2) WHERE id(v)=="A" RETURN p;

nebula> GO 1 STEPS FROM "A" OVER follow YIELD src(edge),dst(edge);

nebula> GET SUBGRAPH 100 STEPS FROM "player101" OUT follow YIELD VERTICES AS nodes, EDGES AS relationships;

+--+--+

| nodes | relationships |

+--+--+

| [("player101" :player{})] | [[:follow "player101"->"player100" @0 {}], [:follow "player101"->"player102" @0 {}]] |

| [("player100" :player{}), ("player102" :player{})] | [[:follow "player102"->"player100" @0 {}]] |

+--+--+

Last update: August 3, 2022

4.15.1 GET SUBGRAPH

- 334/927 - 2022 Vesoft Inc.

4.15.2 FIND PATH

The FIND PATH statement finds the paths between the selected source vertices and destination vertices.

Syntax

SHORTEST finds the shortest path.

ALL finds all the paths.

NOLOOP finds the paths without circles.

WITH PROP shows properties of vertices and edges. If not specified, properties will be hidden.

<vertex_id_list> is a list of vertex IDs separated with commas (,). It supports $- and $var .

<edge_type_list> is a list of edge types separated with commas (,). * is all edge types.

REVERSELY | BIDIRECT specifies the direction. REVERSELY is reverse graph traversal while BIDIRECT is bidirectional graph traversal.

<WHERE clause> filters properties of edges.

<N> is the maximum hop number of the path. The default value is 5 .

<M> specifies the maximum number of rows to return.

The path type of FIND PATH is trail . Only vertices can be repeatedly visited in graph traversal. For more information, see Path.

Limitations

When a list of source and/or destination vertex IDs are specified, the paths between any source vertices and the destination

vertices will be returned.

There can be cycles when searching all paths.

FIND PATH only supports filtering properties of edges with WHERE clauses. Filtering properties of vertices and functions are not

supported for now.

FIND PATH is a single-thread procedure, so it uses much memory.

Examples

A returned path is like (<vertex_id>)-[:<edge_type_name>@<rank>]->(<vertex_id) .

FIND { SHORTEST | ALL | NOLOOP } PATH [WITH PROP] FROM <vertex_id_list> TO <vertex_id_list>

OVER <edge_type_list> [REVERSELY | BIDIRECT]

[<WHERE clause>] [UPTO <N> STEPS]

YIELD path as <alias>

[| ORDER BY $-.path] [| LIMIT <M>];

<vertex_id_list> ::=

 [vertex_id [, vertex_id] ...]

•

•

•

•

•

•

•

•

•

•

Note

•

•

•

•

nebula> FIND SHORTEST PATH FROM "player102" TO "team204" OVER * YIELD path AS p;

+--+

| p |

+--+

| <("player102")-[:serve@0 {}]->("team204")> |

+--+

nebula> FIND SHORTEST PATH WITH PROP FROM "team204" TO "player100" OVER * REVERSELY YIELD path AS p;

+--+

| p |

4.15.2 FIND PATH

- 335/927 - 2022 Vesoft Inc.

FAQ

DOES IT SUPPORT THE WHERE CLAUSE TO ACHIEVE CONDITIONAL FILTERING DURING GRAPH TRAVERSAL?

FIND PATH only supports filtering properties of edges with WHERE clauses, such as WHERE follow.degree is EMPTY or follow.degree >=0 .

Filtering properties of vertices is not supported for now.

+--+

| <("team204" :team{name: "Spurs"})<-[:serve@0 {end_year: 2016, start_year: 1997}]-("player100" :player{age: 42, name: "Tim Duncan"})> |

+--+

nebula> FIND ALL PATH FROM "player100" TO "team204" OVER * WHERE follow.degree is EMPTY or follow.degree >=0 YIELD path AS p;

+--+

| p |

+--+

| <("player100")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:serve@0 {}]->("team204")> |

|... |

+--+

nebula> FIND NOLOOP PATH FROM "player100" TO "team204" OVER * YIELD path AS p;

+--+

| p |

+--+

| <("player100")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:follow@0 {}]->("player125")-[:serve@0 {}]->("team204")> |

| <("player100")-[:follow@0 {}]->("player101")-[:follow@0 {}]->("player102")-[:serve@0 {}]->("team204")> |

+--+

Last update: April 25, 2022

4.15.2 FIND PATH

- 336/927 - 2022 Vesoft Inc.

4.16 Query tuning and terminating statements

4.16.1 EXPLAIN and PROFILE

EXPLAIN helps output the execution plan of an nGQL statement without executing the statement.

PROFILE executes the statement, then outputs the execution plan as well as the execution profile. You can optimize the queries for

better performance according to the execution plan and profile.

Execution Plan

The execution plan is determined by the execution planner in the NebulaGraph query engine.

The execution planner processes the parsed nGQL statements into actions . An action is the smallest unit that can be executed. A

typical action fetches all neighbors of a given vertex, gets the properties of an edge, and filters vertices or edges based on the

given conditions. Each action is assigned to an operator that performs the action.

For example, a SHOW TAGS statement is processed into two actions and assigned to a Start operator and a ShowTags operator , while a

more complex GO statement may be processed into more than 10 actions and assigned to 10 operators.

Syntax

EXPLAIN

PROFILE

Output formats

The output of an EXPLAIN or a PROFILE statement has two formats, the default row format and the dot format. You can use the format

option to modify the output format. Omitting the format option indicates using the default row format.

•

EXPLAIN [format= {"row" | "dot"}] <your_nGQL_statement>;

•

PROFILE [format= {"row" | "dot"}] <your_nGQL_statement>;

4.16 Query tuning and terminating statements

- 337/927 - 2022 Vesoft Inc.

The row format

The row format outputs the return message in a table as follows.

EXPLAIN

PROFILE

The descriptions are as follows.

The dot format

You can use the format="dot" option to output the return message in the dot language, and then use Graphviz to generate a graph

of the plan.

Graphviz is open source graph visualization software. Graphviz provides an online tool for previewing DOT language files and

exporting them to other formats such as SVG or JSON. For more information, see Graphviz Online.

•

nebula> EXPLAIN format="row" SHOW TAGS;

Execution succeeded (time spent 327/892 us)

Execution Plan

-----+----------+--------------+----------------+--

| id | name | dependencies | profiling data | operator info |

-----+----------+--------------+----------------+--

| 1 | ShowTags | 0 | | outputVar: [{"colNames":[],"name":"__ShowTags_1","type":"DATASET"}] |

| | | | | inputVar: |

-----+----------+--------------+----------------+--

| 0 | Start | | | outputVar: [{"colNames":[],"name":"__Start_0","type":"DATASET"}] |

-----+----------+--------------+----------------+--

•

nebula> PROFILE format="row" SHOW TAGS;

+--------+

| Name |

+--------+

| player |

+--------+

| team |

+--------+

Got 2 rows (time spent 2038/2728 us)

Execution Plan

-----+----------+--------------+--+--

| id | name | dependencies | profiling data | operator info |

-----+----------+--------------+--+--

| 1 | ShowTags | 0 | ver: 0, rows: 1, execTime: 42us, totalTime: 1177us | outputVar: [{"colNames":[],"name":"__ShowTags_1","type":"DATASET"}] |

| | | | | inputVar: |

-----+----------+--------------+--+--

| 0 | Start | | ver: 0, rows: 0, execTime: 1us, totalTime: 57us | outputVar: [{"colNames":[],"name":"__Start_0","type":"DATASET"}] |

-----+----------+--------------+--+--

Parameter Description

id The ID of the operator .

name The name of the operator .

dependencies The ID of the operator that the current operator depends on.

profiling data The content of the execution profile. ver is the version of the operator . rows shows the number of rows to be

output by the operator . execTime shows the execution time of action . totalTime is the sum of the execution time,

the system scheduling time, and the queueing time.

operator info The detailed information of the operator .

Note

nebula> EXPLAIN format="dot" SHOW TAGS;

Execution succeeded (time spent 161/665 us)

Execution Plan

--- -------------

4.16.1 EXPLAIN and PROFILE

- 338/927 - 2022 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

The Graphviz graph transformed from the above DOT statement is as follows.

 plan

--- -------------

 digraph exec_plan {

 rankdir=LR;

 "ShowTags_0"[label="ShowTags_0|outputVar: \[\{\"colNames\":\[\],\"name\":\"__ShowTags_0\",\"type\":\"DATASET\"\}\]\l|inputVar:\l", shape=Mrecord];

 "Start_2"->"ShowTags_0";

 "Start_2"[label="Start_2|outputVar: \[\{\"colNames\":\[\],\"name\":\"__Start_2\",\"type\":\"DATASET\"\}\]\l|inputVar: \l", shape=Mrecord];

 }

--- -------------

Last update: March 13, 2023

4.16.1 EXPLAIN and PROFILE

- 339/927 - 2022 Vesoft Inc.

4.16.2 Kill queries

KILL QUERY can terminate the query being executed, and is often used to terminate slow queries.

Users with the God role can kill any query. Other roles can only kill their own queries.

Syntax

session_id : The ID of the session.

plan_id : The ID of the execution plan.

The ID of the session and the ID of the execution plan can uniquely determine a query. Both can be obtained through the SHOW

QUERIES statement.

Examples

This example executes KILL QUERY in one session to terminate the query in another session.

The query will be terminated and the following information will be returned.

Note

KILL QUERY (session=<session_id>, plan=<plan_id>);

•

•

nebula> KILL QUERY(SESSION=1625553545984255,PLAN=163);

[ERROR (-1005)]: ExecutionPlanId[1001] does not exist in current Session.

Last update: May 13, 2022

4.16.2 Kill queries

- 340/927 - 2022 Vesoft Inc.

4.17 Job manager and the JOB statements

The long-term tasks run by the Storage Service are called jobs, such as COMPACT , FLUSH , and STATS . These jobs can be time-

consuming if the data amount in the graph space is large. The job manager helps you run, show, stop, and recover jobs.

All job management commands can be executed only after selecting a graph space.

4.17.1 SUBMIT JOB BALANCE DATA

Only available for the NebulaGraph Enterprise Edition.

Before performing the job, it is recommended to create a snapshot.

During job execution, do not execute other jobs, such as SUBMIT JOB STATS , REBUILD INDEX , etc.

During job execution, it is recommended not to write or read data in large batches.

The SUBMIT JOB BALANCE DATA statement starts a job to balance the distribution of storage partitions in the current graph space. It

returns the job ID.

For example:

4.17.2 SUBMIT JOB COMPACT

The SUBMIT JOB COMPACT statement triggers the long-term RocksDB compact operation in the current graph space.

For more information about compact configuration, see Storage Service configuration.

For example:

4.17.3 SUBMIT JOB FLUSH

The SUBMIT JOB FLUSH statement writes the RocksDB memfile in the memory to the hard disk in the current graph space.

For example:

Note

Enterpriseonly

Caution

•

•

•

nebula> SUBMIT JOB BALANCE DATA;

+------------+

| New Job Id |

+------------+

| 28 |

+------------+

nebula> SUBMIT JOB COMPACT;

+------------+

| New Job Id |

+------------+

| 40 |

+------------+

nebula> SUBMIT JOB FLUSH;

+------------+

| New Job Id |

+------------+

4.17 Job manager and the JOB statements

- 341/927 - 2022 Vesoft Inc.

4.17.4 SUBMIT JOB STATS

The SUBMIT JOB STATS statement starts a job that makes the statistics of the current graph space. Once this job succeeds, you can

use the SHOW STATS statement to list the statistics. For more information, see SHOW STATS.

If the data stored in the graph space changes, in order to get the latest statistics, you have to run SUBMIT JOB STATS again.

For example:

4.17.5 SUBMIT JOB DOWNLOAD/INGEST

The SUBMIT JOB DOWNLOAD HDFS and SUBMIT JOB INGEST commands are used to import the SST file into NebulaGraph. For detail, see Import

data from SST files。

The SUBMIT JOB DOWNLOAD HDFS command will download the SST file on the specified HDFS.

The SUBMIT JOB INGEST command will import the downloaded SST file into NebulaGraph.

For example:

4.17.6 SHOW JOB

The Meta Service parses a SUBMIT JOB request into multiple tasks and assigns them to the nebula-storaged processes. The SHOW JOB

<job_id> statement shows the information about a specific job and all its tasks in the current graph space.

job_id is returned when you run the SUBMIT JOB statement.

For example:

| 96 |

+------------+

Note

nebula> SUBMIT JOB STATS;

+------------+

| New Job Id |

+------------+

| 9 |

+------------+

nebula> SUBMIT JOB DOWNLOAD HDFS "hdfs://192.168.10.100:9000/sst";

+------------+

| New Job Id |

+------------+

| 10 |

+------------+

nebula> SUBMIT JOB INGEST;

+------------+

| New Job Id |

+------------+

| 11 |

+------------+

nebula> SHOW JOB 9;

+----------------+-----------------+------------+----------------------------+----------------------------+-------------+

| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time | Error Code |

+----------------+-----------------+------------+----------------------------+----------------------------+-------------+

| 9 | "STATS" | "FINISHED" | 2022-04-12T08:47:33.000000 | 2022-04-12T08:47:33.000000 | "SUCCEEDED" |

| 0 | "192.168.8.100" | "FINISHED" | 2022-04-12T08:47:33.000000 | 2022-04-12T08:47:34.000000 | "SUCCEEDED" |

| 1 | "192.168.8.101" | "FINISHED" | 2022-04-12T08:47:33.000000 | 2022-04-12T08:47:34.000000 | "SUCCEEDED" |

+----------------+-----------------+------------+----------------------------+----------------------------+-------------+

4.17.4 SUBMIT JOB STATS

- 342/927 - 2022 Vesoft Inc.

The descriptions are as follows.

Job status

The descriptions are as follows.

The description of switching the status is described as follows.

4.17.7 SHOW JOBS

The SHOW JOBS statement lists all the unexpired jobs in the current graph space.

The default job expiration interval is one week. You can change it by modifying the job_expired_secs parameter of the Meta Service.

For how to modify job_expired_secs , see Meta Service configuration.

For example:

4.17.8 STOP JOB

The STOP JOB <job_id> statement stops jobs that are not finished in the current graph space.

Parameter Description

Job Id(TaskId) The first row shows the job ID and the other rows show the task IDs.

Command(Dest) The first row shows the command executed and the other rows show on which storaged processes the task

is running.

Status Shows the status of the job or task. For more information, see Job status.

Start Time Shows a timestamp indicating the time when the job or task enters the RUNNING phase.

Stop Time Shows a timestamp indicating the time when the job or task gets FINISHED , FAILED , or STOPPED .

Error Code The error code of job.

Status Description

QUEUE The job or task is waiting in a queue. The Start Time is empty in this phase.

RUNNING The job or task is running. The Start Time shows the beginning time of this phase.

FINISHED The job or task is successfully finished. The Stop Time shows the time when the job or task enters this

phase.

FAILED The job or task has failed. The Stop Time shows the time when the job or task enters this phase.

STOPPED The job or task is stopped without running. The Stop Time shows the time when the job or task enters this

phase.

REMOVED The job or task is removed.

Queue -- running -- finished -- removed

 \ \ /

 \ \ -- failed -- /

 \ \ /

 \ ---------- stopped -/

nebula> SHOW JOBS;

+--------+---------------------+------------+----------------------------+----------------------------+

| Job Id | Command | Status | Start Time | Stop Time |

+--------+---------------------+------------+----------------------------+----------------------------+

| 34 | "STATS" | "FINISHED" | 2021-11-01T03:32:27.000000 | 2021-11-01T03:32:27.000000 |

| 33 | "FLUSH" | "FINISHED" | 2021-11-01T03:32:15.000000 | 2021-11-01T03:32:15.000000 |

| 32 | "COMPACT" | "FINISHED" | 2021-11-01T03:32:06.000000 | 2021-11-01T03:32:06.000000 |

| 31 | "REBUILD_TAG_INDEX" | "FINISHED" | 2021-10-29T05:39:16.000000 | 2021-10-29T05:39:17.000000 |

| 10 | "COMPACT" | "FINISHED" | 2021-10-26T02:27:05.000000 | 2021-10-26T02:27:05.000000 |

+--------+---------------------+------------+----------------------------+----------------------------+

4.17.7 SHOW JOBS

- 343/927 - 2022 Vesoft Inc.

For example:

4.17.9 RECOVER JOB

The RECOVER JOB [<job_id>] statement re-executes the jobs that status is QUEUE , FAILED or STOPPED in the current graph space and

returns the number of recovered jobs. If <job_id> is not specified, re-execution is performed from the earliest job and the number

of jobs that have been recovered is returned.

For example:

4.17.10 FAQ

How to troubleshoot job problems?

The SUBMIT JOB operations use the HTTP port. Please check if the HTTP ports on the machines where the Storage Service is

running are working well. You can use the following command to debug.

nebula> STOP JOB 22;

+---------------+

| Result |

+---------------+

| "Job stopped" |

+---------------+

nebula> RECOVER JOB;

+-------------------+

| Recovered job num |

+-------------------+

| 5 job recovered |

+-------------------+

curl "http://{storaged-ip}:19779/admin?space={space_name}&op=compact"

Last update: March 13, 2023

4.17.9 RECOVER JOB

- 344/927 - 2022 Vesoft Inc.

5. Deployment and installation

5.1 Prepare resources for compiling, installing, and running NebulaGraph

This topic describes the requirements and suggestions for compiling and installing NebulaGraph, as well as how to estimate the

resource you need to reserve for running a NebulaGraph cluster.

In addition to installing NebulaGraph with the source code, the Dashboard Enterprise Edition tool is a better and convenient choice

for installing Community and Enterprise Edition NebulaGraph. For details, see Deploy Dashboard.

5.1.1 About storage devices

NebulaGraph is designed and implemented for NVMe SSD. All default parameters are optimized for the SSD devices and require

extremely high IOPS and low latency.

Due to the poor IOPS capability and long random seek latency, HDD is not recommended. Users may encounter many

problems when using HDD.

Do not use remote storage devices, such as NAS or SAN. Do not connect an external virtual hard disk based on HDFS or Ceph.

Do not use RAID.

Use local SSD devices, or AWS Provisioned IOPS SSD equivalence.

5.1.2 About CPU architecture

Starting with 3.0.2, you can run containerized NebulaGraph databases on Docker Desktop for ARM macOS or on ARM Linux servers.

5.1.3 Requirements for compiling the source code

Hardware requirements for compiling NebulaGraph

Supported operating systems for compiling NebulaGraph

For now, we can only compile NebulaGraph in the Linux system. We recommend that you use any Linux system with kernel

version 4.15 or above.

To install NebulaGraph on Linux systems with kernel version lower than required, use RPM/DEB packages or TAR files.

Enterpriseonly

•

•

•

•

Note

Item Requirement

CPU architecture x86_64

Memory 4 GB

Disk 10 GB, SSD

Note

5. Deployment and installation

- 345/927 - 2022 Vesoft Inc.

Software requirements for compiling NebulaGraph

You must have the correct version of the software listed below to compile NebulaGraph. If they are not as required or you are not

sure, follow the steps in Prepare software for compiling NebulaGraph to get them ready.

Other third-party software will be automatically downloaded and installed to the build directory at the configure (cmake) stage.

Software Version Note

glibc 2.17 or above You can run ldd --version to check the glibc version.

make Any stable version -

m4 Any stable version -

git Any stable version -

wget Any stable version -

unzip Any stable version -

xz Any stable version -

readline-devel Any stable version -

ncurses-devel Any stable version -

zlib-devel Any stable version -

g++ 8.5.0 or above You can run gcc -v to check the gcc version.

cmake 3.14.0 or above You can run cmake --version to check the cmake version.

curl Any stable version -

redhat-lsb-core Any stable version -

libstdc++-static Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

libasan Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

bzip2 Any stable version -

5.1.3 Requirements for compiling the source code

- 346/927 - 2022 Vesoft Inc.

Prepare software for compiling NebulaGraph

If part of the dependencies are missing or the versions does not meet the requirements, manually install them with the following

steps. You can skip unnecessary dependencies or steps according to your needs.

Install dependencies.

For CentOS, RedHat, and Fedora users, run the following commands.

For Debian and Ubuntu users, run the following commands.

Check if the GCC and cmake on your host are in the right version. See Software requirements for compiling NebulaGraph for the

required versions.

If your GCC and CMake are in the right versions, then you are all set and you can ignore the subsequent steps. If they are not,

select and perform the needed steps as follows.

If the CMake version is incorrect, visit the CMake official website to install the required version.

If the G++ version is incorrect, visit the G++ official website or follow the instructions below to to install the required version.

For CentOS users, run:

For Ubuntu users, run:

1.

•

$ yum update

$ yum install -y make \

 m4 \

 git \

 wget \

 unzip \

 xz \

 readline-devel \

 ncurses-devel \

 zlib-devel \

 gcc \

 gcc-c++ \

 cmake \

 curl \

 redhat-lsb-core \

 bzip2

 // For CentOS 8+, RedHat 8+, and Fedora, install libstdc++-static and libasan as well

$ yum install -y libstdc++-static libasan

•

$ apt-get update

$ apt-get install -y make \

 m4 \

 git \

 wget \

 unzip \

 xz-utils \

 curl \

 lsb-core \

 build-essential \

 libreadline-dev \

 ncurses-dev \

 cmake \

 gettext

2.

$ g++ --version

$ cmake --version

3.

4.

•

yum install centos-release-scl

yum install devtoolset-11

scl enable devtoolset-11 'bash'

•

add-apt-repository ppa:ubuntu-toolchain-r/test

apt install gcc-11 g++-11

5.1.3 Requirements for compiling the source code

- 347/927 - 2022 Vesoft Inc.

5.1.4 Requirements and suggestions for installing NebulaGraph in test environments

Hardware requirements for test environments

Supported operating systems for test environments

For now, we can only install NebulaGraph in the Linux system. To install NebulaGraph in a test environment, we recommend that

you use any Linux system with kernel version 3.9 or above.

Suggested service architecture for test environments

For example, for a single-machine test environment, you can deploy 1 metad, 1 storaged, and 1 graphd processes in the machine.

For a more common test environment, such as a cluster of 3 machines (named as A, B, and C), you can deploy NebulaGraph as

follows:

5.1.5 Requirements and suggestions for installing NebulaGraph in production environments

Hardware requirements for production environments

Supported operating systems for production environments

For now, we can only install NebulaGraph in the Linux system. To install NebulaGraph in a production environment, we

recommend that you use any Linux system with kernel version 3.9 or above.

Users can adjust some of the kernel parameters to better accommodate the need for running NebulaGraph. For more

information, see kernel configuration.

Item Requirement

CPU architecture x86_64

Number of CPU core 4

Memory 8 GB

Disk 100 GB, SSD

Process Suggested number

metad (the metadata service process) 1

storaged (the storage service process) 1 or more

graphd (the query engine service process) 1 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B None 1 1

C None 1 1

Item Requirement

CPU architecture x86_64

Number of CPU core 48

Memory 256 GB

Disk 1TB, NVMe SSD

5.1.4 Requirements and suggestions for installing NebulaGraph in test environments

- 348/927 - 2022 Vesoft Inc.

Suggested service architecture for production environments

DO NOT deploy a cluster across IDCs.

Each metad process automatically creates and maintains a replica of the metadata. Usually, you need to deploy three metad

processes and only three.

The number of storaged processes does not affect the number of graph space replicas.

Users can deploy multiple processes on a single machine. For example, on a cluster of 5 machines (named as A, B, C, D, and E),

you can deploy NebulaGraph as follows:

Danger

Process Suggested number

metad (the metadata service process) 3

storaged (the storage service process) 3 or more

graphd (the query engine service process) 3 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B 1 1 1

C 1 1 1

D None 1 1

E None 1 1

5.1.5 Requirements and suggestions for installing NebulaGraph in production environments

- 349/927 - 2022 Vesoft Inc.

5.1.6 Capacity requirements for running a NebulaGraph cluster

Users can estimate the memory, disk space, and partition number needed for a NebulaGraph cluster of 3 replicas as follows.

Question 1: Why do we multiply the disk space and memory by 120%?

Answer: The extra 20% is for buffer.

Question 2: How to get the number of RocksDB instances?

Answer: Each directory in the --data_path item in the etc/nebula-storaged.conf file corresponds to a RocksDB instance. Count the

number of directories to get the RocksDB instance number.

Users can decrease the memory size occupied by the bloom filter by adding --enable_partitioned_index_filter=true in etc/nebula-

storaged.conf . But it may decrease the read performance in some random-seek cases.

Resource Unit How to estimate Description

Disk space

for a cluster

Bytes the_sum_of_edge_number_and_vertex_number *

average_bytes_of_properties * 6 * 120%

For more information, see Edge

partitioning and storage amplification.

Memory for

a cluster

Bytes [the_sum_of_edge_number_and_vertex_number * 16 +

the_number_of_RocksDB_instances * (write_buffer_size

* max_write_buffer_number + rocksdb_block_cache)] *

120%

write_buffer_size and max_write_buffer_number

are RocksDB parameters. For more

information, see MemTable. For details

about rocksdb_block_cache , see Memory

usage in RocksDB.

Number of

partitions for

a graph

space

- the_number_of_disks_in_the_cluster *

disk_partition_num_multiplier

disk_partition_num_multiplier is an integer

between 2 and 20 (both including). Its

value depends on the disk performance.

Use 20 for SSD and 2 for HDD.

•

•

Note

Last update: March 13, 2023

5.1.6 Capacity requirements for running a NebulaGraph cluster

- 350/927 - 2022 Vesoft Inc.

https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache

5.2 Compile and install Nebula Graph

5.2.1 Install NebulaGraph by compiling the source code

Installing NebulaGraph from the source code allows you to customize the compiling and installation settings and test the latest

features.

Prerequisites

Users have to prepare correct resources described in Prepare resources for compiling, installing, and running NebulaGraph.

Compilation of NebulaGraph offline is not currently supported.

The host to be installed with NebulaGraph has access to the Internet.

Installation steps

Use Git to clone the source code of NebulaGraph to the host.

[Recommended] To install NebulaGraph 3.1.0, run the following command.

To install the latest developing release, run the following command to clone the source code from the master branch.

Make the nebula directory the current working directory.

Create a build directory and make it the current working directory.

Generate Makefile with CMake.

The installation path is /usr/local/nebula by default. To customize it, add the -DCMAKE_INSTALL_PREFIX=<installation_path> CMake variable in the

following command.

For more information about CMake variables, see CMake variables.

Compile NebulaGraph.

Check Prepare resources for compiling, installing, and running NebulaGraph.

•

Note

•

1.

•

$ git clone --branch release-3.1 https://github.com/vesoft-inc/nebula.git

•

$ git clone https://github.com/vesoft-inc/nebula.git

2.

$ cd nebula

3.

$ mkdir build && cd build

4.

Note

$ cmake -DCMAKE_INSTALL_PREFIX=/usr/local/nebula -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release ..

5.

Note

5.2 Compile and install Nebula Graph

- 351/927 - 2022 Vesoft Inc.

To speed up the compiling, use the -j option to set a concurrent number N . It should be \(\min(\text{CPU}core number,

\frac{the_memory_size(GB)}{2})\).

Install NebulaGraph.

The configuration files in the etc/ directory (/usr/local/nebula/etc by default) are references. Users can create their own

configuration files accordingly. If you want to use the scripts in the script directory to start, stop, restart, and kill the service, and

check the service status, the configuration files have to be named as nebula-graph.conf , nebula-metad.conf , and nebula-storaged.conf .

Update the master branch

The source code of the master branch changes frequently. If the corresponding NebulaGraph release is installed, update it in the

following steps.

In the nebula directory, run git pull upstream master to update the source code.

In the nebula/build directory, run make -j{N} and make install again.

Next to do

(Enterprise Edition)Deploy license

Manage NebulaGraph services

CMake variables

USAGE OF CMAKE VARIABLES

The following CMake variables can be used at the configure (cmake) stage to adjust the compiling settings.

CMAKE_INSTALL_PREFIX

CMAKE_INSTALL_PREFIX specifies the path where the service modules, scripts, configuration files are installed. The default path is /usr/

local/nebula .

ENABLE_WERROR

ENABLE_WERROR is ON by default and it makes all warnings into errors. You can set it to OFF if needed.

ENABLE_TESTING

ENABLE_TESTING is ON by default and unit tests are built with the NebulaGraph services. If you just need the service modules, set it

to OFF .

ENABLE_ASAN

ENABLE_ASAN is OFF by default and the building of ASan (AddressSanitizer), a memory error detector, is disabled. To enable it, set

ENABLE_ASAN to ON . This variable is intended for NebulaGraph developers.

$ make -j{N} # E.g., make -j2

6.

$ sudo make install

7.

1.

2.

•

•

$ cmake -D<variable>=<value> ...

5.2.1 Install NebulaGraph by compiling the source code

- 352/927 - 2022 Vesoft Inc.

CMAKE_BUILD_TYPE

NebulaGraph supports the following building types of MAKE_BUILD_TYPE :

Debug

The default value of CMAKE_BUILD_TYPE . It indicates building NebulaGraph with the debug info but not the optimization options.

Release

It indicates building NebulaGraph with the optimization options but not the debug info.

RelWithDebInfo

It indicates building NebulaGraph with the optimization options and the debug info.

MinSizeRel

It indicates building NebulaGraph with the optimization options for controlling the code size but not the debug info.

ENABLE_INCLUDE_WHAT_YOU_USE

ENABLE_INCLUDE_WHAT_YOU_USE is OFF by default. When set to ON and include-what-you-use is installed on the system, the system reports

redundant headers contained in the project source code during makefile generation.

NEBULA_USE_LINKER

Specifies the program linker on the system. The available values are:

bfd , the default value, indicates that ld.bfd is applied as the linker.

lld , indicates that ld.lld, if installed on the system, is applied as the linker.

gold , indicates that ld.gold, if installed on the system, is applied as the linker.

CMAKE_C_COMPILER/CMAKE_CXX_COMPILER

Usually, CMake locates and uses a C/C++ compiler installed in the host automatically. But if your compiler is not installed at the

standard path, or if you want to use a different one, run the command as follows to specify the installation path of the target

compiler:

ENABLE_CCACHE

ENABLE_CCACHE is ON by default and Ccache (compiler cache) is used to speed up the compiling of NebulaGraph.

To disable ccache , setting ENABLE_CCACHE to OFF is not enough. On some platforms, the ccache installation hooks up or precedes the

compiler. In such a case, you have to set an environment variable export CCACHE_DISABLE=true or add a line disable=true in ~/.ccache/

ccache.conf as well. For more information, see the ccache official documentation.

NEBULA_THIRDPARTY_ROOT

NEBULA_THIRDPARTY_ROOT specifies the path where the third party software is installed. By default it is /opt/vesoft/third-party .

Examine problems

If the compiling fails, we suggest you:

Check whether the operating system release meets the requirements and whether the memory and hard disk space are sufficient.

Check whether the third-party is installed correctly.

Use make -j1 to reduce the compiling concurrency.

•

•

•

•

•

•

•

$ cmake -DCMAKE_C_COMPILER=<path_to_gcc/bin/gcc> -DCMAKE_CXX_COMPILER=<path_to_gcc/bin/g++> ..

$ cmake -DCMAKE_C_COMPILER=<path_to_clang/bin/clang> -DCMAKE_CXX_COMPILER=<path_to_clang/bin/clang++> ..

1.

2.

3.

5.2.1 Install NebulaGraph by compiling the source code

- 353/927 - 2022 Vesoft Inc.

https://ccache.dev/manual/3.7.6.html

Last update: March 13, 2023

5.2.1 Install NebulaGraph by compiling the source code

- 354/927 - 2022 Vesoft Inc.

5.2.2 Install NebulaGraph with RPM or DEB package

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install NebulaGraph with the

RPM or DEB package.

The console is not complied or packaged with NebulaGraph server binaries. You can install nebula-console by yourself.

For the Enterprise Edition, please send email to inquiry@vesoft.com.

Prerequisites

Wget installed.

Download the package from cloud service

Download the released version.

URL:

For example, download the release package 3.1.0 for Centos 7.5 :

Download the release package 3.1.0 for Ubuntu 1804 :

Note

Enterpriseonly

•

//Centos 6

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el6.x86_64.rpm

//Centos 7

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.el7.x86_64.rpm.sha256sum.txt

5.2.2 Install NebulaGraph with RPM or DEB package

- 355/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console

Download the nightly version.

Nightly versions are usually used to test new features. Do not use it in a production environment.

Nightly versions may not be built successfully every night. And the names may change from day to day.

URL:

For example, download the Centos 7.5 package developed and built in 2021.11.28 :

For example, download the Ubuntu 1804 package developed and built in 2021.11.28 :

Install NebulaGraph

Use the following syntax to install with an RPM package.

The option --prefix indicates the installation path. The default path is /usr/local/nebula/ .

For example, to install an RPM package in the default path for the 3.1.0 version, run the following command.

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/3.1.0/nebula-graph-3.1.0.ubuntu1804.amd64.deb.sha256sum.txt

•

Danger

•

•

//Centos 6

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el6.x86_64.rpm

//Centos 7

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004

https://oss-cdn.nebula-graph.io/package/nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/nightly/2021.11.28/nebula-graph-2021.11.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

•

$ sudo rpm -ivh --prefix=<installation_path> <package_name>

5.2.2 Install NebulaGraph with RPM or DEB package

- 356/927 - 2022 Vesoft Inc.

Use the following syntax to install with a DEB package.

Customizing the installation path is not supported when installing NebulaGraph with a DEB package. The default installation path

is /usr/local/nebula/ .

For example, to install a DEB package for the 3.1.0 version, run the following command.

The default installation path is /usr/local/nebula/ .

Next to do

(Enterprise Edition)Deploy license

Start NebulaGraph

Connect to NebulaGraph

sudo rpm -ivh nebula-graph-3.1.0.el7.x86_64.rpm

•

$ sudo dpkg -i <package_name>

Note

sudo dpkg -i nebula-graph-3.1.0.ubuntu1804.amd64.deb

Note

•

•

•

Last update: March 13, 2023

5.2.2 Install NebulaGraph with RPM or DEB package

- 357/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.com.cn/3.1.0/4.deployment-and-installation/deploy-license
https://docs.nebula-graph.io/3.1.0/2.quick-start/5.start-stop-service/
https://docs.nebula-graph.io/3.1.0/2.quick-start/3.connect-to-nebula-graph/

5.2.3 Install NebulaGraph with the tar.gz file

You can install NebulaGraph by downloading the tar.gz file.

NebulaGraph provides installing with the tar.gz file starting from version 2.6.0.

Installation steps

Download the NebulaGraph tar.gz file using the following address.

Before downloading, you need to replace <release_version> with the version you want to download.

For example, to download the NebulaGraph release-3.1 tar.gz file for CentOS 7.5 , run the following command:

Decompress the tar.gz file to the NebulaGraph installation directory.

tar.gz_file_name specifies the name of the tar.gz file.

install_path specifies the installation path.

For example:

Modify the name of the configuration file.

Enter the decompressed directory, rename the files nebula-graphd.conf.default , nebula-metad.conf.default , and nebula-storaged.conf.default in

the subdirectory etc , and delete .default to apply the default configuration of NebulaGraph. To modify the configuration, see

Configurations.

So far, you have installed NebulaGraph successfully.

Next to do

(Enterprise Edition)Deploy license

Manage NebulaGraph services

Note

1.

//Centos 7

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.tar.gz.sha256sum.txt

//Centos 8

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.tar.gz.sha256sum.txt

//Ubuntu 1604

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.tar.gz.sha256sum.txt

//Ubuntu 1804

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.tar.gz.sha256sum.txt

//Ubuntu 2004

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.tar.gz

//Checksum

https://oss-cdn.nebula-graph.com.cn/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.tar.gz.sha256sum.txt

wget https://oss-cdn.nebula-graph.com.cn/package/3.1.0/nebula-graph-3.1.0.el7.x86_64.tar.gz

2.

tar -xvzf <tar.gz_file_name> -C <install_path>

•

•

tar -xvzf nebula-graph-3.1.0.el7.x86_64.tar.gz -C /home/joe/nebula/install

3.

•

•

5.2.3 Install NebulaGraph with the tar.gz file

- 358/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

5.2.3 Install NebulaGraph with the tar.gz file

- 359/927 - 2022 Vesoft Inc.

5.2.4 Deploy NebulaGraph with Docker Compose

Using Docker Compose can quickly deploy NebulaGraph services based on the prepared configuration file. It is only

recommended to use this method when testing functions of NebulaGraph.

Prerequisites

You have installed the following applications on your host.

If you are deploying NebulaGraph as a non-root user, grant the user with Docker-related privileges. For detailed instructions,

see Manage Docker as a non-root user.

You have started the Docker service on your host.

If you have already deployed another version of NebulaGraph with Docker Compose on your host, to avoid compatibility issues,

you need to delete the nebula-docker-compose/data directory.

How to deploy and connect to NebulaGraph

Clone the 3.1.0 branch of the nebula-docker-compose repository to your host with Git.

The master branch contains the untested code for the latest NebulaGraph development release. DO NOT use this release in a

production environment.

The x.y version of Docker Compose aligns to the x.y version of NebulaGraph. For the NebulaGraph z version, Docker Compose does

not publish the corresponding z version, but pulls the z version of the NebulaGraph image.

Go to the nebula-docker-compose directory.

Run the following command to start all the NebulaGraph services.

Starting with 3.0.2, NebulaGraph comes with ARM64 Linux Docker images. You can run containerized NebulaGraph databases on

Docker Desktop for ARM macOS or on ARM Linux servers.

Update the NebulaGraph images and Nebula Console images first if they are out of date.

•

Application Recommended version Official installation reference

Docker Latest Install Docker Engine

Docker Compose Latest Install Docker Compose

Git Latest Download Git

•

•

•

1.

Danger

$ git clone -b release-3.1 https://github.com/vesoft-inc/nebula-docker-compose.git

Note

2.

$ cd nebula-docker-compose/

3.

Note

[nebula-docker-compose]$ docker-compose up -d

Creating nebula-docker-compose_metad0_1 ... done

Creating nebula-docker-compose_metad2_1 ... done

Creating nebula-docker-compose_metad1_1 ... done

Creating nebula-docker-compose_graphd2_1 ... done

5.2.4 Deploy NebulaGraph with Docker Compose

- 360/927 - 2022 Vesoft Inc.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://git-scm.com/download/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

For more information of the preceding services, see NebulaGraph architecture.

Connect to NebulaGraph.

Starting from NebulaGraph version 3.1.0, nebula-docker-compose automatically starts a Nebula Console docker container and adds the

storage host to the cluster (i.e. ADD HOSTS command).

Run the following command to view the name of Nebula Console docker container.

Run the following command to enter the Nebula Console docker container.

bash

 docker exec -it nebuladockercompose_console_1 /bin/sh

 / #

Connect to NebulaGraph with Nebula Console.

By default, the authentication is off, you can only log in with an existing username (the default is root) and any password. To turn it on,

see Enable authentication.

Run the following commands to view the cluster state.

Run exit twice to switch back to your terminal (shell).

Check the NebulaGraph service status and ports

Run docker-compose ps to list all the services of NebulaGraph and their status and ports.

Creating nebula-docker-compose_graphd_1 ... done

Creating nebula-docker-compose_graphd1_1 ... done

Creating nebula-docker-compose_storaged0_1 ... done

Creating nebula-docker-compose_storaged2_1 ... done

Creating nebula-docker-compose_storaged1_1 ... done

Note

4.

Note

a.

$ docker-compose ps

 Name Command State Ports

--

nebuladockercompose_console_1 sh -c sleep 3 && Up

 nebula-co ...

......

b.

c.

/ # ./usr/local/bin/nebula-console -u <user_name> -p <password> --address=graphd --port=9669

Note

d.

nebula> SHOW HOSTS;

+-------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

| "storaged0" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "storaged1" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "storaged2" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

+-------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

5.

$ docker-compose ps

nebuladockercompose_console_1 sh -c sleep 3 && Up

 nebula-co ...

nebuladockercompose_graphd1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49174->19669/tcp,:::49174->19669/tcp, 0.0.0.0:49171->19670/tcp,:::49171->19670/tcp, 0.0.0.0:49177->9669/

tcp,:::49177->9669/tcp

nebuladockercompose_graphd2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49175->19669/tcp,:::49175->19669/tcp, 0.0.0.0:49172->19670/tcp,:::49172->19670/tcp, 0.0.0.0:49178->9669/

tcp,:::49178->9669/tcp

nebuladockercompose_graphd_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49180->19669/tcp,:::49180->19669/tcp, 0.0.0.0:49179->19670/tcp,:::49179->19670/tcp, 0.0.0.0:9669->9669/

tcp,:::9669->9669/tcp

5.2.4 Deploy NebulaGraph with Docker Compose

- 361/927 - 2022 Vesoft Inc.

NebulaGraph provides services to the clients through port 9669 by default. To use other ports, modify the docker-compose.yaml file in

the nebula-docker-compose directory and restart the NebulaGraph services.

Check the service data and logs

All the data and logs of NebulaGraph are stored persistently in the nebula-docker-compose/data and nebula-docker-compose/logs directories.

The structure of the directories is as follows:

Stop the NebulaGraph services

You can run the following command to stop the NebulaGraph services:

The following information indicates you have successfully stopped the NebulaGraph services:

The parameter -v in the command docker-compose down -v will delete all your local NebulaGraph storage data. Try this command if you

are using the nightly release and having some compatibility issues.

nebuladockercompose_metad0_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49157->19559/tcp,:::49157->19559/tcp, 0.0.0.0:49154->19560/tcp,:::49154->19560/tcp, 0.0.0.0:49160->9559/

tcp,:::49160->9559/tcp, 9560/tcp

nebuladockercompose_metad1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49156->19559/tcp,:::49156->19559/tcp, 0.0.0.0:49153->19560/tcp,:::49153->19560/tcp, 0.0.0.0:49159->9559/

tcp,:::49159->9559/tcp, 9560/tcp

nebuladockercompose_metad2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49158->19559/tcp,:::49158->19559/tcp, 0.0.0.0:49155->19560/tcp,:::49155->19560/tcp, 0.0.0.0:49161->9559/

tcp,:::49161->9559/tcp, 9560/tcp

nebuladockercompose_storaged0_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49166->19779/tcp,:::49166->19779/tcp, 0.0.0.0:49163->19780/tcp,:::49163->19780/tcp, 9777/tcp, 9778/tcp, 0.

0.0.0:49169->9779/tcp,:::49169->9779/tcp, 9780/tcp

nebuladockercompose_storaged1_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49165->19779/tcp,:::49165->19779/tcp, 0.0.0.0:49162->19780/tcp,:::49162->19780/tcp, 9777/tcp, 9778/tcp, 0.

0.0.0:49168->9779/tcp,:::49168->9779/tcp, 9780/tcp

nebuladockercompose_storaged2_1 /usr/local/nebula/bin/nebu ... Up 0.0.0.0:49167->19779/tcp,:::49167->19779/tcp, 0.0.0.0:49164->19780/tcp,:::49164->19780/tcp, 9777/tcp, 9778/tcp, 0.

0.0.0:49170->9779/tcp,:::49170->9779/tcp, 9780/tcp

nebula-docker-compose/

 |-- docker-compose.yaml

 ├── data

 │ ├── meta0

 │ ├── meta1

 │ ├── meta2

 │ ├── storage0

 │ ├── storage1

 │ └── storage2

 └── logs

 ├── graph

 ├── graph1

 ├── graph2

 ├── meta0

 ├── meta1

 ├── meta2

 ├── storage0

 ├── storage1

 └── storage2

$ docker-compose down

Stopping nebuladockercompose_console_1 ... done

Stopping nebuladockercompose_graphd1_1 ... done

Stopping nebuladockercompose_graphd_1 ... done

Stopping nebuladockercompose_graphd2_1 ... done

Stopping nebuladockercompose_storaged1_1 ... done

Stopping nebuladockercompose_storaged0_1 ... done

Stopping nebuladockercompose_storaged2_1 ... done

Stopping nebuladockercompose_metad2_1 ... done

Stopping nebuladockercompose_metad0_1 ... done

Stopping nebuladockercompose_metad1_1 ... done

Removing nebuladockercompose_console_1 ... done

Removing nebuladockercompose_graphd1_1 ... done

Removing nebuladockercompose_graphd_1 ... done

Removing nebuladockercompose_graphd2_1 ... done

Removing nebuladockercompose_storaged1_1 ... done

Removing nebuladockercompose_storaged0_1 ... done

Removing nebuladockercompose_storaged2_1 ... done

Removing nebuladockercompose_metad2_1 ... done

Removing nebuladockercompose_metad0_1 ... done

Removing nebuladockercompose_metad1_1 ... done

Removing network nebuladockercompose_nebula-net

Danger

5.2.4 Deploy NebulaGraph with Docker Compose

- 362/927 - 2022 Vesoft Inc.

Modify configurations

The configuration file of NebulaGraph deployed by Docker Compose is nebula-docker-compose/docker-compose.yaml . To make the new

configuration take effect, modify the configuration in this file and restart the service.

For more instructions, see Configurations.

FAQ

HOW TO FIX THE DOCKER MAPPING TO EXTERNAL PORTS?

To set the ports of corresponding services as fixed mapping, modify the docker-compose.yaml in the nebula-docker-compose directory. For

example:

9669:9669 indicates the internal port 9669 is uniformly mapped to external ports, while 19669 indicates the internal port 19669 is

randomly mapped to external ports.

HOW TO UPGRADE OR UPDATE THE DOCKER IMAGES OF NEBULAGRAPH SERVICES

In the nebula-docker-compose/docker-compose.yaml file, change all the image values to the required image version.

In the nebula-docker-compose directory, run docker-compose pull to update the images of the Graph Service, Storage Service, Meta

Service, and Nebula Console.

Run docker-compose up -d to start the NebulaGraph services again.

After connecting to NebulaGraph with Nebula Console, run SHOW HOSTS GRAPH , SHOW HOSTS STORAGE , or SHOW HOSTS META to check the version

of the responding service respectively.

ERROR: TOOMANYREQUESTS WHEN DOCKER-COMPOSE PULL

You may meet the following error.

ERROR: toomanyrequests: You have reached your pull rate limit. You may increase the limit by authenticating and upgrading: https://www.docker.com/increase-

rate-limit .

You have met the rate limit of Docker Hub. Learn more on Understanding Docker Hub Rate Limiting.

HOW TO UPDATE THE NEBULA CONSOLE CLIENT

The command docker-compose pull updates both the NebulaGraph services and the Nebula Console.

Related documents

Install and deploy NebulaGraph with the source code

Install NebulaGraph by RPM or DEB

Connect to NebulaGraph

graphd:

 image: vesoft/nebula-graphd:release-3.1

 ...

 ports:

 - 9669:9669

 - 19669

 - 19670

1.

2.

3.

4.

•

•

•

Last update: March 13, 2023

5.2.4 Deploy NebulaGraph with Docker Compose

- 363/927 - 2022 Vesoft Inc.

https://www.docker.com/increase-rate-limit

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

For now, NebulaGraph does not provide an official deployment tool. Users can deploy a NebulaGraph cluster with RPM or DEB

package manually. This topic provides an example of deploying a NebulaGraph cluster on multiple servers (machines).

Deployment

Prerequisites

Prepare 5 machines for deploying the cluster.

Use the NTP service to synchronize time in the cluster.

Manual deployment process

STEP 1: INSTALL NEBULAGRAPH

Install NebulaGraph on each machine in the cluster. Available approaches of installation are as follows.

Install NebulaGraph with RPM or DEB package

Install NebulaGraph by compiling the source code

STEP 2: MODIFY THE CONFIGURATIONS

To deploy NebulaGraph according to your requirements, you have to modify the configuration files.

All the configuration files for NebulaGraph, including nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf , are stored in the

etc directory in the installation path. You only need to modify the configuration for the corresponding service on the machines.

The configurations that need to be modified for each machine are as follows.

Users can refer to the content of the following configurations, which only show part of the cluster settings. The hidden content

uses the default setting so that users can better understand the relationship between the servers in the NebulaGraph cluster.

Machine name IP address Number of graphd Number of storaged Number of metad

A 192.168.10.111 1 1 1

B 192.168.10.112 1 1 1

C 192.168.10.113 1 1 1

D 192.168.10.114 1 1 None

E 192.168.10.115 1 1 None

•

•

•

•

Machine name The configuration to be modified

A nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

B nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

C nebula-graphd.conf , nebula-storaged.conf , nebula-metad.conf

D nebula-graphd.conf , nebula-storaged.conf

E nebula-graphd.conf , nebula-storaged.conf

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 364/927 - 2022 Vesoft Inc.

The main configuration to be modified is meta_server_addrs . All configurations need to fill in the IP addresses and ports of all Meta

services. At the same time, local_ip needs to be modified as the network IP address of the machine itself. For detailed descriptions of

the configuration parameters, see:

Meta Service configurations

Graph Service configurations

Storage Service configurations

Deploy machine A

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

Note

•

•

•

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.111

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.111

Storage daemon listening port

--port=9779

•

########## networking ##########

Comma separated Meta Server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-metad process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.111

Meta daemon listening port

--port=9559

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 365/927 - 2022 Vesoft Inc.

Deploy machine B

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.112

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.112

Storage daemon listening port

--port=9779

•

########## networking ##########

Comma separated Meta Server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-metad process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.112

Meta daemon listening port

--port=9559

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 366/927 - 2022 Vesoft Inc.

Deploy machine C

nebula-graphd.conf

nebula-storaged.conf

nebula-metad.conf

Deploy machine D

nebula-graphd.conf

nebula-storaged.conf

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.113

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.113

Storage daemon listening port

--port=9779

•

########## networking ##########

Comma separated Meta Server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-metad process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.113

Meta daemon listening port

--port=9559

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.114

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.114

Storage daemon listening port

--port=9779

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 367/927 - 2022 Vesoft Inc.

Deploy machine E

nebula-graphd.conf

nebula-storaged.conf

STEP 3: START THE CLUSTER

Start the corresponding service on each machine. Descriptions are as follows.

The command to start the NebulaGraph services is as follows.

Make sure all the processes of services on each machine are started. Otherwise, you will fail to start NebulaGraph.

When the graphd process, the storaged process, and the metad process are all started, you can use all instead.

/usr/local/nebula is the default installation path for NebulaGraph. Use the actual path if you have customized the path. For more

information about how to start and stop the services, see Manage NebulaGraph services.

STEP 4: CHECK THE CLUSTER STATUS

Install the native CLI client Nebula Console, then connect to any machine that has started the graphd process, run ADD HOSTS

command to add storage hosts, and run SHOW HOSTS to check the cluster status. For example:

•

•

########## networking ##########

Comma separated Meta Server Addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-graphd process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.115

Network device to listen on

--listen_netdev=any

Port to listen on

--port=9669

•

########## networking ##########

Comma separated Meta server addresses

--meta_server_addrs=192.168.10.111:9559,192.168.10.112:9559,192.168.10.113:9559

Local IP used to identify the nebula-storaged process.

Change it to an address other than loopback if the service is distributed or

will be accessed remotely.

--local_ip=192.168.10.115

Storage daemon listening port

--port=9779

Machine name The process to be started

A graphd, storaged, metad

B graphd, storaged, metad

C graphd, storaged, metad

D graphd, storaged

E graphd, storaged

sudo /usr/local/nebula/scripts/nebula.service start <metad|graphd|storaged|all>

Note

•

•

•

$./nebula-console --addr 192.168.10.111 --port 9669 -u root -p nebula

2021/05/25 01:41:19 [INFO] connection pool is initialized successfully

Welcome to NebulaGraph!

> ADD HOSTS 192.168.10.111:9779, 192.168.10.112:9779, 192.168.10.113:9779, 192.168.10.114:9779, 192.168.10.115:9779;

> SHOW HOSTS;

+------------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 368/927 - 2022 Vesoft Inc.

+------------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

| "192.168.10.111" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "192.168.10.112" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "192.168.10.113" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "192.168.10.114" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

| "192.168.10.115" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0" |

+------------------+------+-----------+----------+--------------+----------------------+------------------------+---------+

Last update: March 13, 2023

5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers

- 369/927 - 2022 Vesoft Inc.

5.2.6 Install NebulaGraph with ecosystem tools

You can install the Enterprise Edition and Community Edition of NebulaGraph with the following ecosystem tools:

Nebula Dashboard Enterprise Edition

Nebula Operator

Installation details

To install NebulaGraph with Nebula Dashboard Enterprise Edition, see Create a cluster.

To install NebulaGraph with Nebula Operator, see Deploy NebulaGraph clusters with Kubectl or Deploy NebulaGraph

clusters with Helm.

Contact our sales (inqury@vesoft.com) to get the installation package for the Enterprise Edition of NebulaGraph.

•

•

•

•

Note

Last update: March 13, 2023

5.2.6 Install NebulaGraph with ecosystem tools

- 370/927 - 2022 Vesoft Inc.

mailto:inqury@vesoft.com

5.3 Standalone NebulaGraph

Standalone NebulaGraph merges the Meta, Storage, and Graph services into a single process deployed on a single machine. This

topic introduces scenarios, deployment steps, etc. of standalone NebulaGraph.

Do not use standalone NebulaGraph in production environments.

5.3.1 Background

The traditional NebulaGraph consists of three services, each service having executable binary files and the corresponding

process. Processes communicate with each other by RPC. In standalone NebulaGraph, the three processes corresponding to the

three services are combined into one process. For more information about NebulaGraph, see Architecture overview.

5.3.2 Scenarios

Small data sizes and low availability requirements. For example, test environments that are limited by the number of machines,

scenarios that are only used to verify functionality.

5.3.3 Limitations

Single service instance per machine.

High availability and reliability not supported.

5.3.4 Resource requirements

For information about the resource requirements for standalone NebulaGraph, see Software requirements for compiling

NebulaGraph.

5.3.5 Steps

Currently, you can only install standalone NebulaGraph with the source code. The steps are similar to those of the multi-process

NebulaGraph. You only need to modify the step Generate Makefile with CMake by adding -DENABLE_STANDALONE_VERSION=on to the

command. For example:

For more information about installation details, see Install NebulaGraph by compiling the source code.

After installing standalone NebulaGraph, see the topic connect to Service to connect to NebulaGraph databases.

5.3.6 Configuration file

The path to the configuration file for standalone NebulaGraph is /usr/local/nebula/etc by default.

Danger

•

•

cmake -DCMAKE_INSTALL_PREFIX=/usr/local/nebula -DENABLE_TESTING=OFF -DENABLE_STANDALONE_VERSION=on -DCMAKE_BUILD_TYPE=Release ..

5.3 Standalone NebulaGraph

- 371/927 - 2022 Vesoft Inc.

You can run sudo cat nebula-standalone.conf.default to see the file content. The parameters and the corresponding descriptions in the

file are generally the same as the configurations for multi-process NebulaGraph except for the following parameters.

You can run commands to check configurable parameters and the corresponding descriptions. For details, see Configurations.

Parameter Predefined value Description

meta_port 9559 The port number of the Meta service.

storage_port 9779 The port number of the Storage Service.

meta_data_path data/meta The path to Meta data.

Last update: March 13, 2023

5.3.6 Configuration file

- 372/927 - 2022 Vesoft Inc.

5.4 Deploy a license for NebulaGraph Enterprise Edition

NebulaGraph Enterprise Edition requires the user to deploy a license file before starting the Enterprise Edition. This topic

describes how to deploy a license file for the Enterprise Edition.

License is a software authorization certificate provided for users of the Enterprise Edition. Users of the Enterprise Edition can send

email to inquiry@vesoft.com to apply for a license file.

5.4.1 Precautions

If the license file is not deployed, NebulaGraph Enterprise Edition cannot be started.

Do not modify the license file, otherwise the license will become invalid.

If the license is about to expire, send email to inquiry@vesoft.com to apply for renewal.

The transition period after the license expires is 14 days:

If you start the Enterprise Edition within 30 days before the license expires or on the day the license expires, a log will be

printed as a reminder.

The license can still be used for 14 days after it expires.

If the license has expired for 14 days, you will not be able to start the Enterprise Edition, and a log will be printed as a

reminder.

5.4.2 License description

The example of the content of the license file (nebula.license) is as follows:

Enterpriseonly

•

•

•

•

•

•

•

----------License Content Start----------

{

 "vendor": "vesoft",

 "organization": "doc",

 "issuedDate": "2022-04-06T16:00:00.000Z",

 "expirationDate": "2022-05-31T15:59:59.000Z",

 "product": "nebula_graph",

 "version": ">3.0.0",

 "licenseType": "enterprise",

 "gracePeriod": 14,

 "graphdSpec": {

 "nodes": 3

 },

 "storagedSpec": {

 "nodes": 3

 },

 "clusterCode": "BAIAEAiAQAAG"

}

----------License Content End----------

----------License Key Start----------

cofFcOxxxxxxxxxxxxxhnZgaxrQ==

----------License Key End----------

5.4 Deploy a license for NebulaGraph Enterprise Edition

- 373/927 - 2022 Vesoft Inc.

The license file contains information such as issuedDate and expirationDate . The description is as follows.

5.4.3 Deploy the license

Send email to inquiry@vesoft.com to apply for the NebulaGraph Enterprise Edition package.

Install NebulaGraph Enterprise Edition. The installation method is the same as the Community Edition. See Install NebulaGraph

with RPM or DEB package.

Send email to inquiry@vesoft.com to apply for the license file nebula.license .

Upload the license file to all hosts that contain Meta services. The path is in the share/resources/ of each Meta service installation

directory.

For the upload address of the license file for ecosystem tools, refer to the document of Ecosystem tools overview.

5.4.4 Renew a NebulaGraph Enterprise Edition license

Email us at inqury@vesoft.com to apply for a new license file nebula.license .

In share/resources/ under the installation directory of each Meta service, replace the old license file with the new one.

Restart Storage and Graph services. For information about how to restart services, see Start NebulaGraph. If your license expires

within the buffer period (14 days by default), you do not have to restart Storage and Graph services.

The Graph and Storage services are automatically stopped when your license expires beyond the buffer period after expiration. To

ensure that the service is running properly, please renew your license in time.

Parameter Description

vendor The supplier.

organization The username.

issuedDate The date that the license is issued.

expirationDate The date that the license expires.

product The product type. The product type of NebulaGraph is nebula_graph .

version The version information.

licenseType The license type, including enterprise , samll_bussiness , pro , and individual .

gracePeriod The buffer time (in days) for the service to continue to be used after the license expires, and the service will

be stopped after the buffer period. The trial version of license has no buffer period after expiration and the

default value of this parameter is 0.

graphdSpec The max number of graph services in a cluster. NebulaGraph detects the number of active graph services in

real-time. You are unable to connect to the cluster once the max number is reached.

storagedSpec The max number of storage services in a cluster. NebulaGraph detects the number of active storage services

in real-time. You are unable to connect to the cluster once the max number is reached.

clusterCode The user's hardware information, which is also the unique identifier of the cluster. This parameter is not

available in the trial version of the license.

1.

2.

3.

4.

Note

1.

2.

3.

Note

5.4.3 Deploy the license

- 374/927 - 2022 Vesoft Inc.

5.4.5 View the license

View the License file directly

You can use cat to view the content of the license file directly. For example: cat share/resources/nebula.license .

View the License file with HTTP port

When the NebulaGraph cluster is running normally, you can view the license file with the HTTP port (default port is 19559) of

the meta service. For example: curl -G "http://192.168.10.101:19559/license" .

•

•

Last update: March 13, 2023

5.4.5 View the license

- 375/927 - 2022 Vesoft Inc.

5.5 Manage NebulaGraph Service

NebulaGraph supports managing services with scripts or systemd. This topic will describe the two methods in detail.

Managing NebulaGraph with systemd is only available in the NebulaGraph Enterprise Edition.

The two methods are incompatible. It is recommended to use only one method in a cluster.

5.5.1 Manage services with script

You can use the nebula.service script to start, stop, restart, terminate, and check the NebulaGraph services.

nebula.service is stored in the /usr/local/nebula/scripts directory by default. If you have customized the path, use the actual path in your

environment.

Syntax

5.5.2 Manage services with systemd

For easy maintenance, NebulaGraph Enterprise Edition supports managing services with systemd. You can start, stop, restart,

and check services with systemctl commands.

Enterpriseonly

Danger

Note

$ sudo /usr/local/nebula/scripts/nebula.service

[-v] [-c <config_file_path>]

<start | stop | restart | kill | status>

<metad | graphd | storaged | all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the NebulaGraph services as the target services.

5.5 Manage NebulaGraph Service

- 376/927 - 2022 Vesoft Inc.

After installing NebulaGraph Enterprise Edition, the .service files required by systemd are located in the etc/unit path in the

installation directory. NebulaGraph installed with the RPM/DEB package automatically places the .service files into the path /usr/lib/

systemd/system and the parameter ExecStart is generated based on the specified NebulaGraph installation path, so you can use systemctl

commands directly.

The systemctl commands cannot be used to manage the Enterprise Edition cluster that is created with Dashboard of the Enterprise

Edition.

Otherwise, users need to move the .service files manually into the directory /usr/lib/systemd/system , and modify the file path of the

parameter ExecStart in the .service files.

Syntax

5.5.3 Start NebulaGraph

In non-container environment

Run the following command to start NebulaGraph.

Users can also run the following command:

If users want to automatically start NebulaGraph when the machine starts, run the following command:

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to start NebulaGraph.

Note

•

•

•

$ systemctl <start | stop | restart | status > <nebula | nebula-metad | nebula-graphd | nebula-storaged>

Parameter Description

start Start the target services.

stop Stop the target services.

restart Restart the target services.

status Check the status of the target services.

nebula Set all the NebulaGraph services as the target services.

nebula-metad Set the Meta Service as the target service.

nebula-graphd Set the Graph Service as the target service.

nebula-storaged Set the Storage Service as the target service.

$ sudo /usr/local/nebula/scripts/nebula.service start all

[INFO] Starting nebula-metad...

[INFO] Done

[INFO] Starting nebula-graphd...

[INFO] Done

[INFO] Starting nebula-storaged...

[INFO] Done

$ systemctl start nebula

$ systemctl enable nebula

[nebula-docker-compose]$ docker-compose up -d

Building with native build. Learn about native build in Compose here: https://docs.docker.com/go/compose-native-build/

Creating network "nebula-docker-compose_nebula-net" with the default driver

Creating nebula-docker-compose_metad0_1 ... done

Creating nebula-docker-compose_metad2_1 ... done

5.5.3 Start NebulaGraph

- 377/927 - 2022 Vesoft Inc.

5.5.4 Stop NebulaGraph

Do not run kill -9 to forcibly terminate the processes. Otherwise, there is a low probability of data loss.

In non-container environment

Run the following command to stop NebulaGraph.

Users can also run the following command:

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to stop NebulaGraph.

If you are using a developing or nightly version for testing and have compatibility issues, try to run docker-compose down -v to DELETE all

data stored in NebulaGraph and import data again.

5.5.5 Check the service status

In non-container environment

Run the following command to check the service status of NebulaGraph.

Creating nebula-docker-compose_metad1_1 ... done

Creating nebula-docker-compose_storaged2_1 ... done

Creating nebula-docker-compose_graphd1_1 ... done

Creating nebula-docker-compose_storaged1_1 ... done

Creating nebula-docker-compose_storaged0_1 ... done

Creating nebula-docker-compose_graphd2_1 ... done

Creating nebula-docker-compose_graphd_1 ... done

Danger

$ sudo /usr/local/nebula/scripts/nebula.service stop all

[INFO] Stopping nebula-metad...

[INFO] Done

[INFO] Stopping nebula-graphd...

[INFO] Done

[INFO] Stopping nebula-storaged...

[INFO] Done

$ systemctl stop nebula

nebula-docker-compose]$ docker-compose down

Stopping nebula-docker-compose_graphd_1 ... done

Stopping nebula-docker-compose_graphd2_1 ... done

Stopping nebula-docker-compose_storaged0_1 ... done

Stopping nebula-docker-compose_storaged1_1 ... done

Stopping nebula-docker-compose_graphd1_1 ... done

Stopping nebula-docker-compose_storaged2_1 ... done

Stopping nebula-docker-compose_metad1_1 ... done

Stopping nebula-docker-compose_metad2_1 ... done

Stopping nebula-docker-compose_metad0_1 ... done

Removing nebula-docker-compose_graphd_1 ... done

Removing nebula-docker-compose_graphd2_1 ... done

Removing nebula-docker-compose_storaged0_1 ... done

Removing nebula-docker-compose_storaged1_1 ... done

Removing nebula-docker-compose_graphd1_1 ... done

Removing nebula-docker-compose_storaged2_1 ... done

Removing nebula-docker-compose_metad1_1 ... done

Removing nebula-docker-compose_metad2_1 ... done

Removing nebula-docker-compose_metad0_1 ... done

Removing network nebula-docker-compose_nebula-net

Note

5.5.4 Stop NebulaGraph

- 378/927 - 2022 Vesoft Inc.

NebulaGraph is running normally if the following information is returned.

After starting NebulaGraph, the port of the nebula-storaged process is shown in red. Because the nebula-storaged process waits for the

nebula-metad to add the current Storage service during the startup process. The Storage works after it receives the ready signal.

Starting from NebulaGraph 3.0.0, the Meta service cannot directly read or write data in the Storage service that you add in the

configuration file. The configuration file only registers the Storage service to the Meta service. You must run the ADD HOSTS

command to enable the Meta to read and write data in the Storage service. For more information, see Manage Storage hosts.

If the returned result is similar to the following one, there is a problem. You may also go to the NebulaGraph community for

help.

Users can also run the following command:

The NebulaGraph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the

returned result to troubleshoot problems.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to check the service status of NebulaGraph.

If the service is abnormal, you can first confirm the abnormal container name (such as nebula-docker-compose_graphd2_1).

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

INFO] nebula-metad(33fd35e): Running as 29020, Listening on 9559

[INFO] nebula-graphd(33fd35e): Running as 29095, Listening on 9669

[WARN] nebula-storaged after v3.0.0 will not start service until it is added to cluster.

[WARN] See Manage Storage hosts:ADD HOSTS in https://docs.nebula-graph.io/

[INFO] nebula-storaged(33fd35e): Running as 29147, Listening on 9779

Note

•

[INFO] nebula-metad: Running as 25600, Listening on 9559

[INFO] nebula-graphd: Exited

[INFO] nebula-storaged: Running as 25646, Listening on 9779

$ systemctl status nebula

● nebula.service

 Loaded: loaded (/usr/lib/systemd/system/nebula.service; disabled; vendor preset: disabled)

 Active: active (exited) since 一 2022-03-28 04:13:24 UTC; 1h 47min ago

 Process: 21772 ExecStart=/usr/local/ent-nightly/scripts/nebula.service start all (code=exited, status=0/SUCCESS)

 Main PID: 21772 (code=exited, status=0/SUCCESS)

 Tasks: 325

 Memory: 424.5M

 CGroup: /system.slice/nebula.service

 ├─21789 /usr/local/ent-nightly/bin/nebula-metad --flagfile /usr/local/ent-nightly/etc/nebula-metad.conf

 ├─21827 /usr/local/ent-nightly/bin/nebula-graphd --flagfile /usr/local/ent-nightly/etc/nebula-graphd.conf

 └─21900 /usr/local/ent-nightly/bin/nebula-storaged --flagfile /usr/local/ent-nightly/etc/nebula-storaged.conf

3月 28 04:13:24 xxxxxx systemd[1]: Started nebula.service.

...

nebula-docker-compose]$ docker-compose ps

 Name Command State Ports

nebula-docker-compose_graphd1_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/tcp, 0.0.0.0:49224->9669/tcp

nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/tcp, 0.0.0.0:49230->9669/tcp

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/tcp, 0.0.0.0:9669->9669/tcp

nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49212->19559/tcp, 0.0.0.0:49211->19560/tcp, 0.0.0.0:49213->9559/tcp,

 9560/tcp

nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49209->19559/tcp, 0.0.0.0:49208->19560/tcp, 0.0.0.0:49210->9559/tcp,

 9560/tcp

nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49206->19559/tcp, 0.0.0.0:49205->19560/tcp, 0.0.0.0:49207->9559/tcp,

 9560/tcp

nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49218->19779/tcp, 0.0.0.0:49217->19780/tcp, 9777/tcp, 9778/tcp,

 0.0.0.0:49219->9779/tcp, 9780/tcp

nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49215->19779/tcp, 0.0.0.0:49214->19780/tcp, 9777/tcp, 9778/tcp,

 0.0.0.0:49216->9779/tcp, 9780/tcp

nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49226->19779/tcp, 0.0.0.0:49225->19780/tcp, 9777/tcp, 9778/tcp,

 0.0.0.0:49227->9779/tcp, 9780/tcp

5.5.5 Check the service status

- 379/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/

Then you can execute docker ps to view the corresponding CONTAINER ID (such as 2a6c56c405f5).

Use the CONTAINER ID to log in the container and troubleshoot.

5.5.6 Next to do

Connect to NebulaGraph

[nebula-docker-compose]$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

2a6c56c405f5 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49230->9669/tcp, 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/

tcp nebula-docker-compose_graphd2_1

7042e0a8e83d vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49227->9779/tcp, 0.0.0.0:49226->19779/

tcp, 0.0.0.0:49225->19780/tcp nebula-docker-compose_storaged2_1

18e3ea63ad65 vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49219->9779/tcp, 0.0.0.0:49218->19779/

tcp, 0.0.0.0:49217->19780/tcp nebula-docker-compose_storaged0_1

4dcabfe8677a vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:49224->9669/tcp, 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/

tcp nebula-docker-compose_graphd1_1

a74054c6ae25 vesoft/nebula-graphd:nightly "/usr/local/nebula/b…" 36 minutes ago Up 36 minutes (healthy) 0.0.0.0:9669->9669/tcp, 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/

tcp nebula-docker-compose_graphd_1

880025a3858c vesoft/nebula-storaged:nightly "./bin/nebula-storag…" 36 minutes ago Up 36 minutes (healthy) 9777-9778/tcp, 9780/tcp, 0.0.0.0:49216->9779/tcp, 0.0.0.0:49215->19779/

tcp, 0.0.0.0:49214->19780/tcp nebula-docker-compose_storaged1_1

45736a32a23a vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49213->9559/tcp, 0.0.0.0:49212->19559/tcp, 0.

0.0.0:49211->19560/tcp nebula-docker-compose_metad0_1

3b2c90eb073e vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49207->9559/tcp, 0.0.0.0:49206->19559/tcp, 0.

0.0.0:49205->19560/tcp nebula-docker-compose_metad2_1

7bb31b7a5b3f vesoft/nebula-metad:nightly "./bin/nebula-metad …" 36 minutes ago Up 36 minutes (healthy) 9560/tcp, 0.0.0.0:49210->9559/tcp, 0.0.0.0:49209->19559/tcp, 0.

0.0.0:49208->19560/tcp nebula-docker-compose_metad1_1

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash

[root@2a6c56c405f5 nebula]#

Last update: March 13, 2023

5.5.6 Next to do

- 380/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/3.1.0/2.quick-start/3.connect-to-nebula-graph/

5.6 Connect to NebulaGraph

This topic provides basic instruction on how to use the native CLI client Nebula Console to connect to NebulaGraph.

When connecting to NebulaGraph for the first time, you must register the Storage Service before querying data.

NebulaGraph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. For more information, see the client list.

5.6.1 Prerequisites

You have started NebulaGraph services.

The machine on which you plan to run Nebula Console has network access to the Graph Service of NebulaGraph.

The Nebula Console version is compatible with the NebulaGraph version.

Nebula Console and NebulaGraph of the same version number are the most compatible. There may be compatibility issues when

connecting to NebulaGraph with a different version of Nebula Console. The error message incompatible version between client and server

is displayed when there is such an issue.

Steps

On the Nebula Console releases page, select a Nebula Console version and click Assets.

It is recommended to select the latest version.

In the Assets area, find the correct binary file for the machine where you want to run Nebula Console and download the file to the

machine.

(Optional) Rename the binary file to nebula-console for convenience.

For Windows, rename the file to nebula-console.exe .

On the machine to run Nebula Console, grant the execute permission of the nebula-console binary file to the user.

For Windows, skip this step.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Caution

•

•

•

Note

1.

Note

2.

3.

Note

4.

Note

$ chmod 111 nebula-console

5.

5.6 Connect to NebulaGraph

- 381/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/3.1.0/4.deployment-and-installation/manage-service/
https://github.com/vesoft-inc/nebula-console/releases

Run the following command to connect to NebulaGraph.

For Linux or macOS:

For Windows:

Parameter descriptions are as follows:

For information on more parameters, see the project repository.

6.

•

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

•

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>

[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

Parameter Description

-h/-help Shows the help menu.

-addr/-address Sets the IP address of the Graph service. The default address is 127.0.0.1.

-P/-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your NebulaGraph account. Before enabling authentication, you can use any existing

username. The default username is root .

-p/-password Sets the password of your NebulaGraph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

The result will be returned and the connection stops then.

-enable_ssl Enables SSL encryption when connecting to NebulaGraph.

-ssl_root_ca_path Sets the storage path of the certification authority file.

-ssl_cert_path Sets the storage path of the certificate file.

-

ssl_private_key_path

Sets the storage path of the private key file.

Last update: March 13, 2023

5.6.1 Prerequisites

- 382/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/v3.0.0

5.7 Manage Storage hosts

Starting from NebulaGraph 3.0.0, setting Storage hosts in the configuration files only registers the hosts on the Meta side, but

does not add them into the cluster. You must run the ADD HOSTS statement to add the Storage hosts.

5.7.1 Add Storage hosts

Add the Storage hosts to a NebulaGraph cluster.

To make sure the follow-up operations work as expected, wait for two heartbeat cycles, i.e., 20 seconds, and then run SHOW HOSTS to

check whether the host is online.

Make sure that the IP address and port number are the same as those in the configuration file. For example, the default IP address

and port number in standalone deployment are 127.0.0.1:9779 .

When using a domain name, enclose it in quotation marks, for example, ADD HOSTS "foo-bar":9779 .

5.7.2 Drop Storage hosts

Delete the Storage hosts from cluster.

You can not delete an in-use Storage host directly. Delete the associated graph space before deleting the Storage host.

ADD HOSTS <ip>:<port> [,<ip>:<port> ...];

ADD HOSTS "<hostname>":<port> [,"<hostname>":<port> ...];

Note

•

•

•

Note

DROP HOSTS <ip>:<port> [,<ip>:<port> ...];

DROP HOSTS "<hostname>":<port> [,"<hostname>":<port> ...];

Last update: March 13, 2023

5.7 Manage Storage hosts

- 383/927 - 2022 Vesoft Inc.

5.8 Upgrade

5.8.1 Upgrade NebulaGraph from version 2.x to 3.1.0

This topic describes how to upgrade NebulaGraph from version 2.x to 3.1.0, taking upgrading from version 2.6.1 to 3.1.0 as an

example.

Applicable source versions

This topic applies to upgrading NebulaGraph from 2.0.0 and later 2.x versions to 3.1.0. It does not apply to historical versions

earlier than 2.0.0, including the 1.x versions.

To upgrade NebulaGraph from historical versions to 3.1.0:

Upgrade it to the latest 2.x version according to the docs of that version.

Follow this topic to upgrade it to 3.1.0.

To upgrade NebulaGraph from versions earlier than 2.0.0 (including the 1.x versions) to 3.1.0, you need to find the

date_time_zonespec.csv in the share/resources directory of 3.1.0 files, and then copy it to the same directory in the NebulaGraph installation

path.

Limitations

Rolling Upgrade is not supported. You must stop all the NebulaGraph services before the upgrade.

There is no upgrade script. You have to manually upgrade each server in the cluster.

This topic does not apply to scenarios where NebulaGraph is deployed with Docker, including Docker Swarm, Docker

Compose, and K8s.

You must upgrade the old NebulaGraph services on the same machines they are deployed. DO NOT change the IP addresses,

configuration files of the machines, and DO NOT change the cluster topology.

The hard disk space left on each machine should be two times as much as the space taken by the original data directories.

Half of the reserved space is for storing the manual backup of data. The other half is for storing the WALs that will be copied

to the dst_db_path and the new keys supporting vertices with no tags.

Known issues that could cause data loss are listed on GitHub known issues. The issues are all related to altering schema or

default values.

DO NOT use soft links to switch the data directories.

You must have the sudo privileges to complete the steps in this topic.

Upgrade influences

Data swelling

The NebulaGraph 3.x version expands the original data format with one more key per vertex, so the data takes up more space

after the upgrade.

The format of the new key is:

Type (1 byte) + Partition ID (3 bytes) + VID (size depends on the data type).

1.

2.

Caution

•

•

•

•

•

•

•

•

•

5.8 Upgrade

- 384/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/857

The value of the new key is empty. The extra space taken can be calculated based on the number of vertices and the data type

of the VID. For example, if there are 100 million vertices in the dataset and the VIDs are INT64, the new key will take 100

million x (1 + 3 + 8) = 1.2 billion bytes, i.e., about 1.2 GB.

Client compatibility

After the upgrade, you will not be able to connect to NebulaGraph from old clients. You will need to upgrade all clients to a

version compatible with NebulaGraph 3.1.0.

Configuration changes

A few configuration parameters have been changed. For more information, see the release notes and configuration docs.

nGQL compatibility

The nGQL syntax is partially incompatible:

Disable the YIELD clause to return custom variables.

The YIELD clause is required in the FETCH , GO , LOOKUP , FIND PATH and GET SUBGRAPH statements.

It is required to specify a tag to query properties of a vertex in a MATCH statement. For example, from return v.name to return

v.player.name .

There may be other undiscovered influences. Before the upgrade, we recommend that you read the release notes and user manual

carefully, and keep an eye on the posts on the forum and issues on Github.

Preparations before the upgrade

Download the TAR file of NebulaGraph 3.1.0 according to your operating system and system architecture. You need the binary

files during the upgrade. Find the TAR file on the download page.

You can also get the new binaries from the source code or the RPM/DEB package.

Locate the data files based on the value of the data_path parameters in the Storage and Meta configurations, and backup the

data files. The default paths are nebula/data/storage and nebula/data/meta .

The old data will not be automatically backed up during the upgrade. You must manually back up the data to avoid data loss.

Backup the configuration files.

Collect the statistics of all graph spaces before the upgrade. After the upgrade, you can collect again and compare the results

to make sure that no data is lost. To collect the statistics:

Run SUBMIT JOB STATS .

Run SHOW JOBS and record the result.

•

•

•

•

•

•

Caution

•

Note

•

Danger

•

•

a.

b.

5.8.1 Upgrade NebulaGraph from version 2.x to 3.1.0

- 385/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula/issues
https://nebula-graph.io/download/

Upgrade steps

Stop all NebulaGraph services.

nebula_install_path indicates the installation path of NebulaGraph.

The storaged progress needs around 1 minute to flush data. You can run nebula.service status all to check if all services are stopped.

For more information about starting and stopping services, see Manage services.

If the services are not fully stopped in 20 minutes, stop upgrading and ask for help on the forum or Github.

In the target path where you unpacked the TAR file, use the binaries in the bin directory to replace the old binaries in the bin

directory in the NebulaGraph installation path.

Update the binary of the corresponding service on each NebulaGraph server.

Modify the following parameters in all Graph configuration files to accommodate the value range of the new version. If the

parameter values are within the specified range, skip this step.

Set a value in [1,604800] for session_idle_timeout_secs . The recommended value is 28800.

Set a value in [1,604800] for client_idle_timeout_secs . The recommended value is 28800.

The default values of these parameters in the 2.x versions are not within the range of the new version. If you do not change the

default values, the upgrade will fail. For detailed parameter description, see Graph Service Configuration.

Start all Meta services.

Once started, the Meta services take several seconds to elect a leader.

To verify that Meta services are all started, you can start any Graph server, connect to it through Nebula Console, and run

SHOW HOSTS meta and SHOW META LEADER . If the status of Meta services are correctly returned, the services are successfully started.

If the operation fails, stop the upgrade and ask for help on the forum or GitHub.

Use the new db_upgrader file in the bin directory to upgrade the format of old data.

This step DOES NOT back up the Storage data. To avoid data loss, before executing this step, make sure that you have followed the

Preparations before the upgrade section and backed up the Meta data and Storage data.

Command syntax:

1.

<nebula_install_path>/scripts/nebula.service stop all

Note

2.

Note

3.

•

•

4.

<nebula_install_path>/scripts/nebula-metad.service start

Note

5.

Danger

<nebula_install_path>/bin/db_upgrader \

--src_db_path=<old_storage_data_path> \

--dst_db_path=<data_backup_path> \

5.8.1 Upgrade NebulaGraph from version 2.x to 3.1.0

- 386/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula/issues
https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues

old_storage_data_path indicates the path of the Storage data. It is defined by the data_path parameter in the Storage configuration files.

data_backup_path indicates a custom path for data backup. This option does not work for the current version and the old data

will not be backed up to any path.

meta_server_ip and port indicate the IP address and port number of a Meta server.

2:3 indicates that the upgrade is from version 2.x to 3.x.

Example for the test in this topic:

If the operation fails, stop the upgrade and ask for help on the forum or GitHub.

Start all the Graph and Storage services.

If the operation fails, stop the upgrade and ask for help on the forum or GitHub.

Connect to the new version of NebulaGraph to verify that services are available and data are complete. For how to connect, see

Connect to NebulaGraph.

Currently, there is no official way to check whether the upgrade is successful. You can run the following reference statements to

test the upgrade:

You can also test against new features in version 3.1.0.

Upgrade failure and rollback

If the upgrade fails, stop all NebulaGraph services of the new version, recover the old configuration files and binaries, and start

the services of the old version.

All NebulaGraph clients in use must be switched to the old version.

FAQ

CAN I WRITE THROUGH THE CLIENT DURING THE UPGRADE?

A: No. You must stop all NebulaGraph services during the upgrade.

HOW TO UPGRADE IF A MACHINE HAS ONLY THE GRAPH SERVICE, BUT NOT THE STORAGE SERVICE?

A: You only need to update the configuration files and binaries of the Graph Service.

HOW TO RESOLVE THE ERROR PERMISSION DENIED ?

A: Try again with the sudo privileges.

--upgrade_meta_server=<meta_server_ip>:<port>[, <meta_server_ip>:<port> ...] \

--upgrade_version=2:3

•

•

•

•

<nebula_install_path>/bin/db_upgrader \

--src_db_path=/usr/local/nebula/data/storage \

--dst_db_path=/home/vesoft/nebula/data-backup \

--upgrade_meta_server=192.168.8.132:9559 \

--upgrade_version=2:3

Note

6.

Note

7.

nebula> SHOW HOSTS;

nebula> SHOW HOSTS storage;

nebula> SHOW SPACES;

nebula> USE <space_name>

nebula> SHOW PARTS;

nebula> SUBMIT JOB STATS;

nebula> SHOW STATS;

nebula> MATCH (v) RETURN v LIMIT 5;

5.8.1 Upgrade NebulaGraph from version 2.x to 3.1.0

- 387/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues
https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues

IS THERE ANY CHANGE IN GFLAGS?

A: Yes. For more information, see the release notes and configuration docs.

IS THERE A TOOL OR SOLUTION FOR VERIFYING DATA CONSISTENCY AFTER THE UPGRADE?

A: No. But if you only want to check the number of vertices and edges, run SUBMIT JOB STATS and SHOW STATS after the upgrade, and

compare the result with the result that you recorded before the upgrade.

HOW TO SOLVE THE ISSUE THAT STORAGE IS OFFLINE AND LEADER COUNT IS 0 ?

A: Run the following statement to add the Storage hosts into the cluster manually.

For example:

If the issue persists, ask for help on the forum or GitHub.

WHY THE JOB TYPE CHANGED AFTER THE UPGRADE, BUT JOB ID REMAINS THE SAME?

A: SHOW JOBS depends on an internal ID to identify job types, but in NebulaGraph 2.5.0 the internal ID changed in this pull request,

so this issue happens after upgrading from a version earlier than 2.5.0.

ADD HOSTS <ip>:<port>[, <ip>:<port> ...];

ADD HOSTS 192.168.10.100:9779, 192.168.10.101:9779, 192.168.10.102:9779;

Last update: March 13, 2023

5.8.1 Upgrade NebulaGraph from version 2.x to 3.1.0

- 388/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc/nebula-common/pull/562/files

5.9 Uninstall NebulaGraph

This topic describes how to uninstall NebulaGraph.

Before re-installing NebulaGraph on a machine, follow this topic to completely uninstall the old NebulaGraph, in case the remaining

data interferes with the new services, including inconsistencies between Meta services.

5.9.1 Prerequisite

The NebulaGraph services should be stopped before the uninstallation. For more information, see Manage NebulaGraph services.

5.9.2 Step 1: Delete data files of the Storage and Meta Services

If you have modified the data_path in the configuration files for the Meta Service and Storage Service, the directories where

NebulaGraph stores data may not be in the installation path of NebulaGraph. Check the configuration files to confirm the data

paths, and then manually delete the directories to clear all data.

For a NebulaGraph cluster, delete the data files of all Storage and Meta servers.

Check the Storage Service disk settings. For example:

Check the Metad Service configurations and find the corresponding metadata directories.

Delete the data and the directories found in step 2.

5.9.3 Step 2: Delete the installation directories

Delete all installation directories, including the cluster.id file in them.

The default installation path is /usr/local/nebula , which is specified by --prefix while installing NebulaGraph.

Uninstall NebulaGraph deployed with source code

Find the installation directories of NebulaGraph, and delete them all.

Uninstall NebulaGraph deployed with RPM packages

Run the following command to get the NebulaGraph version.

The return message is as follows.

Caution

Note

1.

########## Disk ##########

Root data path. Split by comma. e.g. --data_path=/disk1/path1/,/disk2/path2/

One path per Rocksdb instance.

--data_path=/nebula/data/storage

2.

3.

Note

1.

$ rpm -qa | grep "nebula"

5.9 Uninstall NebulaGraph

- 389/927 - 2022 Vesoft Inc.

Run the following command to uninstall NebulaGraph.

For example:

Delete the installation directories.

Uninstall NebulaGraph deployed with DEB packages

Run the following command to get the NebulaGraph version.

The return message is as follows.

Run the following command to uninstall NebulaGraph.

For example:

Delete the installation directories.

Uninstall NebulaGraph deployed with Docker Compose

In the nebula-docker-compose directory, run the following command to stop the NebulaGraph services.

Delete the nebula-docker-compose directory.

nebula-graph-3.1.0-1.x86_64

2.

sudo rpm -e <nebula_version>

sudo rpm -e nebula-graph-3.1.0-1.x86_64

3.

1.

$ dpkg -l | grep "nebula"

ii nebula-graph 3.1.0 amd64 Nebula Package built using CMake

2.

sudo dpkg -r <nebula_version>

sudo dpkg -r nebula-graph

3.

1.

docker-compose down -v

2.

Last update: March 13, 2023

5.9.3 Step 2: Delete the installation directories

- 390/927 - 2022 Vesoft Inc.

6. Configurations and logs

6.1 Configurations

6.1.1 Configurations

NebulaGraph builds the configurations based on the gflags repository. Most configurations are flags. When the NebulaGraph

service starts, it will get the configuration information from Configuration files by default. Configurations that are not in the file

apply the default values.

The tuning service for performance, parameters and query statements are provided only in the Enterprise Edition.

Because there are many configurations and they may change as NebulaGraph develops, this topic will not introduce all

configurations. To get detailed descriptions of configurations, follow the instructions below.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

In the topic of 1.x, we provide a method of using the CONFIGS command to modify the configurations in the cache. However, using this

method in a production environment can easily cause inconsistencies of configurations between clusters and the local. Therefore, this

method will no longer be introduced starting with version 2.x.

Get the configuration list and descriptions

Use the following command to get all the configuration information of the service corresponding to the binary file:

For example:

The above examples use the default storage path /usr/local/nebula/bin/ . If you modify the installation path of NebulaGraph, use the

actual path to query the configurations.

Get configurations

Use the curl command to get the value of the running configurations.

For example:

Enterpriseonly

Note

•

•

Legacy version compatibility

<binary> --help

Get the help information from Meta

$ /usr/local/nebula/bin/nebula-metad --help

Get the help information from Graph

$ /usr/local/nebula/bin/nebula-graphd --help

Get the help information from Storage

$ /usr/local/nebula/bin/nebula-storaged --help

Get the running configurations from Meta

curl 127.0.0.1:19559/flags

Get the running configurations from Graph

6. Configurations and logs

- 391/927 - 2022 Vesoft Inc.

https://gflags.github.io/gflags/

In an actual environment, use the real host IP address instead of 127.0.0.1 in the above example.

Configuration files

CONFIGURATION FILES FOR CLUSTERS INSTALLED FROM SOURCE, WITH AN RPM/DEB PACKAGE, OR A TAR PACKAGE

NebulaGraph provides two initial configuration files for each service, <service_name>.conf.default and <service_name>.conf.production . You

can use them in different scenarios conveniently. For clusters installed from source and with a RPM/DEB package, the default

path is /usr/local/nebula/etc/ . For clusters installed with a TAR package, the path is <install_path>/<tar_package_directory>/etc .

The configuration values in the initial configuration file are for reference only and can be adjusted according to actual needs. To

use the initial configuration file, choose one of the above two files and delete the suffix .default or .production to make it valid.

To ensure the availability of services, the configurations of the same service must be consistent, except for the local IP address

local_ip . For example, three Storage servers are deployed in one NebulaGraph cluster. The configurations of the three Storage

servers need to be the same, except for the IP address.

The initial configuration files corresponding to each service are as follows.

Each initial configuration file of all services contains local_config . The default value is true , which means that the NebulaGraph

service will get configurations from its configuration files and start it.

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

CONFIGURATION FILES FOR CLUSTERS INSTALLED WITH DOCKER COMPOSE

For clusters installed with Docker Compose, the configuration file's default installation path of the cluster is <install_path>/nebula-

docker-compose/docker-compose.yaml . The parameters in the command field of the file are the launch parameters for each service.

CONFIGURATION FILES FOR CLUSTERS INSTALLED WITH NEBULA OPERATOR

For clusters installed with Kubectl through Nebula Operator, the configuration file's path is the path of the cluster YAML file. You

can modify the configuration of each service through the spec.{graphd|storaged|metad}.config parameter.

The services cannot be configured for clusters installed with Helm.

curl 127.0.0.1:19669/flags

Get the running configurations from Storage

curl 127.0.0.1:19779/flags

Note

Caution

NebulaGraph service Initial configuration file Description

Meta nebula-metad.conf.default and nebula-metad.conf.production Meta service configuration

Graph nebula-graphd.conf.default and nebula-graphd.conf.production Graph service configuration

Storage nebula-storaged.conf.default and nebula-storaged.conf.production Storage service configuration

Caution

Note

6.1.1 Configurations

- 392/927 - 2022 Vesoft Inc.

Modify configurations

By default, each NebulaGraph service gets configured from its configuration files. You can modify configurations and make them

valid according to the following steps:

For clusters installed from source, with a RPM/DEB, or a TAR package

Use a text editor to modify the configuration files of the target service and save the modification.

Choose an appropriate time to restart all NebulaGraph services to make the modifications valid.

For clusters installed with Docker Compose

In the <install_path>/nebula-docker-compose/docker-compose.yaml file, modify the configurations of the target service.

In the nebula-docker-compose directory, run the command docker-compose up -d to restart the service involving configuration

modifications.

For clusters installed with Kubectl

For details, see Customize configuration parameters for a NebulaGraph cluster.

•

a.

b.

•

a.

b.

•

Last update: March 13, 2023

6.1.1 Configurations

- 393/927 - 2022 Vesoft Inc.

6.1.2 Meta Service configuration

NebulaGraph provides two initial configuration files for the Meta Service, nebula-metad.conf.default and nebula-metad.conf.production .

Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, NebulaGraph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-metad.conf.default .

For all parameters and their current values, see Configurations.

Basics configurations

While inserting property values of time types, NebulaGraph transforms time types (except TIMESTAMP) to the corresponding UTC

according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC time.

timezone_name is only used to transform the data stored in NebulaGraph. Other time-related data of the NebulaGraph processes still

uses the default time zone of the host, such as the log printing time.

Caution

•

•

Name Predefined

value

Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

metad.pid

The file that records the process ID.

timezone_name - Specifies the NebulaGraph time zone. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default value is

UTC+00:00:00 . For the format of the parameter value, see Specifying the Time Zone with

TZ. For example, --timezone_name=UTC+08:00 represents the GMT+8 time zone.

license_path share/resources/

nebula.license

Path of the license of the NebulaGraph Enterprise Edition. Users need to deploy a

license file before starting the Enterprise Edition. This parameter is required only for

the NebulaGraph Enterprise Edition. For details about how to configure licenses for

other ecosystem tools, see the deployment documents of the corresponding ecosystem

tools.

Note

•

•

6.1.2 Meta Service configuration

- 394/927 - 2022 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Networking configurations

Name Predefined

value

Description

log_dir logs The directory that stores the Meta Service log. It is recommended to put logs

on a different hard disk from the data.

minloglevel 0 Specifies the minimum level of the log. That is, no logs below this level will be

printed. Optional values are 0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL).

It is recommended to set it to 0 during debugging and 1 in a production

environment. If it is set to 4 , NebulaGraph will not print any logs.

v 0 Specifies the detailed level of the log. The larger the value, the more detailed

the log is. Optional values are 0 , 1 , 2 , 3 .

logbufsecs 0 Specifies the maximum time to buffer the logs. If there is a timeout, it will

output the buffered log to the log file. 0 means real-time output. This

configuration is measured in seconds.

redirect_stdout true When set to true , the process redirects the stdout and stderr to separate output

files.

stdout_log_file metad-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file metad-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minloglevel to be copied to the stderr log.

timestamp_in_logfile_name true Specifies if the log file name contains a timestamp. true indicates yes, false

indicates no.

Name Predefined

value

Description

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Multiple addresses

are separated with commas.

local_ip 127.0.0.1 Specifies the local IP for the Meta Service. The local IP address is used to

identify the nebula-metad process. If it is a distributed cluster or requires

remote access, modify it to the corresponding address.

port 9559 Specifies RPC daemon listening port of the Meta service. The external port for

the Meta Service is predefined to 9559 . The internal port is predefined to

port + 1 , i.e., 9560 . Nebula Graph uses the internal port for multi-replica

interactions.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19559 Specifies the port for the HTTP service.

ws_storage_http_port 19779 Specifies the Storage service listening port used by the HTTP protocol. It must

be consistent with the ws_http_port in the Storage service configuration file.

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure the heartbeat_interval_secs

values for all services are the same, otherwise NebulaGraph CANNOT work

normally. This configuration is measured in seconds.

6.1.2 Meta Service configuration

- 395/927 - 2022 Vesoft Inc.

The real IP address must be used in the configuration file. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Storage configurations

Misc configurations

RocksDB options configurations

Caution

Name Predefined Value Description

data_path data/meta The storage path for Meta data.

Name Predefined Value Description

default_parts_num 100 Specifies the default partition number when creating a new graph space.

default_replica_factor 1 Specifies the default replica number when creating a new graph space.

Name Predefined

Value

Description

rocksdb_wal_sync true Enables or disables RocksDB WAL synchronization. Available values are true

(enable) and false (disable).

Last update: March 13, 2023

6.1.2 Meta Service configuration

- 396/927 - 2022 Vesoft Inc.

6.1.3 Graph Service configuration

NebulaGraph provides two initial configuration files for the Graph Service, nebula-graphd.conf.default and nebula-graphd.conf.production .

Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, NebulaGraph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-metad.conf.default .

For all parameters and their current values, see Configurations.

Basics configurations

While inserting property values of time types, NebulaGraph transforms time types (except TIMESTAMP) to the corresponding UTC

according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC time.

timezone_name is only used to transform the data stored in NebulaGraph. Other time-related data of the NebulaGraph processes still

uses the default time zone of the host, such as the log printing time.

Caution

•

•

Name Predefined

value

Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

graphd.pid

The file that records the process ID.

enable_optimizer true When set to true , the optimizer is enabled.

timezone_name - Specifies the NebulaGraph time zone. This parameter is not predefined in the initial

configuration files. The system default value is UTC+00:00:00 . For the format of the

parameter value, see Specifying the Time Zone with TZ. For example， --

timezone_name=UTC+08:00 represents the GMT+8 time zone.

local_config true When set to true , the process gets configurations from the configuration files.

Note

•

•

6.1.3 Graph Service configuration

- 397/927 - 2022 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Query configurations

Name Predefined

value

Description

log_dir logs The directory that stores the Meta Service log. It is recommended to put logs

on a different hard disk from the data.

minloglevel 0 Specifies the minimum level of the log. That is, no logs below this level will be

printed. Optional values are 0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL).

It is recommended to set it to 0 during debugging and 1 in a production

environment. If it is set to 4 , NebulaGraph will not print any logs.

v 0 Specifies the detailed level of the log. The larger the value, the more detailed

the log is. Optional values are 0 , 1 , 2 , 3 .

logbufsecs 0 Specifies the maximum time to buffer the logs. If there is a timeout, it will

output the buffered log to the log file. 0 means real-time output. This

configuration is measured in seconds.

redirect_stdout true When set to true , the process redirects the stdout and stderr to separate output

files.

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minloglevel to be copied to the stderr log.

timestamp_in_logfile_name true Specifies if the log file name contains a timestamp. true indicates yes, false

indicates no.

Name Predefined

value

Description

accept_partial_success false When set to false , the process treats partial success as an error. This

configuration only applies to read-only requests. Write requests always

treat partial success as an error.

session_reclaim_interval_secs 10 Specifies the interval that the Session information is sent to the Meta

service. This configuration is measured in seconds.

max_allowed_query_size 4194304 Specifies the maximum length of queries. Unit: bytes. The default value is

4194304 , namely 4MB.

6.1.3 Graph Service configuration

- 398/927 - 2022 Vesoft Inc.

Networking configurations

The real IP address must be used in the configuration file. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Charset and collate configurations

Name Predefined

value

Description

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Multiple addresses

are separated with commas.

local_ip 127.0.0.1 Specifies the local IP for the Graph Service. The local IP address is used to

identify the nebula-graphd process. If it is a distributed cluster or requires

remote access, modify it to the corresponding address.

listen_netdev any Specifies the listening network device.

port 9669 Specifies RPC daemon listening port of the Graph service.

reuse_port false When set to false , the SO_REUSEPORT is closed.

listen_backlog 1024 Specifies the maximum length of the connection queue for socket monitoring.

This configuration must be modified together with the net.core.somaxconn .

client_idle_timeout_secs 28800 Specifies the time to expire an idle connection. The value ranges from 1 to

604800. The default is 8 hours. This configuration is measured in seconds.

session_idle_timeout_secs 28800 Specifies the time to expire an idle session. The value ranges from 1 to

604800. The default is 8 hours. This configuration is measured in seconds.

num_accept_threads 1 Specifies the number of threads that accept incoming connections.

num_netio_threads 0 Specifies the number of networking IO threads. 0 is the number of CPU cores.

num_worker_threads 0 Specifies the number of threads that execute queries. 0 is the number of CPU

cores.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19669 Specifies the port for the HTTP service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure the heartbeat_interval_secs

values for all services are the same, otherwise NebulaGraph CANNOT work

normally. This configuration is measured in seconds.

storage_client_timeout_ms - Specifies the RPC connection timeout threshold between the Graph Service

and the Storage Service. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default

value is 60000 ms.

ws_meta_http_port 19559 Specifies the Meta service listening port used by the HTTP protocol. It must

be consistent with the ws_http_port in the Meta service configuration file.

Caution

Name Predefined value Description

default_charset utf8 Specifies the default charset when creating a new graph space.

default_collate utf8_bin Specifies the default collate when creating a new graph space.

6.1.3 Graph Service configuration

- 399/927 - 2022 Vesoft Inc.

Authorization configurations

Memory configurations

Audit configurations

The audit log is only available in the Enterprise Edition.

For more information about audit log, see Audit log.

Metrics configurations

session configurations

Experimental configurations

Name Predefined

value

Description

enable_authorize false When set to false , the system authentication is not enabled. For more information,

see Authentication.

auth_type password Specifies the login method. Available values are password , ldap , and cloud .

Name Predefined

value

Description

system_memory_high_watermark_ratio 0.8 Specifies the trigger threshold of the high-level memory alarm

mechanism. If the system memory usage is higher than this value, an

alarm mechanism will be triggered, and NebulaGraph will stop

querying. This parameter is not predefined in the initial configuration

files.

Enterpriseonly

Name Predefined

value

Description

enable_space_level_metrics false Enable or disable space-level metrics. Such metric names contain the name of

the graph space that it monitors, for example,

query_latency_us{space=basketballplayer}.avg.3600 . You can view the supported metrics

with the curl command. For more information, see Query NebulaGraph

metrics.

Name Predefined

value

Description

max_sessions_per_ip_per_user 300 The maximum number of sessions that can be created with the same

user and IP address.

Name Predefined

value

Description

enable_experimental_feature false Specifies the experimental feature. Optional values are true and false . For

currently supported experimental features, see below.

6.1.3 Graph Service configuration

- 400/927 - 2022 Vesoft Inc.

EXPERIMENTAL FEATURES

Name Description

TOSS The TOSS (Transaction on Storage Side) function is used to ensure the final consistency of the INSERT , UPDATE ,

UPSERT , or DELETE operations on edges (because one edge logically corresponds to two key-value pairs on the hard

disk). After the TOSS function is enabled, the time delay of related operations will be increased by about one

time.

Last update: March 13, 2023

6.1.3 Graph Service configuration

- 401/927 - 2022 Vesoft Inc.

6.1.4 Storage Service configurations

NebulaGraph provides two initial configuration files for the Storage Service, nebula-storaged.conf.default and nebula-

storaged.conf.production . Users can use them in different scenarios conveniently. The default file path is /usr/local/nebula/etc/ .

It is not recommended to modify the value of local_config to false . If modified, the NebulaGraph service will first read the cached

configurations, which may cause configuration inconsistencies between clusters and cause unknown risks.

It is not recommended to modify the configurations that are not introduced in this topic, unless you are familiar with the source code

and fully understand the function of configurations.

How to use the configuration files

To use the initial configuration file, choose one of the above two files and delete the suffix .default or .production from the initial

configuration file for the Meta Service to apply the configurations defined in it.

About parameter values

If a parameter is not set in the configuration file, NebulaGraph uses the default value. Not all parameters are predefined. And the

predefined parameters in the two initial configuration files are different. This topic uses the parameters in nebula-metad.conf.default .

For parameters that are not included in nebula-metad.conf.default , see nebula-storaged.conf.production .

The configurations of the Raft Listener and the Storage service are different. For details, see Deploy Raft listener.

For all parameters and their current values, see Configurations.

Basics configurations

While inserting property values of time types, NebulaGraph transforms time types (except TIMESTAMP) to the corresponding UTC

according to the time zone specified by timezone_name . The time-type values returned by nGQL queries are all UTC.

timezone_name is only used to transform the data stored in NebulaGraph. Other time-related data of the NebulaGraph processes still

uses the default time zone of the host, such as the log printing time.

Caution

•

•

Note

Name Predefined

value

Description

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

storaged.pid

The file that records the process ID.

timezone_name - Specifies the NebulaGraph time zone. This parameter is not predefined in the initial

configuration files. The system default value is UTC+00:00:00 . For the format of the

parameter value, see Specifying the Time Zone with TZ. For example, --

timezone_name=UTC+08:00 represents the GMT+8 time zone.

local_config true When set to true , the process gets configurations from the configuration files.

Note

•

•

6.1.4 Storage Service configurations

- 402/927 - 2022 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Networking configurations

The real IP address must be used in the configuration file. Otherwise, 127.0.0.1/0.0.0.0 cannot be parsed correctly in some cases.

Name Predefined

value

Description

log_dir logs The directory that stores the Meta Service log. It is recommended to put logs

on a different hard disk from the data.

minloglevel 0 Specifies the minimum level of the log. That is, no logs below this level will be

printed. Optional values are 0 (INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL).

It is recommended to set it to 0 during debugging and 1 in a production

environment. If it is set to 4 , NebulaGraph will not print any logs.

v 0 Specifies the detailed level of the log. The larger the value, the more detailed

the log is. Optional values are 0 , 1 , 2 , 3 .

logbufsecs 0 Specifies the maximum time to buffer the logs. If there is a timeout, it will

output the buffered log to the log file. 0 means real-time output. This

configuration is measured in seconds.

redirect_stdout true When set to true , the process redirects the stdout and stderr to separate output

files.

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minloglevel to be copied to the stderr log.

timestamp_in_logfile_name true Specifies if the log file name contains a timestamp. true indicates yes, false

indicates no.

Name Predefined

value

Description

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Multiple addresses

are separated with commas.

local_ip 127.0.0.1 Specifies the local IP for the Storage Service. The local IP address is used to

identify the nebula-storaged process. If it is a distributed cluster or requires

remote access, modify it to the corresponding address.

port 9779 Specifies RPC daemon listening port of the Storage service. The external port

for the Meta Service is predefined to 9779 . The internal port is predefined to

9777 , 9778 , and 9780 . Nebula Graph uses the internal port for multi-replica

interactions.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19779 Specifies the port for the HTTP service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval. Make sure the heartbeat_interval_secs

values for all services are the same, otherwise NebulaGraph CANNOT work

normally. This configuration is measured in seconds.

Caution

6.1.4 Storage Service configurations

- 403/927 - 2022 Vesoft Inc.

Raft configurations

Disk configurations

Name Predefined

value

Description

raft_heartbeat_interval_secs 30 Specifies the time to expire the Raft election. The configuration is

measured in seconds.

raft_rpc_timeout_ms 500 Specifies the time to expire the Raft RPC. The configuration is measured

in milliseconds.

wal_ttl 14400 Specifies the lifetime of the RAFT WAL. The configuration is measured in

seconds.

Name Predefined value Description

data_path data/storage Specifies the data storage path. Multiple paths are separated with

commas. One RocksDB example corresponds to one path.

minimum_reserved_bytes 268435456 Specifies the minimum remaining space of each data storage path. When

the value is lower than this standard, the cluster data writing may fail.

This configuration is measured in bytes.

rocksdb_batch_size 4096 Specifies the block cache for a batch operation. The configuration is

measured in bytes.

rocksdb_block_cache 4 Specifies the block cache for BlockBasedTable. The configuration is

measured in megabytes.

disable_page_cache false Enables or disables the operating system's page cache for NebulaGraph.

By default, the parameter value is false and page cache is enabled. If the

value is set to true , page cache is disabled and sufficient block cache

space must be configured for NebulaGraph.

engine_type rocksdb Specifies the engine type.

rocksdb_compression lz4 Specifies the compression algorithm for RocksDB. Optional values are

no , snappy , lz4 , lz4hc , zlib , bzip2 , and zstd .

rocksdb_compression_per_level \ Specifies the compression algorithm for each level.

enable_rocksdb_statistics false When set to false , RocksDB statistics is disabled.

rocksdb_stats_level kExceptHistogramOrTimers Specifies the stats level for RocksDB. Optional values are

kExceptHistogramOrTimers , kExceptTimers , kExceptDetailedTimers , kExceptTimeForMutex ,

and kAll .

enable_rocksdb_prefix_filtering true When set to true , the prefix bloom filter for RocksDB is enabled. Enabling

prefix bloom filter makes the graph traversal faster but occupies more

memory.

enable_rocksdb_whole_key_filtering false When set to true , the whole key bloom filter for RocksDB is enabled.

rocksdb_filtering_prefix_length 12 Specifies the prefix length for each key. Optional values are 12 and 16 .

The configuration is measured in bytes.

enable_partitioned_index_filter - When set to true , it reduces the amount of memory used by the bloom

filter. But in some random-seek situations, it may reduce the read

performance.

6.1.4 Storage Service configurations

- 404/927 - 2022 Vesoft Inc.

Key-Value separation configurations

misc configurations

The configuration snapshot in the following table is different from the snapshot in NebulaGraph. The snapshot here refers to the stock

data on the leader when synchronizing Raft.

RocksDB options

The format of the RocksDB option is {"<option_name>":"<option_value>"} . Multiple options are separated with commas.

Name Predefined

value

Description

rocksdb_enable_kv_separation false Whether or not to enable BlobDB (RocksDB key-value separation

support). This function improves query performance.

rocksdb_kv_separation_threshold 100 RocksDB key value separation threshold. Values at or above this

threshold will be written to blob files during flush or compaction.

Unit: bytes.

rocksdb_blob_compression lz4 Compression algorithm for BlobDB. Optional values are no , snappy ,

lz4 , lz4hc , zlib , bzip2 , and zstd .

rocksdb_enable_blob_garbage_collection true Whether to perform BlobDB garbage collection during compaction.

Caution

Name Predefined

value

Description

snapshot_part_rate_limit 8388608 The rate limit when the Raft leader synchronizes the stock data with other

members of the Raft group. Unit: bytes/s.

snapshot_batch_size 1048576 The amount of data sent in each batch when the Raft leader synchronizes

the stock data with other members of the Raft group. Unit: bytes.

rebuild_index_part_rate_limit 4194304 The rate limit when the Raft leader synchronizes the index data rate with

other members of the Raft group during the index rebuilding process.

Unit: bytes/s.

rebuild_index_batch_size 1048576 The amount of data sent in each batch when the Raft leader synchronizes

the index data with other members of the Raft group during the index

rebuilding process. Unit: bytes.

Name Predefined value Description

rocksdb_db_options {} Specifies the RocksDB database options.

rocksdb_column_family_options {"write_buffer_size":"67108864",

"max_write_buffer_number":"4",

"max_bytes_for_level_base":"268435456"}

Specifies the RocksDB column family options.

rocksdb_block_based_table_options {"block_size":"8192"} Specifies the RocksDB block based table options.

6.1.4 Storage Service configurations

- 405/927 - 2022 Vesoft Inc.

Supported options of rocksdb_db_options and rocksdb_column_family_options are listed as follows.

rocksdb_db_options

rocksdb_column_family_options

For more information, see RocksDB official documentation.

•

max_total_wal_size

delete_obsolete_files_period_micros

max_background_jobs

stats_dump_period_sec

compaction_readahead_size

writable_file_max_buffer_size

bytes_per_sync

wal_bytes_per_sync

delayed_write_rate

avoid_flush_during_shutdown

max_open_files

stats_persist_period_sec

stats_history_buffer_size

strict_bytes_per_sync

enable_rocksdb_prefix_filtering

enable_rocksdb_whole_key_filtering

rocksdb_filtering_prefix_length

num_compaction_threads

rate_limit

•

write_buffer_size

max_write_buffer_number

level0_file_num_compaction_trigger

level0_slowdown_writes_trigger

level0_stop_writes_trigger

target_file_size_base

target_file_size_multiplier

max_bytes_for_level_base

max_bytes_for_level_multiplier

disable_auto_compactions

6.1.4 Storage Service configurations

- 406/927 - 2022 Vesoft Inc.

https://rocksdb.org/

Storage cache configurations

Only available for the NebulaGraph Enterprise Edition.

For super-Large vertices

When the query starting from each vertex gets an edge, truncate it directly to avoid too many neighboring edges on the super-

large vertex, because a single query occupies too much hard disk and memory. Or you can truncate a certain number of edges

specified in the Max_edge_returned_per_vertex parameter. Excess edges will not be returned. This parameter applies to all spaces.

Storage configurations for large dataset

When you have a large dataset (in the RocksDB directory) and your memory is tight, we suggest that you set the

enable_partitioned_index_filter parameter to true . The performance is affected because RocksDB indexes are cached.

Enterpriseonly

Name Predefined

value

Description

enable_storage_cache false Whether or not to cache Storage data.

storage_cache_capacity 0 The size of memory reserved for Storage caches. The value must be slightly

greater than the sum of vertex_pool_capacity and empty_key_pool_capacity . The

configuration is measured in MB.

storage_cache_buckets_power 20 The number of buckets. The value is a logarithm with a base of 2. Optional

values are 0~32. For example, the value 20 indicates that the number of

buckets is 2\(^{20}\). The recommended value is ceil(log2(cacheEntries * 1.6)) .

cacheEntries indicates the total number of cache items.

storage_cache_locks_power 10 The number of locks. The value is a logarithm with a base of 2. Optional

values are 0~32. For example, the value 10 indicates that the number of locks

is 2\(^{10}\). The recommended value is max(1, storage_cache_buckets_power - 10) .

enable_vertex_pool false Whether or not to add a vertex cache pool. Only valid when the storage cache

feature is enabled.

vertex_pool_capacity 50 The size of the vertex cache pool. The configuration is measured in MB.

vertex_item_ttl 300 The TTL of vertex cache pool items. The configuration is measured in

seconds.

enable_empty_key_pool false Whether or not to add an empty_key pool in the cache. Only valid when the

storage cache is enabled. The empty_key indicates a key that was queried but

does not actually exist.

empty_key_pool_capacity 50 The size of the empty_key cache pool. The configuration is measured in MB.

empty_key_item_ttl 300 The TTL of the empty_key cache pool items. The configuration is measured in

seconds.

Property name Default

value

Description

max_edge_returned_per_vertex 2147483647 Specifies the maximum number of edges returned for each dense

vertex. Excess edges are truncated and not returned. This parameter

is not predefined in the configuration files.

Last update: March 13, 2023

6.1.4 Storage Service configurations

- 407/927 - 2022 Vesoft Inc.

6.1.5 Kernel configurations

This topic introduces the Kernel configurations in Nebula Graph.

Resource control

ULIMIT PRECAUTIONS

The ulimit command specifies the resource threshold for the current shell session. The precautions are as follows:

The changes made by ulimit only take effect for the current session or child process.

The resource threshold (soft threshold) cannot exceed the hard threshold.

Common users cannot use commands to adjust the hard threshold, even with sudo .

To modify the system level or adjust the hard threshold, edit the file /etc/security/limits.conf . This method requires re-login to

take effect.

ULIMIT -C

ulimit -c limits the size of the core dumps. We recommend that you set it to unlimited . The command is:

ULIMIT -N

ulimit -n limits the number of open files. We recommend that you set it to more than 100,000. For example:

Memory

VM.SWAPPINESS

vm.swappiness specifies the percentage of the available memory before starting swap. The greater the value, the more likely the

swap occurs. We recommend that you set it to 0. When set to 0, the page cache is removed first. Note that when vm.swappiness is 0,

it does not mean that there is no swap.

VM.MIN_FREE_KBYTES

vm.min_free_kbytes specifies the minimum number of kilobytes available kept by Linux VM. If you have a large system memory, we

recommend that you increase this value. For example, if your physical memory 128GB, set it to 5GB. If the value is not big

enough, the system cannot apply for enough continuous physical memory.

VM.MAX_MAP_COUNT

vm.max_map_count limits the maximum number of vma (virtual memory area) for a process. The default value is 65530 . It is enough for

most applications. If your memory application fails because the memory consumption is large, increase the vm.max_map_count value.

VM.DIRTY_*

These values control the dirty data cache for the system. For write-intensive scenarios, you can make adjustments based on your

needs (throughput priority or delay priority). We recommend that you use the system default value.

TRANSPARENT HUGE PAGE

For better delay performance, you must run the following commands to disable the transparent huge pages (THP).

To prevent THP from being enabled again after the system restarts, you can modify the GRUB configuration file or /etc/rc.local to

disable THP automatically upon system startup.

•

•

•

•

ulimit -c unlimited

ulimit -n 130000

root# echo never > /sys/kernel/mm/transparent_hugepage/enabled

root# echo never > /sys/kernel/mm/transparent_hugepage/defrag

root# swapoff -a && swapon -a

6.1.5 Kernel configurations

- 408/927 - 2022 Vesoft Inc.

Networking

NET.IPV4.TCP_SLOW_START_AFTER_IDLE

The default value of net.ipv4.tcp_slow_start_after_idle is 1 . If set, the congestion window is timed out after an idle period. We

recommend that you set it to 0 , especially for long fat scenarios (high latency and large bandwidth).

NET.CORE.SOMAXCONN

net.core.somaxconn specifies the maximum number of connection queues listened by the socket. The default value is 128 . For

scenarios with a large number of burst connections, we recommend that you set it to greater than 1024 .

NET.IPV4.TCP_MAX_SYN_BACKLOG

net.ipv4.tcp_max_syn_backlog specifies the maximum number of TCP connections in the SYN_RECV (semi-connected) state. The

setting rule for this parameter is the same as that of net.core.somaxconn .

NET.CORE.NETDEV_MAX_BACKLOG

net.core.netdev_max_backlog specifies the maximum number of packets. The default value is 1000 . We recommend that you increase it

to greater than 10,000 , especially for 10G network adapters.

NET.IPV4.TCP_KEEPALIVE_*

These values keep parameters alive for TCP connections. For applications that use a 4-layer transparent load balancer, if the idle

connection is disconnected unexpectedly, decrease the values of tcp_keepalive_time and tcp_keepalive_intvl .

NET.IPV4.TCP_RMEM/WMEM

net.ipv4.tcp_wmem/rmem specifies the minimum, default, and maximum size of the buffer pool sent/received by the TCP socket. For

long fat links, we recommend that you increase the default value to bandwidth (GB) * RTT (ms) .

SCHEDULER

For SSD devices, we recommend that you set scheduler to noop or none . The path is /sys/block/DEV_NAME/queue/scheduler .

Other parameters

KERNEL.CORE_PATTERN

we recommend that you set it to core and set kernel.core_uses_pid to 1 .

Modify parameters

SYSCTL

sysctl <conf_name>

Checks the current parameter value.

sysctl -w <conf_name>=<value>

Modifies the parameter value. The modification takes effect immediately. The original value is restored after restarting.

sysctl -p [<file_path>]

Loads Linux parameter values from the specified configuration file. The default path is /etc/sysctl.conf .

PRLIMIT

The prlimit command gets and sets process resource limits. You can modify the hard threshold by using it and the sudo command.

For example, prlimit --nofile = 130000 --pid = $$ adjusts the maximum number of open files permitted by the current process to

14000 . And the modification takes effect immediately. Note that this command is only available in RedHat 7u or higher versions.

•

•

•

Last update: May 13, 2022

6.1.5 Kernel configurations

- 409/927 - 2022 Vesoft Inc.

6.2 Log management

6.2.1 Runtime logs

Runtime logs are provided for DBAs and developers to locate faults when the system fails.

NebulaGraph uses glog to print runtime logs, uses gflags to control the severity level of the log, and provides an HTTP interface

to dynamically change the log level at runtime to facilitate tracking.

Log directory

The default runtime log directory is /usr/local/nebula/logs/ .

If the log directory is deleted while NebulaGraph is running, the log would not continue to be printed. However, this operation

will not affect the services. To recover the logs, restart the services.

Parameter descriptions

minloglevel : Specifies the minimum level of the log. That is, no logs below this level will be printed. Optional values are 0

(INFO), 1 (WARNING), 2 (ERROR), 3 (FATAL). It is recommended to set it to 0 during debugging and 1 in a production

environment. If it is set to 4 , NebulaGraph will not print any logs.

v : Specifies the detailed level of the log. The larger the value, the more detailed the log is. Optional values are 0 , 1 , 2 , 3 .

The default severity level for the metad, graphd, and storaged logs can be found in their respective configuration files. The

default path is /usr/local/nebula/etc/ .

Check the severity level

Check all the flag values (log values included) of the current gflags with the following command.

Examples are as follows:

Check the current minloglevel in the Meta service:

Check the current v in the Storage service:

Change the severity level

Change the severity level of the log with the following command.

•

•

$ curl <ws_ip>:<ws_port>/flags

Parameter Description

ws_ip The IP address for the HTTP service, which can be found in the configuration files above. The default value

is 127.0.0.1 .

ws_port The port for the HTTP service, which can be found in the configuration files above. The default values are

19559 (Meta), 19669 (Graph), and 19779 (Storage) respectively.

•

$ curl 127.0.0.1:19559/flags | grep 'minloglevel'

•

$ curl 127.0.0.1:19779/flags | grep -w 'v'

6.2 Log management

- 410/927 - 2022 Vesoft Inc.

https://github.com/google/glog
https://gflags.github.io/gflags/

Examples are as follows:

If the log level is changed while NebulaGraph is running, it will be restored to the level set in the configuration file after

restarting the service. To permanently modify it, see Configuration files.

RocksDB runtime logs

RocksDB runtime logs are usually used to debug RocksDB parameters and stored in /usr/local/nebula/data/storage/nebula/$id/data/LOG .

$id is the ID of the example.

$ curl -X PUT -H "Content-Type: application/json" -d '{"<key>":<value>[,"<key>":<value>]}' "<ws_ip>:<ws_port>/flags"

Parameter Description

key The type of the log to be changed. For optional values, see Parameter descriptions.

value The level of the log. For optional values, see Parameter descriptions.

ws_ip The IP address for the HTTP service, which can be found in the configuration files above. The default value

is 127.0.0.1 .

ws_port The port for the HTTP service, which can be found in the configuration files above. The default values are

19559 (Meta), 19669 (Graph), and 19779 (Storage) respectively.

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19779/flags" # storaged

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19669/flags" # graphd

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19559/flags" # metad

Last update: March 13, 2023

6.2.1 Runtime logs

- 411/927 - 2022 Vesoft Inc.

6.2.2 Audit logs

The NebulaGraph audit logs store all operations received by graph service in categories, then provide the logs for users to track

specific types of operations as needed.

Only available for the NebulaGraph Enterprise Edition.

Log categories

Configure audit logs

You need to configure the graph service file to view audit logs. The default file path of configuration is /usr/local/nebula/etc/nebula-

graphd.conf .

Enterpriseonly

Category Statement Description

login - Logs the

information when

the client tries to

connect to graph

service.

exit - Logs the

information when

the client

disconnect from

graph service.

ddl CREATE SPACE , DROP SPACE , CREATE TAG , DROP TAG , ALTER TAG , DELETE TAG , CREATE EDGE , DROP

EDGE , ALTER EDGE , CREATE INDEX , REBUILD INDEX , DROP INDEX , CREATE FULLTEXT INDEX , REBUILD FULLTEXT

INDEX , DROP FULLTEXT INDEX

Logs the

information about

DDL statements.

dql MATCH , LOOKUP , GO , FETCH , GET SUBGRAPH , FIND PATH , UNWIND , GROUP BY , ORDER BY , YIELD , LIMIT , RETURN Logs the

information about

DQL statements.

dml INSERT VERTEX , DELETE VERTEX , UPDATE VERTEX , UPSERT VERTEX , INSERT EDGE , DELETE EDGE , UPDATE

EDGE , UPSERT EDGE

Logs the

information about

DML statements.

dcl CREATE USER , GRANT ROLE , REVOKE ROLE , CHANGE PASSWORD , ALTER USER , DROP USER , CREATE SNAPSHOT , DROP

SNAPSHOT , ADD LISTENER , REMOVE LISTENER , BALANCE , SUBMIT JOB , STOP JOB , RECOVER JOB , ADD

DRAINER , REMOVE DRAINER

Logs the

information about

DCL statements.

util SHOW HOSTS , SHOW USERS , SHOW ROLES , SHOW SNAPSHOTS , SHOW SPACES , SHOW PARTS , SHOW TAGS , SHOW

EDGES , SHOW INDEXES , SHOW CREATE SPACE , SHOW CREATE TAG/EDGE , SHOW CREATE INDEX , SHOW INDEX

STATUS , SHOW LISTENER , SHOW TEXT SEARCH CLIENTS , SHOW DRAINER CLIENTS , SHOW FULLTEXT INDEXES , SHOW

CONFIGS , SHOW CHARSET , SHOW COLLATION , SHOW STATS , SHOW SESSIONS , SHOW META LEADER , SHOW

DRAINERS , SHOW QUERIES , SHOW JOB , SHOW JOBS , DESCRIBE INDEX , DESCRIBE EDGE , DESCRIBE TAG , DESCRIBE

SPACE , DESCRIBE USER , USE SPACE , SIGN IN TEXT SERVICE , SIGN OUT TEXT

SERVICE , SIGN IN DRAINER SERVICE , SIGN OUT DRAINER SERVICE , EXPLAIN , PROFILE , KILL QUERY , DOWNLOAD

HDFS , INGEST

Logs the

information about

util statements.

unknown - Logs the

information about

unrecognized

statements.

6.2.2 Audit logs

- 412/927 - 2022 Vesoft Inc.

After modifying the configuration, you need to restart the graph service to take effect.

Parameter descriptions are as follows:

Audit logs format

The fields of audit logs are the same for different handlers and formats. For example, when the audit logs are stored in the

default path logs/audit/audit.log and in the format of XML, the fields in the audit logs are described as follows:

Note

Parameter Predefined

value

Description

enable_audit false Whether or not to enable audit logs.

audit_log_handler file Where will the audit logs be written. Optional values are file （local file） and

es (Elasticsearch).

audit_log_file ./logs/audit/

audit.log

Takes effect only when audit_log_handler=file . The path for storing audit logs. The

value can be absolute or relative.

audit_log_strategy synchronous Sets the method to synchronize audit logs. Takes effect only when

audit_log_handler=file . Optional values are asynchronous and synchronous . When

asynchronous , log events are cached in memory and do not block the main thread,

but may result in missing logs due to insufficient cache. When synchronous , log

events are refreshed and synchronized to the file each time.

audit_log_max_buffer_size 1048576 Take effect only when audit_log_handler=file and audit_log_strategy=asynchronous . The

size of the memory buffer used for logging. Unit: bytes.

audit_log_format xml Takes effect only when audit_log_handler=file . The format of the the audit logs.

Optional values are xml , json and csv .

audit_log_es_address - Takes effect only when audit_log_handler=es . The address of Elasticsearch server.

The format is IP1:port1, IP2:port2,

audit_log_es_user - Takes effect only when audit_log_handler=es . The user name of the Elasticsearch.

audit_log_es_password - Takes effect only when audit_log_handler=es . The user password of the

Elasticsearch.

audit_log_es_batch_size 1000 Takes effect only when audit_log_handler=es . The number of logs sent to

Elasticsearch at one time.

audit_log_exclude_spaces - The list of spaces for not tracking. Multiple graph spaces are separated by

commas.

audit_log_categories login,exit The list of log categories for tracking. Multiple categories are separated by

commas.

<AUDIT_RECORD

 CATEGORY="util"

 TIMESTAMP="2022-04-07 02:31:38"

 TERMINAL=""

 CONNECTION_ID="1649298693144580"

 CONNECTION_STATUS="0"

 CONNECTION_MESSAGE=""

 USER="root"

 CLIENT_HOST="127.0.0.1"

 HOST="192.168.8.111"

 SPACE=""

 QUERY="use basketballplayer1"

 QUERY_STATUS="-1005"

 QUERY_MESSAGE="SpaceNotFound: "

/>

<AUDIT_RECORD

 CATEGORY="util"

 TIMESTAMP="2022-04-07 02:31:39"

 TERMINAL=""

6.2.2 Audit logs

- 413/927 - 2022 Vesoft Inc.

 CONNECTION_ID="1649298693144580"

 CONNECTION_STATUS="0"

 CONNECTION_MESSAGE=""

 USER="root"

 CLIENT_HOST="127.0.0.1"

 HOST="192.168.8.111"

 SPACE=""

 QUERY="use basketballplayer"

 QUERY_STATUS="0"

 QUERY_MESSAGE=""

/>

Field Description

CATEGORY The category of the audit logs.

TIMESTAMP The generation time of the audit logs.

TERMINAL The reserved field.

CONNECTION_ID The session ID of the connection.

CONNECTION_STATUS The status of the connection. 0 indicates success, and other numbers indicate different error messages.

CONNECTION_MESSAGE An error message is displayed when the connection fails.

USER The user name of the NebulaGraph connection.

CLIENT_HOST The IP address of the client.

HOST The IP address of the host.

SPACE The graph space where you perform queries.

QUERY The query statement.

QUERY_STATUS The status of the query. 0 indicates success, and other numbers indicate different error messages.

QUERY_MESSAGE An error message is displayed when the query fails.

Last update: March 13, 2023

6.2.2 Audit logs

- 414/927 - 2022 Vesoft Inc.

7. Monitor and metrics

7.1 Query NebulaGraph metrics

NebulaGraph supports querying the monitoring metrics through HTTP ports.

7.1.1 Metrics structure

Each metric of NebulaGraph consists of three fields: name, type, and time range. The fields are separated by periods, for

example, num_queries.sum.600 . Different NebulaGraph services (Graph, Storage, or Meta) support different metrics. The detailed

description is as follows.

Space-level metrics

The Graph service supports a set of space-level metrics that record the information of different graph spaces separately.

To enable space-level metrics, set the value of enable_space_level_metrics to true in the Graph service configuration file before

starting NebulaGraph. For details about how to modify the configuration, see Configuration Management.

Space-level metrics can be queried only by querying all metrics. For example, run curl -G "http://192.168.8.40:19559/stats" to show all

metrics. The returned result contains the graph space name in the form of '{space=space_name}', such as

num_active_queries{space=basketballplayer}.sum.5=0 .

7.1.2 Query metrics over HTTP

Syntax

Field Example Description

Metric

name

num_queries Indicates the function of the metric.

Metric

type

sum Indicates how the metrics are collected. Supported types are SUM, AVG, RATE, and the P-

th sample quantiles such as P75, P95, P99, and P99.9.

Time

range

600 The time range in seconds for the metric collection. Supported values are 5, 60, 600, and

3600, representing the last 5 seconds, 1 minute, 10 minutes, and 1 hour.

Note

curl -G "http://<ip>:<port>/stats?stats=<metric_name_list> [&format=json]"

Parameter Description

ip The IP address of the server. You can find it in the configuration file in the installation directory.

port The HTTP port of the server. You can find it in the configuration file in the installation directory. The

default ports are 19559 (Meta), 19669 (Graph), and 19779 (Storage).

metric_name_list The metrics names. Multiple metrics are separated by commas (,).

&format=json Optional. Returns the result in the JSON format.

7. Monitor and metrics

- 415/927 - 2022 Vesoft Inc.

If NebulaGraph is deployed with Docker Compose, run docker-compose ps to check the ports that are mapped from the service ports

inside of the container and then query through them.

Examples

Query a single metric

Query the query number in the last 10 minutes in the Graph Service.

Query multiple metrics

Query the following metrics together:

The average heartbeat latency in the last 1 minute.

The average latency of the slowest 1% heartbeats, i.e., the P99 heartbeats, in the last 10 minutes.

Return a JSON result.

Query the number of new vertices in the Storage Service in the last 10 minutes and return the result in the JSON format.

Query all metrics in a service.

If no metric is specified in the query, NebulaGraph returns all metrics in the service.

Note

•

$ curl -G "http://192.168.8.40:19669/stats?stats=num_queries.sum.600"

num_queries.sum.600=400

•

•

•

$ curl -G "http://192.168.8.40:19559/stats?stats=heartbeat_latency_us.avg.60,heartbeat_latency_us.p99.600"

heartbeat_latency_us.avg.60=281

heartbeat_latency_us.p99.600=985

•

$ curl -G "http://192.168.8.40:19779/stats?stats=num_add_vertices.sum.600&format=json"

[{"value":1,"name":"num_add_vertices.sum.600"}]

•

$ curl -G "http://192.168.8.40:19559/stats"

heartbeat_latency_us.avg.5=304

heartbeat_latency_us.avg.60=308

heartbeat_latency_us.avg.600=299

heartbeat_latency_us.avg.3600=285

heartbeat_latency_us.p75.5=652

heartbeat_latency_us.p75.60=669

heartbeat_latency_us.p75.600=651

heartbeat_latency_us.p75.3600=642

heartbeat_latency_us.p95.5=930

heartbeat_latency_us.p95.60=963

heartbeat_latency_us.p95.600=933

heartbeat_latency_us.p95.3600=929

heartbeat_latency_us.p99.5=986

heartbeat_latency_us.p99.60=1409

heartbeat_latency_us.p99.600=989

heartbeat_latency_us.p99.3600=986

num_heartbeats.rate.5=0

num_heartbeats.rate.60=0

num_heartbeats.rate.600=0

num_heartbeats.rate.3600=0

num_heartbeats.sum.5=2

num_heartbeats.sum.60=40

num_heartbeats.sum.600=394

num_heartbeats.sum.3600=2364

...

7.1.2 Query metrics over HTTP

- 416/927 - 2022 Vesoft Inc.

7.1.3 Metric description

Graph

Parameter Description

num_active_queries The number of queries currently being executed.

num_active_sessions The number of currently active sessions.

num_aggregate_executors The number of executions for the Aggregation operator.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions_out_of_max_allowed The number of sessions that failed to authenticate logins because the value of the

parameter FLAG_OUT_OF_MAX_ALLOWED_CONNECTIONS was exceeded.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_indexscan_executors The number of executions for index scan operators.

num_killed_queries The number of killed queries.

num_opened_sessions The number of sessions connected to the server.

num_queries The number of queries.

num_query_errors_leader_changes The number of the raft leader changes due to query errors.

num_query_errors The number of query errors.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

num_sentences The number of statements received by the Graphd service.

num_slow_queries The number of slow queries.

num_sort_executors The number of executions for the Sort operator.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The average latency of queries.

slow_query_latency_us The average latency of slow queries.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

7.1.3 Metric description

- 417/927 - 2022 Vesoft Inc.

Meta

Parameter Description

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

heartbeat_latency_us The latency of heartbeats.

num_heartbeats The number of heartbeats.

num_raft_votes The number of votes in Raft.

transfer_leader_latency_us The latency of transferring the raft leader.

num_agent_heartbeats The number of heartbeats for the AgentHBProcessor.

agent_heartbeat_latency_us The average latency of the AgentHBProcessor.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_send_snapshot The number of times that Raft sends snapshots to other nodes.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

append_wal_latency_us The Raft write latency for a single WAL.

num_grant_votes The number of times that Raft votes for other nodes.

num_start_elect The number of times that Raft starts an election.

7.1.3 Metric description

- 418/927 - 2022 Vesoft Inc.

Storage

7.1.3 Metric description

- 419/927 - 2022 Vesoft Inc.

Parameter Description

add_edges_atomic_latency_us The average latency of adding edge single.

add_edges_latency_us The average latency of adding edges.

add_vertices_latency_us The average latency of adding vertices.

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

delete_edges_latency_us The average latency of deleting edges.

delete_vertices_latency_us The average latency of deleting vertices.

get_neighbors_latency_us The average latency of querying neighbor vertices.

num_get_prop The number of executions for the GetPropProcessor.

num_get_neighbors_errors The number of execution errors for the GetNeighborsProcessor.

get_prop_latency_us The average latency of executions for the GetPropProcessor.

num_edges_deleted The number of deleted edges.

num_edges_inserted The number of inserted edges.

num_raft_votes The number of votes in Raft.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Storage service sent to the Meta service.

num_rpc_sent_to_metad The number of RPC requests that the Storaged service sent to the Metad service.

num_tags_deleted The number of deleted tags.

num_vertices_deleted The number of deleted vertices.

num_vertices_inserted The number of inserted vertices.

transfer_leader_latency_us The latency of transferring the raft leader.

lookup_latency_us The average latency of executions for the LookupProcessor.

num_lookup_errors The number of execution errors for the LookupProcessor.

num_scan_vertex The number of executions for the ScanVertexProcessor.

num_scan_vertex_errors The number of execution errors for the ScanVertexProcessor.

update_edge_latency_us The average latency of executions for the UpdateEdgeProcessor.

num_update_vertex The number of executions for the UpdateVertexProcessor.

num_update_vertex_errors The number of execution errors for the UpdateVertexProcessor.

kv_get_latency_us The average latency of executions for the Getprocessor.

kv_put_latency_us The average latency of executions for the PutProcessor.

kv_remove_latency_us The average latency of executions for the RemoveProcessor.

num_kv_get_errors The number of execution errors for the GetProcessor.

num_kv_get The number of executions for the GetProcessor.

num_kv_put_errors The number of execution errors for the PutProcessor.

num_kv_put The number of executions for the PutProcessor.

num_kv_remove_errors The number of execution errors for the RemoveProcessor.

7.1.3 Metric description

- 420/927 - 2022 Vesoft Inc.

Parameter Description

num_kv_remove The number of executions for the RemoveProcessor.

forward_tranx_latency_us The average latency of transmission.

scan_edge_latency_us The average latency of executions for the ScanEdgeProcessor.

num_scan_edge_errors The number of execution errors for the ScanEdgeProcessor.

num_scan_edge The number of executions for the ScanEdgeProcessor.

scan_vertex_latency_us The latency of executions for the ScanVertexProcessor.

num_add_edges The number of times that edges are added.

num_add_edges_errors The number of errors when adding edges.

num_add_vertices The number of times that vertices are added.

num_start_elect The number of times that Raft starts an election.

num_add_vertices_errors The number of errors when adding vertices.

num_delete_vertices_errors The number of errors when deleting vertices.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

num_grant_votes The number of times that Raft votes for other nodes.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_delete_tags The number of times that tags are deleted.

num_delete_tags_errors The number of errors when deleting tags.

num_delete_edges The number of edge deletions.

num_delete_edges_errors The number of errors when deleting edges

num_send_snapshot The number of times that snapshots are sent.

update_vertex_latency_us The latency of executions for the UpdateVertexProcessor.

append_wal_latency_us The Raft write latency for a single WAL.

num_update_edge The number of executions for the UpdateEdgeProcessor.

delete_tags_latency_us The average latency of deleting tags.

num_update_edge_errors The number of execution errors for the UpdateEdgeProcessor.

num_get_neighbors The number of executions for the GetNeighborsProcessor.

num_get_prop_errors The number of execution errors for the GetPropProcessor.

num_delete_vertices The number of times that vertices are deleted.

num_lookup The number of executions for the LookupProcessor.

num_sync_data The number of times the storage synchronizes data from drainer.

num_sync_data_errors The number of errors the storage synchronizes data from drainer.

7.1.3 Metric description

- 421/927 - 2022 Vesoft Inc.

Graph space

Parameter Description

num_active_queries The number of queries currently being executed.

num_queries The number of queries.

num_sentences The number of statements received by the Graphd service.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The average latency of queries.

num_slow_queries The number of slow queries.

num_query_errors The number of query errors.

num_query_errors_leader_changes The number of raft leader changes due to query errors.

num_killed_queries The number of killed queries.

num_aggregate_executors The number of executions for the Aggregation operator.

num_sort_executors The number of executions for the Sort operator.

num_indexscan_executors The number of executions for index scan operators.

num_oom_queries The number of queries that caused memory to run out.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_opened_sessions The number of sessions connected to the server.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

slow_query_latency_us The average latency of slow queries.

Last update: March 13, 2023

7.1.3 Metric description

- 422/927 - 2022 Vesoft Inc.

7.2 RocksDB statistics

NebulaGraph uses RocksDB as the underlying storage. This topic describes how to collect and show the RocksDB statistics of

NebulaGraph.

7.2.1 Enable RocksDB

By default, the function of RocksDB statistics is disabled. To enable RocksDB statistics, you need to:

Modify the --enable_rocksdb_statistics parameter as true in the nebula-storaged.conf file. The default path of the configuration file

is /use/local/nebula/etc .

Restart the service to make the modification valid.

7.2.2 Get RocksDB statistics

Users can use the built-in HTTP service in the storage service to get the following types of statistics. Results in the JSON format

are supported.

All RocksDB statistics.

Specified RocksDB statistics.

7.2.3 Examples

Use the following command to get all RocksDB statistics:

For example:

Use the following command to get specified RocksDB statistics:

For example, use the following command to get the information of rocksdb.bytes.read and rocksdb.block.cache.add .

Use the following command to get specified RocksDB statistics in the JSON format:

For example, use the following command to get the information of rocksdb.bytes.read and rocksdb.block.cache.add and return the

results in the JSON format.

1.

2.

•

•

curl -L "http://${storage_ip}:${port}/rocksdb_stats"

curl -L "http://172.28.2.1:19779/rocksdb_stats"

rocksdb.blobdb.blob.file.bytes.read=0

rocksdb.blobdb.blob.file.bytes.written=0

rocksdb.blobdb.blob.file.bytes.synced=0

...

curl -L "http://${storage_ip}:${port}/rocksdb_stats?stats=${stats_name}"

curl -L "http://172.28.2.1:19779/rocksdb_stats?stats=rocksdb.bytes.read,rocksdb.block.cache.add"

rocksdb.block.cache.add=14

rocksdb.bytes.read=1632

curl -L "http://${storage_ip}:${port}/rocksdb_stats?stats=${stats_name}&format=json"

curl -L "http://172.28.2.1:19779/rocksdb_stats?stats=rocksdb.bytes.read,rocksdb.block.cache.add&format=json"

[

 {

 "rocksdb.block.cache.add": 1

 },

 {

 "rocksdb.bytes.read": 160

7.2 RocksDB statistics

- 423/927 - 2022 Vesoft Inc.

 }

]

Last update: March 13, 2023

7.2.3 Examples

- 424/927 - 2022 Vesoft Inc.

8. Data security

8.1 Authentication and authorization

8.1.1 Authentication

NebulaGraph replies on local authentication or LDAP authentication to implement access control.

NebulaGraph creates a session when a client connects to it. The session stores information about the connection, including the

user information. If the authentication system is enabled, the session will be mapped to corresponding users.

By default, the authentication is disabled and NebulaGraph allows connections with the username root and any password.

NebulaGraph supports local authentication and LDAP authentication.

Local authentication

Local authentication indicates that usernames and passwords are stored locally on the server, with the passwords encrypted.

Users will be authenticated when trying to visit NebulaGraph.

ENABLE LOCAL AUTHENTICATION

Modify the nebula-graphd.conf file (/usr/local/nebula/etc/ is the default path) to set the following parameters:

--enable_authorize : Set its value to true to enable authentication.

--failed_login_attempts : This parameter is optional, and you need to add this parameter manually. Specify the attempts of continuously

entering incorrect passwords for a single Graph service. When the number exceeds the limitation, your account will be locked. For

multiple Graph services, the allowed attempts are number of services * failed_login_attempts .

--password_lock_time_in_secs : This parameter is optional, and you need to add this parameter manually. Specify the time how long your

account is locked after multiple incorrect password entries are entered. Unit: second.

Restart the NebulaGraph services. For how to restart, see Manage NebulaGraph services.

You can use the username root and password nebula to log into NebulaGraph after enabling local authentication. This account has the

build-in God role. For more information about roles, see Roles and privileges.

LDAP authentication

Lightweight Directory Access Protocol (LDAP) is a lightweight client-server protocol for accessing directories and building a

centralized account management system. LDAP authentication and local authentication can be enabled at the same time, but

LDAP authentication has a higher priority. If the local authentication server and the LDAP server both have the information of

user Amber , NebulaGraph reads from the LDAP server first.

ENABLE LDAP AUTHENTICATION

Contact inquiry@vesoft.com.

Note

1.

•

•

•

2.

Note

Enterpriseonly

8. Data security

- 425/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

8.1.1 Authentication

- 426/927 - 2022 Vesoft Inc.

8.1.2 User management

User management is an indispensable part of NebulaGraph access control. This topic describes how to manage users and roles.

After enabling authentication, only valid users can connect to NebulaGraph and access the resources according to the user roles.

By default, the authentication is disabled. NebulaGraph allows connections with the username root and any password.

Once the role of a user is modified, the user has to re-login to make the new role takes effect.

CREATE USER

The root user with the GOD role can run CREATE USER to create a new user.

Syntax

IF NOT EXISTS : Detects if the user name exists. The user will be created only if the user name does not exist.

user_name : Sets the name of the user.

password : Sets the password of the user.

ip_list (Enterprise): Sets the IP address whitelist. The user can connect to NebulaGraph only from IP addresses in the list. Use

commas to separate multiple IP addresses.

Example

GRANT ROLE

Users with the GOD role or the ADMIN role can run GRANT ROLE to assign a built-in role in a graph space to a user. For more

information about NebulaGraph built-in roles, see Roles and privileges.

Syntax

Example

Note

•

•

•

CREATE USER [IF NOT EXISTS] <user_name> [WITH PASSWORD '<password>'] [WITH IP WHITELIST <ip_list>];

•

•

•

•

•

nebula> CREATE USER user1 WITH PASSWORD 'nebula';

nebula> CREATE USER user2 WITH PASSWORD 'nebula' WITH IP WHITELIST 192.168.10.10,192.168.10.12;

nebula> SHOW USERS;

+---------+-------------------------------+

| Account | IP Whitelist |

+---------+-------------------------------+

| "root" | "" |

| "user1" | "" |

| "user2" | "192.168.10.10,192.168.10.12" |

+---------+-------------------------------+

•

GRANT ROLE <role_type> ON <space_name> TO <user_name>;

•

nebula> GRANT ROLE USER ON basketballplayer TO user1;

8.1.2 User management

- 427/927 - 2022 Vesoft Inc.

REVOKE ROLE

Users with the GOD role or the ADMIN role can run REVOKE ROLE to revoke the built-in role of a user in a graph space. For more

information about NebulaGraph built-in roles, see Roles and privileges.

Syntax

Example

DESCRIBE USER

Users can run DESCRIBE USER to list the roles for a specified user.

Syntax

Example

SHOW ROLES

Users can run SHOW ROLES to list the roles in a graph space.

Syntax

Example

CHANGE PASSWORD

Users can run CHANGE PASSWORD to set a new password for a user. The old password is needed when setting a new one.

Syntax

Example

•

REVOKE ROLE <role_type> ON <space_name> FROM <user_name>;

•

nebula> REVOKE ROLE USER ON basketballplayer FROM user1;

•

DESCRIBE USER <user_name>;

DESC USER <user_name>;

•

nebula> DESCRIBE USER user1;

+---------+--------------------+

| role | space |

+---------+--------------------+

| "ADMIN" | "basketballplayer" |

+---------+--------------------+

•

SHOW ROLES IN <space_name>;

•

nebula> SHOW ROLES IN basketballplayer;

+---------+-----------+

| Account | Role Type |

+---------+-----------+

| "user1" | "ADMIN" |

+---------+-----------+

•

CHANGE PASSWORD <user_name> FROM '<old_password>' TO '<new_password>';

•

nebula> CHANGE PASSWORD user1 FROM 'nebula' TO 'nebula123';

8.1.2 User management

- 428/927 - 2022 Vesoft Inc.

ALTER USER

The root user with the GOD role can run ALTER USER to set a new password and IP address whitelist for a user. The old password is

not needed when altering the user.

Syntax

Example

When WITH IP WHITELIST is not used, the IP address whitelist is removed and the user can connect to the NebulaGraph by any IP

address.

DROP USER

The root user with the GOD role can run DROP USER to remove a user.

Removing a user does not close the current session of the user, and the user role still takes effect in the session until the session is

closed.

Syntax

Example

•

ALTER USER <user_name> WITH PASSWORD '<password>' [WITH IP WHITELIST <ip_list>];;

•

Enterpriseonly

nebula> ALTER USER user2 WITH PASSWORD 'nebula';

nebula> SHOW USERS;

+---------+--------------+

| Account | IP Whitelist |

+---------+--------------+

| "root" | "" |

| "user1" | "" |

| "user2" | "" |

+---------+--------------+

nebula> ALTER USER user2 WITH PASSWORD 'nebula' WITH IP WHITELIST 192.168.10.10;

Note

•

DROP USER [IF EXISTS] <user_name>;

•

nebula> DROP USER user1;

8.1.2 User management

- 429/927 - 2022 Vesoft Inc.

SHOW USERS

The root user with the GOD role can run SHOW USERS to list all the users.

Syntax

Example

•

SHOW USERS;

•

nebula> SHOW USERS;

+---------+-----------------+

| Account | IP Whitelist |

+---------+-----------------+

| "root" | "" |

| "user1" | "" |

| "user2" | "192.168.10.10" |

+---------+-----------------+

Last update: March 13, 2023

8.1.2 User management

- 430/927 - 2022 Vesoft Inc.

8.1.3 Roles and privileges

A role is a collection of privileges. You can assign a role to a user for access control.

Built-in roles

NebulaGraph does not support custom roles, but it has multiple built-in roles:

GOD

GOD is the original role with all privileges not limited to graph spaces. It is similar to root in Linux and administrator in

Windows.

When the Meta Service is initialized, the one and only GOD role user root is automatically created with the password nebula .

Modify the password for root timely for security.

One cluster can only have one user with the GOD role. This user can manage all graph spaces in a cluster.

Manual authorization of the God role is not supported. Only the root user with the default God role can be used.

ADMIN

An ADMIN role can read and write both the Schema and the data in a specific graph space.

An ADMIN role of a graph space can grant DBA, USER, and GUEST roles in the graph space to other users.

Only roles lower than ADMIN can be authorized to other users.

DBA

A DBA role can read and write both the Schema and the data in a specific graph space.

A DBA role of a graph space CANNOT grant roles to other users.

USER

A USER role can read and write data in a specific graph space.

The Schema information is read-only to the USER roles in a graph space.

GUEST

A GUEST role can only read the Schema and the data in a specific graph space.

NebulaGraph does not support custom roles. Users can only use the default built-in roles.

A user can have only one role in a graph space. For authenticated users, see User management.

•

•

•

Caution

•

•

•

•

•

Note

•

•

•

•

•

•

•

•

Note

•

•

8.1.3 Roles and privileges

- 431/927 - 2022 Vesoft Inc.

Role privileges and allowed nGQL

The privileges of roles and the nGQL statements that each role can use are listed as follows.

The results of SHOW operations are limited to the role of a user. For example, all users can run SHOW SPACES , but the results only include

the graph spaces that the users have privileges.

Only the GOD role can run SHOW USERS and SHOW SNAPSHOTS .

Privilege God Admin DBA User Guest Allowed nGQL

Read

space

Y Y Y Y Y USE , DESCRIBE SPACE

Read

schema

Y Y Y Y Y DESCRIBE TAG , DESCRIBE EDGE , DESCRIBE TAG INDEX ,

DESCRIBE EDGE INDEX

Write

schema

Y Y Y CREATE TAG , ALTER TAG , CREATE EDGE , ALTER EDGE ,

DROP TAG , DELETE TAG , DROP EDGE , CREATE TAG INDEX ,

CREATE EDGE INDEX , DROP TAG INDEX , DROP EDGE INDEX

Write user Y CREATE USER , DROP USER , ALTER USER

Write role Y Y GRANT , REVOKE

Read data Y Y Y Y Y GO , SET , PIPE , MATCH , ASSIGNMENT , LOOKUP , YIELD ,

ORDER BY , FETCH VERTICES , Find , FETCH EDGES , FIND

PATH , LIMIT , GROUP BY , RETURN

Write data Y Y Y Y INSERT VERTEX , UPDATE VERTEX , INSERT EDGE , UPDATE

EDGE , DELETE VERTEX , DELETE EDGES , DELETE TAG

Show

operations

Y Y Y Y Y SHOW , CHANGE PASSWORD

Job Y Y Y Y SUBMIT JOB COMPACT , SUBMIT JOB FLUSH , SUBMIT JOB

STATS , STOP JOB , RECOVER JOB , BUILD TAG INDEX ,

BUILD EDGE INDEX , INGEST , DOWNLOAD

Write

space

Y CREATE SPACE , DROP SPACE , CREATE SNAPSHOT , DROP

SNAPSHOT , BALANCE , ADMIN , CONFIG

Caution

•

•

Last update: March 13, 2023

8.1.3 Roles and privileges

- 432/927 - 2022 Vesoft Inc.

8.1.4 OpenLDAP authentication

This topic introduces how to connect NebulaGraph to the OpenLDAP server and use the DN (Distinguished Name) and password

defined in OpenLDAP for authentication.

This feature is supported by the Enterprise Edition only.

Authentication method

After the OpenLDAP authentication is enabled and users log into NebulaGraph with the account and password, NebulaGraph

checks whether the login account exists in the Meta service. If the account exists, NebulaGraph finds the corresponding DN in

OpenLDAP according to the authentication method and verifies the password.

OpenLDAP supports two authentication methods: simple bind authentication (SimpleBindAuth) and search bind authentication

(SearchBindAuth).

SIMPLEBINDAUTH

Simple bind authentication splices the login account and the configuration information of Graph services into a DN that can be

recognized by OpenLDAP, and then authenticates on OpenLDAP based on the DN and password.

SEARCHBINDAUTH

Search bind authentication reads the Graph service configuration information and queries whether the uid in the configuration

matches the login account. If they match, search bind authentication reads the DN, and then uses the DN and password to verify

on OpenLDAP.

Prerequisites

OpenLDAP is installed.

The account and password are imported on OpenLDAP.

The server where OpenLDAP is located has opened the corresponding authentication port.

Enterpriseonly

•

•

•

8.1.4 OpenLDAP authentication

- 433/927 - 2022 Vesoft Inc.

https://www.openldap.org/

Procedures

Take the existing account test2 and password passwdtest2 on OpenLDAP as an example.

Connect to NebulaGraph, create and authorize the shadow account test2 corresponding to OpenLDAP.

When creating an account in NebulaGraph, the password can be set arbitrarily.

Edit the configuration file nebula-graphd.conf (The default path is /usr/local/nebula/etc/):

SimpleBindAuth (Recommended)

SearchBindAuth

Restart NebulaGraph services to make the new configuration valid.

Run the login test.

After using OpenLDAP for authentication, local users (including root) cannot log in normally.

1.

nebula> CREATE USER test2 WITH PASSWORD '';

nebula> GRANT ROLE ADMIN ON basketballplayer TO test2;

Note

2.

•

Whether to get the configuration information from the configuration file.

--local_config=true

Whether to enable authentication.

--enable_authorize=true

Authentication methods include password, ldap, and cloud.

--auth_type=ldap

The address of the OpenLDAP server.

--ldap_server=192.168.8.211

The port of the OpenLDAP server.

--ldap_port=389

The name of the Schema in OpenLDAP.

--ldap_scheme=ldap

The prefix of DN.

--ldap_prefix=uid=

The suffix of DN.

--ldap_suffix=,ou=it,dc=sys,dc=com

•

Whether to get the configuration information from the configuration file.

--local_config=true

Whether to enable authentication.

--enable_authorize=true

Authentication methods include password, ldap, and cloud.

--auth_type=ldap

The address of the OpenLDAP server.

--ldap_server=192.168.8.211

The port of the OpenLDAP server.

--ldap_port=389

The name of the Schema in OpenLDAP.

--ldap_scheme=ldap

The DN that binds the target.

--ldap_basedn=ou=it,dc=sys,dc=com

3.

4.

$./nebula-console --addr 127.0.0.1 --port 9669 -u test2 -p passwdtest2

2021/09/08 03:49:39 [INFO] connection pool is initialized successfully

Welcome to NebulaGraph!

Note

Last update: March 13, 2023

8.1.4 OpenLDAP authentication

- 434/927 - 2022 Vesoft Inc.

8.2 SSL encryption

NebulaGraph supports data transmission with SSL encryption between clients, the Graph service, the Meta service, and the

Storage service. This topic describes how to enable SSL encryption.

8.2.1 Precaution

Enabling SSL encryption will slightly affect the performance, such as causing operation latency.

8.2.2 Parameters

8.2.3 Certificate modes

To use SSL encryption, SSL certificates are required. NebulaGraph supports two certificate modes.

Self-signed certificate mode

In this mode, users need to make the signed certificate by themselves and set cert_path , key_path , and password_path in the

corresponding file according to encryption policies.

CA-signed certificate mode

In this mode, users need to apply for the signed certificate from a certificate authority and set cert_path , key_path , and

password_path in the corresponding file according to encryption policies.

8.2.4 Encryption policies

NebulaGraph supports three encryption policies. For details, see Usage explanation.

Encrypt the data transmission between clients, the Graph service, the Meta service, and the Storage service.

Add enable_ssl = true to the configuration files of nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf .

Encrypt the data transmission between clients and the Graph service.

This policy applies to the case that the clusters are set in the same server room. Only the port of the Graph service is open to

the outside because other services can communicate over the internal network without encryption. Add enable_graph_ssl = true to

the configuration file of nebula-graphd.conf .

Encrypt the data transmission related to the Meta service in the cluster.

This policy applies to transporting classified information to the Meta service. Add enable_meta_ssl = true to the configuration files

of nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf .

Parameter Default value Description

cert_path - The path to the PEM certification.

key_path - The path to the key certification.

password_path - The path to the password file certification.

ca_path - The path to the trusted CA file.

enable_ssl false Whether to enable SSL encryption.

enable_graph_ssl false Whether to enable SSL encryption in the Graph service only.

enable_meta_ssl false Whether to enable SSL encryption in the Meta service only.

•

•

•

•

•

8.2 SSL encryption

- 435/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/a67d166b284cae1b534bf8d19c936ee38bf12e29/docs/rfcs/0001-ssl-transportation.md#usage-explanation

8.2.5 Steps

Ensure the certificate mode and the encryption policy.

Add the certificate configuration and the policy configuration in corresponding files.

For example, the three configuration files need to be set as follows when using a self-signed certificate and encrypt data

transmission between clients, the Graph service, the Meta service, and the Storage service.

Set the SSL and the trusted CA in clients. For code examples, see nebula-test-run.py.

1.

2.

--cert_path=xxxxxx

--key_path=xxxxx

--password_path=xxxxxx

--enable_ssl=true

3.

Last update: March 13, 2023

8.2.5 Steps

- 436/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/release-3.1/tests/nebula-test-run.py

9. Backup & Restore

9.1 Nebula BR

9.1.1 What is Backup & Restore

Backup & Restore (BR for short) is a Command-Line Interface (CLI) tool to back up data of graph spaces of NebulaGraph and to

restore data from the backup files.

Features

The BR has the following features. It supports:

Backing up and restoring data in a one-click operation.

Restoring data in the following backup file types:

Local Disk (SSD or HDD). It is recommend to use local disk in test environment only.

Amazon S3 compatible interface, such as Alibaba Cloud OSS, MinIO,Ceph RGW, etc.

Backing up and restoring the entire NebulaGraph cluster.

Backing up data of specified graph spaces (experimental).

Limitations

Supports NebulaGraph v3.1.0 only.

Supports full backup, but not incremental backup.

Currently, Nebula Listener and full-text indexes do not support backup.

Backup and restore are supported when there is only one metad process configured in the local file.

If you back up data to the local disk, the backup files will be saved in the local path of each server. You can also mount the NFS

on your host to restore the backup data to a different host.

During the backup process, both DDL and DML statements in the specified graph spaces are blocked. We recommend that you

do the operation within the low peak period of the business, for example, from 2:00 AM to 5:00 AM.

The backup graph space can be restored to the original cluster only. Cross clusters restoration is not supported. Make sure the

number of hosts in the cluster is not changed. Restoring a specified graph space will delete all other graph spaces in the

cluster.

We recommend that you restore the data OFFLINE because it requires removing the data and restart the service.

How to use BR

To use the BR, follow these steps:

Install BR.

Use BR to back up data.

Use BR to restore data from backup files.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

Last update: March 13, 2023

9. Backup & Restore

- 437/927 - 2022 Vesoft Inc.

9.1.2 Install BR

This topic introduces how to install BR.

Notes

To use the BR (Enterprise Edition) tool, you need to install the NebulaGraph Agent service, which is taken as a daemon for each

machine in the cluster that starts and stops the NebulaGraph service, and uploads and downloads backup files. The BR

(Enterprise Edition) tool and the Agent plug-in are installed as described below.

Version compatibility

Install BR with a binary file

Install BR.

Change the binary file name to br .

Grand execute permission to BR.

Run ./br version to check BR version.

Install BR with the source code

Before compiling the BR, do a check of these:

Go 1.14.x or a later version is installed.

make is installed.

To compile the BR, follow these steps:

Clone the nebula-br repository to your machine.

Change to the br directory.

Compile the BR.

Users can enter bin/br version on the command line. If the following results are returned, the BR is compiled successfully.

NebulaGraph BR Agent

3.0 ~ 3.2 0.6.1 0.1.0 ~ 0.2.0

1.

wget https://github.com/vesoft-inc/nebula-br/releases/download/v0.6.1/br-0.6.1-linux-amd64

2.

sudo mv br-0.6.1-linux-amd64 br

3.

sudo chmod +x br

4.

[nebula-br]$./br version

Nebula Backup And Restore Utility Tool,V-0.6.1

•

•

1.

git clone https://github.com/vesoft-inc/nebula-br.git

2.

cd nebula-br

3.

make

[nebula-br]$ bin/br version

NebulaGraph Backup And Restore Utility Tool,V-0.6.1

9.1.2 Install BR

- 438/927 - 2022 Vesoft Inc.

https://github.com/golang/go

Install Agent

NebulaGraph Agent is installed as a binary file in each machine and serves the BR tool with the RPC protocol.

In each machine, follow these steps:

Install Agent.

Rename the Agent file to agent .

Add execute permission to Agent.

Start Agent.

Before starting Agent, make sure that the Meta service has been started and Agent has read and write access to the corresponding

NebulaGraph cluster directory and backup directory.

--agent : The IP address and port number of Agent.

--meta : The IP address and access port of any Meta service in the cluster.

--ratelimit : Optional (this option is only available in Agent 0.2.0 and higher versions). Limits the speed of file uploads and

downloads to prevent bandwidth from being filled up and making other services unavailable. Unit: Bytes.

For example:

The IP address format for --agent should be the same as that of Meta and Storage services set in the configuration files. That is, use the

real IP addresses or use 127.0.0.1 . Otherwise Agent does not run.

Log into NebulaGraph and then run the following command to view the status of Agent.

FAQ

THE ERROR `E_LIST_CLUSTER_NO_AGENT_FAILURE

If you encounter E_LIST_CLUSTER_NO_AGENT_FAILURE error, it may be due to the Agent service is not started or the Agent service is not

registered to Meta service. First, execute SHOW HOSTS AGENT to check the status of the Agent service on all nodes in the cluster, when

the status shows OFFLINE , it means the registration of Agent failed, then check whether the value of the --meta option in the

command to start the Agent service is correct.

1.

wget https://github.com/vesoft-inc/nebula-agent/releases/download/v0.2.0/agent-0.2.0-linux-amd64

2.

sudo mv agent-0.2.0-linux-amd64 agent

3.

sudo chmod +x agent

4.

Note

sudo nohup ./nebula_agent --agent="<agent_node_ip>:8888" --meta="<metad_node_ip>:9559" > nebula_agent.log 2>&1 &

•

•

•

sudo nohup ./nebula_agent --agent="192.168.8.129:8888" --meta="192.168.8.129:9559" --ratelimit=1048576 > nebula_agent.log 2>&1 &

Caution

5.

nebula> SHOW HOSTS AGENT;

+-----------------+------+----------+---------+--------------+---------+

| Host | Port | Status | Role | Git Info Sha | Version |

+-----------------+------+----------+---------+--------------+---------+

| "192.168.8.129" | 8888 | "ONLINE" | "AGENT" | "96646b8" | |

+-----------------+------+----------+---------+--------------+---------+

Last update: November 25, 2022

9.1.2 Install BR

- 439/927 - 2022 Vesoft Inc.

9.1.3 Use BR to back up data

After the BR is installed, you can back up data of the entire graph space. This topic introduces how to use the BR to back up

data.

Prerequisites

To back up data with the BR, do a check of these:

Install BR and Agent and run Agent on each host in the cluster.

The NebulaGraph services are running.

If you store the backup files locally, create a directory with the same absolute path on the meta servers, the storage servers,

and the BR machine for the backup files and get the absolute path. Make sure the account has write privileges for this

directory.

In the production environment, we recommend that you mount Network File System (NFS) storage to the meta servers, the

storage servers, and the BR machine for local backup, or use Amazon S3 or Alibaba Cloud OSS for remote backup. When you

restore the data from local files, you must manually move these backup files to a specified directory, which causes redundant data

and troubles. For more information, see Restore data from backup files.

Procedure

In the BR installation directory (the default path of the compiled BR is ./bin/br), run the following command to perform a full

backup for the entire cluster.

Make sure that the local path where the backup file is stored exists.

•

•

•

Note

Note

$./br backup full --meta <ip_address> --storage <storage_path>

9.1.3 Use BR to back up data

- 440/927 - 2022 Vesoft Inc.

For example:

Run the following command to perform a full backup for the entire cluster whose meta service address is 192.168.8.129:9559 , and

save the backup file to /home/nebula/backup/ .

If there are multiple metad addresses, you can use any one of them.

If you back up data to a local disk, only the data of the leader metad is backed up by default. So if there are multiple metad

processes, you need to manually copy the directory of the leader metad (path <storage_path>/meta) and overwrite the corresponding

directory of other follower meatd processes.

Run the following command to perform a full backup for the entire cluster whose meta service address is 192.168.8.129:9559 , and

save the backup file to backup in the br-test bucket of the object storage service compatible with S3 protocol.

The parameters are as follows.

Next to do

After the backup files are generated, you can use the BR to restore them for NebulaGraph. For more information, see Use BR to

restore data.

•

Caution

•

•

$./br backup full --meta "192.168.8.129:9559" --storage "local:///home/nebula/backup/"

•

$./br backup full --meta "192.168.8.129:9559" --s3.endpoint "http://192.168.8.129:9000" --storage="s3://br-test/backup/" --s3.access_key=minioadmin --s3.secret_key=minioadmin --

s3.region=default

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

--debug - No None Checks for more log information.

--log string No "br.log" Specifies detailed log path for restoration and backup.

--meta string Yes None The IP address and port of the meta service.

--space string Yes None (Experimental feature) Specifies the names of the spaces to

be backed up. All spaces will be backed up if not specified.

Multiple spaces can be specified, and format is --spaces

nba_01 --spaces nba_02 .

--storage string Yes None The target storage URL of BR backup data. The format is:

\<Schema>://\<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--

s3.access_key

string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--

s3.secret_key

string No None Sets SecretKey for AccessKey ID.

9.1.3 Use BR to back up data

- 441/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

9.1.3 Use BR to back up data

- 442/927 - 2022 Vesoft Inc.

9.1.4 Use BR to restore data

If you use the BR to back up data, you can use it to restore the data to NebulaGraph. This topic introduces how to use the BR to

restore data from backup files.

During the restoration process, the data on the target NebulaGraph cluster is removed and then is replaced with the data from the

backup files. If necessary, back up the data on the target cluster.

The restoration process is performed OFFLINE.

Prerequisites

To restore data with the BR, do a check of these:

Install BR and Agent and run Agent on each host in the cluster.

No application is connected to the target NebulaGraph cluster.

Make sure that the target and the source NebulaGraph clusters have the same topology, which means that they have exactly

the same number of hosts. The number of data folders for each host is consistently distributed.

Caution

Caution

•

•

•

9.1.4 Use BR to restore data

- 443/927 - 2022 Vesoft Inc.

Procedures

In the BR installation directory (the default path of the compiled BR is ./bin/br), run the following command to perform a full

backup for the entire cluster.

9.1.4 Use BR to restore data

- 444/927 - 2022 Vesoft Inc.

Users can use the following command to list the existing backup information:

For example, run the following command to list the backup information in the local /home/nebula/backup path.

Or, you can run the following command to list the backup information stored in S3 URL s3://192.168.8.129:9000/br-test/backup .

Run the following command to restore data.

For example, run the following command to upload the backup files from the local /home/nebula/backup/ to the cluster where the meta

service's address is 192.168.8.129:9559 .

Or, you can run the following command to upload the backup files from the S3 URL s3://192.168.8.129:9000/br-test/backup .

If the following information is returned, the data is restored successfully.

If your new cluster hosts' IPs are not all the same as the backup cluster, after restoration, you should run add hosts to add the Storage

host IPs in the new cluster one by one.

1.

$./br show --storage <storage_path>

$./br show --storage "local:///home/nebula/backup"

+----------------------------+---------------------+------------------------+-------------+------------+

| NAME | CREATE TIME | SPACES | FULL BACKUP | ALL SPACES |

+----------------------------+---------------------+------------------------+-------------+------------+

| BACKUP_2022_02_10_07_40_41 | 2022-02-10 07:40:41 | basketballplayer | true | true |

| BACKUP_2022_02_11_08_26_43 | 2022-02-11 08:26:47 | basketballplayer,foesa | true | true |

+----------------------------+---------------------+------------------------+-------------+------------+

$./br show --s3.endpoint "http://192.168.8.129:9000" --storage="s3://br-test/backup/" --s3.access_key=minioadmin --s3.secret_key=minioadmin --s3.region=default

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

-debug - No None Checks for more log information.

-log string No "br.log" Specifies detailed log path for restoration and backup.

--storage string Yes None The target storage URL of BR backup data. The format

is: <Schema>://<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--s3.access_key string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--s3.secret_key string No None Sets SecretKey for AccessKey ID.

2.

$./br restore full --meta <ip_address> --storage <storage_path> --name <backup_name>

$./br restore full --meta "192.168.8.129:9559" --storage "local:///home/nebula/backup/" --name BACKUP_2021_12_08_18_38_08

$./br restore full --meta "192.168.8.129:9559" --s3.endpoint "http://192.168.8.129:9000" --storage="s3://br-test/backup/" --s3.access_key=minioadmin --s3.secret_key=minioadmin --

s3.region="default" --name BACKUP_2021_12_08_18_38_08

Restore succeed.

Caution

9.1.4 Use BR to restore data

- 445/927 - 2022 Vesoft Inc.

The parameters are as follows.

Run the following command to clean up temporary files if any error occurred during backup. It will clean the files in cluster and

external storage. You could also use it to clean up old backups files in external storage.

The parameters are as follows.

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

-debug - No None Checks for more log information.

-log string No "br.log" Specifies detailed log path for restoration and backup.

-meta string Yes None The IP address and port of the meta service.

-name string Yes None The name of backup.

--storage string Yes None The target storage URL of BR backup data. The format

is: \<Schema>://\<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--s3.access_key string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--s3.secret_key string No None Sets SecretKey for AccessKey ID.

3.

$./br cleanup --meta <ip_address> --storage <storage_path> --name <backup_name>

Parameter Data

type

Required Default

value

Description

-h,-help - No None Checks help for restoration.

-debug - No None Checks for more log information.

-log string No "br.log" Specifies detailed log path for restoration and backup.

-meta string Yes None The IP address and port of the meta service.

-name string Yes None The name of backup.

--storage string Yes None The target storage URL of BR backup data. The format

is: \<Schema>://\<PATH>.

Schema: Optional values are local and s3 .

When selecting s3, you need to fill in s3.access_key ,

s3.endpoint , s3.region , and s3.secret_key .

PATH: The path of the storage location.

--s3.access_key string No None Sets AccessKey ID.

--s3.endpoint string No None Sets the S3 endpoint URL, please specify the HTTP or

HTTPS scheme explicitly.

--s3.region string No None Sets the region or location to upload or download the

backup.

--s3.secret_key string No None Sets SecretKey for AccessKey ID.

9.1.4 Use BR to restore data

- 446/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

9.1.4 Use BR to restore data

- 447/927 - 2022 Vesoft Inc.

9.2 Backup and restore data with snapshots

NebulaGraph supports using snapshots to back up and restore data. When data loss or misoperation occurs, the data will be

restored through the snapshot.

9.2.1 Prerequisites

NebulaGraph authentication is disabled by default. In this case, all users can use the snapshot feature.

If authentication is enabled, only the GOD role user can use the snapshot feature. For more information about roles, see Roles

and privileges.

9.2.2 Precautions

To prevent data loss, create a snapshot as soon as the system structure changes, for example, after operations such as ADD HOST ,

DROP HOST , CREATE SPACE , DROP SPACE , and BALANCE are performed.

NebulaGraph cannot automatically delete the invalid files created by a failed snapshot task. You have to manually delete them

by using DROP SNAPSHOT .

Customizing the storage path for snapshots is not supported for now. The default path is /usr/local/nebula/data .

9.2.3 Snapshot form and path

NebulaGraph snapshots are stored in the form of directories with names like SNAPSHOT_2021_03_09_08_43_12 . The suffix

2021_03_09_08_43_12 is generated automatically based on the creation time (UTC).

When a snapshot is created, snapshot directories will be automatically created in the checkpoints directory on the leader Meta

server and each Storage server.

To fast locate the path where the snapshots are stored, you can use the Linux command find . For example:

9.2.4 Create snapshots

Run CREATE SNAPSHOT to create a snapshot for all the graph spaces based on the current time for NebulaGraph. Creating a snapshot

for a specific graph space is not supported yet.

If the creation fails, delete the snapshot and try again.

9.2.5 View snapshots

To view all existing snapshots, run SHOW SNAPSHOTS .

•

•

•

$ find |grep 'SNAPSHOT_2021_03_09_08_43_12'

./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12

./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12/data

./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_09_08_43_12/data/000081.sst

...

Note

nebula> CREATE SNAPSHOT;

nebula> SHOW SNAPSHOTS;

+--------------------------------+---------+------------------+

| Name | Status | Hosts |

+--------------------------------+---------+------------------+

| "SNAPSHOT_2021_03_09_08_43_12" | "VALID" | "127.0.0.1:9779" |

9.2 Backup and restore data with snapshots

- 448/927 - 2022 Vesoft Inc.

The parameters in the return information are described as follows.

9.2.6 Delete snapshots

To delete a snapshot with the given name, run DROP SNAPSHOT .

Example:

9.2.7 Restore data with snapshots

Currently, there is no command to restore data with snapshots. You need to manually copy the snapshot file to the corresponding

folder, or you can make it by using a shell script. The logic implements as follows:

After the snapshot is created, the checkpoints directory is generated in the installation directory of the leader Meta server and all

Storage servers, and saves the created snapshot. Taking this topic as an example, when there are two graph spaces, the snapshots

created are saved in /usr/local/nebula/data/meta/nebula/0/checkpoints , /usr/local/nebula/data/storage/ nebula/3/checkpoints

and /usr/local/nebula/data/storage/nebula/4/checkpoints .

To restore the lost data through snapshots, you can take a snapshot at an appropriate time, copy the folders data and wal in the

corresponding snapshot directory to its parent directory (at the same level with checkpoints) to overwrite the previous data and wal ,

and then restart the cluster.

The data and wal directories of all Meta servers should be overwritten at the same time. Otherwise, the new leader Meta server will use

the latest Meta data after a cluster is restarted.

| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |

+--------------------------------+---------+------------------+

Parameter Description

Name The name of the snapshot directory. The prefix SNAPSHOT indicates that the file is a snapshot file, and the

suffix indicates the time the snapshot was created (UTC).

Status The status of the snapshot. VALID indicates that the creation succeeded, while INVALID indicates that it failed.

Hosts IP addresses and ports of all Storage servers at the time the snapshot was created.

DROP SNAPSHOT <snapshot_name>;

nebula> DROP SNAPSHOT SNAPSHOT_2021_03_09_08_43_12;

nebula> SHOW SNAPSHOTS;

+--------------------------------+---------+------------------+

| Name | Status | Hosts |

+--------------------------------+---------+------------------+

| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |

+--------------------------------+---------+------------------+

1.

$ ls /usr/local/nebula/data/meta/nebula/0/checkpoints/

SNAPSHOT_2021_03_09_09_10_52

$ ls /usr/local/nebula/data/storage/nebula/3/checkpoints/

SNAPSHOT_2021_03_09_09_10_52

$ ls /usr/local/nebula/data/storage/nebula/4/checkpoints/

SNAPSHOT_2021_03_09_09_10_52

2.

Caution

Last update: March 13, 2023

9.2.6 Delete snapshots

- 449/927 - 2022 Vesoft Inc.

10. Synchronization & Migration

10.1 BALANCE syntax

The BALANCE statements support the load balancing operations of the NebulaGraph Storage services. For more information about

storage load balancing and examples for using the BALANCE statements, see Storage load balance.

The BALANCE statements are listed as follows.

For details about how to view, stop, and restart a job, see Job manager and the JOB statements。

Syntax Description

BALANCE DATA Starts a job to balance the distribution of storage partitions in the current graph

space. It returns the job ID.

BALANCE DATA REMOVE <ip:port>

[,<ip>:<port> ...]

Migrate the partitions in the specified storage host to other storage hosts in the

current graph space.

BALANCE LEADER Starts a job to balance the distribution of storage leaders in the current graph space.

It returns the job ID.

Last update: March 13, 2023

10. Synchronization & Migration

- 450/927 - 2022 Vesoft Inc.

10.2 Synchronize between two clusters

NebulaGraph supports data synchronization from a primary cluster to a secondary cluster in almost real-time. It applies to

scenarios such as disaster recovery and load balancing, and helps reduce the risk of data loss and enhance data security.

This feature applies to the Enterprise Edition only.

10.2.1 Synchronization workflow

The synchronization works as follows:

The primary cluster sends any data written into it to the Meta listener or the Storage listener in the form of WALs or snapshots.

The listener sends the data to the drainer in the form of WALs.

The drainer sends the data to the partitions of the secondary cluster through the Meta client or the Storage client.

10.2.2 Applicable Scenarios

Remote disaster recovery: Data synchronization enables cross-data-center or cross-city disaster recovery.

Data migration: The migration can be implemented by synchronizing data and then switching cluster roles, without stopping

the service.

Read/Write splitting: Enable only writing on the primary cluster and only reading on the secondary cluster to lower the system

load, and improve stability and usability.

Enterpriseonly

1.

2.

3.

•

•

•

10.2 Synchronize between two clusters

- 451/927 - 2022 Vesoft Inc.

10.2.3 Precautions

The synchronization is based on graph spaces, i.e., from one graph space in the primary cluster to another in the secondary

cluster.

About the synchronization topology, NebulaGraph:

Supports synchronizing from one primary cluster to one secondary cluster, but not multiple primary clusters to one secondary

cluster.

Supports chained synchronization but not synchronization from one primary cluster to multiple secondary clusters directly. An

example of chained synchronization is from cluster A to cluster B, and then cluster B to cluster C.

The synchronization is implemented asynchronously, but with low latency.

The Meta listener listens to the Meta Service and the Storage listener listens to the Storage Service. Do not mix them up.

One graph space can have one Meta listener and one to multiple Storage listeners. These listeners can work with one to

multiple drainers:

One listener with one drainer.

Multiple listeners with one drainer.

Multiple listeners with multiple drainers.

The machines where the listeners and drainers run must have enough disk space to store the WAL or snapshot files.

If the target graph space in the secondary cluster has data before the synchronization starts, data conflicts or inconsistencies

may happen during the synchronization. It is recommended to keep the target graph space empty.

10.2.4 Prerequisites

Prepare at least two machines to deploy the primary and secondary clusters, the listeners, and the drainer.

The listener and drainer can be deployed in a standalone way, or on the machines hosting the primary and secondary clusters.

The latter way can increase the machine load and decrease the service performance.

Prepare the license file for the NebulaGraph Enterprise Edition.

10.2.5 Test environment

The test environment for the operation example in this topic is as follows:

The primary cluster runs on the machine with the IP address 192.168.10.101. The cluster has one nebula-graphd process, one

nebula-metad process, and one nebula-storaged process.

The secondary cluster runs on the machine with the IP address 192.168.10.102. The cluster has one nebula-graphd process,

one nebula-metad process, and one nebula-storaged process.

The primary and secondary clusters can have different cluster specifications, such as different numbers of machines, service

processes, and data partitions.

The processes for the Meta and Storage listeners run on the machine with the IP address 192.168.10.103.

The process for the drainer runs on the machine with the IP address 192.168.10.104.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Note

•

•

10.2.3 Precautions

- 452/927 - 2022 Vesoft Inc.

10.2.6 Steps

Step 1: Set up the clusters, listeners, and drainer

Install NebulaGraph on all the machines.

For installation instructions, see Install NebulaGraph.

Modify the configuration files on all the machines.

For newly installed services, remove the suffix .default or .production of a configuration template file in the conf directory to make it take

effect.

On the primary and secondary cluster machines, modify nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf . In all three files,

set real IP addresses for local_ip instead of 127.0.0.1 , and set the IP addresses and ports for their own nebula-metad processes as

the meta_server_addrs values. In nebula-graphd.conf , set enable_authorize=true .

On the Meta listener machine, modify nebula-metad-listener.conf . Set the IP addresses and ports of the primary cluster's nebula-

metad processes for meta_server_addrs , and those of the listener process for meta_sync_listener .

On the Storage listener machine, modify nebula-storaged-listener.conf . Set the IP addresses and ports of the primary cluster's

nebula-metad processes for meta_server_addrs .

On the drainer machine, modify nebula-drainerd.conf . Set the IP addresses and ports of the secondary cluster's nebula-metad

processes for meta_server_addrs .

For more information about the configurations, see Configurations.

On the machines of the primary cluster, secondary cluster, and listeners, upload the license files into the share/resources/ directories

in the NebulaGraph installation directories.

Go to the NebulaGraph installation directories on the machines and start the needed services.

On the primary and secondary machines, run sudo scripts/nebula.service start all .

On the Meta listener machine, run sudo bin/nebula-metad --flagfile etc/nebula-metad-listener.conf .

On the Storage listener machine, run sudo bin/nebula-storaged --flagfile etc/nebula-storaged-listener.conf .

On the drainer machine, run sudo scripts/nebula-drainerd.service start .

Log into the primary cluster, add the Storage hosts, and check the status of the listeners.

Log into the secondary cluster, add the Storage hosts, and check the status of the drainer.

1.

2.

Note

•

•

•

•

3.

4.

•

•

•

•

5.

Add the Storage hosts first.

nebula> ADD HOSTS 192.168.10.101:9779;

nebula> SHOW HOSTS STORAGE;

+------------------+------+----------+-----------+--------------+----------------------+

| Host | Port | Status | Role | Git Info Sha | Version |

+------------------+------+----------+-----------+--------------+----------------------+

| "192.168.10.101" | 9779 | "ONLINE" | "STORAGE" | "xxxxxxx" | "ent-3.1.0" |

+------------------+------+----------+-----------+--------------+----------------------+

Check the status of the Storage listener.

nebula> SHOW HOSTS STORAGE LISTENER;

+------------------+------+----------+--------------------+--------------+----------------------+

| Host | Port | Status | Role | Git Info Sha | Version |

+------------------+------+----------+--------------------+--------------+----------------------+

| "192.168.10.103" | 9789 | "ONLINE" | "STORAGE_LISTENER" | "xxxxxxx" | "ent-3.1.0" |

+------------------+------+----------+--------------------+--------------+----------------------+

Check the status of the Meta listener.

nebula> SHOW HOSTS META LISTENER;

+------------------+------+----------+-----------------+--------------+----------------------+

| Host | Port | Status | Role | Git Info Sha | Version |

+------------------+------+----------+-----------------+--------------+----------------------+

| "192.168.10.103" | 9569 | "ONLINE" | "META_LISTENER" | "xxxxxxx" | "ent-3.1.0" |

+------------------+------+----------+-----------------+--------------+----------------------+

6.

nebula> ADD HOSTS 192.168.10.102:9779;

nebula> SHOW HOSTS STORAGE;

+------------------+------+----------+-----------+--------------+----------------------+

| Host | Port | Status | Role | Git Info Sha | Version |

+------------------+------+----------+-----------+--------------+----------------------+

10.2.6 Steps

- 453/927 - 2022 Vesoft Inc.

Step 2: Set up the synchronization

Log into the primary cluster and create a graph space basketballplayer .

Use the graph space basketballplayer and register the drainer service.

Configure the listener service.

Log into the secondary cluster and create graph space replication_basketballplayer .

Use replication_basketballplayer and configure the drainer service.

| "192.168.10.102" | 9779 | "ONLINE" | "STORAGE" | "xxxxxxx" | "ent-3.1.0" |

+------------------+------+----------+-----------+--------------+----------------------+

nebula> SHOW HOSTS DRAINER;

+------------------+------+----------+-----------+--------------+----------------------+

| Host | Port | Status | Role | Git Info Sha | Version |

+------------------+------+----------+-----------+--------------+----------------------+

| "192.168.10.104" | 9889 | "ONLINE" | "DRAINER" | "xxxxxxx" | "ent-3.1.0" |

+------------------+------+----------+-----------+--------------+----------------------+

1.

nebula> CREATE SPACE basketballplayer(partition_num=15, \

 replica_factor=1, \

 vid_type=fixed_string(30));

2.

nebula> USE basketballplayer;

Register the drainer service.

nebula> SIGN IN DRAINER SERVICE(192.168.10.104:9889);

Check if the drainer service is successfully signed in.

nebula> SHOW DRAINER CLIENTS;

+-----------+------------------+------+

| Type | Host | Port |

+-----------+------------------+------+

| "DRAINER" | "192.168.10.104" | 9889 |

+-----------+------------------+------+

3.

replication_basketballplayer is the synchronization target. It will be created in the following steps.

nebula> ADD LISTENER SYNC \

 META 192.168.10.103:9569 \

 STORAGE 192.168.10.103:9789 \

 TO SPACE replication_basketballplayer;

Check the listener status.

nebula> SHOW LISTENER SYNC;

+--------+--------+------------------------+--------------------------------+----------+

| PartId | Type | Host | SpaceName | Status |

+--------+--------+------------------------+--------------------------------+----------+

| 0 | "SYNC" | ""192.168.10.103":9569" | "replication_basketballplayer" | "ONLINE" |

| 1 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 2 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 3 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 4 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 5 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 6 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 7 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 8 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 9 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 10 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 11 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 12 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 13 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 14 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

| 15 | "SYNC" | ""192.168.10.103":9789" | "replication_basketballplayer" | "ONLINE" |

+--------+--------+------------------------+--------------------------------+----------+

4.

nebula> CREATE SPACE replication_basketballplayer(partition_num=15, \

 replica_factor=1, \

 vid_type=fixed_string(30));

5.

nebula> USE replication_basketballplayer;

Configure the drainer service.

nebula> ADD DRAINER 192.168.10.104:9889;

Check the drainer status.

nebula> SHOW DRAINERS;

+-------------------------+----------+

| Host | Status |

+-------------------------+----------+

10.2.6 Steps

- 454/927 - 2022 Vesoft Inc.

Set the target graph space replication_basketballplayer as read-only to avoid data inconsistency.

This step only sets the target graph space, not other graph spaces.

Step 3: Validate the data

Log into the primary cluster, create the schema, and insert data.

Log into the secondary cluster and validate the data.

10.2.7 Stop/Restart data synchronization

The listener continuously sends the WALs to the drainer during data synchronization.

To stop data synchronization, run the stop sync command. The listener stops sending the WALs to the drainer.

To restart data synchronization, run the restart sync command. The listener sends the WALs accumulated during the period when

the synchronization is stopped to the drainer. If the WALs are lost, the listener pulls the snapshot from the primary cluster and

synchronizes data again.

| ""192.168.10.104":9889" | "ONLINE" |

+-------------------------+----------+

6.

Note

Set the working graph space as read-only.

nebula> SET VARIABLES read_only=true;

Check the read_only status of the working graph space.

nebula> GET VARIABLES read_only;

+-------------+--------+-------+

| name | type | value |

+-------------+--------+-------+

| "read_only" | "bool" | true |

+-------------+--------+-------+

1.

nebula> USE basketballplayer;

nebula> CREATE TAG player(name string, age int);

nebula> CREATE EDGE follow(degree int);

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);

nebula> INSERT EDGE follow(degree) VALUES "player101" -> "player100":(95);

2.

nebula> USE replication_basketballplayer;

nebula> SUBMIT JOB STATS;

nebula> SHOW STATS;

+---------+------------+-------+

| Type | Name | Count |

+---------+------------+-------+

| "Tag" | "player" | 2 |

| "Edge" | "follow" | 1 |

| "Space" | "vertices" | 2 |

| "Space" | "edges" | 1 |

+---------+------------+-------+

nebula> FETCH PROP ON player "player100" \

 YIELD properties(vertex);

+-------------------------------+

| properties(VERTEX) |

+-------------------------------+

| {age: 42, name: "Tim Duncan"} |

+-------------------------------+

nebula> GO FROM "player101" OVER follow \

 YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player100" |

+-------------+

10.2.7 Stop/Restart data synchronization

- 455/927 - 2022 Vesoft Inc.

10.2.8 Switch between primary and secondary clusters

To migrate data or implement disaster recovery, manually switch between the primary and secondary clusters.

Before the switching, set up a listener for the new primary cluster, and a drainer for the new secondary cluster. In the following

example, the listener has IP address 192.168.10.105 and drainer 192.168.10.106.

Log into the primary cluster and remove the old drainer and listener.

Set the working graph space as read-only to avoid data inconsistency.

Log into the secondary cluster, disable read-only, and remove the old drainer.

Change the secondary cluster to the new primary cluster.

Log into the old primary cluster and change it to the new secondary cluster.

10.2.9 FAQ

Can the pre-existent data in the primary cluster be synchronized to the secondary cluster?

Yes. After receiving the WAL from the listener, if the drainer finds that the data to be updated does not exist in the secondary

cluster, it starts the synchronization of the complete data set.

Will the pre-existent data in the secondary cluster affect the synchronization?

If the pre-existent data in the secondary cluster is a subset of the data in the primary cluster, the data in the primary and

secondary clusters will eventually become consistent through synchronization. If there is any pre-existent data (not a subset of

the data in the primary cluster) in the secondary cluster before the synchronization, the data may be lost after the

synchronization. It is recommended to use a secondary cluster without data for synchronization.

Will the pre-existent schema information in the secondary cluster affect the synchronization?

The pre-existent schema information must not conflict with the schema of the primary cluster. Otherwise, it will be overwritten,

and related data in the secondary cluster might become invalid.

Should the number of machines, replicas, and partitions in the primary and secondary clusters be the same?

No. The synchronization is based on graph spaces, not other elements such as partitions and replicas. The primary and

secondary clusters do not need to have the exact specifications.

Note

1.

nebula> USE basketballplayer;

nebula> SIGN OUT DRAINER SERVICE;

nebula> REMOVE LISTENER SYNC;

2.

nebula> SET VARIABLES read_only=true;

3.

nebula> USE replication_basketballplayer;

nebula> SET VARIABLES read_only=false;

nebula> REMOVE DRAINER;

4.

nebula> SIGN IN DRAINER SERVICE(192.168.10.106:9889);

nebula> ADD LISTENER SYNC META 192.168.10.105:9569 STORAGE 192.168.10.105:9789 TO SPACE basketballplayer;

nebula> REMOVE DRAINER;

5.

nebula> USE basketballplayer;

Disable read-only for the working graph space, otherwise adding drainer fails.

nebula> SET VARIABLES read_only=false;

nebula> ADD DRAINER 192.168.10.106:9889;

nebula> SET VARIABLES read_only=true;

10.2.8 Switch between primary and secondary clusters

- 456/927 - 2022 Vesoft Inc.

Does altering the schema in the primary cluster affect the synchronization?

Altering the schema may increase the synchronization latency.

The schema data is synchronized through the Meta listener, while the vertex/edge data is through the Storage listener. When

synchronizing the vertex/edge data, the system checks the schema version of the data. If the system finds that the version

number of the schema is greater than that in the secondary cluster, it pauses the vertex/edge data update, and updates the

schema data first.

How to deal with synchronization failures?

Fix the problems in the cluster, and then the synchronization will be automatically restored.

If problems have happened in the primary cluster, the synchronization continues when the problems are fixed and the primary

cluster restarts.

If problems have happened in the secondary cluster, listeners, or drainers, when the problems are fixed, the services that had

the problems will receive the WALs accumulated from its upstream and the synchronization will continue working. If the faulty

machine is replaced with a new one, all the data of the synchronization services on the faulty machine must be copied to the

new machine. Otherwise, the synchronization of the complete data set will start automatically.

How to check the data synchronization status and progress?

There is no tool specially designed to show the real-time status and overall progress of the synchronization for now.

•

•

Last update: March 13, 2023

10.2.9 FAQ

- 457/927 - 2022 Vesoft Inc.

11. Practices

11.1 Compaction

This topic gives some information about compaction.

In NebulaGraph, Compaction is the most important background process and has an important effect on performance.

Compaction reads the data that is written on the hard disk, then re-organizes the data structure and the indexes, and then writes

back to the hard disk. The read performance can increase by times after compaction. Thus, to get high read performance, trigger

compaction (full compaction) manually when writing a large amount of data into Nebula Graph.

Note that compaction leads to long-time hard disk IO. We suggest that users do compaction during off-peak hours (for example, early

morning).

NebulaGraph has two types of compaction : automatic compaction and full compaction .

11.1.1 Automatic compaction

Automatic compaction is automatically triggered when the system reads data, writes data, or the system restarts. The read

performance can increase in a short time. Automatic compaction is enabled by default. But once triggered during peak hours, it

can cause unexpected IO occupancy that has an unwanted effect on the performance.

11.1.2 Full compaction

Full compaction enables large-scale background operations for a graph space such as merging files, deleting the data expired by

TTL. This operation needs to be initiated manually. Use the following statements to enable full compaction :

We recommend you to do the full compaction during off-peak hours because full compaction has a lot of IO operations.

The preceding statement returns the job ID. To show the compaction progress, use the following statement:

Note

Note

nebula> USE <your_graph_space>;

nebula> SUBMIT JOB COMPACT;

nebula> SHOW JOB <job_id>;

11. Practices

- 458/927 - 2022 Vesoft Inc.

11.1.3 Operation suggestions

These are some operation suggestions to keep Nebula Graph performing well.

After data import is done, run SUBMIT JOB COMPACT .

Run SUBMIT JOB COMPACT periodically during off-peak hours (e.g. early morning).

To control the write traffic limitation for compactions , set the following parameter in the nebula-storaged.conf configuration file.

This parameter limits the rate of all writes including normal writes and compaction writes.

11.1.4 FAQ

"Where are the logs related to Compaction stored?"

By default, the logs are stored under the LOG file in the /usr/local/nebula/data/storage/nebula/{1}/data/ directory, or similar to LOG.old.

1625797988509303 . You can find the following content.

If the number of L0 files is large, the read performance will be greatly affected and compaction can be triggered.

"Can I do full compactions for multiple graph spaces at the same time?"

Yes, you can. But the IO is much larger at this time and the efficiency may be affected.

"How much time does it take for full compactions ?"

When rocksdb_rate_limit is set to 20 , you can estimate the full compaction time by dividing the hard disk usage by the

rocksdb_rate_limit . If you do not set the rocksdb_rate_limit value, the empirical value is around 50 MB/s.

"Can I modify --rocksdb_rate_limit dynamically?"

No, you cannot.

"Can I stop a full compaction after it starts?"

No, you cannot. When you start a full compaction, you have to wait till it is done. This is the limitation of RocksDB.

•

•

•

Note

Limit the write rate to 20MB/s.

--rocksdb_rate_limit=20 (in MB/s)

** Compaction Stats [default] **

Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop

--

 L0 2/0 2.46 KB 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.53 0.51 2 0.264 0 0

 Sum 2/0 2.46 KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.53 0.51 2 0.264 0 0

 Int 0/0 0.00 KB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.00 0 0.000 0 0

Last update: March 13, 2023

11.1.3 Operation suggestions

- 459/927 - 2022 Vesoft Inc.

11.2 Storage load balance

You can use the BALANCE statement to balance the distribution of partitions and Raft leaders, or clear some Storage servers for

easy maintenance. For details, see BALANCE.

The BALANCE commands migrate data and balance the distribution of partitions by creating and executing a set of subtasks. DO NOT

stop any machine in the cluster or change its IP address until all the subtasks finish. Otherwise, the follow-up subtasks fail.

11.2.1 Balance partition distribution

Only available for the NebulaGraph Enterprise Edition.

If the current graph space already has a BALANCE DATA job in the FAILED status, you can restore the FAILED job, but cannot start a new

BALANCE DATA job. If the job continues to fail, manually stop it, and then you can start a new one.

The BALANCE DATA commands starts a job to balance the distribution of storage partitions in the current graph space by creating

and executing a set of subtasks.

Danger

Enterpriseonly

Note

11.2 Storage load balance

- 460/927 - 2022 Vesoft Inc.

Examples

After you add new storage hosts into the cluster, no partition is deployed on the new hosts.

Run SHOW HOSTS to check the partition distribution.

Enter the graph space basketballplayer , and execute the command BALANCE DATA to balance the distribution of storage partitions.

The job ID is returned after running BALANCE DATA . Run SHOW JOB <job_id> to check the status of the job.

When all the subtasks succeed, the load balancing process finishes. Run SHOW HOSTS again to make sure the partition distribution is

balanced.

BALANCE DATA does not balance the leader distribution. For more information, see Balance leader distribution.

If any subtask fails, run RECOVER JOB <job_id> to recover the failed jobs. If redoing load balancing does not solve the problem, ask for

help in the NebulaGraph community.

Stop data balancing

To stop a balance job, run STOP JOB <job_id> .

If no balance job is running, an error is returned.

If a balance job is running, Job stopped is returned.

1.

nebual> SHOW HOSTS;

+-----------------+------+-----------+----------+--------------+-----------------------+------------------------+-------------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-----------------+------+-----------+----------+--------------+-----------------------+------------------------+-------------+

| "192.168.8.101" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0-ent" |

| "192.168.8.100" | 9779 | 19669 | "ONLINE" | 15 | "basketballplayer:15" | "basketballplayer:15" | "3.1.0-ent" |

+-----------------+------+-----------+----------+--------------+-----------------------+------------------------+-------------+

2.

nebula> USE basketballplayer;

nebula> BALANCE DATA;

+------------+

| New Job Id |

+------------+

| 2 |

+------------+

3.

nebula> SHOW JOB 2;

+------------------------+--+-------------+---------------------------------+---------------------------------+-------------+

| Job Id(spaceId:partId) | Command(src->dst) | Status | Start Time | Stop Time | Error Code |

+------------------------+--+-------------+---------------------------------+---------------------------------+-------------+

| 2 | "DATA_BALANCE" | "FINISHED" | "2022-04-12T03:41:43.000000000" | "2022-04-12T03:41:53.000000000" | "SUCCEEDED" |

| "2, 1:1" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:53.000000 | "SUCCEEDED" |

| "2, 1:2" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:53.000000 | "SUCCEEDED" |

| "2, 1:3" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:53.000000 | "SUCCEEDED" |

| "2, 1:4" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:53.000000 | "SUCCEEDED" |

| "2, 1:5" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:53.000000 | "SUCCEEDED" |

| "2, 1:6" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:43.000000 | "SUCCEEDED" |

| "2, 1:7" | "192.168.8.100:9779->192.168.8.101:9779" | "SUCCEEDED" | 2022-04-12T03:41:43.000000 | 2022-04-12T03:41:53.000000 | "SUCCEEDED" |

| "Total:7" | "Succeeded:7" | "Failed:0" | "In Progress:0" | "Invalid:0" | "" |

+------------------------+--+-------------+---------------------------------+---------------------------------+-------------+

4.

Note

nebula> SHOW HOSTS;

+-----------------+------+-----------+----------+--------------+----------------------+------------------------+-------------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-----------------+------+-----------+----------+--------------+----------------------+------------------------+-------------+

| "192.168.8.101" | 9779 | 19669 | "ONLINE" | 7 | "basketballplayer:7" | "basketballplayer:7" | "3.1.0-ent" |

| "192.168.8.100" | 9779 | 19669 | "ONLINE" | 8 | "basketballplayer:8" | "basketballplayer:8" | "3.1.0-ent" |

+-----------------+------+-----------+----------+--------------+----------------------+------------------------+-------------+

•

•

11.2.1 Balance partition distribution

- 461/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/

STOP JOB <job_id> does not stop the running subtasks but cancels all follow-up subtasks. The status of follow-up subtasks is set to

INVALID . The status of ongoing subtasks is set to SUCCEEDED or FAILED based on the result. You can run the SHOW JOB <job_id> command to

check the stopped job status.

Once all the subtasks are finished or stopped, you can run RECOVER JOB <job_id> again to balance the partitions again, the subtasks

continue to be executed in the original state.

Restore a balance job

To restore a balance job in the FAILED or STOPPED status, run RECOVER JOB <job_id> .

For a STOPPED BALANCE DATA job, NebulaGraph detects whether the same type of FAILED jobs or FINISHED jobs have been created since the

start time of the job. If so, the STOPPED job cannot be restored. For example, if chronologically there are STOPPED job1, FINISHED

job2, and STOPPED Job3, only job3 can be restored, and job1 cannot.

Migrate partition

To migrate specified partitions and scale in the cluster, you can run BALANCE DATA REMOVE <ip:port> [,<ip>:<port> ...] .

For example, to migrate the partitions in server 192.168.8.100:9779 , the command as following:

This command migrates partitions to other storage hosts but does not delete the current storage host from the cluster. To delete the

Storage hosts from cluster, see Manage Storage hosts.

11.2.2 Balance leader distribution

To balance the raft leaders, run BALANCE LEADER .

Example

Run SHOW HOSTS to check the balance result.

Note

Note

nebula> BALANCE DATA REMOVE 192.168.8.100:9779;

nebula> SHOW HOSTS;

+-----------------+------+-----------+----------+--------------+-----------------------+------------------------+-------------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+-----------------+------+-----------+----------+--------------+-----------------------+------------------------+-------------+

| "192.168.8.101" | 9779 | 19669 | "ONLINE" | 15 | "basketballplayer:15" | "basketballplayer:15" | "3.1.0-ent" |

| "192.168.8.100" | 9779 | 19669 | "ONLINE" | 0 | "No valid partition" | "No valid partition" | "3.1.0-ent" |

+-----------------+------+-----------+----------+--------------+-----------------------+------------------------+-------------+

Note

nebula> BALANCE LEADER;

nebula> SHOW HOSTS;

+------------------+------+-----------+----------+--------------+-----------------------------------+------------------------+---------+

| Host | Port | HTTP port | Status | Leader count | Leader distribution | Partition distribution | Version |

+------------------+------+-----------+----------+--------------+-----------------------------------+------------------------+---------+

| "192.168.10.100" | 9779 | 19669 | "ONLINE" | 4 | "basketballplayer:3" | "basketballplayer:8" | "3.1.0" |

| "192.168.10.101" | 9779 | 19669 | "ONLINE" | 8 | "basketballplayer:3" | "basketballplayer:8" | "3.1.0" |

| "192.168.10.102" | 9779 | 19669 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:8" | "3.1.0" |

| "192.168.10.103" | 9779 | 19669 | "ONLINE" | 0 | "basketballplayer:2" | "basketballplayer:7" | "3.1.0" |

| "192.168.10.104" | 9779 | 19669 | "ONLINE" | 0 | "basketballplayer:2" | "basketballplayer:7" | "3.1.0" |

| "192.168.10.105" | 9779 | 19669 | "ONLINE" | 0 | "basketballplayer:2" | "basketballplayer:7" | "3.1.0" |

+------------------+------+-----------+----------+--------------+-----------------------------------+------------------------+---------+

11.2.2 Balance leader distribution

- 462/927 - 2022 Vesoft Inc.

In NebulaGraph 3.1.0, switching leaders will cause a large number of short-term request errors (Storage Error E_RPC_FAILURE). For

solutions, see FAQ.

Caution

Last update: March 13, 2023

11.2.2 Balance leader distribution

- 463/927 - 2022 Vesoft Inc.

11.3 Graph data modeling suggestions

This topic provides general suggestions for modeling data in NebulaGraph.

The following suggestions may not apply to some special scenarios. In these cases, find help in the NebulaGraph community.

11.3.1 Model for performance

There is no perfect method to model in Nebula Graph. Graph modeling depends on the questions that you want to know from the

data. Your data drives your graph model. Graph data modeling is intuitive and convenient. Create your data model based on your

business model. Test your model and gradually optimize it to fit your business. To get better performance, you can change or re-

design your model multiple times.

Design and evaluate the most important queries

Usually, various types of queries are validated in test scenarios to assess the overall capabilities of the system. However, in most

production scenarios, there are not many types of frequently used queries. You can optimize the data model based on key queries

selected according to the Pareto (80/20) principle.

Full-graph scanning avoidance

Graph traversal can be performed after one or more vertices/edges are located through property indexes or VIDs. But for some

query patterns, such as subgraph and path query patterns, the source vertex or edge of the traversal cannot be located through

property indexes or VIDs. These queries find all the subgraphs that satisfy the query pattern by scanning the whole graph space

which will have poor query performance. NebulaGraph does not implement indexing for the graph structures of subgraphs or

paths.

No predefined bonds between Tags and Edge types

Define the bonds between Tags and Edge types in the application, not NebulaGraph. There are no statements that could get the

bonds between Tags and Edge types.

Tags/Edge types predefine a set of properties

While creating Tags or Edge types, you need to define a set of properties. Properties are part of the NebulaGraph Schema.

Control changes in the business model and the data model

Changes here refer to changes in business models and data models (meta-information), not changes in the data itself.

Some graph databases are designed to be Schema-free, so their data modeling, including the modeling of the graph topology and

properties, can be very flexible. Properties can be re-modeled to graph topology, and vice versa. Such systems are often

specifically optimized for graph topology access.

NebulaGraph 3.1.0 is a strong-Schema (row storage) system, which means that the business model should not change frequently.

For example, the property Schema should not change. It is similar to avoiding ALTER TABLE in MySQL.

On the contrary, vertices and their edges can be added or deleted at low costs. Thus, the easy-to-change part of the business

model should be transformed to vertices or edges, rather than properties.

For example, in a business model, people have relatively fixed properties such as age, gender, and name. But their contact, place

of visit, trade account, and login device are often changing. The former is suitable for modeling as properties and the latter as

vertices or edges.

Note

11.3 Graph data modeling suggestions

- 464/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/

Set temporary properties through self-loop edges

As a strong Schema system, NebulaGraph does not support List-type properties. And using ALTER TAG costs too much. If you need

to add some temporary properties or List-type properties to a vertex, you can first create an edge type with the required

properties, and then insert one or more edges that direct to the vertex itself. The figure is as follows.

To retrieve temporary properties of vertices, fetch from self-loop edges. For example:

Operations on loops are not encapsulated with any syntactic sugars and you can use them just like those on normal edges.

About dangling edges

A dangling edge is an edge that only connects to a single vertex and only one part of the edge connects to the vertex.

In NebulaGraph 3.1.0, dangling edges may appear in the following two cases.

Insert edges with INSERT EDGE statement before the source vertex or the destination vertex exists.

Delete vertices with DELETE VERTEX statement and the WITH EDGE option is not used. At this time, the system does not delete the

related outgoing and incoming edges of the vertices. There will be dangling edges by default.

Dangling edges may appear in NebulaGraph 3.1.0 as the design allow it to exist. And there is no MERGE statement like

openCypher has. The existence of dangling edges depends entirely on the application level. You can use GO and LOOKUP

statements to find a dangling edge, but cannot use the MATCH statement to find a dangling edge.

Examples:

//Create the edge type and insert the loop property.

nebula> CREATE EDGE IF NOT EXISTS temp(tmp int);

nebula> INSERT EDGE temp(tmp) VALUES "player100"->"player100"@1:(1);

nebula> INSERT EDGE temp(tmp) VALUES "player100"->"player100"@2:(2);

nebula> INSERT EDGE temp(tmp) VALUES "player100"->"player100"@3:(3);

//After the data is inserted, you can query the loop property by general query statements, for example:

nebula> GO FROM "player100" OVER temp YIELD properties(edge).tmp;

+----------------------+

| properties(EDGE).tmp |

+----------------------+

| 1 |

| 2 |

| 3 |

+----------------------+

//If you want the results to be returned in the form of a List, you can use a function, for example:

nebula> MATCH (v1:player)-[e:temp]->() return collect(e.tmp);

+----------------+

| collect(e.tmp) |

+----------------+

| [1, 2, 3] |

+----------------+

1.

2.

// Insert an edge that connects two vertices which do not exist in the graph. The source vertex's ID is '11'. The destination vertex's ID is'13'.

nebula> CREATE EDGE IF NOT EXISTS e1 (name string, age int);

nebula> INSERT EDGE e1 (name, age) VALUES "11"->"13":("n1", 1);

11.3.1 Model for performance

- 465/927 - 2022 Vesoft Inc.

Breadth-first traversal over depth-first traversal

NebulaGraph has lower performance for depth-first traversal based on the Graph topology, and better performance for

breadth-first traversal and obtaining properties. For example, if model A contains properties "name", "age", and "eye color", it

is recommended to create a tag person and add properties name , age , and eye_color to it. If you create a tag eye_color and an

edge type has , and then create an edge to represent the eye color owned by the person, the traversal performance will not be

high.

The performance of finding an edge by an edge property is close to that of finding a vertex by a vertex property. For some

databases, it is recommended to re-model edge properties as those of the intermediate vertices. For example, model the

pattern (src)-[edge {P1, P2}]->(dst) as (src)-[edge1]->(i_node {P1, P2})-[edge2]->(dst) . With NebulaGraph 3.1.0, you can use (src)-[edge

{P1, P2}]->(dst) directly to decrease the depth of the traversal and increase the performance.

Edge directions

To query in the opposite direction of an edge, use the following syntax:

(dst)<-[edge]-(src) or GO FROM dst REVERSELY .

If you do not care about the directions or want to query against both directions, use the following syntax:

(src)-[edge]-(dst) or GO FROM src BIDIRECT .

Therefore, there is no need to insert the same edge redundantly in the reversed direction.

Set tag properties appropriately

Put a group of properties that are on the same level into the same tag. Different groups represent different concepts.

Use indexes correctly

Using property indexes helps find VIDs through properties, but can lead to performance reduction by 90% or even more. Only

use an index when you need to find vertices or edges through their properties.

Design VIDs appropriately

See VID.

// Query using the `GO` statement

nebula> GO FROM "11" over e1 YIELD properties(edge);

+----------------------+

| properties(EDGE) |

+----------------------+

| {age: 1, name: "n1"} |

+----------------------+

// Query using the `LOOKUP` statement

nebula> LOOKUP ON e1 YIELD EDGE AS r;

+---+

| r |

+---+

| [:e2 "11"->"13" @0 {age: 1, name: "n1"}] |

+---+

// Query using the `MATCH` statement

nebula> MATCH ()-[e:e1]->() RETURN e LIMIT 100;

+---+

| e |

+---+

+---+

Empty set (time spent 3153/3573 us)

•

•

11.3.1 Model for performance

- 466/927 - 2022 Vesoft Inc.

Long texts

Do not use long texts to create edge properties. Edge properties are stored twice and long texts lead to greater write

amplification. For how edges properties are stored, see Storage architecture. It is recommended to store long texts in HBase or

Elasticsearch and store its address in NebulaGraph.

11.3.2 Dynamic graphs (sequence graphs) are not supported

In some scenarios, graphs need to have the time information to describe how the structure of the entire graph changes over

time.
1

The Rank field on Edges in NebulaGraph 3.1.0 can be used to store time in int64, but no field on vertices can do this because if

you store the time information as property values, it will be covered by new insertion. Thus NebulaGraph does not support

sequence graphs.

https://blog.twitter.com/engineering/en_us/topics/insights/2021/temporal-graph-networks 1.

Last update: March 13, 2023

11.3.2 Dynamic graphs (sequence graphs) are not supported

- 467/927 - 2022 Vesoft Inc.

11.4 System design suggestions

11.4.1 QPS or low-latency first

NebulaGraph 3.1.0 is good at handling small requests with high concurrency. In such scenarios, the whole graph is huge,

containing maybe trillions of vertices or edges, but the subgraphs accessed by each request are not large (containing millions

of vertices or edges), and the latency of a single request is low. The concurrent number of such requests, i.e., the QPS, can be

huge.

On the other hand, in interactive analysis scenarios, the request concurrency is usually not high, but the subgraphs accessed

by each request are large, with thousands of millions of vertices or edges. To lower the latency of big requests in such

scenarios, you can split big requests into multiple small requests in the application, and concurrently send them to multiple

graphd processes. This can decrease the memory used by each graphd process as well. Besides, you can use Nebula Algorithm

for such scenarios.

11.4.2 Data transmission and optimization

Read/write balance. NebulaGraph fits into OLTP scenarios with balanced read/write, i.e., concurrent write and read. It is not

suitable for OLAP scenarios that usually need to write once and read many times.

Select different write methods. For large batches of data writing, use SST files. For small batches of data writing, use INSERT .

Run COMPACTION and BALANCE jobs to optimize data format and storage distribution at the right time.

NebulaGraph 3.1.0 does not support transactions and isolation in the relational database and is closer to NoSQL.

11.4.3 Query preheating and data preheating

Preheat on the application side:

The Grapd process does not support pre-compiling queries and generating corresponding query plans, nor can it cache

previous query results.

The Storagd process does not support preheating data. Only the LSM-Tree and BloomFilter of RocksDB are loaded into

memory at startup.

Once accessed, vertices and edges are cached respectively in two types of LRU cache of the Storage Service.

•

•

•

•

•

•

•

•

•

Last update: March 13, 2023

11.4 System design suggestions

- 468/927 - 2022 Vesoft Inc.

11.5 Execution plan

NebulaGraph 3.1.0 applies rule-based execution plans. Users cannot change execution plans, pre-compile queries (and

corresponding plan cache), or accelerate queries by specifying indexes.

To view the execution plan and executive summary, see EXPLAIN and PROFILE.

Last update: March 13, 2023

11.5 Execution plan

- 469/927 - 2022 Vesoft Inc.

11.6 Processing super vertices

11.6.1 Principle introduction

In graph theory, a super vertex, also known as a dense vertex, is a vertex with an extremely high number of adjacent edges. The

edges can be outgoing or incoming.

Super vertices are very common because of the power-law distribution. For example, popular leaders in social networks (Internet

celebrities), top stocks in the stock market, Big Four in the banking system, hubs in transportation networks, websites with high

clicking rates on the Internet, and best sellers in E-commerce.

In NebulaGraph 3.1.0, a vertex and its properties form a key-value pair , with its VID and other meta information as the key . Its Out-

Edge Key-Value and In-Edge Key-Value are stored in the same partition in the form of LSM-trees in hard disks and caches.

Therefore, directed traversals from this vertex and directed traversals ending at this vertex both involve either

a large number of sequential IO scans (ideally, after Compaction or a large number of random IO (frequent writes to the vertex and its

ingoing and outgoing edges).

As a rule of thumb, a vertex is considered dense when the number of its edges exceeds 10,000. Some special cases require

additional consideration。

In NebulaGraph 3.1.0, there is not any data structure to store the out/in degree for each vertex. Therefore, there is no direct method

to know whether it is a super vertex or not. You can try to use Spark to count the degrees periodically.

Indexes for duplicate properties

In a property graph, there is another class of cases similar to super vertices: a property has a very high duplication rate, i.e.,

many vertices with the same tag but different VIDs have identical property and property values.

Property indexes in NebulaGraph 3.1.0 are designed to reuse the functionality of RocksDB in the Storage Service, in which case

indexes are modeled as keys with the same prefix . If the lookup of a property fails to hit the cache, it is processed as a random seek

and a sequential prefix scan on the hard disk to find the corresponding VID. After that, the graph is usually traversed from this

vertex, so that another random read and sequential scan for the corresponding key-value of this vertex will be triggered. The

higher the duplication rate, the larger the scan range.

For more information about property indexes, see How indexing works in NebulaGraph.

Usually, special design and processing are required when the number of duplicate property values exceeds 10,000.

Suggested solutions

SOLUTIONS AT THE DATABASE END

Truncation: Only return a certain number (a threshold) of edges, and do not return other edges exceeding this threshold.

Compact: Reorganize the order of data in RocksDB to reduce random reads and increase sequential reads.

Note

1.

2.

11.6 Processing super vertices

- 470/927 - 2022 Vesoft Inc.

https://nebula-graph.io/posts/how-indexing-works-in-nebula-graph/

SOLUTIONS AT THE APPLICATION END

Break up some of the super vertices according to their business significance:

Delete multiple edges and merge them into one.

For example, in the transfer scenario (Account_A)-[TRANSFER]->(Account_B) , each transfer record is modeled as an edge between

account A and account B, then there may be tens of thousands of transfer records between (Account_A) and (Account_B) .

In such scenarios, merge obsolete transfer details on a daily, weekly, or monthly basis. That is, batch-delete old edges and

replace them with a small number of edges representing monthly total and times . And keep the transfer details of the latest

month.

Split an edge into multiple edges of different types.

For example, in the (Airport)<-[DEPART]-(Flight) scenario, the departure of each flight is modeled as an edge between a flight and

an airport. Departures from a big airport might be enormous.

According to different airlines, divide the DEPART edge type into finer edge types, such as DEPART_CEAIR , DEPART_CSAIR , etc. Specify

the departing airline in queries (graph traversal).

Split vertices.

For example, in the loan network (person)-[BORROW]->(bank) , large bank A will have a very large number of loans and borrowers.

In such scenarios, you can split the large vertex A into connected sub-vertices A1, A2, and A3.

A1, A2, and A3 can either be three real branches of bank A, such as Beijing branch, Shanghai branch, and Zhejiang branch, or

three virtual branches set up according to certain rules, such as A1: 1-1000, A2: 1001-10000 and A3: 10000+ according to the number

of loans. In this way, any operation on A is converted into three separate operations on A1, A2, and A3.

•

•

•

(Person1)-[BORROW]->(BankA1), (Person2)-[BORROW]->(BankA2), (Person2)-[BORROW]->(BankA3);

(BankA1)-[BELONGS_TO]->(BankA), (BankA2)-[BELONGS_TO]->(BankA), (BankA3)-[BELONGS_TO]->(BankA).

Last update: March 13, 2023

11.6.1 Principle introduction

- 471/927 - 2022 Vesoft Inc.

11.7 Best practices

NebulaGraph is used in a variety of industries. This topic presents a few best practices for using NebulaGraph. For more best

practices, see Blog.

11.7.1 Scenarios

Use cases

User review

Performance

11.7.2 Kernel

NebulaGraph Source Code Explained: Variable-Length Pattern Matching

Adding a Test Case for NebulaGraph

BDD-Based Integration Testing Framework for NebulaGraph: Part Ⅰ

BDD-Based Integration Testing Framework for NebulaGraph: Part II

Understanding Subgraph in NebulaGraph

Full-Text Indexing in NebulaGraph

11.7.3 Ecosystem tool

Validating Import Performance of Nebula Importer

Ecosystem Tools: NebulaGraph Dashboard for Monitoring

Visualizing Graph Data with Nebula Explorer

•

•

•

•

•

•

•

•

•

•

•

•

Last update: March 13, 2023

11.7 Best practices

- 472/927 - 2022 Vesoft Inc.

https://nebula-graph.io/posts/
https://nebula-graph.io/tags/use-cases/
https://nebula-graph.io/tags/user-review/
https://nebula-graph.io/tags/performance/
https://nebula-graph.io/posts/nebula-graph-source-code-reading-06/
https://nebula-graph.io/posts/add-test-case-nebula-graph/
https://nebula-graph.io/posts/bdd-testing-practice/
https://nebula-graph.io/posts/bdd-testing-practice-volume-2/
https://nebula-graph.io/posts/nebula-graph-subgraph-introduction/
https://nebula-graph.io/posts/how-fulltext-index-works/
https://nebula-graph.io/posts/nebula-importer-practice/
https://nebula-graph.io/posts/what-is-nebula-dashboard/
https://nebula-graph.io/posts/what-is-nebula-explorer/

12. Client

12.1 Clients overview

NebulaGraph supports multiple types of clients for users to connect to and manage the NebulaGraph database.

Nebula Console: the native CLI client

Nebula CPP: the NebulaGraph client for C++

Nebula Java: the NebulaGraph client for Java

Nebula Python: the NebulaGraph client for Python

Nebula Go: the NebulaGraph client for Golang

For now, only Nebula Java is thread-safe.

Other clients（such as Nebula PHP, Nebula Node, Nebula .net, Nebula JDBC, NORM - NebulaGraph's Golang ORM, and Graph-Ocean

- NebulaGraph's Java ORM）can also be used to connect to and manage NebulaGraph, but there is no uptime guarantee.

•

•

•

•

•

Note

Caution

Last update: March 13, 2023

12. Client

- 473/927 - 2022 Vesoft Inc.

https://github.com/nebula-contrib/nebula-php
https://github.com/nebula-contrib/nebula-node
https://github.com/nebula-contrib/nebula-net
https://github.com/nebula-contrib/nebula-jdbc
https://github.com/zhihu/norm
https://github.com/nebula-contrib/graph-ocean
https://github.com/nebula-contrib/graph-ocean

12.2 Nebula Console

Nebula Console is a native CLI client for NebulaGraph. It can be used to connect a NebulaGraph cluster and execute queries. It

also supports special commands to manage parameters, export query results, import test datasets, etc.

12.2.1 Obtain Nebula Console

You can obtain Nebula Console in the following ways:

Download the binary file from the GitHub releases page.

Compile the source code to obtain the binary file. For more information, see Install from source code.

12.2.2 Nebula Console functions

Connect to NebulaGraph

To connect to NebulaGraph with the nebula-console file, use the following syntax:

path_of_console indicates the storage path of the Nebula Console binary file.

Parameter descriptions are as follows:

For information on more parameters, see the project repository.

For example, to connect to the Graph Service deployed on 192.168.10.8, run the following command:

•

•

<path_of_console> -addr <ip> -port <port> -u <username> -p <password>

Parameter Description

-h/-help Shows the help menu.

-addr/-address Sets the IP address of the Graph service. The default address is 127.0.0.1.

-P/-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your NebulaGraph account. Before enabling authentication, you can use any

existing username. The default username is root .

-p/-password Sets the password of your NebulaGraph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection

succeeds. The result will be returned and the connection stops then.

-enable_ssl Enables SSL encryption when connecting to NebulaGraph.

-ssl_root_ca_path Sets the storage path of the certification authority file.

-ssl_cert_path Sets the storage path of the certificate file.

-

ssl_private_key_path

Sets the storage path of the private key file.

./nebula-console -addr 192.168.10.8 -port 9669 -u root -p thisisapassword

12.2 Nebula Console

- 474/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/releases
https://github.com/vesoft-inc/nebula-console#from-source-code
https://github.com/vesoft-inc/nebula-console/tree/v3.0.0

Manage parameters

You can save parameters for parameterized queries.

Setting a parameter as a VID in a query is not supported.

Parameters are not supported in SAMPLE clauses.

Parameters are deleted when their sessions are released.

The command to save a parameter is as follows:

The example is as follows:

The command to view the saved parameters is as follows:

The command to view the specified parameters is as follows:

The command to delete a specified parameter is as follows:

Export query results

Export query results, which can be saved as a CSV file or DOT file.

Note

•

•

•

•

nebula> :param <param_name> => <param_value>;

nebula> :param p1 => "Tim Duncan";

nebula> MATCH (v:player{name:$p1})-[:follow]->(n) RETURN v,n;

+--+---+

| v | n |

+--+---+

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("player125" :player{age: 41, name: "Manu Ginobili"}) |

| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("player101" :player{age: 36, name: "Tony Parker"}) |

+--+---+

nebula> :param p2 => {"a":3,"b":false,"c":"Tim Duncan"};

nebula> RETURN $p2.b AS b;

+-------+

| b |

+-------+

| false |

+-------+

•

nebula> :params;

•

nebula> :params <param_name>;

•

nebula> :param <param_name> =>;

12.2.2 Nebula Console functions

- 475/927 - 2022 Vesoft Inc.

The exported file is stored in the working directory, i.e., what the linux command pwd shows.

This command only works for the next query statement.

You can copy the contents of the DOT file and paste them in GraphvizOnline to generate a visualized execution plan.

The command to export a csv file is as follows:

The command to export a DOT file is as follows:

The example is as follows:

Import a testing dataset

The testing dataset is named basketballplayer . To view details about the schema and data, use the corresponding SHOW command.

The command to import a testing dataset is as follows:

Run a command multiple times

To run a command multiple times, use the following command:

The example is as follows:

Note

•

•

•

•

nebula> :CSV <file_name.csv>;

•

nebula> :dot <file_name.dot>

nebula> :dot a.dot

nebula> PROFILE FORMAT="dot" GO FROM "player100" OVER follow;

nebula> :play basketballplayer

nebula> :repeat N

nebula> :repeat 3

nebula> GO FROM "player100" OVER follow YIELD dst(edge);

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

Got 2 rows (time spent 2602/3214 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

Got 2 rows (time spent 583/849 us)

Fri, 20 Aug 2021 06:36:05 UTC

+-------------+

| dst(EDGE) |

+-------------+

| "player101" |

| "player125" |

+-------------+

Got 2 rows (time spent 496/671 us)

Fri, 20 Aug 2021 06:36:05 UTC

Executed 3 times, (total time spent 3681/4734 us), (average time spent 1227/1578 us)

12.2.2 Nebula Console functions

- 476/927 - 2022 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

Sleep

This command will make Nebula Console sleep for N seconds. The schema is altered in an async way and takes effect in the next

heartbeat cycle. Therefore, this command is usually used when altering schema. The command is as follows:

Disconnect Nebula Console from NebulaGraph

You can use :EXIT or :QUIT to disconnect from NebulaGraph. For convenience, Nebula Console supports using these commands in

lower case without the colon (":"), such as quit .

The example is as follows:

nebula> :sleep N

nebula> :QUIT

Bye root!

Last update: March 13, 2023

12.2.2 Nebula Console functions

- 477/927 - 2022 Vesoft Inc.

12.3 Nebula CPP

Nebula CPP is a C++ client for connecting to and managing the NebulaGraph database.

12.3.1 Limitations

You have installed C++ and GCC 4.8 or later versions.

12.3.2 Compatibility with NebulaGraph

12.3.3 Install Nebula CPP

This document describes how to install Nebula CPP with the source code.

Prerequisites

You have prepared the correct resources.

You have installed C++ and GCC version is: {10.1.0 | 9.3.0 | 9.2.0 | 9.1.0 | 8.3.0 | 7.5.0 | 7.1.0}. For details, see the

gcc_preset_versions parameter.

Steps

Clone the Nebula CPP source code to the host.

(Recommended) To install a specific version of Nebula CPP, use the Git option --branch to specify the branch. For example, to install

v3.0.2, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

Change the working directory to nebula-cpp .

Create a directory named build and change the working directory to it.

Generate the makefile file with CMake.

NebulaGraph version Nebula CPP version

3.1.0 3.0.2

2.6.x 2.5.0

2.5.x 2.5.0

2.0.x 2.0.0

•

•

1.

•

$ git clone --branch v3.0.2 https://github.com/vesoft-inc/nebula-cpp.git

•

$ git clone https://github.com/vesoft-inc/nebula-cpp.git

2.

$ cd nebula-cpp

3.

$ mkdir build && cd build

4.

12.3 Nebula CPP

- 478/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/tree/v3.0.2
https://github.com/vesoft-inc/nebula-cpp/blob/v3.0.2/third-party/install-third-party.sh
https://github.com/vesoft-inc/nebula-cpp/blob/v3.0.2/third-party/install-third-party.sh

The default installation path is /usr/local/nebula . To modify it, add the -DCMAKE_INSTALL_PREFIX=<installation_path> option while running the

following command.

If G++ does not support C++ 11, add the option -DDISABLE_CXX11_ABI=ON .

Compile Nebula CPP.

To speed up the compiling, use the -j option to set a concurrent number N . It should be \(\min(\text{CPU}core number,

\frac{the_memory_size(GB)}{2})\).

Install Nebula CPP.

Update the dynamic link library.

12.3.4 Use Nebula CPP

Compile the CPP file to an executable file, then you can use it. The following steps take using SessionExample.cpp for example.

Use the example code to create the SessionExample.cpp file.

Run the following command to compile the file.

library_folder_path : The storage path of the NebulaGraph dynamic libraries. The default path is /usr/local/nebula/lib64 .

include_folder_path : The storage of the NebulaGraph header files. The default path is /usr/local/nebula/include .

For example:

12.3.5 Core of the example code

This sub-section shows the core of the example code. For all the code, see SessionExample.

Note

$ cmake -DCMAKE_BUILD_TYPE=Release ..

Note

5.

$ make -j{N}

6.

$ sudo make install

7.

$ sudo ldconfig

1.

2.

$ LIBRARY_PATH=<library_folder_path>:$LIBRARY_PATH g++ -std=c++11 SessionExample.cpp -I<include_folder_path> -lnebula_graph_client -o session_example

•

•

$ LIBRARY_PATH=/usr/local/nebula/lib64:$LIBRARY_PATH g++ -std=c++11 SessionExample.cpp -I/usr/local/nebula/include -lnebula_graph_client -o session_example

Last update: March 13, 2023

12.3.4 Use Nebula CPP

- 479/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/blob/master/examples/SessionExample.cpp
https://github.com/vesoft-inc/nebula-cpp/blob/v3.0.2/examples/SessionExample.cpp

12.4 Nebula Java

Nebula Java is a Java client for connecting to and managing the NebulaGraph database.

12.4.1 Prerequisites

You have installed Java 8.0 or later versions.

12.4.2 Compatibility with NebulaGraph

12.4.3 Download Nebula Java

(Recommended) To install a specific version of Nebula Java, use the Git option --branch to specify the branch. For example, to

install v3.0.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

12.4.4 Use Nebula Java

We recommend that each thread uses one session. If multiple threads use the same session, the performance will be reduced.

When importing a Maven project with tools such as IDEA, set the following dependency in pom.xml .

3.0.0-SNAPSHOT indicates the daily development version that may have unknown issues. We recommend that you replace 3.0.0-SNAPSHOT

with a released version number to use a table version.

If you cannot download the dependency for the daily development version, set the following content in pom.xml . Released versions

have no such issue.

NebulaGraph version Nebula Java version

3.1.0 3.0.0

2.6.x 2.6.1

2.0.x 2.0.0

2.0.0-rc1 2.0.0-rc1

•

$ git clone --branch v3.0.0 https://github.com/vesoft-inc/nebula-java.git

•

$ git clone https://github.com/vesoft-inc/nebula-java.git

Note

Note

<dependency>

 <groupId>com.vesoft</groupId>

 <artifactId>client</artifactId>

 <version>3.0.0-SNAPSHOT</version>

</dependency>

<repositories>

 <repository>

 <id>snapshots</id>

12.4 Nebula Java

- 480/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/tree/v3.0.0

If there is no Maven to manage the project, manually download the JAR file to install Nebula Java.

Core of the example code

This sub-section shows the core of the example code. For all the code, see GraphClientExample.

 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>

 </repository>

</repositories>

Last update: March 13, 2023

12.4.4 Use Nebula Java

- 481/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/
https://github.com/vesoft-inc/nebula-java/blob/v3.0.0/examples/src/main/java/com/vesoft/nebula/examples/GraphClientExample.java

12.5 Nebula Python

Nebula Python is a Python client for connecting to and managing the NebulaGraph database.

12.5.1 Prerequisites

You have installed Python 3.6 or later versions.

12.5.2 Compatibility with NebulaGraph

12.5.3 Install Nebula Python

Install Nebula Python with pip

Install Nebula Python from the source code

Clone the Nebula Python source code to the host.

(Recommended) To install a specific version of Nebula Python, use the Git option --branch to specify the branch. For example, to

install v3.1.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

Change the working directory to nebula-python.

Run the following command to install Nebula Python.

12.5.4 Core of the example code

This section shows the core of the example code. For all the code, see Example.

NebulaGraph version Nebula Python version

3.1.0 3.1.0

2.6.x 2.6.0

2.0.x 2.0.0

2.0.0-rc1 2.0.0rc1

$ pip install nebula3-python==<version>

1.

•

$ git clone --branch release-3.1 https://github.com/vesoft-inc/nebula-python.git

•

$ git clone https://github.com/vesoft-inc/nebula-python.git

2.

$ cd nebula-python

3.

$ pip install .

Last update: March 13, 2023

12.5 Nebula Python

- 482/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-python
https://github.com/vesoft-inc/nebula-python/tree/release-3.1/example

12.6 Nebula Go

Nebula Go is a Golang client for connecting to and managing the NebulaGraph database.

12.6.1 Prerequisites

You have installed Golang 1.13 or later versions.

12.6.2 Compatibility with NebulaGraph

12.6.3 Download Nebula Go

(Recommended) To install a specific version of Nebula Go, use the Git option --branch to specify the branch. For example, to

install v3.1.0, run the following command:

To install the daily development version, run the following command to download the source code from the master branch:

12.6.4 Install or update

Run the following command to install or update Nebula Go:

12.6.5 Core of the example code

This section shows the core of the example code. For all the code, see graph_client_basic_example and

graph_client_goroutines_example.

NebulaGraph version Nebula Go version

3.1.0 3.1.0

2.6.x 2.6.0

2.0.x 2.0.0-GA

•

$ git clone --branch release-3.1 https://github.com/vesoft-inc/nebula-go.git

•

$ git clone https://github.com/vesoft-inc/nebula-go.git

$ go get -u -v github.com/vesoft-inc/nebula-go/v3@v3.1.0

Last update: March 13, 2023

12.6 Nebula Go

- 483/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-go/tree/release-3.1
https://github.com/vesoft-inc/nebula-go/blob/release-3.1/basic_example/graph_client_basic_example.go
https://github.com/vesoft-inc/nebula-go/blob/release-3.1/gorountines_example/graph_client_goroutines_example.go

13. NebulaGraph Cloud

13.1 What is NebulaGraph Cloud

NebulaGraph Cloud (Cloud for short) is a set of on-cloud services that integrate NebulaGraph databases and data services,

supporting one-click deployment on several cloud platforms. You can create a graph database within minutes, and quickly expand

computing and storage.

13.1.1 Product features

NebulaGraph Cloud provides a pay-as-you-go and pay-on-demand subscription. You can create or stop NebulaGraph instances

at any time according to your own business development, which shows the full flexibility of cloud services.

Integrated visualized database management tools Nebula Dashboard and Nebula Explorer. You can use them to import graph

datasets, execute nGQL statements, explore graph data, monitor data, etc. Even without any experience in graph database

operations, you can quickly become a graph expert.

You can connect to the database on cloud using a client such as Nebula Console without first accessing the cloud platform.

Access control. You can add database users with different role privileges to the specified graph space to ensure business data

security.

Official support. You can quickly create tickets for technical support and consult problems you have encountered during use.

13.1.2 Product advantages

Flexible and efficient: You can quickly build a NebulaGraph database without purchasing physical servers, storage devices,

computing, or network components. It only takes 5-10 minutes to prepare a complete environment for use.

High availability: NebulaGraph clusters use Raft to implement data redundancy backup with multiple server rooms in the same

city to ensure the reliability of data, and the high availability of the cloud computing infrastructure and cloud servers.

Easy to use: Nebula Cloud provides online management of NebulaGraph clusters on the Web, and also provides corresponding

visualized tools of NebulaGraph to help users get started quickly.

•

•

•

•

•

•

•

•

Last update: September 16, 2022

13. NebulaGraph Cloud

- 484/927 - 2022 Vesoft Inc.

13.2 NebulaGraph on AWS

13.2.1 NebulaGraph on AWS overview

NebulaGraph offers a secure, reliable cloud service powered by AWS EC2. You can use the CloudFormation template to quickly

deploy a NebulaGraph Enterprise service cluster, including the network, compute, storage, and visualization services.

Costs

You are responsible for the AWS resources used to deploy and run the NebulaGraph service cluster.

When creating a NebulaGraph service cluster, some of the settings, such as the instance type, storage media type, and disk

space, affect the cost of deployment. The bottom of the creation page displays the estimated cost.

After you deploy the NebulaGraph service cluster, you can create AWS Cost and Usage Reports to deliver billing metrics to an

Amazon Simple Storage Service (Amazon S3) bucket in your account. These reports provide cost estimates based on usage

throughout each month and aggregate the data at the end of the month.

In addition to AWS resources, you need valid licenses to keep the NebulaGraph services running. Applying for the licenses

requires certain costs.

Licenses

NebulaGraph on AWS applies the NebulaGraph Enterprise services with 3-day licenses by default. After the licenses expire, the

services become unavailable but the data remains in the AWS resources.

For how to apply for and configure licenses, see License.

Core version

The supported NebulaGraph Enterprise core version is 3.1.2.

Last update: September 16, 2022

13.2 NebulaGraph on AWS

- 485/927 - 2022 Vesoft Inc.

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-reports-gettingstarted-turnonreports.html

13.2.2 Deployment Architecture

Creating a NebulaGraph service cluster using the CloudFormation template allows you to customize cluster components as

needed. This topic describes the recommended deployment architecture for a production environment.

A typical cluster architecture in a production environment is shown in the following figure.

The preceding architecture sets up the following:

A highly available architecture that spans three Availability Zones.*

A virtual private cloud (VPC) configured with public and private subnets.*

A Network Load Balancer for balancing incoming traffic across multiple hosts.*

In the public subnets:

Managed network address translation (NAT) gateways to allow outbound internet access for resources in the private subnets.*

A Linux bastion host to allow inbound Secure Shell (SSH) access to Amazon Elastic Compute Cloud (Amazon EC2) instances in

public and private subnets.*

A NebulaGraph Explorer server for visualized exploration of NebulaGraph data.

•

•

•

•

•

•

13.2.2 Deployment Architecture

- 486/927 - 2022 Vesoft Inc.

In the private subnets:

A Linux workbench host, where NebulaGraph ecosystem tools such as Explorer, Dashboard, Analytics, and Exchange are

deployed together.

NebulaGraph Graph Service supported by graphd processes. Each graphd process runs in one subnet.

NebulaGraph Storage Service supported by storaged processes. Each storaged process runs in one subnet.

An Amazon Elastic Block Store (Amazon EBS) volume in each subnet.*

The template that deploys NebulaGraph into an existing VPC skips the components marked by asterisks and prompts you for your

existing VPC configuration.

•

•

•

•

Note

Last update: December 14, 2022

13.2.2 Deployment Architecture

- 487/927 - 2022 Vesoft Inc.

13.2.3 Planning the deployment

Before you start deploying service clusters of NebulaGraph on AWS, you need to have some knowledge about AWS and

NebulaGraph, get your AWS accounts ready, confirm your resources, and choose your deployment option.

Specialized knowledge

The deployment requires a moderate level of familiarity with AWS services, especially EC2, VPC, and EBS. If you're new to AWS,

see Getting Started Resource Center and AWS Training and Certification. These sites provide materials for learning how to

design, deploy, and operate your infrastructure and applications on the AWS Cloud.

Account and permission

If you don't have an AWS account, create one at https://aws.amazon.com by following the on-screen instructions.

The account used for the deployment must have the permissions for the necessary AWS resources.

Resource quotas

Before the deployment starts, check the resource quota in the Service Quotas console to make sure that there are sufficient

resources for the deployment. The required resources for deploying a NebulaGraph service cluster are as follows:

The number of EC2 instances used depends on the actual deployment architecture.

If the required resource quota is insufficient, request service quota increases first.

AWS Regions

For the deployment in a Region other than the default Region us-east-1, you are recommended to confirm that the target Region

supports all the AWS services required for the deployment on the AWS Regional Services page.

If you get an error such as “Unrecognized resource type,” the deployment is not supported in that Region.

EC2 key pairs

Make sure that at least one Amazon EC2 key pair exists in your AWS account in the Region where you plan to deploy the cluster.

Note the key-pair name because you will use it during deployment. To create a key pair, see Amazon EC2 key pairs and Linux

instances.

For testing or proof-of-concept purposes, it is recommended to create a new key pair instead of using one that has already been

used by a production instance.

Resource This deployment uses

VPCs 1

Elastic IP addresses 1 (bastion)

Security groups 2

IAM roles 2

Network Load Balancers 1

EC2 instances (bastion host) 1

EC2 instances (workbench) 1

EC2 instances (graphd) 1 to 3

EC2 instances (storaged) 1 or 3 or 5 or 7

13.2.3 Planning the deployment

- 488/927 - 2022 Vesoft Inc.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/training/
https://us-east-1.console.aws.amazon.com/servicequotas/home/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

Deployment options

AWS CloudFormation supports two deployment options:

Deploy NebulaGraph into a new VPC. This option builds a new AWS environment consisting of the VPC, subnets, NAT

gateways, security groups, bastion hosts, and other infrastructure components. It then deploys NebulaGraph into this new

VPC.

Deploy NebulaGraph into an existing VPC. To choose this option, make sure that the VPC has two private subnets in different

Availability Zones for the instances and that the subnets aren't shared.

Before the deployment, you have to choose an option, so that you can specify the template accordingly during the deployment.

•

•

Last update: December 14, 2022

13.2.3 Planning the deployment

- 489/927 - 2022 Vesoft Inc.

13.2.4 Deployment steps

After finishing the preparation, you can start the deployment. The deployment costs 15 to 20 minutes.

Log into AWS Console.

According to the deployment option that you have chosen, click Deploy NebulaGraph in a new VPC or Deploy NebulaGraph in an

existing VPC to specify the template.

Check the Region on the top-right of the page, and change it if necessary. The default Region is us-east-1.

On the Create stack page, keep the default setting for the template URL, and then choose Next.

On the Specify stack details page, set the Stack name.

Review the parameters for the template. Provide values for the parameters that require input. For all other parameters, review the

default settings and customize them as necessary. When you finish reviewing and customizing the parameters, choose Next.

To connect to the NebulaGraph service cluster from the Internet, set the Permitted IP range to the public IP address of the client

side. It is recommended to connect from the VPC to prevent network security issues.

On the Configure stack options page, you can specify tags (key-value pairs) for resources in your stack and set advanced options.

When you finish, choose Next.

On the Review page, review and confirm the template settings. Under Capabilities, select the two checkboxes to acknowledge

that the template creates IAM resources and might require specific capabilities.

Click Create stack to deploy the stack.

In the Events tab, monitor the Status of the stack. When the status is CREATE_COMPLETE, the NebulaGraph deployment is

ready.

1.

2.

3.

4.

5.

6.

Note

7.

8.

9.

10.

Last update: December 14, 2022

13.2.4 Deployment steps

- 490/927 - 2022 Vesoft Inc.

https://us-east-1.console.aws.amazon.com/console/home
https://fwd.aws/8rkyW?
https://fwd.aws/rBBkY?
https://fwd.aws/rBBkY?
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-add-tags.html

13.2.5 Connect to NebulaGraph on AWS

After deploying the NebulaGraph service cluster, you can view the connection information of all services in the Outputs tab on

the stack details page.

The connection information includes:

The Elastic IP address of the Bastion host.

The web portal link and default login information of the NebulaGraph Dashboard service.

The web portal link of the NebulaGraph Explorer service.

The private subnet IP address and the port number of the Graph service.

For how to connect to NebulaGraph with NebulaGraph Dashboard, see Connect to Dashboard.

For how to connect to NebulaGraph with Nebula Explorer, see Connect to the database.

To connect to NebulaGraph through clients, see the client docs.

•

•

•

•

Last update: December 14, 2022

13.2.5 Connect to NebulaGraph on AWS

- 491/927 - 2022 Vesoft Inc.

13.3 NebulaGraph on Azure

13.3.1 NebulaGraph on Azure overview

NebulaGraph offers a secure, reliable cloud service powered by Azure. You can use the Azure Marketplace to quickly deploy a

NebulaGraph Enterprise service cluster, including the network, compute, storage, and visualization services.

Costs

You are responsible for the Azure resources used to deploy and run the NebulaGraph service cluster.

When creating a NebulaGraph service cluster, some of the settings, such as the virtual machine type, storage media type, and

disk space, affect the cost of deployment.

After you deploy the NebulaGraph service cluster, you can analyze costs and create budgets with Microsoft Cost Management to

understand how your costs accrue, and how to monitor and alert your costs.

In addition to Azure resources, you need valid licenses to keep the NebulaGraph services running. Applying for the licenses

requires certain costs.

Licenses

NebulaGraph on Azure applies the NebulaGraph Enterprise services with 3-day licenses by default. After the licenses expire, the

services become unavailable but the data remains in the Azure resources.

For how to apply for and configure licenses, see License.

Core version

The supported NebulaGraph Enterprise core version is 3.1.2.

Last update: November 21, 2022

13.3 NebulaGraph on Azure

- 492/927 - 2022 Vesoft Inc.

https://learn.microsoft.com/en-us/learn/modules/analyze-costs-create-budgets-azure-cost-management/

13.3.2 Deployment Architecture

Creating a NebulaGraph service cluster in Azure Marketplace allows you to customize cluster components as needed. This topic

describes the recommended deployment architecture for a production environment.

A typical cluster architecture in a production environment is shown in the following figure.

The preceding architecture sets up the following:

An Azure resource group where the Azure resources for deploying the NebulaGraph service cluster are deployed and

managed.

A subnet in an Azure virtual network where the NebulaGraph service cluster is deployed.

NebulaGraph Meta Service, Graph Service, and Storage Service respectively supported by the metad, graphd and storaged

processes. Each process runs in a virtual machine instance.

A NebulaGraph Explorer server for visualized exploration of NebulaGraph data.

A NebulaGraph Dashboard server for monitoring and managing NebulaGraph hosts.

•

•

•

•

•

Last update: November 21, 2022

13.3.2 Deployment Architecture

- 493/927 - 2022 Vesoft Inc.

13.3.3 Planning the deployment

Before you start deploying service clusters of NebulaGraph on Azure, you need to have some knowledge about Azure and

NebulaGraph, get your Azure accounts ready, and prepare your resources.

Specialized knowledge

The deployment requires a moderate level of familiarity with Azure services, especially Resource Group, Virtual Network (VNet),

and virtual machines. If you're new to Azure, see Self-paced learning paths to learn the basics.

Account and permission

If you don't have an Azure account, create an account.

The account used for the deployment must have the permissions for the necessary Azure resources.

Resource quotas

Before the deployment starts, make sure that there are sufficient resource quotas for the deployment. The required resources for

deploying a NebulaGraph service cluster are as follows:

The number of virtual machines used depends on the actual deployment architecture.

If the required resource quota is insufficient, request service quota increases first.

Resource This deployment uses

Virtual Networks 1

Network interfaces Same as the number of virtual machines

Network security groups 3 to 5 (one group for each NebulaGraph service)

Availability sets 3

Virtual machines (NebulaGraph Dashboard hosts) 1

Virtual machines (NebulaGraph Explorer hosts) 1

Virtual machines (graphd hosts) 1 to 10

Virtual machines (metad hosts) 1 or 3

Virtual machines (storaged hosts) 1 to 100

Last update: November 21, 2022

13.3.3 Planning the deployment

- 494/927 - 2022 Vesoft Inc.

https://learn.microsoft.com/en-us/training/azure/#trending-title
https://learn.microsoft.com/en-us/dotnet/azure/create-azure-account
https://learn.microsoft.com/en-us/marketplace/azure-purchasing-invoicing#permission-to-purchase
https://learn.microsoft.com/en-us/azure/quotas/view-quotas

13.3.4 Deployment steps

After finishing the preparation, you can start the deployment. The deployment costs 15 to 20 minutes.

Log into Azure Marketplace.

Search for NebulaGraph Enterprise. When you see the NebulaGraph Enterprise card in the search results, click it to jump to the

product overview page.

Select a plan and click Create.

In the Basics tab, complete the following configuration, and click the Next: Cluster Settings button at the bottom of the page.

Project details

Instance details

In the Cluster Settings tab, complete the following configuration, and click the Next: Nodes Configuration button at the bottom

of the page.

In the Nodes Configuration tab, configure the VM size, Disk type, Disk size, and Number of nodes for the Graph, Meta, and

Storage services, and click the Next: Workbench button at the bottom of the page.

In the Workbench tab, enable or disable the Explorer and Dashboard services according to your needs, select the VM sizes for the

enabled services, and click the Next: Certificates button at the bottom of the page.

In the Certificates tab, configure the SSL/TLS certificates for Explorer and Dashboard if needed, and click the Next: Review +

create button at the bottom of the page.

In the Review + create tab, confirm the cluster configuration and click the Create button and the bottom of the page to start the

deployment.

After clicking the Create button, you are redirected to the Overview page in seconds, where Deployment is in progress is

displayed during the deployment.

Monitor the Overview page until it shows Your deployment is complete.

1.

2.

3.

4.

•

Field Description

Subscription Select a subscription. All resources in an Azure subscription are billed together.

Resource

group

Select a resource group. You can only use resource groups with no existing resources. Click Create new

under the drop-down list box to create a resource group and then select the new resource group.

•

Field Description

Region Select a region for deploying the NebulaGraph Enterprise cluster.

Username Specify a username for accessing the virtual machines in your NebulaGraph cluster.

Authentication

type

Select the Authentication type for accessing the virtual machines. If you select Password, specify and

confirm the password in the following fields. If you select SSH Public Key, set the SSH key information in

the following fields.

5.

Field Description

NebulaGraph version Select the version of the NebulaGraph Enterprise core.

Cluster name Set your NebulaGraph cluster name.

Virtual network Select an Azure virtual network for deploying the NebulaGraph cluster.

NebulaGraph nodes subnet Select a subnet in the virtual network for deploying the NebulaGraph services.

6.

7.

8.

9.

10.

Last update: November 21, 2022

13.3.4 Deployment steps

- 495/927 - 2022 Vesoft Inc.

https://portal.azure.com/?l=en.en-us#blade/Microsoft_Azure_Marketplace/GalleryMenuBlade/selectedMenuItemId/home

13.3.5 Connect and monitor NebulaGraph on Azure

After deploying the NebulaGraph service cluster, you can view the connection information of all services on the Outputs page of

the deployment or in the information of the virtual machines.

For how to connect to NebulaGraph with Nebula Explorer, see Connect to the database.

To connect to NebulaGraph through clients, see the client docs.

You can use Dashboard to monitor your NebulaGraph cluster. See the Dashboard docs for more information.

Last update: November 21, 2022

13.3.5 Connect and monitor NebulaGraph on Azure

- 496/927 - 2022 Vesoft Inc.

14. Nebula Studio

14.1 Change Log

14.1.1 v3.3.2(2022.05.19)

Fix

Fix the rendering bug when a path has only one source vertex.

14.1.2 v3.3.1(2022.05.07)

Fix

Fix the problem that the import log is occasionally empty.

14.1.3 v3.3.0(2022.04.25)

Feature enhancements:

Optimize UI style.

Schema

Support clone graph space.

Support rebuild indexes.

Support statistics for data in graph space.

Import

Support multi-task asynchronous import, you can view progress, logs, etc.

Support quick import from Nebula Importer templates.

Console

Support favorite historical statements.

Support the display of historical statements results.

Add graph exploration to the console.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: May 19, 2022

14. Nebula Studio

- 497/927 - 2022 Vesoft Inc.

14.2 About Nebula Studio

14.2.1 What is Nebula Studio

Nebula Studio (Studio in short) is a browser-based visualization tool to manage NebulaGraph. It provides you with a graphical

user interface to manipulate graph schemas, import data, and run nGQL statements to retrieve data. With Studio, you can

quickly become a graph exploration expert from scratch. You can view the latest source code in the NebulaGraph GitHub

repository, see nebula-studio for details.

You can also try some functions online in Studio.

Released versions

You can deploy Studio using the following methods:

You can deploy Studio with Docker, RPM-based, Tar-based or DEB-based and connect it to NebulaGraph. For more information,

see Deploy Studio.

Helm-based. You can deploy Studio with Helm in the Kubernetes cluster and connect it to NebulaGraph. For more information,

see Helm-based Studio.

The functions of the above four deployment methods are the same and may be restricted when using Studio. For more

information, see Limitations.

Features

Studio can easily manage NebulaGraph data, with the following functions:

On the Schema page, you can use the graphical user interface to create the space, Tag, Edge Type, Index, and view the

statistics on the graph. It helps you quickly get started with NebulaGraph.

On the Import page, you can operate batch import of vertex and edge data with clicks, and view a real-time import log.

On the Console page, you can run nGQL statements and read the results in a human-friendly way.

Scenarios

You can use Studio in one of these scenarios:

You have a dataset, and you want to explore and analyze data in a visualized way. You can use Docker Compose to deploy

NebulaGraph and then use Studio to explore or analyze data in a visualized way.

You are a beginner of nGQL (NebulaGraph Query Language) and you prefer to use a GUI rather than a command-line interface

(CLI) to learn the language.

Authentication

Authentication is not enabled in NebulaGraph by default. Users can log into Studio with the root account and any password.

When NebulaGraph enables authentication, users can only sign into Studio with the specified account. For more information, see

Authentication.

Check updates

Studio is in development. Users can view the latest releases features through Changelog.

Note

•

•

•

•

•

•

•

14.2 About Nebula Studio

- 498/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-studio
https://playground.nebula-graph.io/explorer

To view the Changelog, on the upper-right corner of the page, click the version and then New version.

Last update: March 13, 2023

14.2.1 What is Nebula Studio

- 499/927 - 2022 Vesoft Inc.

14.2.2 Limitations

This topic introduces the limitations of Studio.

NebulaGraph versions

The Studio version is released independently of the NebulaGraph core. The correspondence between the versions of Studio and the

NebulaGraph core, as shown in the table below.

Architecture

For now, Studio v3.x supports x86_64 architecture only.

Upload data

Only CSV files without headers can be uploaded, but no limitations are applied to the size and store period for a single file. The

maximum data volume depends on the storage capacity of your machine.

nGQL statements

On the Console page of Docker-based and RPM-based Studio v3.x, all the nGQL syntaxes except these are supported:

USE <space_name> : You cannot run such a statement on the Console page to choose a graph space. As an alternative, you can click

a graph space name in the drop-down list of Current Graph Space.

You cannot use line breaks (\). As an alternative, you can use the Enter key to split a line.

For more information about the preceding statements, seeUser management

Browser

We recommend that you use the latest version of Chrome to get access to Studio.

Note

NebulaGraph version Studio version

1.x 1.x

2.0 & 2.0.1 2.x

2.5.x 3.0.0

2.6.x 3.1.x

3.0.0 3.2.x

3.1.0 3.3.2

3.0.0 ～ 3.1.0 3.4.0

•

•

Last update: March 13, 2023

14.2.2 Limitations

- 500/927 - 2022 Vesoft Inc.

14.3 Deploy and connect

14.3.1 Deploy Studio

This topic describes how to deploy Studio locally by RPM, DEB, tar package and Docker.

RPM-based Studio

PREREQUISITES

Before you deploy RPM-based Studio, you must confirm that:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

The Linux distribution is CentOS, install lsof .

Before the installation starts, the following ports are not occupied.

INSTALL

Select and download the RPM package according to your needs. It is recommended to select the latest version. Common links are

as follows:

Use sudo rpm -i <rpm_name> to install RPM package.

For example, install Studio 3.3.2, use the following command. The default installation path is /usr/local/nebula-graph-studio .

You can also install it to the specified path using the following command:

When the screen returns the following message, it means that the PRM-based Studio has been successfully started.

When Studio is started, use http://<ip address>:7001 to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

•

•

•

Port Description

7001 Web service provided by Studio.

1.

Installation package Checksum Nebula version

nebula-graph-studio-3.3.2.x86_64.rpm nebula-graph-studio-3.3.2.x86_64.rpm.sha256 3.1.0

2.

$ sudo rpm -i nebula-graph-studio-3.3.2.x86_64.rpm

$ sudo rpm -i nebula-graph-studio-3.3.2.x86_64.rpm --prefix=<path>

Start installing Nebula Studio now...

Nebula Studio has been installed.

Nebula Studio started automatically.

3.

14.3 Deploy and connect

- 501/927 - 2022 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.3.2/nebula-graph-studio-3.3.2.x86_64.rpm
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.3.2/nebula-graph-studio-3.3.2.x86_64.rpm.sha256

UNINSTALL

You can uninstall Studio using the following command:

If these lines are returned, PRM-based Studio has been uninstalled.

EXCEPTION HANDLING

If the automatic start fails during the installation process or you want to manually start or stop the service, use the following

command:

Start the service manually

Stop the service manually

If you encounter an error bind EADDRINUSE 0.0.0.0:7001 when starting the service, you can use the following command to check port

7001 usage.

If the port is occupied and the process on that port cannot be terminated, you can use the following command to change Studio

service port and restart the service.

$ sudo rpm -e nebula-graph-studio-3.3.2.x86_64

Nebula Studio removed, bye~

•

$ bash /usr/local/nebula-graph-studio/scripts/rpm/start.sh

•

$ bash /usr/local/nebula-graph-studio/scripts/rpm/stop.sh

$ lsof -i:7001

//Open the configuration file

$ vi config/config.default.js

//Change the port

web:

task_id_path:

14.3.1 Deploy Studio

- 502/927 - 2022 Vesoft Inc.

DEB-based Studio

PREREQUISITES

Before you deploy DEB-based Studio, you must do a check of these:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

The Linux distribution is Ubuntu.

Before the installation starts, the following ports are not occupied.

The path /usr/lib/systemd/system exists in the system. If not, create it manually.

INSTALL

Select and download the DEB package according to your needs. It is recommended to select the latest version. Common links are

as follows:

Use sudo dpkg -i <deb_name> to install DEB package.

For example, install Studio 3.3.2, use the following command:

When Studio is started, use http://<ip address>:7001 to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

upload_dir:

tasks_dir:

sqlitedb_file_path:

ip:

 port: 7001 // Modify this port number and change it to any

//Restart service

$ systemctl restart nebula-graph-studio.service

•

•

•

Port Description

7001 Web service provided by Studio

•

1.

Installation package Checksum Nebula version

nebula-graph-studio-3.3.2.x86_64.deb nebula-graph-studio-3.3.2.x86_64.deb.sha256 3.1.0

2.

$ sudo dpkg -i nebula-graph-studio-3.3.2.x86_64.deb

3.

14.3.1 Deploy Studio

- 503/927 - 2022 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.3.2/nebula-graph-studio-3.3.2.x86_64.deb
https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.3.2/nebula-graph-studio-3.3.2.x86_64.deb.sha256

UNINSTALL

You can uninstall Studio using the following command:

tar-based Studio

PREREQUISITES

Before you deploy tar-based Studio, you must do a check of these:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

Before the installation starts, the following ports are not occupied.

INSTALL AND DEPLOY

Select and download the tar package according to your needs. It is recommended to select the latest version. Common links are as

follows:

Use tar -xvf to decompress the tar package.

Deploy and start nebula-graph-studio.

$ sudo dpkg -r nebula-graph-studio

•

•

Port Description

7001 Web service provided by Studio

1.

Installation package Studio version

nebula-graph-studio-3.3.2.x86_64.tar.gz 3.3.2

2.

$ tar -xvf nebula-graph-studio-3.3.2.x86_64.tar.gz

3.

$ cd nebula-graph-studio

$./server

14.3.1 Deploy Studio

- 504/927 - 2022 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.3.2/nebula-graph-studio-3.3.2.x86_64.tar.gz

When Studio is started, use http://<ip address>:7001 to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

STOP SERVICE

You can use kill pid to stop the service:

Docker-based Studio

PREREQUISITES

Before you deploy Docker-based Studio, you must do a check of these:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

On the machine where Studio will run, Docker Compose is installed and started. For more information, see Docker Compose

Documentation.

Before the installation starts, the following ports are not occupied.

4.

$ kill $(lsof -t -i :7001) #stop nebula-graph-studio

•

•

•

Port Description

7001 Web service provided by Studio

14.3.1 Deploy Studio

- 505/927 - 2022 Vesoft Inc.

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

PROCEDURE

To deploy and start Docker-based Studio, run the following commands. Here we use NebulaGraph v3.1.0 for demonstration:

14.3.1 Deploy Studio

- 506/927 - 2022 Vesoft Inc.

Download the configuration files for the deployment.

Create the nebula-graph-studio-3.3.2 directory and decompress the installation package to the directory.

Change to the nebula-graph-studio-3.3.2 directory.

Pull the Docker image of Studio.

Build and start Docker-based Studio. In this command, -d is to run the containers in the background.

If these lines are returned, Docker-based Studio v3.x is deployed and started.

When Docker-based Studio is started, use http://<ip address>:7001 to get access to Studio.

Run ifconfig or ipconfig to get the IP address of the machine where Docker-based Studio is running. On the machine running Docker-

based Studio, you can use http://localhost:7001 to get access to Studio.

If you can see the Config Server page on the browser, Docker-based Studio is started successfully.

1.

Installation package NebulaGraph version

nebula-graph-studio-3.3.2.tar.gz 3.1.0

2.

$ mkdir nebula-graph-studio-3.3.2 -zxvf nebula-graph-studio-3.3.2.gz -C nebula-graph-studio-3.3.2

3.

$ cd nebula-graph-studio-3.3.2

4.

$ docker-compose pull

5.

$ docker-compose up -d

Creating docker_web_1 ... done

6.

Note

14.3.1 Deploy Studio

- 507/927 - 2022 Vesoft Inc.

https://oss-cdn.nebula-graph.io/nebula-graph-studio/3.3.2/nebula-graph-studio-3.3.2.tar.gz

Next to do

On the Config Server page, connect Docker-based Studio to NebulaGraph. For more information, see Connect to NebulaGraph.

Last update: March 13, 2023

14.3.1 Deploy Studio

- 508/927 - 2022 Vesoft Inc.

14.3.2 Deploy Studio with Helm

This topic describes how to deploy Studio with Helm.

Prerequisites

Before installing Studio, you need to install the following software and ensure the correct version of the software:

Install

Use Git to clone the source code of Studio to the host.

Make the nebula-studio directory the current working directory.

bash

 $ cd nebula-studio

Assume using release name: my-studio , installed Studio in Helm Chart.

When Studio is started, use http://<node_address>:30070/ to get access to Studio.

If you can see the Config Server page on the browser, Studio is started successfully.

Uninstall

Software Requirement

Kubernetes >= 1.14

Helm >= 3.2.0

1.

$ git clone https://github.com/vesoft-inc/nebula-studio.git

2.

3.

$ helm upgrade --install my-studio --set service.type=NodePort --set service.port=30070 deployment/helm

4.

14.3.2 Deploy Studio with Helm

- 509/927 - 2022 Vesoft Inc.

https://kubernetes.io
https://helm.sh

Next to do

On the Config Server page, connect Docker-based Studio to NebulaGraph. For more information, see Connect to NebulaGraph.

Configuration

 $ helm uninstall my-studio

Parameter Default value Description

replicaCount 0 The number of replicas for Deployment.

image.nebulaStudio.name vesoft/nebula-graph-

studio

The image name of nebula-graph-studio.

image.nebulaStudio.version v3.2.0 The image version of nebula-graph-studio.

service.type ClusterIP The service type, which should be one of 'NodePort',

'ClusterIP', and 'LoadBalancer'.

service.port 7001 The expose port for nebula-graph-studio's web.

service.nodePort 32701 The proxy port for accessing nebula-studio outside kubernetes

cluster.

resources.nebulaStudio {} The resource limits/requests for nebula-studio.

persistent.storageClassName "" The name of storageClass. The default value will be used if not

specified.

persistent.size 5Gi The persistent volume size.

Last update: March 13, 2023

14.3.2 Deploy Studio with Helm

- 510/927 - 2022 Vesoft Inc.

14.3.3 Connect to NebulaGraph

After successfully launching Studio, you need to configure to connect to NebulaGraph. This topic describes how Studio connects

to the NebulaGraph database.

Prerequisites

Before connecting to the NebulaGraph database, you need to confirm the following information:

The NebulaGraph services and Studio are started. For more information, see Deploy Studio.

You have the local IP address and the port used by the Graph service of NebulaGraph. The default port is 9669 .

Run ifconfig or ipconfig on the machine to get the IP address.

You have a NebulaGraph account and its password.

If authentication is enabled in NebulaGraph and different role-based accounts are created, you must use the assigned account to

connect to NebulaGraph. If authentication is disabled, you can use the root and any password to connect to NebulaGraph. For

more information, see NebulaGraph Database Manual.

•

•

Note

•

Note

14.3.3 Connect to NebulaGraph

- 511/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/

Procedure

To connect Studio to NebulaGraph, follow these steps:

14.3.3 Connect to NebulaGraph

- 512/927 - 2022 Vesoft Inc.

On the Config Server page of Studio, configure these fields:

Host: Enter the IP address and the port of the Graph service of NebulaGraph. The valid format is IP:port . The default port is 9669 .

When NebulaGraph and Studio are deployed on the same machine, you must enter the IP address of the machine, but not 127.0.0.1 or

localhost , in the Host field.

Username and Password: Fill in the log in account according to the authentication settings of NebulaGraph.

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and no account information has been created, you can only log in as GOD role and use root and nebula

as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their accounts

and passwords.

After the configuration, click the Connect button.

If you can see the Explore page, Studio is successfully connected to NebulaGraph.

1.

•

Note

•

•

•

•

2.

14.3.3 Connect to NebulaGraph

- 513/927 - 2022 Vesoft Inc.

One session continues for up to 30 minutes. If you do not operate Studio within 30 minutes, the active session will time out and

you must connect to NebulaGraph again.

Next to do

When Studio is successfully connected to NebulaGraph, you can do these operations:

If your account has GOD or ADMIN privilege, you can create a schema on the Console page or on the Schema page, batch

import data on the Import page, and execute nGQL statements on the Console page.

If your account has DBA or USER privilege, you can batch import data on the Import page or execute nGQL statements on the

Console page.

If your account has GUEST privilege, you can retrieve data with nGQL statements on the Console page or explore and analyze

data on the Explore page.

LOG OUT

If you want to reset NebulaGraph, you can log out and reconfigure the database.

When the Studio is still connected to a NebulaGraph database, you can click the user profile picture in the upper right corner,

and choose Log out. If the Config Server page is displayed on the browser, it means that Studio has successfully disconnected

from the NebulaGraph database.

•

•

•

14.3.3 Connect to NebulaGraph

- 514/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

14.3.3 Connect to NebulaGraph

- 515/927 - 2022 Vesoft Inc.

14.4 Quick start

14.4.1 Design a schema

To manipulate graph data in NebulaGraph with Studio, you must have a graph schema. This article introduces how to design a

graph schema for NebulaGraph.

A graph schema for NebulaGraph must have these essential elements:

Tags (namely vertex types) and their properties.

Edge types and their properties.

In this article, you can install the sample data set basketballplayer and use it to explore a pre-designed schema.

This table gives all the essential elements of the schema.

This figure shows the relationship (serve/follow) between a player and a team.

•

•

Element Name Property name

(Data type)

Description

Tag player - name (string)

- age (int)

Represents the player.

Tag team - name (string) Represents the team.

Edge type serve - start_year (int)

- end_year (int)

Represent the players behavior.

This behavior connects the player to the team, and the

direction is from player to team.

Edge type follow - degree (int) Represent the players behavior.

This behavior connects the player to the player, and the

direction is from a player to a player.

14.4 Quick start

- 516/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Last update: March 13, 2023

14.4.1 Design a schema

- 517/927 - 2022 Vesoft Inc.

14.4.2 Create a schema

To batch import data into NebulaGraph, you must have a graph schema. You can create a schema on the Console page or on the

Schema page of Studio.

You can use nebula-console to create a schema. For more information, see NebulaGraph Manual and Get started with NebulaGraph.

Prerequisites

To create a graph schema on Studio, you must do a check of these:

Studio is connected to NebulaGraph.

Your account has the privilege of GOD, ADMIN, or DBA.

The schema is designed.

A graph space is created.

If no graph space exists and your account has the GOD privilege, you can create a graph space on the Console page. For more

information, see CREATE SPACE.

Create a schema with Schema

Create tags. For more information, see Operate tags.

Create edge types. For more information, see Operate edge types.

Create a schema with Console

In the toolbar, click the Console tab.

In the Current Graph Space field, choose a graph space name. In this example, basketballplayer is used.

Note

•

•

•

•

Note

1.

2.

1.

2.

14.4.2 Create a schema

- 518/927 - 2022 Vesoft Inc.

In the input box, enter these statements one by one and click the button Run.

If the preceding statements are executed successfully, the schema is created. You can run the statements as follows to view the

schema.

If the schema is created successfully, in the result window, you can see the definition of the tags and edge types.

Next to do

When a schema is created, you can import data.

3.

// To create a tag named "player", with two property

nebula> CREATE TAG player(name string, age int);

// To create a tag named "team", with one property

nebula> CREATE TAG team(name string);

// To create an edge type named "follow", with one properties

nebula> CREATE EDGE follow(degree int);

// To create an edge type named "serve", with two properties

nebula> CREATE EDGE serve(start_year int, end_year int);

// To list all the tags in the current graph space

nebula> SHOW TAGS;

// To list all the edge types in the current graph space

nebula> SHOW EDGES;

// To view the definition of the tags and edge types

DESCRIBE TAG player;

DESCRIBE TAG team;

DESCRIBE EDGE follow;

DESCRIBE EDGE serve;

Last update: March 13, 2023

14.4.2 Create a schema

- 519/927 - 2022 Vesoft Inc.

14.4.3 Import data

After CSV files of data and a schema are created, you can use the Import page to batch import vertex and edge data into

NebulaGraph for graph exploration and data analysis.

Prerequisites

To batch import data, do a check of these:

Studio is connected to NebulaGraph.

A schema is created.

CSV files meet the demands of the Schema.

Your account has privilege of GOD, ADMIN, DBA, or USER.

Procedure

Before importing data, you need to upload the file first and then create the import task.

•

•

•

•

14.4.3 Import data

- 520/927 - 2022 Vesoft Inc.

Upload files

To upload files, follow these steps:

In the toolbar, click the Import tab.

On the Upload Files page, click the Upload Files button and then choose CSV files. In this example, edge_serve.csv , edge_follow.csv ,

vertex_player.csv , and vertex_team.csv are chosen.

You can choose multiple CSV files at the same time. The CSV file used in this article can be downloaded in the Design a schema.

After uploading, you can click the button in the Operations column to preview the file content, or click the button to

delete the uploaded file.

1.

2.

Note

3.

14.4.3 Import data

- 521/927 - 2022 Vesoft Inc.

/docs-2.0/nebula-studio/quick-start/st-ug-plan-schema.md

Import Data

To batch import data, follow these steps:

14.4.3 Import data

- 522/927 - 2022 Vesoft Inc.

In the toolbar, click the Import tab.

In Import tab, click the Import Data.

On the Import Data page, click + New Import button to complete these operations:

1.

2.

3.

14.4.3 Import data

- 523/927 - 2022 Vesoft Inc.

users can click Import Template to download the example configuration file example.yaml , and upload the configuration file after

configuration. The configuration mode is similar to that of Nebula Importer, but all file paths for configuration files in the template

retain the filename only. And make sure all CSV data files are uploaded before importing the YAML file.

Caution

14.4.3 Import data

- 524/927 - 2022 Vesoft Inc.

Select a graph space.

Fill in the task name.

(Optional) Fill in the batch size.

In the Map Vertices section, click the + Bind Datasource button, select bind source file in the dialog box, and click the Confirm

button, the vertex_player.csv file is chosen.

In the vertices 1 drop-down list, click Select CSV Index, and select the column where vertexID is located in the pop-up dialog

box.

Click the + Add Tag button and click the icon on the right. In the displayed property list, bind the source data for the tag

property. In this example, player is used for the vertex_player.csv file. For the player tag, choose Column 1 for the age property,

and choose Column 2 for the name property.

In the Map Edges section, click the + Bind Datasource button, select bind source file in the dialog box, and click the Confirm

button, the edge_follow.csv file is chosen.

In the vertices 1 drop-down list, click Select Edge Type. In this example, follow is chosen.

Based on the edge type property, select the corresponding data column from the edge_follow.csv file. srcId and dstId are the VIDs of

the source vertex and destination vertex of an edge. In this example, srcId must be set to the VIDs of the player and dstId must be

set to the VIDs of another player. Rank is optional.

•

•

•

•

•

•

•

•

•

14.4.3 Import data

- 525/927 - 2022 Vesoft Inc.

After completing the settings, click the Import button.4.

14.4.3 Import data

- 526/927 - 2022 Vesoft Inc.

You need to enter the password of your Nebula account before importing data.

After importing data, you can view logs, download logs, download configuration files, and delete tasks on the Import Data tab.

5.

6.

Last update: March 13, 2023

14.4.3 Import data

- 527/927 - 2022 Vesoft Inc.

14.4.4 Console

Studio console interface is shown as follows.

14.4.4 Console

- 528/927 - 2022 Vesoft Inc.

The following table lists various functions on the console interface.

number function descriptions

1 toolbar Click the Console tab to enter the console page.

2 select a space Select a space in the Current Graph Space list.

descriptions: Studio does not support running the USE <space_name> statements directly

in the input box.

3 favorites

Click the button to expand the favorites, click one of the statements, and the

input box will automatically enter the statement.

4 history list

Click button representing the statement record. In the statement running record

list, click one of the statements, and the statement will be automatically entered in the

input box. The list provides the record of the last 15 statements.

5 clean input box

Click button to clear the content entered in the input box.

6 run

After inputting the nGQL statement in the input box, click button to indicate the

operation to start running the statement.

7 custom

parameters

display

Click the button to expand the custom parameters for parameterized query. For

details, see Manage parameters.

8 input box

After inputting the nGQL statements, click the button to run the statement. You

can input multiple statements and run them at the same time, separated by ; .

9 statement

running status

After running the nGQL statement, the statement running status is displayed. If the

statement runs successfully, the statement is displayed in green. If the statement fails,

the statement is displayed in red.

10 add to favorites

Click the button to save the statement as a favorite, the button for the favorite

statement is colored in yellow exhibit.

11 export CSV file

or PNG file

After running the nGQL statement to return the result, when the result is in Table

window, click the button to export as a CSV file. Switch to the Graph window

and click the button to save the results as a CSV file or PNG image export.

12 expand/hide

execution results Click the button to hide the result or click button to expand the result.

13 close execution

results Click the button to close the result returned by this nGQL statement.

14 Table window Display the result from running nGQL statement. If the statement returns results, the

window displays the results in a table.

15 Graph window Display the result from running nGQL statement. If the statement returns the

complete vertex-edge result, the window displays the result as a graph . Click the

button on the right to view the overview panel.

Last update: April 21, 2022

14.4.4 Console

- 529/927 - 2022 Vesoft Inc.

14.4.5 Use Schema

Operate graph spaces

When Studio is connected to NebulaGraph, you can create or delete a graph space. You can use the Console page or the

Schema page to do these operations. This article only introduces how to use the Schema page to operate graph spaces in

NebulaGraph.

PREREQUISITES

To operate a graph space on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

Your account has the authority of GOD. It means that:

If the authentication is enabled in NebulaGraph, you can use root and any password to sign in to Studio.

If the authentication is disabled in NebulaGraph, you must use root and its password to sign in to Studio.

CREATE A GRAPH SPACE

In the toolbar, click the Schema tab.

In the Graph Space List page, click Create Space, do these settings:

Name: Specify a name to the new graph space. In this example, basketballplayer is used. The name must be distinct in the database.

Vid Type: The data types of VIDs are restricted to FIXED_STRING(<N>) or INT64 . A graph space can only select one VID type. In this

example, FIXED_STRING(32) is used. For more information, see VID.

Comment: Enter the description for graph space. The maximum length is 256 bytes. By default, there will be no comments on a

space. But in this example, Statistics of basketball players is used.

Optional Parameters: Set the values of partition_num and replica_factor respectively. In this example, these parameters are set to

100 and 1 respectively. For more information, see CREATE SPACE syntax.

In the Equivalent to the following nGQL statement panel, you can see the statement equivalent to the preceding settings.

Confirm the settings and then click the + Create button. If the graph space is created successfully, you can see it on the graph

space list.

•

•

•

•

1.

2.

•

•

•

•

CREATE SPACE basketballplayer (partition_num = 100, replica_factor = 1, vid_type = FIXED_STRING(32)) COMMENT = "Statistics of basketball players"

3.

14.4.5 Use Schema

- 530/927 - 2022 Vesoft Inc.

14.4.5 Use Schema

- 531/927 - 2022 Vesoft Inc.

DELETE A GRAPH SPACE

Deleting the space will delete all the data in it, and the deleted data cannot be restored if it is not backed up.

In the toolbar, click the Schema tab.

In the Graph Space List, find the space you want to be deleted, and click Delete Graph Space in the Operation column.

On the dialog box, confirm the information and then click OK.

NEXT TO DO

After a graph space is created, you can create or edit a schema, including:

Operate tags

Operate edge types

Operate indexes

Danger

1.

2.

3.

•

•

•

Last update: March 13, 2023

14.4.5 Use Schema

- 532/927 - 2022 Vesoft Inc.

Operate tags

After a graph space is created in NebulaGraph, you can create tags. With Studio, you can use the Console page or the Schema

page to create, retrieve, update, or delete tags. This topic introduces how to use the Schema page to operate tags in a graph

space only.

PREREQUISITES

To operate a tag on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

A graph space is created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE A TAG

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab and click the + Create button.

On the Create page, do these settings:

Name: Specify an appropriate name for the tag. In this example, course is specified.

Comment (Optional): Enter the description for tag.

Define Properties (Optional): If necessary, click + Add Property to do these settings:

Enter a property name.

Select a data type.

Select whether to allow null values..

(Optional) Enter the default value.

(Optional) Enter the description.

Set TTL (Time To Live) (Optional): If no index is set for the tag, you can set the TTL configuration: In the upper left corner of the

Set TTL panel, click the check box to expand the panel, and configure TTL_COL and TTL_ DURATION (in seconds). For more information

about both parameters, see TTL configuration.

When the preceding settings are completed, in the Equivalent to the following nGQL statement panel, you can see the nGQL

statement equivalent to these settings.

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

6.

14.4.5 Use Schema

- 533/927 - 2022 Vesoft Inc.

Confirm the settings and then click the + Create button.

When the tag is created successfully, the Define Properties panel shows all its properties on the list.

EDIT A TAG

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab, find a tag and then click the button in the Operations column.

7.

1.

2.

3.

4.

14.4.5 Use Schema

- 534/927 - 2022 Vesoft Inc.

On the Edit page, do these operations:

To edit a Comment: Click Edit on the right of Comment .

To edit a property: On the Define Properties panel, find a property, click Edit, and then change the data type or the default value.

To delete a property: On the Define Properties panel, find a property, click Delete.

To add more properties: On the Define Properties panel, click the Add Property button to add a new property.

To set the TTL configuration: In the upper left corner of the Set TTL panel, click the check box and then set TTL.

To delete the TTL configuration: When the Set TTL panel is expanded, in the upper left corner of the panel, click the check box to

delete the configuration.

To edit the TTL configuration: On the Set TTL panel, click Edit and then change the configuration of TTL_COL and TTL_DURATION (in

seconds).

The problem of coexistence of TTL and index, see [TTL]((../../3.ngql-guide/8.clauses-and-options/ttl-options.md).

DELETE A TAG

Confirm the impact before deleting the tag. The deleted data cannot be restored if it is not backup.

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Tag tab, find an tag and then click the button in the Operations column.

Click OK to confirm delete a tag in the pop-up dialog box.

NEXT TO DO

After the tag is created, you can use the Console page to insert vertex data one by one manually or use the Import page to bulk

import vertex data.

5.

•

•

•

•

•

•

•

Note

Danger

1.

2.

3.

4.

5.

Last update: March 13, 2023

14.4.5 Use Schema

- 535/927 - 2022 Vesoft Inc.

Operate edge types

After a graph space is created in NebulaGraph, you can create edge types. With Studio, you can choose to use the Console page

or the Schema page to create, retrieve, update, or delete edge types. This topic introduces how to use the Schema page to

operate edge types in a graph space only.

PREREQUISITES

To operate an edge type on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

A graph space is created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE AN EDGE TYPE

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Edge Type tab and click the + Create button.

On the Create Edge Type page, do these settings:

Name: Specify an appropriate name for the edge type. In this example, serve is used.

Comment (Optional): Enter the description for edge type.

Define Properties (Optional): If necessary, click + Add Property to do these settings:

Enter a property name.

Select a data type.

Select whether to allow null values..

(Optional) Enter the default value.

(Optional) Enter the description.

Set TTL (Time To Live) (Optional): If no index is set for the edge type, you can set the TTL configuration: In the upper left corner

of the Set TTL panel, click the check box to expand the panel, and configure TTL_COL and TTL_ DURATION (in seconds). For more

information about both parameters, see TTL configuration.

When the preceding settings are completed, in the Equivalent to the following nGQL statement panel, you can see the nGQL

statement equivalent to these settings.

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

6.

14.4.5 Use Schema

- 536/927 - 2022 Vesoft Inc.

Confirm the settings and then click the + Create button.

When the edge type is created successfully, the Define Properties panel shows all its properties on the list.

EDIT AN EDGE TYPE

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Edge Type tab, find an edge type and then click the button in the Operations column.

7.

1.

2.

3.

4.

14.4.5 Use Schema

- 537/927 - 2022 Vesoft Inc.

On the Edit page, do these operations:

To edit a comment: Click Edit on the right of Comment .

To edit a property: On the Define Properties panel, find a property, click Edit, and then change the data type or the default value.

To delete a property: On the Define Properties panel, find a property, click Delete.

To add more properties: On the Define Properties panel, click the Add Property button to add a new property.

To set the TTL configuration: In the upper left corner of the Set TTL panel, click the check box and then set TTL.

To delete the TTL configuration: When the Set TTL panel is expanded, in the upper left corner of the panel, click the check box to

delete the configuration.

To edit the TTL configuration: On the Set TTL panel, click Edit and then change the configuration of TTL_COL and TTL_DURATION (in

seconds).

For information about the coexistence problem of TTL and index, see [TTL]((../../3.ngql-guide/8.clauses-and-options/ttl-options.md).

DELETE AN EDGE TYPE

Confirm the impact before deleting the Edge type. The deleted data cannot be restored if it is not backup.

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Edge Type tab, find an edge type and then click the button in the Operations column.

Click OK to confirm in the pop-up dialog box.

NEXT TO DO

After the edge type is created, you can use the Console page to insert edge data one by one manually or use the Import page to

bulk import edge data.

5.

•

•

•

•

•

•

•

Note

Danger

1.

2.

3.

4.

5.

Last update: March 13, 2023

14.4.5 Use Schema

- 538/927 - 2022 Vesoft Inc.

Operate Indexes

You can create an index for a Tag and/or an Edge type. An index lets traversal start from vertices or edges with the same

property and it can make a query more efficient. With Studio, you can use the Console page or the Schema page to create,

retrieve, and delete indexes. This topic introduces how to use the Schema page to operate an index only.

You can create an index when a Tag or an Edge Type is created. But an index can decrease the write speed during data import. We

recommend that you import data firstly and then create and rebuild an index. For more information, see Index overview.

PREREQUISITES

To operate an index on the Schema page of Studio, you must do a check of these:

Studio is connected to NebulaGraph.

A graph Space, Tags, and Edge Types are created.

Your account has the authority of GOD, ADMIN, or DBA.

CREATE AN INDEX

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab and then click the + Create button.

On the Create page, do these settings:

Index Type: Choose to create an index for a tag or for an edge type. In this example, Edge Type is chosen.

Associated tag name: Choose a tag name or an edge type name. In this example, follow is chosen.

Index Name: Specify a name for the new index. In this example, follow_index is used.

Comment (Optional): Enter the description for index.

Indexed Properties (Optional): Click Add property, and then, in the dialog box, choose a property. If necessary, repeat this step

to choose more properties. You can drag the properties to sort them. In this example, degree is chosen.

The order of the indexed properties has an effect on the result of the LOOKUP statement. For more information, see nGQL Manual.

When the settings are done, the Equivalent to the following nGQL statement panel shows the statement equivalent to the

settings.

Note

•

•

•

1.

2.

3.

4.

5.

•

•

•

•

•

Note

6.

14.4.5 Use Schema

- 539/927 - 2022 Vesoft Inc.

Confirm the settings and then click the + Create button. When an index is created, the index list shows the new index.

VIEW INDEXES

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab, in the upper left corner, choose an index type, Tag or Edge Type.

In the list, find an index and click its row. All its details are shown in the expanded row.

REBUILD INDEXES

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab, in the upper left corner, choose an index type, Tag or Edge Type.

Click the Index tab, find an index and then click the button Rebuild in the Operations column.

For more Information, see REBUILD INDEX.

7.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Note

14.4.5 Use Schema

- 540/927 - 2022 Vesoft Inc.

DELETE AN INDEX

To delete an index on Schema, follow these steps:

In the toolbar, click the Schema tab.

In the Graph Space List page, find a graph space and then click its name or click Schema in the Operations column.

In the Current Graph Space field, confirm the name of the graph space. If necessary, you can choose another name to change the

graph space.

Click the Index tab, find an index and then click the button in the Operations column.

Click OK to confirm in the pop-up dialog box.

1.

2.

3.

4.

5.

Last update: March 13, 2023

14.4.5 Use Schema

- 541/927 - 2022 Vesoft Inc.

14.5 Troubleshooting

14.5.1 Connecting to the database error

Problem description

According to the connect Studio operation, it prompts failed.

Possible causes and solutions

You can troubleshoot the problem by following the steps below.

STEP1: CONFIRM THAT THE FORMAT OF THE HOST FIELD IS CORRECT

You must fill in the IP address (graph_server_ip) and port of the NebulaGraph database Graph service. If no changes are made, the

port defaults to 9669 . Even if NebulaGraph and Studio are deployed on the current machine, you must use the local IP address

instead of 127.0.0.1 , localhost or 0.0.0.0 .

STEP2: CONFIRM THAT THE USERNAME AND PASSWORD ARE CORRECT

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their accounts

and passwords.

STEP3: CONFIRM THAT NEBULAGRAPH SERVICE IS NORMAL

Check NebulaGraph service status. Regarding the operation of viewing services:

If you compile and deploy NebulaGraph on a Linux server, refer to the NebulaGraph service.

If you use NebulaGraph deployed by Docker Compose and RPM, refer to the NebulaGraph service status and ports.

If the NebulaGraph service is normal, proceed to Step 4 to continue troubleshooting. Otherwise, please restart NebulaGraph

service.

If you used docker-compose up -d to satrt NebulaGraph before, you must run the docker-compose down to stop NebulaGraph.

STEP4: CONFIRM THE NETWORK CONNECTION OF THE GRAPH SERVICE IS NORMAL

Run a command (for example, telnet 9669) on the Studio machine to confirm whether NebulaGraph's Graph service network

connection is normal.

If the connection fails, check according to the following steps:

If Studio and NebulaGraph are on the same machine, check if the port is exposed.

If Studio and NebulaGraph are not on the same machine, check the network configuration of the NebulaGraph server, such as

firewall, gateway, and port.

If you cannot connect to the NebulaGraph service after troubleshooting with the above steps, please go to the NebulaGraph

forum for consultation.

•

•

Note

•

•

Last update: March 13, 2023

14.5 Troubleshooting

- 542/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io
https://discuss.nebula-graph.io

14.5.2 Cannot access to Studio

Problem description

I follow the document description and visit 127.0.0.1:7001 or 0.0.0.0:7001 after starting Studio, why can’t I open the page?

Possible causes and solutions

You can troubleshoot the problem by following the steps below.

STEP1: CONFIRM SYSTEM ARCHITECTURE

It is necessary to confirm whether the machine where the Studio service is deployed is of x86_64 architecture. Currently, Studio

only supports x86_64 architecture.

STEP2: CHECK IF THE STUDIO SERVICE STARTS NORMALLY

For Studio deployed with RPM or DEB packages, use systemctl status nebula-graph-studio to see the running status.

For Studio deployed with tar package, use sudo lsof -i:7001 to check port status.

For Studio deployed with docker, use docker-compose ps to see the running status. Run docker-compose ps to check if the service has

started normally.

If the service is normal, the return result is as follows. Among them, the State column should all be displayed as Up .

If the above result is not returned, stop Studio and restart it first. For details, refer to Deploy Studio.

!!! note

STEP3: CONFIRM ADDRESS

If Studio and the browser are on the same machine, users can use localhost:7001 , 127.0.0.1:7001 or 0.0.0.0:7001 in the browser to

access Studio.

If Studio and the browser are not on the same machine, you must enter <studio_server_ip>:7001 in the browser. Among them,

studio_server_ip refers to the IP address of the machine where the Studio service is deployed.

STEP4: CONFIRM NETWORK CONNECTION

Run curl <studio_server_ip>:7001 -I to confirm if it is normal. If it returns HTTP/1.1 200 OK , it means that the network is connected

normally.

If the connection is refused, check according to the following steps:

If the connection fails, check according to the following steps:

If Studio and NebulaGraph are on the same machine, check if the port is exposed.

If Studio and NebulaGraph are not on the same machine, check the network configuration of the NebulaGraph server, such as

firewall, gateway, and port.

If you cannot connect to the NebulaGraph service after troubleshooting with the above steps, please go to the NebulaGraph

forum for consultation.

•

•

•

 Name Command State Ports

--

nebula-web-docker_client_1 ./nebula-go-api Up 0.0.0.0:32782->8080/tcp

nebula-web-docker_importer_1 nebula-importer --port=569 ... Up 0.0.0.0:32783->5699/tcp

nebula-web-docker_nginx_1 /docker-entrypoint.sh ngin ... Up 0.0.0.0:7001->7001/tcp, 80/tcp

nebula-web-docker_web_1 docker-entrypoint.sh npm r ... Up 0.0.0.0:32784->7001/tcp

 If you used `docker-compose up -d` to satrt NebulaGraph before, you must run the `docker-compose down` to stop NebulaGraph.

•

•

14.5.2 Cannot access to Studio

- 543/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io
https://discuss.nebula-graph.io

Last update: March 13, 2023

14.5.2 Cannot access to Studio

- 544/927 - 2022 Vesoft Inc.

14.5.3 FAQ

If you find that a function cannot be used, it is recommended to troubleshoot the problem according to the following steps:

Confirm that NebulaGraph is the latest version. If you use Docker Compose to deploy the NebulaGraph database, it is recommended

to run docker-compose pull && docker-compose up -d to pull the latest Docker image and start the container.

Confirm that Studio is the latest version. For more information, refer to check updates.

Search the nebula forum, nebula and nebula-studio projects on the GitHub to confirm if there are already similar problems.

If none of the above steps solve the problem, you can submit a problem on the forum.

Why can't I use a function?

1.

2.

3.

4.

Last update: March 13, 2023

14.5.3 FAQ

- 545/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula-studio

15. Nebula Dashboard Community Edition

15.1 What is Nebula Dashboard Community Edition

Nebula Dashboard Community Edition (Dashboard for short) is a visualization tool that monitors the status of machines and

services in NebulaGraph clusters. This topic introduces Dashboard Community Edition. For details of Dashboard Enterprise

Edition, refer to What is Nebula Dashboard Enterprise Edition.

Dashboard Enterprise Edition adds features such as visual cluster creation, batch import of clusters, fast scaling, etc. For more

information, see Pricing.

15.1.1 Features

Dashboard monitors:

The status of all the machines in clusters, including CPU, memory, load, disk, and network.

The information of all the services in clusters, including the IP addresses, versions, and monitoring metrics (such as the

number of queries, the latency of queries, the latency of heartbeats, and so on).

The information of clusters, including the information of services, partitions, configurations, and long-term tasks.

Features of the enterprise package (TODO: planning)

15.1.2 Scenarios

You can use Dashboard in one of the following scenarios:

You want to monitor key metrics conveniently and quickly, and present multiple key information of the business to ensure the

business operates normally.

You want to monitor clusters from multiple dimensions (such as the time, aggregate rules, and metrics).

After a failure occurs, you need to review it and confirm its occurrence time and unexpected phenomena.

15.1.3 Precautions

The monitoring data will be updated per 7 seconds by default.

The monitoring data will be retained for 14 days by default, that is, only the monitoring data within the last 14 days can be

queried.

The monitoring service is supported by Prometheus. The update frequency and retention intervals can be modified. For details, see

Prometheus.

Enterpriseonly

•

•

•

•

•

•

•

•

•

Note

15. Nebula Dashboard Community Edition

- 546/927 - 2022 Vesoft Inc.

https://nebula-graph.io/pricing/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/

15.1.4 Version compatibility

The version correspondence between NebulaGraph and Dashboard Community Edition is as follows.

15.1.5 Release note

Release

NebulaGraph version Dashboard version

2.5.0 ~ 3.1.0 3.1.0

2.5.x ~ 3.1.0 1.1.1

2.0.1~2.5.1 1.0.2

2.0.1~2.5.1 1.0.1

Last update: March 13, 2023

15.1.4 Version compatibility

- 547/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-dashboard/releases/tag/v1.1.2

15.2 Deploy Dashboard

The deployment of Dashboard involves five services. This topic will describe how to deploy Dashboard in detail. To download and

compile the latest source code of Nebula Dashboard, follow the instructions on the nebula dashboard GitHub page.

15.2.1 Prerequisites

Before you deploy Dashboard, you must confirm that:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

Before the installation starts, the following ports are not occupied.

9200

9100

9090

8090

7003

The Linux distribution is CentOS, installed with Node.js of version above v10.12.0 and Go of version above 1.13.

15.2.2 Download Dashboard

Download the tar package as needed, and it is recommended to select the latest version.

15.2.3 Service

Run tar -xvf nebula-dashboard-1.1.2.x86_64.tar.gz to decompress the installation package. There are four services in the nebula-dashboard/

vendors . The descriptions are as follows.

The above four services should be deployed as follows.

•

•

•

•

•

•

•

•

Dashboard package NebulaGraph version

nebula-dashboard-1.1.2.x86_64.tar.gz 2.5.x~3.1.0

Name Description Port

node-exporter Collects the source information of machines in the cluster, including the CPU, memory,

load, disk, and network.

9100

nebula-stats-

exporter

Collects the performance metrics in the cluster, including the IP addresses, versions, and

monitoring metrics (such as the number of queries, the latency of queries, the latency of

heartbeats, and so on).

9200

prometheus The time series database that stores monitoring data. 9090

nebula-http-

gateway

Provides HTTP ports for cluster services to execute nGQL statements to interact with the

NebulaGraph database.

8090

15.2 Deploy Dashboard

- 548/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-dashboard
https://nodejs.org/en/
https://golang.org/
https://oss-cdn.nebula-graph.com.cn/nebula-graph-dashboard/1.1.2/nebula-dashboard-1.1.2.x86_64.tar.gz

15.2.4 Procedure

Deploy node-exporter

You need to deploy the node-exporter service on each machine in the cluster.

To start the service, run the following statement in node-exporter :

After the service is started, you can enter <IP>:9100 in the browser to check whether the service is started normally.

Deploy nebula-stats-exporter

You only need to deploy the nebula-stats-exporter service on the machine where the nebula-dashboard service is installed.

Modify the config.yaml file in nebula-stats-exporter to deploy the HTTP ports of all the services. The example is as follows:

Run the following statement to start the service:

After the service is started, you can enter <IP>:9200 in the browser to check whether the service is started normally.

Note

$ nohup ./node-exporter --web.listen-address=":9100" &

Note

1.

clusters:

 - name: nebula

 instances:

 - name: metad0

 endpointIP: 192.168.8.157

 endpointPort: 19559

 componentType: metad

 - name: metad1

 endpointIP: 192.168.8.155

 endpointPort: 19559

 componentType: metad

 - name: metad2

 endpointIP: 192.168.8.154

 endpointPort: 19559

 componentType: metad

 - name: graphd0

 endpointIP: 192.168.8.157

 endpointPort: 19669

 componentType: graphd

 - name: graphd1

 endpointIP: 192.168.8.155

 endpointPort: 19669

 componentType: graphd

 - name: graphd2

 endpointIP: 192.168.8.154

 endpointPort: 19669

 componentType: graphd

 - name: storaged0

 endpointIP: 192.168.8.157

 endpointPort: 19779

 componentType: storaged

 - name: storaged1

 endpointIP: 192.168.8.155

 endpointPort: 19779

 componentType: storaged

 - name: storaged2

 endpointIP: 192.168.8.154

 endpointPort: 19779

 componentType: storaged

2.

$ nohup ./nebula-stats-exporter --listen-address=":9200" --bare-metal --bare-metal-config=./config.yaml &

15.2.4 Procedure

- 549/927 - 2022 Vesoft Inc.

Deploy prometheus

You only need to deploy the prometheus service on the machine where the nebula-dashboard service is installed.

Modify the prometheus.yaml file in prometheus to deploy the IP addresses and ports of the node-exporter service and the

nebula-stats-exporter . The example is as follows:

scrape_interval: The interval for collecting the monitoring data, which is 1 minute by default.

evaluation_interval: The interval for running alert rules, which is 1 minute by default.

Run the following statement to start the service.

After the service is started, you can enter <IP>:9090 in the browser to check whether the service is started normally.

Deploy nebula-http-gateway

You only need to deploy the nebula-http-gateway service on the machine where the nebula-dashboard service is installed.

To start the service, run the following statement in nebula-http-gateway :

After the service is started, you can enter <IP>:8090 in the browser to check whether the service is started normally.

How to deploy the nebula-dashboard service

Modify the config.json file in nebula-dashboard/ to deploy the IP address and port of the Graph Service and Proxy. The example is as

follows:

To start the service, run the following statement in nebula-dashboard :

Note

1.

global:

 scrape_interval: 5s

 evaluation_interval: 5s

scrape_configs:

 - job_name: 'nebula-stats-exporter'

 static_configs:

 - targets: [

 '192.168.xx.100:9200', # IP address and port of nebula-stats-exporter.

]

 - job_name: 'node-exporter'

 static_configs:

 - targets: [

 '192.168.xx.100:9100', # IP address and port of node-exporter.

 '192.168.xx.101:9100'

]

•

•

2.

$ nohup ./prometheus --config.file=./prometheus.yaml &

Note

$ nohup ./nebula-httpd &

1.

 port: 7003

 proxy:

 gateway:

 target: "127.0.0.1:8090" // The IP address and port of the gateway service.

 prometheus:

 target: "127.0.0.1:9090" // The IP address and port of the prometheus service.

 nebulaServer:

 ip: "192.168.8.143" // The IP address of any Graph service.

 port: 9669 // The port of the NebulaGraph.

 ...

2.

$ nohup ./dashboard &

15.2.4 Procedure

- 550/927 - 2022 Vesoft Inc.

After the service is started, you can enter <IP>:7003 in the browser to check whether the service is started normally.

15.2.5 Stop Dashboard

You can enter kill <pid> to stop Dashboard. The examples are as follows:

$ kill $(lsof -t -i :9100) # stop the node-exporter service

$ kill $(lsof -t -i :9200) # stop the nebula-stats-exporter service

$ kill $(lsof -t -i :9090) # stop the prometheus service

$ kill $(lsof -t -i :8090) # stop the nebula-http-gateway service

$ kill $(lsof -t -i :7003) # stop dashboard service

Last update: March 13, 2023

15.2.5 Stop Dashboard

- 551/927 - 2022 Vesoft Inc.

15.3 Connect Dashboard

After Dashboard is deployed, you can log in and use Dashboard on the browser.

15.3.1 Prerequisites

The Dashboard services are started. For more information, see Deploy Dashboard.

We recommend you to use the Chrome browser of the version above 58. Otherwise, there may be compatibility issues.

15.3.2 Procedures

Confirm the IP address of the machine where the nebula-dashboard service is installed. Enter <IP>:7003 in the browser to open the

login page.

Enter the username and the passwords of the NebulaGraph database.

Ensure that you have configured the IP of the machines where your NebulaGraph is deployed in the config.json file. For more

information, see Deploy Dashboard.

If authentication is enabled, you can log in with the created accounts.

If authentication is not enabled, you can only log in using root as the username and random characters as the password.

To enable authentication, see Authentication.

Select the NebulaGraph version to be used.

Make sure the version selected is the same with the version configured in the config.json file. Otherwise, you may encounter

compatibility problems. For more information, see Deploy Dashboard.

•

•

1.

2.

Note

•

•

3.

Note

15.3 Connect Dashboard

- 552/927 - 2022 Vesoft Inc.

Click Login.4.

Last update: March 13, 2023

15.3.2 Procedures

- 553/927 - 2022 Vesoft Inc.

15.4 Dashboard

Nebula Dashboard consists of three parts: Machine, Service, and Management. This topic will describe them in detail.

15.4.1 Overview

15.4 Dashboard

- 554/927 - 2022 Vesoft Inc.

15.4.2 Machine

Machine consists of the following parts:

Overview

You can check the fluctuations of CPU, Memory, Load, Disk, Network In, and Network Out in the past 24 hours.

For details of certain monitoring metrics, you can click the symbol in the upper right corner, or click the monitoring

metrics on the left.

CPU, Memory, Load, Disk, Network

It shows the detailed monitoring data of the machine from the above dimensions.

By default, you can check the monitoring data up to 14 days before. The alternative can be 1 hour, 6 hours, 12 hours, 1 day, 3

days, 7 days, or 14 days in the past.

You can choose the machine and monitoring metrics that you want to check. For more information, see monitor parameter.

The Graph service supports a set of graph space metrics. For details, see Graph space.

You can set a base line as a reference.

•

•

•

•

•

•

15.4.2 Machine

- 555/927 - 2022 Vesoft Inc.

15.4.3 Service

Service consists of the following parts:

Overview

You can check the fluctuations of monitoring metrics of various services in the past 24 hours. You can also switch to the

Version page to view the IP addresses and versions of all services.

For details of certain monitoring metrics, you can click the symbol in the upper right corner, or click the services on the

left.

The overview page of the current Community Edition only supports setting two monitoring metrics for each service. You can adjust

it by clicking the Set up button.

Graph, Meta, Storage

It shows the detailed monitoring data of the above services.

By default, you can check the monitoring data up to 14 days before. The alternative can be 1 hour, 6 hours, 12 hours, 1 day, 3

days, 7 days, or 14 days in the past.

You can choose the machine that you want to check the monitoring data, monitoring metrics, metric methods, and period. For

more information, see monitor parameter.

You can set a base line as a reference.

You can check the status of the current service.

15.4.4 Management

Non-root users can view the service information and the partition information with spatial permissions, but cannot view the

configuration and long-term tasks.

•

Note

•

•

•

•

•

Note

15.4.3 Service

- 556/927 - 2022 Vesoft Inc.

Management consists of the following parts:

Service Info

It shows the basic information of the Storage Service, including the information of the host, the commit ID of versions, the

number of leaders, the distribution of partitions, and the distribution of leaders.

Partition Info

You can check the information of partitions in different graph spaces. The descriptions are as follows.

Config

It shows the configuration of each service. Dashboard does not support online modification of configurations for now. For

details, see configurations.

Long-term Task

It shows the information of all jobs. Dashboard does not support online management of jobs for now. For details, see job

statements.

15.4.5 Others

In the lower left corner of the page, you can:

Sign out

Switch between Chinese and English

View the current Dashboard release

View the user manual and forum

Fold the sidebar

•

•

Parameter Description

Partition ID The ID of the partition.

Leader The IP address and the port of the leader.

Peers The IP addresses and the ports of all the replicas.

Losts The IP addresses and the ports of replicas at fault.

•

•

•

•

•

•

•

Last update: March 23, 2022

15.4.5 Others

- 557/927 - 2022 Vesoft Inc.

15.5 Metrics

This topic will describe the monitoring metrics in Nebula Dashboard.

15.5.1 Machine

All the machine metrics listed below are for the Linux operating system.

The default unit in Disk and Network is byte. The unit will change with the data magnitude as the page displays. For example, when

the flow is less than 1 KB/s, the unit will be Bytes/s.

For versions of Dashboard Community Edition greater than v1.0.2, the memory occupied by Buff and Cache will not be counted in the

memory usage.

CPU

Memory

Load

Note

•

•

•

Parameter Description

cpu_utilization The percentage of used CPU.

cpu_idle The percentage of idled CPU.

cpu_wait The percentage of CPU waiting for IO operations.

cpu_user The percentage of CPU used by users.

cpu_system The percentage of CPU used by the system.

Parameter Description

memory_utilization The percentage of used memory.

memory_used The memory space used (not including caches).

memory_free The memory space available.

Parameter Description

load_1m The average load of the system in the last 1 minute.

load_5m The average load of the system in the last 5 minutes.

load_15m The average load of the system in the last 15 minutes.

15.5 Metrics

- 558/927 - 2022 Vesoft Inc.

Disk

Network

15.5.2 Service

Period

The period is the time range of counting metrics. It currently supports 5 seconds, 60 seconds, 600 seconds, and 3600 seconds,

which respectively represent the last 5 seconds, the last 1 minute, the last 10 minutes, and the last 1 hour.

Metric methods

Dashboard collects the following metrics from the NebulaGraph core, but only shows the metrics that are important to it.

Parameter Description

disk_used The disk space used.

disk_free The disk space available.

disk_readbytes The number of bytes that the system reads in the disk per second.

disk_writebytes The number of bytes that the system writes in the disk per second.

disk_readiops The number of read queries that the disk receives per second.

disk_writeiops The number of write queries that the disk receives per second.

inode_utilization The percentage of used inode.

Parameter Description

network_in_rate The number of bytes that the network card receives per second.

network_out_rate The number of bytes that the network card sends out per second.

network_in_errs The number of wrong bytes that the network card receives per second.

network_out_errs The number of wrong bytes that the network card sends out per second.

network_in_packets The number of data packages that the network card receives per second.

network_out_packets The number of data packages that the network card sends out per second.

Parameter Description

rate The average rate of operations per second in a period.

sum The sum of operations in the period.

avg The average latency in the cycle.

P75 The 75th percentile latency.

P95 The 95th percentile latency.

P99 The 99th percentile latency.

P999 The 99.9th percentile latency.

Note

15.5.2 Service

- 559/927 - 2022 Vesoft Inc.

Graph

Parameter Description

num_active_queries The number of queries currently being executed.

num_active_sessions The number of currently active sessions.

num_aggregate_executors The number of executions for the Aggregation operator.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions_out_of_max_allowed The number of sessions that failed to authenticate logins because the value of the

parameter FLAG_OUT_OF_MAX_ALLOWED_CONNECTIONS was exceeded.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_indexscan_executors The number of executions for index scan operators.

num_killed_queries The number of killed queries.

num_opened_sessions The number of sessions connected to the server.

num_queries The number of queries.

num_query_errors_leader_changes The number of the raft leader changes due to query errors.

num_query_errors The number of query errors.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

num_sentences The number of statements received by the Graphd service.

num_slow_queries The number of slow queries.

num_sort_executors The number of executions for the Sort operator.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The average latency of queries.

slow_query_latency_us The average latency of slow queries.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

15.5.2 Service

- 560/927 - 2022 Vesoft Inc.

Meta

Parameter Description

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

heartbeat_latency_us The latency of heartbeats.

num_heartbeats The number of heartbeats.

num_raft_votes The number of votes in Raft.

transfer_leader_latency_us The latency of transferring the raft leader.

num_agent_heartbeats The number of heartbeats for the AgentHBProcessor.

agent_heartbeat_latency_us The average latency of the AgentHBProcessor.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_send_snapshot The number of times that Raft sends snapshots to other nodes.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

append_wal_latency_us The Raft write latency for a single WAL.

num_grant_votes The number of times that Raft votes for other nodes.

num_start_elect The number of times that Raft starts an election.

15.5.2 Service

- 561/927 - 2022 Vesoft Inc.

Storage

15.5.2 Service

- 562/927 - 2022 Vesoft Inc.

Parameter Description

add_edges_atomic_latency_us The average latency of adding edge single.

add_edges_latency_us The average latency of adding edges.

add_vertices_latency_us The average latency of adding vertices.

commit_log_latency_us The latency of committing logs in Raft.

commit_snapshot_latency_us The latency of committing snapshots in Raft.

delete_edges_latency_us The average latency of deleting edges.

delete_vertices_latency_us The average latency of deleting vertices.

get_neighbors_latency_us The average latency of querying neighbor vertices.

num_get_prop The number of executions for the GetPropProcessor.

num_get_neighbors_errors The number of execution errors for the GetNeighborsProcessor.

get_prop_latency_us The average latency of executions for the GetPropProcessor.

num_edges_deleted The number of deleted edges.

num_edges_inserted The number of inserted edges.

num_raft_votes The number of votes in Raft.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Storage service sent to the Meta service.

num_rpc_sent_to_metad The number of RPC requests that the Storaged service sent to the Metad service.

num_tags_deleted The number of deleted tags.

num_vertices_deleted The number of deleted vertices.

num_vertices_inserted The number of inserted vertices.

transfer_leader_latency_us The latency of transferring the raft leader.

lookup_latency_us The average latency of executions for the LookupProcessor.

num_lookup_errors The number of execution errors for the LookupProcessor.

num_scan_vertex The number of executions for the ScanVertexProcessor.

num_scan_vertex_errors The number of execution errors for the ScanVertexProcessor.

update_edge_latency_us The average latency of executions for the UpdateEdgeProcessor.

num_update_vertex The number of executions for the UpdateVertexProcessor.

num_update_vertex_errors The number of execution errors for the UpdateVertexProcessor.

kv_get_latency_us The average latency of executions for the Getprocessor.

kv_put_latency_us The average latency of executions for the PutProcessor.

kv_remove_latency_us The average latency of executions for the RemoveProcessor.

num_kv_get_errors The number of execution errors for the GetProcessor.

num_kv_get The number of executions for the GetProcessor.

num_kv_put_errors The number of execution errors for the PutProcessor.

num_kv_put The number of executions for the PutProcessor.

num_kv_remove_errors The number of execution errors for the RemoveProcessor.

15.5.2 Service

- 563/927 - 2022 Vesoft Inc.

Parameter Description

num_kv_remove The number of executions for the RemoveProcessor.

forward_tranx_latency_us The average latency of transmission.

scan_edge_latency_us The average latency of executions for the ScanEdgeProcessor.

num_scan_edge_errors The number of execution errors for the ScanEdgeProcessor.

num_scan_edge The number of executions for the ScanEdgeProcessor.

scan_vertex_latency_us The latency of executions for the ScanVertexProcessor.

num_add_edges The number of times that edges are added.

num_add_edges_errors The number of errors when adding edges.

num_add_vertices The number of times that vertices are added.

num_start_elect The number of times that Raft starts an election.

num_add_vertices_errors The number of errors when adding vertices.

num_delete_vertices_errors The number of errors when deleting vertices.

append_log_latency_us The latency of replicating the log record to a single node by Raft.

num_grant_votes The number of times that Raft votes for other nodes.

replicate_log_latency_us The latency of replicating the log record to most nodes by Raft.

num_delete_tags The number of times that tags are deleted.

num_delete_tags_errors The number of errors when deleting tags.

num_delete_edges The number of edge deletions.

num_delete_edges_errors The number of errors when deleting edges

num_send_snapshot The number of times that snapshots are sent.

update_vertex_latency_us The latency of executions for the UpdateVertexProcessor.

append_wal_latency_us The Raft write latency for a single WAL.

num_update_edge The number of executions for the UpdateEdgeProcessor.

delete_tags_latency_us The average latency of deleting tags.

num_update_edge_errors The number of execution errors for the UpdateEdgeProcessor.

num_get_neighbors The number of executions for the GetNeighborsProcessor.

num_get_prop_errors The number of execution errors for the GetPropProcessor.

num_delete_vertices The number of times that vertices are deleted.

num_lookup The number of executions for the LookupProcessor.

num_sync_data The number of times the storage synchronizes data from drainer.

num_sync_data_errors The number of errors the storage synchronizes data from drainer.

15.5.2 Service

- 564/927 - 2022 Vesoft Inc.

Graph space

Parameter Description

num_active_queries The number of queries currently being executed.

num_queries The number of queries.

num_sentences The number of statements received by the Graphd service.

optimizer_latency_us The latency of executing optimizer statements.

query_latency_us The average latency of queries.

num_slow_queries The number of slow queries.

num_query_errors The number of query errors.

num_query_errors_leader_changes The number of raft leader changes due to query errors.

num_killed_queries The number of killed queries.

num_aggregate_executors The number of executions for the Aggregation operator.

num_sort_executors The number of executions for the Sort operator.

num_indexscan_executors The number of executions for index scan operators.

num_oom_queries The number of queries that caused memory to run out.

num_auth_failed_sessions_bad_username_password The number of sessions where authentication failed due to incorrect username and

password.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_opened_sessions The number of sessions connected to the server.

num_queries_hit_memory_watermark The number of queries reached the memory watermark.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

num_rpc_sent_to_metad_failed The number of failed RPC requests that the Graphd service sent to the Metad

service.

num_rpc_sent_to_metad The number of RPC requests that the Graphd service sent to the Metad service.

num_rpc_sent_to_storaged_failed The number of failed RPC requests that the Graphd service sent to the Storaged

service.

num_rpc_sent_to_storaged The number of RPC requests that the Graphd service sent to the Storaged service.

slow_query_latency_us The average latency of slow queries.

Last update: March 13, 2023

15.5.2 Service

- 565/927 - 2022 Vesoft Inc.

16. Nebula Dashboard Enterprise Edition

16.1 What is Nebula Dashboard Enterprise Edition

Nebula Dashboard Enterprise Edition (Dashboard for short) is a visualization tool that monitors and manages the status of

machines and services in NebulaGraph clusters. This topic introduces Dashboard Enterprise Edition. For more information, see

What is Nebula Dashboard Community Edition.

You can also try some functions online in Dashboard.

16.1.1 Features

Create a NebulaGraph cluster of a specified version, import nodes in batches, scale out NebulaGraph services with one click

Import clusters, balance data, scale out or in on the visualization interface.

Manage clusters, and view the operation log of clusters within the last 14 days.

Start, stop, and restart services on the visualization interface.

Update the configuration of Storage services and Graph services in clusters quickly.

Set how often the metrics page refreshes.

Monitor the information of all the services in clusters, including the IP address, version, and monitoring metrics (such as the

number of queries, the latency of queries, and the latency of heartbeats).

Monitor the status of all the machines in clusters, including CPU, memory, load, disk, and network.

Monitor the information of clusters, including the information of services, partitions, configurations, and long-term tasks.

Set notifications based on the monitoring information.

Note

•

•

•

•

•

•

•

•

•

•

16. Nebula Dashboard Enterprise Edition

- 566/927 - 2022 Vesoft Inc.

https://dashboard.nebula-graph.io/clusters

16.1.2 Scenarios

You want a visualized operation and maintenance monitoring platform for large-scale clusters.

You want to monitor key metrics conveniently and quickly, and present multiple key information of the business to ensure that

the business can be operated normally.

You want to monitor clusters from multiple dimensions (such as the time, aggregate rules, and metrics).

You want to review the failure after it occurs, confirm when it happened, and view its associated phenomena.

16.1.3 Precautions

The monitoring data will be retained for 14 days by default, that is, only the monitoring data within the last 14 days can be

queried.

The version of NebulaGraph must be 2.5.0 or later.

It is recommend to use the latest version of Chrome to access Dashboard.

It is recommend to use the official installation package to create or import clusters.

The monitoring feature is supported by Prometheus. The update frequency and retention intervals can be modified. For details, see

Prometheus.

16.1.4 Version compatibility

The version correspondence between NebulaGraph and Dashboard Enterprise Edition is as follows.

16.1.5 Video

Nebula Dashboard (Enterprise Edition) Intro Demo(5 minutes 25 seconds)

•

•

•

•

•

•

•

•

Note

NebulaGraph version Dashboard version

2.5.0 ~ 3.1.0 3.1.0

2.5.x ~ 3.1.0 3.0.4

2.5.1 ~ 3.0.0 1.1.0

2.0.1 ~ 2.6.1 1.0.2

2.0.1 ~ 2.6.1 1.0.1

2.0.1 ~ 2.6.1 1.0.0

•

Last update: March 13, 2023

16.1.2 Scenarios

- 567/927 - 2022 Vesoft Inc.

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://www.youtube.com/watch?v=S9gmYcNXwVY

16.2 Deploy Dashboard Enterprise Edition

This topic will introduce how to deploy Dashboard Enterprise Edition in detail.

16.2.1 Prerequisites

Before deploying Dashboard Enterprise Edition, you must do a check of these:

Select and download Dashboard Enterprise Edition of the correct version. For information about the version correspondence

between Dashboard Enterprise Edition and NebulaGraph, see Version compatibility.

MySQL and SQLite are supported to store Dashboard metadata. To use MySQL, make sure that the environment of MySQL is

ready and a MySQL database named as dashboard is create. Make sure the default character set of the database is utf8 .

No SQLite environment is required when using SQLite to store Dashboard metadata.

Before the installation starts, the following ports are not occupied.

The license is ready.

The license is only available in the Enterprise Edition. To obtain the license, apply for Nebula Dashboard Free Trial.

16.2.2 Deploy Dashboard Enterprise Edition with TAR

Installation

Select and download the TAR package according to your needs. It is recommended to select the latest version.

You can apply online for Dashboard Enterprise Edition free trial. To purchase, contact our sales team via email (inquiry@vesoft.com).

For features of Dashboard Enterprise Edition, see Pricing.

Use tar -xzvf to decompress the TAR package.

•

•

Note

•

Port Description

7005 The port through which Dashboard Enterprise Edition provides the web service.

9090 The port of the prometheus service.

9200 The port of the nebula-stats-exporter service.

9093 The port of the Alertmanager service, used to receive Prometheus alerts and then send them to Dashboard.

9100 The port of the node-exporter service. The node-exporter is aumatically deployed on the target machine after a

cluster is created or imported. It is used to collect the source information of machines in the cluster, including

the CPU, memory, load, disk, and network.

•

Enterpriseonly

1.

Enterpriseonly

2.

tar -xzvf nebula-dashboard-ent-<version>.linux-amd64.tar.gz -C <install_path>

16.2 Deploy Dashboard Enterprise Edition

- 568/927 - 2022 Vesoft Inc.

https://www.mysql.com/
https://nebula-graph.io/visualization-tools-free-trial
https://nebula-graph.io/visualization-tools-free-trial
https://nebula-graph.com.cn/pricing/

For example:

Edit vim /usr/local/nebula-dashboard-ent/config/config.yaml to modify the configuration.

Copy the license file to the nebula-dashboard-ent directory.

For example:

Start Dashboard.

You can use the following command to start the Dashboard with one click.

Or execute the following commands to start prometheus, webserver, nebula-stats-exporter and alertmanager services to start

Dashboard.

tar -xzvf nebula-dashboard-ent-3.1.0.linux-amd64.tar.gz -C /usr/local/

3.

server:

 host: 0.0.0.0 # Specifies the address segment that can access Dashboard.

 port: 7005 # The default port used to access Dashboard Enterprise Edition.

 certFile: "" # The local device certificate path for accessing Dashboard via HTTPS.

 keyFile: "" # The local device certificate key path for accessing Dashboard via HTTPS.

database:

 dialect: sqlite # The database type used to store metadata. Only support SQLite and MySQL currently. The default value is SQLite.

 autoMigrate: true # Whether to automatically create a database table. Defaults to true.

 # SQLite-related configurations, configured only when dialect is set to sqlite.

 sqliteFilePath: data/dashboard.sqlite.db # The default path for storing information in SQLite.

 # MySQL-related configurations, configured only when dialect is set to mysql.

 host: 192.168.8.157 # The IP address of the connected MySQL database.

 port: 3306 # The port of the connected MySQL database.

 username: root # The username to log in MySQL.

 password: nebula # The password to log in MySQL.

 name: dashboard # The name of the corresponding database.

 autoMigrate: true # Auto database tables creation, the default value of which is true.

Information about the exporter port

exporter:

 nodePort: 9100 # The port of the node-exporter service.

 nebulaPort: 9200 # The port of the nebula-stats-exporter service.

Information of services

proxy:

 prometheus:

 target: "127.0.0.1:9090" # The IP address and port of the prometheus service.

 alertmanager:

 target: "127.0.0.1:9093" # The IP address and port of the Alertmanager service.

Information of the sender's Email used to invite LDAP accounts.

mail:

 host: smtp.office365.com # The SMTP server address.

 port: 587 # The port number of the SMTP server.

 username: "" # The SMTP server account name.

 password: "" # The SMTP server password.

System information

system:

 webAddress: http://127.0.0.1:7005

The external access for Dashboard. It can be set as a hostname, used for interface callbacks. For example, the invitee who is invited by mail can use this link to access Dashboard.

 messageStore: 90 # It sets the number of days to keep alert messages, the value of which is 90 by default.

LDAP information

ldap:

 server: ldap://127.0.0.1 # The LDAP server address.

 bindDN: cn=admin,dc=vesoft,dc=com # The LDAP login username.

 bindPassword: "" # The LDAP login password.

 baseDN: dc=vesoft,dc=com # Set the path to query user data.

 userFilter: "&(objectClass=*)" # Set a filter to LDAP search queries.

 emailKey: mail # Set the field name used to restore email in LDAP.

...

BR

br:

backupLogsDir: "logs/br/backupLogsDir"

restoreLogsDir: "logs/br/restoreLogsDir"

4.

cp -r <license> <dashboard_path>

cp -r nebula.license /usr/local/nebula-dashboard-ent

5.

cd /usr/local/nebula-dashboard-ent/scripts

sudo ./dashboard.service start all

cd scripts

sudo ./dashboard.service start prometheus # Start prometheus service

16.2.2 Deploy Dashboard Enterprise Edition with TAR

- 569/927 - 2022 Vesoft Inc.

If you change the configuration file after starting Dashboard, you can run dashboard.service restart all in the scripts directory to

synchronize the changes to the Dashboard client page.

Manage Dashboard Service

You can use the dashboard.service script to start, stop, and check the Dashboard services.

Examples

Dashboard is installed in the current directory, and you can use the following commands to manage services.

16.2.3 Deploy Dashboard Enterprise Edition with RPM

Installation

Download an RPM package.

You can apply online for Dashboard Enterprise Edition free trial. To purchase, contact our sales team via email (inquiry@vesoft.com).

For features of Dashboard Enterprise Edition, see Pricing.

Run sudo rpm -i <rpm> to install the RPM package.

sudo ./dashboard.service start webserver # Start webserver service

sudo ./dashboard.service start exporter # Start nebula-stats-exporter service

sudo ./dashboard.service start alertmanager # Start alertmanager service

Note

sudo <dashboard_path>/dashboard/scripts/dashboard.service

[-v] [-h]

<start|stop|status> <prometheus|webserver|exporter|gateway|all>

Parameter Description

dashboard_path Dashboard installation path.

-v Display detailed debugging information.

-h Display help information.

start Start the target services.

stop Stop the target services.

status Check the status of the target services.

prometheus Set the prometheus Service as the target service.

webserver Set the webserver Service as the target service.

exporter Set the exporter Service as the target service.

gateway Set the gateway Service as the target service.

all Set all the Dashboard services as the target services.

sudo /dashboard/scripts/dashboard.service start all #Start Dashboard.

sudo /dashboard/scripts/dashboard.service stop all #Stop Dashboard.

sudo /dashboard/scripts/dashboard.service status all #Check Dashboard status.

sudo /dashboard/scripts/dashboard.service restart all #Restart Dashboard.

1.

Enterpriseonly

2.

16.2.3 Deploy Dashboard Enterprise Edition with RPM

- 570/927 - 2022 Vesoft Inc.

https://nebula-graph.io/visualization-tools-free-trial
https://nebula-graph.com.cn/pricing/

For example, run the following command to install Dashboard Enterprise Edition. Installation path is /usr/local/nebula-dashboard-ent by

default.

You can also run the following command to specify the installation path.

During the installation process, you need to enter the path to the license and choose a database for storing Dashboard metadata.

Currently, we support MySQL and SQLite.

For example:

(Optional) Run the following commands to view the status of and start all the services.

You can also view, start, and stop a single service. For example:

(Optional) To configure recipients of cluster alert notifications and to configure LDAP accounts, run vim /usr/local/nebula-dashboard-ent/

config/config.yaml and add the following settings.

View logs

You can view the Dashboard Enterprise Edition operation logs in the /var/log/messages path.

For example:

Run the following command to view the logs of each service in Dashboard:

sudo rpm -i nebula-dashboard-ent-<version>.x86_64.rpm

sudo rpm -i nebula-dashboard-ent-xxx.rpm --prefix=<path>

SQLite

MySQL

Nebula Dashboard Enterprise version need license, please enter the license file path(~/nebula.license): /home/vesoft/license/nebula.license

Which database do you want to use? [sqlite | mysql]:sqlite # The default value is SQLite.

Do you want to start the service now? [Y/N]: y

Nebula Dashboard Enterprise version need license please enter the license file path(~/nebula.license): /home/vesoft/license/nebula.license

Which database do you want to use? [sqlite | mysql]:mysql

Step1: set mysql database config

Enter mysql host(127.0.0.1): 192.168.8.157 # The IP address of the connected MySQL database.

Enter mysql service port(3306): # The port of the connected MySQL database. The default port is 3306.

Enter mysql username(root): # The username to log in MySQL.

Enter mysql password(nebula): # The password to log in MySQL.

Enter mysql database name(dashboard): # The name of the corresponding database.

Do you want to start the service now? [Y/N]: y

3.

sudo systemctl list-dependencies nebula-dashboard.target # View the status of all the services.

sudo systemctl start nebula-dashboard.target # Start all the services.

sudo systemctl {status|stop|start} {nbd-prometheus.service|nbd-alert-manager.service|nbd-stats-exporter.service|nbd-webserver.service}

4.

Information of the sender's Email used to invite LDAP accounts.

mail:

 host: smtp.office365.com # The SMTP server address.

 port: 587 # The port number of the SMTP server.

 username: "" # The SMTP server account name.

 password: "" # The SMTP server password.

System information

system:

 webAddress: http://127.0.0.1:7005 # The address to access Dashboard for the invitee who is invited by mail.

 messageStore: 90 # It sets the number of days to keep alert messages, the value of which is 90 by default.

LDAP information

ldap:

 server: ldap://127.0.0.1 # The LDAP server address.

 bindDN: cn=admin,dc=vesoft,dc=com # The LDAP login username.

 bindPassword: "" # The LDAP login password.

 baseDN: dc=vesoft,dc=com # Set the path to query user data.

 userFilter: "&(objectClass=*)" # Set a filter to LDAP search queries.

 emailKey: mail # Set the field name used to restore email in LDAP.

sudo cat /var/log/messages

16.2.3 Deploy Dashboard Enterprise Edition with RPM

- 571/927 - 2022 Vesoft Inc.

For example, to view the logs of the Prometheus service, run the following command:

Uninstallation

To uninstall Dashboard Enterprise Edition deployed with RPM, run the following command.

16.2.4 Deploy Dashboard Enterprise Edition with DEB

Installation

Download a DEB package.

You can apply online for Dashboard Enterprise Edition free trial. To purchase, contact our sales team via email (inquiry@vesoft.com).

For features of Dashboard Enterprise Edition, see Pricing.

Install the package.

Custom installation paths are not supported when installing Dashboard Enterprise Edition with DEB. The default installation path is /

usr/local/nebula-dashboard-ent/ .

For example, to install the DEB package of the 3.1.0 version:

During the installation process, you need to enter the path to the license and choose a database for storing Dashboard metadata.

Currently, we support MySQL and SQLite.

For example:

(Optional) Run the following commands to view the status of and start all the services.

journalctl -u {nbd-prometheus.service|nbd-alert-manager.service|nbd-stats-exporter.service|nbd-webserver.service} -b

journalctl -u nbd-prometheus.service -b

sudo rpm -e <package_name>

1.

Enterpriseonly

2.

sudo dpkg -i <package_name>

Note

sudo dpkg -i nebula-dashboard-ent-3.1.0.ubuntu1804.amd64.deb

SQLite

MySQL

Nebula Dashboard Enterprise version need license, please enter the license file path(~/nebula.license): /home/vesoft/license/nebula.license

Which database do you want to use? [sqlite | mysql]:sqlite # The default value is SQLite.

Do you want to start the service now? [Y/N]: y

Nebula Dashboard Enterprise version need license please enter the license file path(~/nebula.license): /home/vesoft/license/nebula.license

Which database do you want to use? [sqlite | mysql]:mysql

Step1: set mysql database config

Enter mysql host(127.0.0.1): 192.168.8.157 # The IP address of the connected MySQL database.

Enter mysql service port(3306): # The port of the connected MySQL database. The default port is 3306.

Enter mysql username(root): # The username to log in MySQL.

Enter mysql password(nebula): # The password to log in MySQL.

Enter mysql database name(dashboard): # The name of the corresponding database.

Do you want to start the service now? [Y/N]: y

3.

sudo systemctl list-dependencies nebula-dashboard.target # View the status of all the services.

sudo systemctl start nebula-dashboard.target # Start all the services.

16.2.4 Deploy Dashboard Enterprise Edition with DEB

- 572/927 - 2022 Vesoft Inc.

https://nebula-graph.io/visualization-tools-free-trial
https://nebula-graph.com.cn/pricing/

You can also view, start, and stop a single service. For example:

(Optional) To configure recipients of cluster alert notifications and to configure LDAP accounts, run vim /usr/local/nebula-dashboard-ent/

config/config.yaml and add the following settings.

View logs

You can view the Dashboard Enterprise Edition operation logs in the /var/log/syslog path.

For example:

Run the following command to view the logs of each service in Dashboard:

For example, to view the logs of the Prometheus service, run the following command:

Uninstallation

To uninstall Dashboard Enterprise Edition, run the following command.

16.2.5 Connect to Dashboard

After Dashboard is successfully started, you can enter http://<ip_address>:7005 in the address bar of a browser.

If the following login interface is shown in the browser, then you have successfully deployed and started Dashboard.

sudo systemctl {status|stop|start} {nbd-prometheus.service|nbd-alert-manager.service|nbd-stats-exporter.service|nbd-webserver.service}

4.

Information of the sender's Email used to invite LDAP accounts.

mail:

 host: smtp.office365.com # The SMTP server address.

 port: 587 # The port number of the SMTP server.

 username: "" # The SMTP server account name.

 password: "" # The SMTP server password.

System information

system:

 webAddress: http://127.0.0.1:7005 # The address to access Dashboard for the invitee who is invited by mail.

 messageStore: 90 # It sets the number of days to keep alert messages, the value of which is 90 by default.

LDAP information

ldap:

 server: ldap://127.0.0.1 # The LDAP server address.

 bindDN: cn=admin,dc=vesoft,dc=com # The LDAP login username.

 bindPassword: "" # The LDAP login password.

 baseDN: dc=vesoft,dc=com # Set the path to query user data.

 userFilter: "&(objectClass=*)" # Set a filter to LDAP search queries.

 emailKey: mail # Set the field name used to restore email in LDAP.

sudo cat /var/log/syslog

journalctl -u {nbd-prometheus.service|nbd-alert-manager.service|nbd-stats-exporter.service|nbd-webserver.service} -b

journalctl -u nbd-prometheus.service -b

sudo dpkg -r <package_name>

16.2.5 Connect to Dashboard

- 573/927 - 2022 Vesoft Inc.

When logging into the Nebula Dashboard Enterprise Edition for the first time, the content of END USER LICENSE AGREEMENT is

displayed on the login page. Please read it and then click I Agree.

You can log into Dashboard with the initialization account name nebula and password nebula , and then create LDAP and general

accounts. You can log into Dashboard with the accounts that you have created then. For more information about the Dashboard

account, see Authority Management.

Note

Last update: March 13, 2023

16.2.5 Connect to Dashboard

- 574/927 - 2022 Vesoft Inc.

16.3 Nebula Dashboard Enterprise Edition license

A license is a software authorization certificate used to authorize the use of a software product. When deploying Nebula

Dashboard Enterprise Edition, you need to add a license to start it. This document describes the license information on Nebula

Dashboard Enterprise Edition.

16.3.1 Precautions

If the license file is not deployed, Nebula Dashboard Enterprise Edition cannot be started.

Do not modify the license file, otherwise the license will become invalid.

If the license is about to expire, send email to inquiry@vesoft.com to apply for renewal.

The transition period after the license expires is 14 days:

If you start the Enterprise Edition within 30 days before the license expires or on the day the license expires, a log will be

printed as a reminder.

The license can still be used for 14 days after it expires.

If the license has expired for 14 days, you will not be able to start the Enterprise Edition, and a log will be printed as a

reminder.

16.3.2 Obtain a Nebula Dashboard Enterprise Edition license

Send email to inquiry@vesoft.com to apply for a Nebula Dashboard Enterprise Edition license.

You can apply online for a 30-day free trial of Nebula Dashboard Enterprise Edition.

16.3.3 License description

Nebula Dashboard Enterprise Edition license is a file named nebula.license that contains the following information:

•

•

•

•

•

•

•

Note

----------License Content Start----------

{

 "vendor": "vesoft",

 "organization": "doc",

 "issuedDate": "2022-06-06T16:00:00.000Z",

 "expirationDate": "2023-05-31T15:59:59.000Z",

 "product": "nebula_graph_dashboard",

 "version": ">=3.2.0",

 "licenseType": "enterprise",

 "gracePeriod": 14,

 "clusterCode": "BAIAEAiAQAAG"

}

----------License Content End----------

----------License Key Start----------

Rrjip5cxxxxxxxxxxxxx5zKoQ==

----------License Key End----------

16.3 Nebula Dashboard Enterprise Edition license

- 575/927 - 2022 Vesoft Inc.

https://nebula-graph.io/visualization-tools-free-trial

The license file contains information such as issuedDate and expirationDate . The description is as follows.

16.3.4 Use a Nebula Dashboard Enterprise Edition license

For how to use a Nebula Dashboard Enterprise Edition license, see Deploy Nebula Dashboard Enterprise Edition.

16.3.5 Renew a Nebula Dashboard Enterprise Edition license

Follow the steps below to renew your Nebula Dashboard Enterprise Edition license.

Email us at inquiry@vesoft.com to apply for a new Nebula Dashboard Enterprise Edition license file nebula.license .

In the Nebula Dashboard Enterprise Edition installation directory, such as /usr/local/nebula-explorer , replace the old license file with

the new one.

You cannot log into Nebula Dashboard Enterprise Edition once the license expires. To avoid business interruptions, please renew your

license in time.

Parameter Description

vendor The supplier.

organization The username.

issuedDate The date that the license is issued.

expirationDate The date that the license expires.

product The product type. The product type of Nebula Dashboard Enterprise Edition is nebula_graph_dashboard .

version The version information.

licenseType The license type (a reserved parameter), including enterprise , samll_bussiness , pro , and individual .

gracePeriod The buffer time (in days) for the service to continue to be used after the license expires, and the service will

be stopped after the buffer period. The trial version of license has no buffer period after expiration and the

default value of this parameter is 0.

clusterCode The user's hardware information, which is also the unique identifier of the cluster. This parameter is not

available in the trial version of the license.

1.

2.

Note

Last update: July 20, 2022

16.3.4 Use a Nebula Dashboard Enterprise Edition license

- 576/927 - 2022 Vesoft Inc.

16.4 Create and import clusters

16.4.1 Create clusters

This topic introduces how to create clusters using Dashboard.

16.4 Create and import clusters

- 577/927 - 2022 Vesoft Inc.

Steps

You can create a cluster following these steps:

16.4.1 Create clusters

- 578/927 - 2022 Vesoft Inc.

At the top of the Dashboard page, click the Cluster Management button.

On the Cluster management page, click Create cluster.

1.

2.

16.4.1 Create clusters

- 579/927 - 2022 Vesoft Inc.

On the Create cluster page, fill in the following:

Enter a Cluster Name, up to 15 characters for each name. In this example, the cluster name is test .

Choose a NebulaGraph version to install. In this example, the version is Enterprise v3.1.0 .

Only one Enterprise Edition of NebulaGraph is provided for you to choose from on the Create cluster page. To install other versions of

NebulaGraph, you can download or upload the corresponding installer package on the Package Management page. For details, see

Package management.

Click Upload License.

For the creation of a Community version of NebulaGraph, skip this step to upload the License file.

Add nodes. The information of each node is required.

Enter the IP information of each host. In this example, it is 192.168.8.129 .

Enter the SSH information. In this example, the SSH port is 22 , the SSH user is vesoft , and the SSH password is nebula .

Choose the target NebulaGraph package. In this example, the package is nebula-graph-ent-3.1.0-ent.el7.x86_64.rpm .

Customize the cluster installation path. In this example, the default path is .nebula/cluster .

(Optional) Enter the node name to make a note on the node. In this example, the note is Node_1 .

Import nodes in batches. The information of each node is required. To import nodes in batches, you need to choose the

installation package and click download the CSV template. Fill in the template and upload it. Ensure that the node is correct,

otherwise, upload failure may happen.

3.

•

•

Note

•

Note

•

a.

b.

c.

d.

e.

•

16.4.1 Create clusters

- 580/927 - 2022 Vesoft Inc.

Select the node and add the service you need in the upper right corner. To create a cluster, you need to add 3 types of services to

the node. If not familiar with the NebulaGraph architecture, click Auto add service.

(Optional) Edit the port and HTTP port of the meta, graph, and storage services, and then click OK.

Click Create Cluster. Make sure the configuration is correct and there is no conflict between nodes, and then click Confirm.

If a cluster with the status of installing appears in the list on the cluster management page, you need to wait for 3 to 10 minutes

until the status changes to healthy , that is, the cluster is created successfully. If the service status is unhealthy , it means that there is

an abnormal service in the cluster, click Detail for more information.

Next to do

After the cluster is successfully created, you can operate on the cluster. For details, see Cluster operations.

4.

5.

6.

7.

Last update: March 13, 2023

16.4.1 Create clusters

- 581/927 - 2022 Vesoft Inc.

16.4.2 Import clusters

This topic introduces how to import clusters using Dashboard. The current version only supports importing clusters deployed by

the official DEB or RPM packages and clusters created by Dashboard. Currently, importing clusters deployed by Docker and

Kubernetes is not supported.

16.4.2 Import clusters

- 582/927 - 2022 Vesoft Inc.

Steps

In the same cluster, the service versions need to be unified. Importing NebulaGraph examples from different versions in the same

cluster is not supported.

Caution

16.4.2 Import clusters

- 583/927 - 2022 Vesoft Inc.

In the configuration files of each service, change the IP in <meta|graph|storage>_server_addrs and local_ip to the server's IP, and then

start NebulaGraph.

For details, see Configurations and Manage NebulaGraph services.

On the Cluster management page, click Import cluster.

On the Import cluster page, enter the information of Connect to NebulaGraph.

Graphd Host: :n. In this example, the IP is 192.168.8.157:9669 .

Username: The account to connect to NebulaGraph. In this example, the username is vesoft .

Password: The password to connect to NebulaGraph. In this example, the password is nebula .

By default, authentication is disabled in NebulaGraph. Therefore, you can use root as the username and any password to connect to

NebulaGraph. When authentication is enabled in NebulaGraph, you need to use the specified username and password to connect to

NebulaGraph. For details of authentication, see NebulaGraph manual.

On the NebulaGraph connection panel, fill in the following:

Enter the cluster name, 15 characters at most. In this example, the cluster name is create_1027 , and choose whether to use sudo to

connect to the cluster.

If your SSH account does not have permission for the NebulaGraph cluster, you can use sudo to connect to it.

Authorize the node. The SSH username and password of each node are required, and choose to run sudo or not.

If your SSH account has no permission to operate NebulaGraph, but can execute sudo commands without password, set use sudo to

yes.

Batch authorization requires uploading the CSV file. Edit the authentication information of each node according to the

downloaded CSV file. Ensure that the node information is correct, otherwise upload failure may happen.

If the node status on the page becomes authorized, the node authentication is successful.

Ensure that all nodes are authorized successfully. Click Import cluster.

1.

2.

3.

•

•

•

Note

4.

•

Notice

•

Notice

•

•

5.

16.4.2 Import clusters

- 584/927 - 2022 Vesoft Inc.

Next to do

After the cluster is successfully imported, you can operate the cluster. For details, see Overview.

Last update: March 13, 2023

16.4.2 Import clusters

- 585/927 - 2022 Vesoft Inc.

16.5 Cluster management

16.5.1 Cluster overview

This topic introduces the Overview page of Dashboard.

At the top of the Dashboard page, click Cluster Management, and then click Detail on the right of the cluster management

page to check the overview of a specified cluster.

Overview

The Overview page has the following parts:

Cluster survey

Alert

Information

Node

Status list

Service

CLUSTER SURVEY

In this part, you can view the number of nodes as well as the number of running and abnormal services of Graphd, Storaged, and

Metad. You can click the View button to quickly check the abnormal service and node.

ALERT

In the Alert section, the system displays the five most recently triggered alert messages according to their severity levels

(emergency > critical > warning).

In the right upper corner, click Alert Messages to view alert messages. For more information about alerts, see Alerts.

INFORMATION

In this part, you can view the information of Cluster Name, Creation Time, Expiration Time, Creator, and Version.

Cluster Name：The name of the cluster.

Creation Time：The time when the cluster is created.

Expiration Time：The time when the cluster license expires.

The parameter Expiration Time is displayed only if the created or imported cluster is an Enterprise Edition cluster.

Creator：The Dashboard account that is used to create the cluster.

Version：The version of NebulaGraph installed in the cluster. The Version Upgrade button is displayed on the right to go to

the page of version upgrade.

In the upper right of the Information section, click to view the cluster details, including name, creation time, account

name, version, and the role of the account name.

•

•

•

•

•

•

•

•

•

Enterpriseonly

•

•

16.5 Cluster management

- 586/927 - 2022 Vesoft Inc.

For Enterprise Edition, there is a License section.

Displays the license details of the cluster, including the usage status, the organization, the creation time, the expiration time, the

cluster versions supported by the license, and the license type.

Supports uploading new licenses. When the license expires, you cannot perform operations on the current cluster. Click

Upload License to upload a new license.

NODE

You can view the information of node monitoring quickly and change the displayed information. By default, the CPU

information will be shown.

You can click on the page to insert a base line.

You can click to jump to the detailed node monitoring page.

STATUS LIST

This part uses pie charts to visually display the running status of nodes.

SERVICE

By default, the information of query_latency_us and slow_query_latency_us will be shown.

You can click Set up to insert a base line.

You can click View to jump to the detailed service monitoring page.

Enterpriseonly

•

•

•

•

•

•

•

•

Last update: March 13, 2023

16.5.1 Cluster overview

- 587/927 - 2022 Vesoft Inc.

16.5.2 Cluster monitoring

This topic introduces node monitoring, service monitoring, graph space monitoring, and TV Dashboard.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management, and click Detail at the right of

the target cluster. Monitoring at the left navigation bar contains Node, Service and TV Dashboard.

Node

Click Monitoring->Node to enter the node monitoring page.

On this page, you can view the variation of CPU, Memory, Load, Disk, and Network In/Out quickly.

By default, you can view the monitoring data of the maximum of 14 days. You can also select a time range or quickly select

latest 1 hour, 6 hours, 12 hours, 1 day, 3 days, 7days, or 14 days.

By default, you can view the monitoring data of all the instances in clusters. You can select the instances you want to view in

the instance box.

By default, the monitoring information page will not be updated automatically. You can set the update frequency of the

monitoring information page globally or click the button to update the page manually.

To set a base line, click the button.

To view the detailed monitoring information, click the button. In this example, select Load for details. The figure is as

follows.

You can set the monitoring time range, instance, update frequency and base line.

You can select the machine and monitoring metrics that you want to view. For details of monitoring metrics, see Monitor

parameter.

Service

Click Monitoring->Service to enter the service monitoring page.

•

•

•

•

•

•

•

16.5.2 Cluster monitoring

- 588/927 - 2022 Vesoft Inc.

On this page, you can view the information of Graph, Meta, and Storage services quickly. In the upper right corner, the number

of normal services and abnormal services will be displayed.

In the current Service page of the Enterprise Edition, only two monitoring metrics can be set for each service, which can be adjusted

by clicking the Set up button.

By default, you can view the monitoring data of the maximum of 14 days. You can also select a time range or quickly select

latest 1 hour, 6 hours, 12 hours, 1 day, 3 days, 7days, or 14 days.

By default, you can view the monitoring data of all the instances in clusters. You can select the instances you want to view in

the instance box.

By default, the monitoring information page will not be updated automatically. You can set the update frequency of the

monitoring information page globally or click the button to update the page manually.

You can view the status of all the services in cluster.

To view the detailed monitoring information, click the button. In this example, select Graph for details. The figure is as

follows.

You can set the monitoring time range, instance, update frequency, period, aggregation and base line.

You can view all the monitoring information of the service. For details of monitoring metrics, see Monitor parameter.

The Graph service supports a set of space-level metrics. For more information, see the following section Graph space.

GRAPH SPACE

Before using graph space metrics, you need to set enable_space_level_metrics to true in the Graph service. For details, see Update config.

If a graph space name contains special characters, the corresponding metric data of that graph space may not be displayed.

Note

•

•

•

•

•

•

•

•

Note

Space-level metric incompatibility

16.5.2 Cluster monitoring

- 589/927 - 2022 Vesoft Inc.

The service monitoring page can also monitor graph space level metrics. Only when the behavior of a graph space metric is

triggered, you can specify the graph space to view information about the corresponding graph space metric.

Space graph metrics record the information of different graph spaces separately. Currently, only the Graph service supports a set

of space-level metrics.

For information about the space graph metrics, see Space graph.

TV Dashboard

The TV Dashboard feature helps users understand the health status of the cluster and the information of services and nodes at a

glance.

Click Monitoring->TV Dashboard to enter the TV Dashboard page.

16.5.2 Cluster monitoring

- 590/927 - 2022 Vesoft Inc.

For more information about the monitoring metrics, see Metrics.

Screen area Information displayed

Upper

middle area

1. The health degree of your cluster. The system scores the health of your cluster. For more information, see

the following note.

2. The information and number of running nodes, the number of running services and abnormal services in

the cluster.

3. CPU and memory usage of the node at the current time.

4. Alert notifications. The system displays the 5 most recently triggered alert messages based on their

severity level (emergency>critical>warning). For more information, Monitoring alerts.

Lower

middle area

Monitoring information of 4 Graph service metrics at different periods. The 4 metrics are:

1. num_active_sessions

2. num_slow_queries

3. num_active_queries

4. num_query_errors

Left side of

the area

1. QPS (Query Per Second) of your cluster.

2. The monitoring information of 2 Storage service metrics at different periods. The two metrics are:

add_edges_latency_us,add_vertices_latency_us.

Right side of

the area

The node-related metrics information at different periods. Metrics include:

1. cpu_utilization

2. memory_utilization

3. load_1m

4. disk_readbytes

5. disk_writebytes

16.5.2 Cluster monitoring

- 591/927 - 2022 Vesoft Inc.

Cluster scoring rules are as follows:

The maximum score is 100; The minimum score is 13.

When 100≥Health Degree≥80, the score is blue; When 80＞Health Degree≥60, the score is yellow; When Health Degree＜60, the

score is yellow.

Algorithm: (1-number of abnormal services/total number of services)*100%.

Except for the appearance of the first emergency level alert that deducts 40 points, 10 points are deducted for each of the other

emergency level alerts and other levels of alerts.

Note

•

•

•

•

Last update: July 20, 2022

16.5.2 Cluster monitoring

- 592/927 - 2022 Vesoft Inc.

16.5.3 Alerts

Nebula Dashboard Enterprise Edition alerts on monitoring metrics. You can view alert messages, set alert rules, and set alert

receivers.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management, and click Detail at the right of

the target cluster. Notification at the left navigation bar contains Alert Messages, Alert Rules and Receivers.

Alert messages

Alert messages will pop up in the upper right corner of the page, you can do the following operations:

Click the View button to go to the Notification->Alert Messages page to view detailed alert information.

Click the Mute buttons, the alert rule will not be triggered again for 2 hours.

You can perform the following operations on the Alert Messages page:

You can search for alert messages by message name.

You can filter alert messages by date and time, and period. Available periods are 1 hour, 6 hours, 12 hours, 1 day, 3 days, 7

days, and 14 days.

You can filter alert messages by severity, type, and status. Click Reset to empty all filtering results.

You can set the processing status of alert messages. The status is unsolved by default, and you can set the status to Dealing or

Solved .

Alert messages cannot be deleted. In the nebula-dashboard-ent/config/config.yaml file, messageStore sets the number of days to keep alert

messages, the value of which is 90 by default. For more information about the configuration file, see Deploy Dashboard.

Alert rules

Before receiving alert messages, you need to set alert rules. Alert rules include custom rules and build-in rules.

•

•

•

•

•

•

16.5.3 Alerts

- 593/927 - 2022 Vesoft Inc.

CREATE CUSTOM RULES

Follow the below steps to create a custom rule.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management, and then on the right side of the

target cluster, click Detail.

On the left side of the Cluster Management page, click Notification->Alert Rules.

On the Alert Rules page, click Custom Rules, and then click Create Rule at the top right of the page.

Set alert rules.

On the Basic Information tab, set alert name, severity, and frequency.

On the Condition tab, set metric type, rule, and alert duration.

On the Message Settings tab, you can see the rule summary and rule details, and then click Submit.

DO NOT modify the rule details unless you are clear of the consequences.

VIEW CUSTOM RULES

On the Custom Rules, you can do the following operations.

Search for alert rules and filter alert rules by severity, type, metric, and status.

Click Reset to empty all filtering results.

Turn on or off the alert rule you set. The status of an alert rule that has been turned on is active. The status of an alert rule

that has been turned off is disable.

EDIT CUSTOM RULES

In the Custom Rules list, select the target rule, and then click the edit icon to edit the rule.

DELETE CUSTOM RULES

In the Custom Rules list, select the target rule, click the delete icon to delete the rule.

BUILT-IN RULES

The built-in rules are the default rules in Dashboard Enterprise Edition. You can enable or disable the built-in rules. The status of

a built-in rule that has been turned on is active. The status of a built-in rule that has been turned off is disable.

1.

2.

3.

4.

a.

Parameter Description

Alert Name Set a name for an alert rule. The name can only contain lowercase letters, numbers, and hyphens (-), and

must begin and end with a lowercase letter or number. The name contains up to 253 characters.

Severity Set a severity level for an alert rule. The severity level includes emergency , critical , and warning .

Alert

Frequency

Set how often an alert message is sent. Unit: Minute (Min).

b.

Parameter Description

Metric Type Set a metric type. Metric type includes the node metric type and the service type (graphd,storaged,metad).

Metric Rule Set metric rules for a node or a service. For more information, see Monitoring metrics.

Alert duration Set how long an alert lasts before the alert message is triggered. Unit: Minute (Min).

c.

Note

•

•

•

16.5.3 Alerts

- 594/927 - 2022 Vesoft Inc.

Built-in rules cannot be edited or deleted.

Receiver configuration

Alerts can be configured to send notifications to receivers. You can set the email address of the receiver who receives alert

notifications. You can also view your Webhook URL and whether the webhook is enabled or not. For more information about the

Webhook, see Global settings.

At the top navigation bar of the Dashboard Enterprise Edition page, Click Cluster Management, and on the right side of the

target cluster, click Detail.

On the left-side navigation bar of the Cluster Management page, click Notification->Receivers.

On the Receivers page,

Click Mail and input the email of the receiver who receives alert notifications and then click Add.

Click Webhook and see your Webhook URL and whether the webhook is enabled or not.

Note

1.

2.

3.

•

•

Last update: July 20, 2022

16.5.3 Alerts

- 595/927 - 2022 Vesoft Inc.

16.5.4 Cluster information

This topic introduces the cluster information of Dashboard from two parts Overview Info and Cluster Diagnostics. The

Overview Info section displays the overview information of the NebulaGraph cluster. The Cluster Diagnostics section displays

the cluster Diagnostics information of the NebulaGraph cluster.

Entry

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management.

On the right side of the target cluster, click Detail.

On the left-side navigation bar of the page, Information contains Overview Info and Cluster Diagnostics.

Overview Info

Before viewing the cluster information, you need to select any online Graph service address, enter the account to log in to

NebulaGraph (not the Dashboard login account), and the corresponding password.

You need to ensure that NebulaGraph services have been deployed and started. For more information, see NebulaGraph installation

and deployment.

1.

2.

3.

Note

Caution

16.5.4 Cluster information

- 596/927 - 2022 Vesoft Inc.

On the Overview Info page, you can see the information of the NebulaGraph cluster, including Storage leader distribution,

Storage service details, versions and hosts information of each NebulaGraph service, and partition distribution and details.

Storage Leader Distribution

In this section, the number of Leaders and the Leader distribution will be shown.

Click the Balance Leader button in the upper right corner to distribute Leaders evenly and quickly in the NebulaGraph

cluster. For details about the Leader, see Storage Service.

Click Detail in the upper right corner to view the details of the Leader distribution.

VERSION

In this section, the version and host information of each NebulaGraph service will be shown. Click Detail in the upper right

corner to view the details of the version and host information.

•

•

16.5.4 Cluster information

- 597/927 - 2022 Vesoft Inc.

Service information

In this section, the information on Storage services will be shown. The parameter description is as follows:

Click Detail in the upper right corner to view the details of the Storage service information.

Partition Distribution

Select the specified graph space in the upper left corner, and then you can perform the following operations:

View the distribution of partitions in the specified graph space. You can see the IP addresses and ports of all Storage services

in the cluster, and the number of partitions in each Storage service.

Click Balance Data to evenly distribute the partitions in the specified graph space.

Click Balance Data Remove to migrate the partitions in the specified Storage service and distribute them evenly to the other

Storage services in the cluster. The system will guide you to select the host IP where the specified Storage service is located.

Click Detail in the upper right corner to view more details.

Partition information

In this section, the information on partitions will be shown. Before viewing the partition information, you need to select a graph

space in the upper left corner. The parameter description is as follows:

Click Detail in the upper right corner to view details. You can also enter the partition ID into the input box in the upper right

corner of the details page to filter the shown data.

Cluster Diagnostics

You can click Cluster Diagnostics under the Cluster Information menu bar to locate and analyze the problem that occurs in

the cluster. For details, see Cluster Diagnostics.

Parameter Description

Host The IP address of the host.

Port The port of the host.

Status The host status.

Git Info Sha The commit ID of the current version.

Leader Count The number of Leaders.

Partition Distribution The distribution of partitions.

Leader Distribution The distribution of Leaders.

•

•

•

Parameter Description

Partition ID The ID of the partition.

Leader The IP address and port of the leader.

Peers The IP addresses and ports of all the replicas.

Losts The IP addresses and ports of faulty replicas.

Last update: March 13, 2023

16.5.4 Cluster information

- 598/927 - 2022 Vesoft Inc.

16.5.5 Cluster Diagnositics

The cluster diagnostics feature in Dashboard Enterprise Edition is to locate and analyze the current cluster problems within a

specified time range and summarize the diagnostic results and cluster monitoring information to web-based diagnostic reports.

Features

Diagnostic reports allow you to troubleshoot the current cluster problems within a specified time range.

Quickly understand the basic information of the nodes, services, service configurations, and query sessions in the cluster.

Based on the diagnostic reports, you can make operation and maintenance recommendations and cluster alerts.

Entry

In the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management.

On the right side of the target cluster, click Detail.

In the left navigation bar, click Information->Cluster Diagnostics.

Create diagnostic reports

Select a time range for diagnostics. You can customize the time range or set the range by selecting time intervals, including 1 Hour ,

6 Hours , 12 Hours , 1 Day , 3 Days , 7 Days , and 14 Days .

Note that the end time of the diagnostic range you set cannot be longer than the current time. If the end time is longer than the current

time, the end time will be set to the current time.

On the Cluster Diagnostics page, click Start.

Wait for the diagnostic report to be generated. When the diagnostic status is changed to success from generating, the diagnostic

report is ready.

View diagnostic reports

In the diagnostic report list, you can view the diagnostic reports by clicking Detail on the right side of the target report.

•

•

•

1.

2.

3.

1.

Caution

2.

3.

16.5.5 Cluster Diagnositics

- 599/927 - 2022 Vesoft Inc.

A diagnostic report contains the following information:

Diagnosis Result

Basic Info

Load Info

Network

Session

Service Info

Configuration Info

DIAGNOSIS RESULT

When the following parameters are abnormal, the corresponding information is displayed in the Diagnosis Result section,

including the parameter name, type, severity, and details.

When no abnormality is diagnosed, no diagnostic information is displayed in the diagnostic result.

•

•

•

•

•

•

•

•

Parameter Description

num_queries_hit_memory_watermark The total number of nGQL statements that reach the memory high-water mark during

execution.

graphd_down Graph services stopped running.

storaged_down Storage services stopped running.

metad_down Meta services stopped running.

node-exporter down The service used to collect data from the node stopped running.

•

16.5.5 Cluster Diagnositics

- 600/927 - 2022 Vesoft Inc.

BASIC INFO

Report Time Range: Displays the time range of the diagnostic report.

Node Info: Displays the basic information of the node, including the node IP, number of services, CPU, memory, and disk.

Service Info: Displays the type, node IP, HTTP port, and operational status of each NebulaGraph service.

Leader Distribution: Displays the distribution of Leaders in Storage services.

•

•

Parameter Description

HOST The IP address of the node.

INSTANCE The number of NebulaGraph services deployed on this node. Such as: metad*1 graphd*1 storaged*1 .

CPU The number of CPU cores. Unit: Core.

MEMORY The memory size of the node. Unit: GB.

DISK The disk size of the node. Unit: GB.

•

•

Parameter Description

Storage Service Displays the access addresses for Storage services.

Number of Leaders Displays the number of Leaders in the corresponding Storage service.

Leader Distribution Displays the number of Leader distributions for different space graphs in the corresponding Storage

service.

16.5.5 Cluster Diagnositics

- 601/927 - 2022 Vesoft Inc.

LOAD INFO

Displays the load information of the node, including the average value (AVG), maximum value (MAX), minimum value (MIN) of

the following metrics of the node within the time range:

Memory Utilization: Displays the node memory usage in %.

CPU Utilization: Displays the node CPU usage in %.

Disk Utilization: Displays the total disk utilization of the node and the utilization of each disk in the node in %.

NETWORK

Displays the network traffic information of all nodes in the cluster, including the average (AVG), maximum (MAX), and minimum

(MIN) values of the following metrics:

NetworkOut: Displays the magnitude of network outflow speed for each node in the cluster, and the magnitude of outflow

speed for each NIC in each node. Unit: Bytes/s.

NetworkIn: Shows the magnitude of network inflow speed for each server node in the cluster and the magnitude of inflow

speed for each NIC in each node. Unit: Bytes/s.

•

•

•

•

•

16.5.5 Cluster Diagnositics

- 602/927 - 2022 Vesoft Inc.

SESSION

Displays the session-related information for all Graph services in the cluster.

Parameter Description

num_opened_sessions The number of sessions connected to the server.

num_auth_failed_sessions The number of sessions in which login authentication failed.

num_active_sessions The number of currently active sessions.

num_reclaimed_expired_sessions The number of expired sessions actively reclaimed by the server.

16.5.5 Cluster Diagnositics

- 603/927 - 2022 Vesoft Inc.

SERVICE INFO

Displays metrics related to the stability of each service in the cluster.

Graph:

Meta:

Storage:

•

Parameter Description

METRIC_NAME query : The number of all queries.

slow_queries : The number of slow queries.

num_killed_queries : The number of killed queries.

num_queries_hit_memory_watermark : The total number of nGQL statements that reach the memory high-water

mark during execution.

num_rpc_sent_to_metad : The number of RPC requests that the Graphd service sent to the Metad service.

•

Parameter Description

METRIC_NAME heartbeat : The number of heartbeats.

•

Parameter Description

METRIC_NAME delete_vertices : The number of deleted vertices.

delete_edges : The number of deleted edges.

delete_tags : The number of deleted tags.

num_rpc_sent_to_metad : The number of RPC requests that the Storaged service sent to the Metad service.

16.5.5 Cluster Diagnositics

- 604/927 - 2022 Vesoft Inc.

The descriptions of other parameters are as follows:

CONFIGURATION INFO

Lists all configuration information for Graph, Meta, and Storage services in the current cluster.

For information about the configurations of each service in NebulaGraph, see Configurations.

Parameter Description

TOTAL The total number of times this monitoring metric is executed.

ERROR The number of errors that occurred.

P75 The 75th percentile latency.

P95 The 95th percentile latency.

P99 The 99th percentile latency.

P999 The 99.9th percentile latency.

Last update: March 13, 2023

16.5.5 Cluster Diagnositics

- 605/927 - 2022 Vesoft Inc.

16.5.6 Cluster operation

This topic introduces the cluster operation of Dashboard, including cluster node, cluster service, cluster scaling, service

configuration, member management and version upgrade.

Node

On this page, the information of all nodes will be shown, including the cluster name, Host(SSH_User), CPU (Core), etc.

To add a node quickly, click Add Node and enter the following information, the Host, SSH port, SSH user, SSH password, and

select a NebulaGraph package.

Click the button to view the process name, service type, status, runtime directory of the corresponding node.

Click Node Monitoring to jump to the detailed node monitoring page. For more information, see Cluster monitoring.

Click Service Management to jump to the service management page.

Click Edit Node to modify the SSH port, SSH user, and SSH password.

If a node has no service, you can Delete Node.

Scale

Only when the cluster you created or imported is the Enterprise Edition, this feature is available.

On this page, you can add node and import node in batches quickly, and add Graph services and Storage services to the

existing nodes.

Click the Reset button to restore to the initial state.

Currently, you can dynamically scale Storaged and Graphd services through Dashboard. The Metad service cannot be scaled. When

scaling a cluster, it is recommended to back up data in advance so that data can be rolled back when scaling fails. For more

information, see FAQ.

Make sure that services of the same type are not deployed on the same node, and at least one of each type of services is deployed in

the cluster.

In this example, storage services with nodes 192.168.8.143 and 192.168.8.167 are added, and Graph services with node 192.168.8.169

are deleted. If the box is dotted and the service name is greyed, it means the service is removed. If the box is solid, it means the

service is newly added.

In the Services section below, green indicates services that will be added soon, and red indicates services that will be removed.

You can modify the port, HTTP port, and HTTP2 port of the newly added service.

•

•

•

•

•

•

Enterpriseonly

•

•

Caution

•

•

16.5.6 Cluster operation

- 606/927 - 2022 Vesoft Inc.

Service

On this page, you can select the service type, service status, and host to filter the shown data, quickly select one or multiple

services, and start/stop/restart the service with one click.

Click the icon to quickly view the Service monitoring.

If you click Stop/Restart, the running task will be stopped instantly, which may cause data inconsistency. It is recommended to

perform this operation during the low peak period of the business.

•

•

Danger

16.5.6 Cluster operation

- 607/927 - 2022 Vesoft Inc.

Update Config

On this page, you can modify configuration files of Storage and Graph services. For more information, see Storage service

configuration and Graph service configuration. Updating configuration files is a batch operation, and each Storage/Graph

configuration file will be modified.

After clicking Save, the configuration will take effect after the next service restart.

Click Save and Restart to directly restart the service to make the configuration take effect immediately.

If you click Save and Restart, the running task will be stopped and the cluster will be restarted instantly, which may cause data

inconsistency. It is recommended to perform this operation during the low peak period of the business.

Member Management

Accounts with the role admin and cluster creators with the role user can add members to manage clusters. By default, the role of

cluster creators is owner , and is displayed on the Member Management page. The role of added members is operator .

For more information about accounts and roles, see Authority management.

ADD CLUSTER MEMBERS

The accounts of cluster members must be included in Dashboard accounts. For information about how to create an account, see

Authority management.

You can follow the below steps to add cluster members.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management.

On the right side of the target cluster, click Detail.

On the left-side navigation bar of the page, click Operation->Member Management.

On the Member Management page, click the search box at the top left.

In the drop-down list, select the target account that you want to add to be the administrator of the cluster, and then click Add.

OTHER OPERATIONS

At the top right of the Member Management page, you can search for cluster members.

Click to delete members.

Version Upgrade

Nebula Dashboard Enterprise Edition supports upgrading the version of the existing NebulaGraph cluster.

During the upgrade, the cluster will replace binary files. The upgrade speed is fast, but the cluster will still be stopped and restarted.

Automatic rollback is not supported. Users can manually upgrade the cluster again when the upgrade failed.

The upgrade cannot be stopped or cancelled.

•

•

Danger

1.

2.

3.

4.

5.

•

•

Caution

•

•

•

16.5.6 Cluster operation

- 608/927 - 2022 Vesoft Inc.

Only supports upgrading the NebulaGraph cluster that version greater than 3.0.0.

Do not supports upgrading cluster across major version.

The community edition can be upgraded to the enterprise edition by uploading and verifying licenses, and the enterprise edition can

be upgraded to the community edition.

The cluster can be upgraded to a minor version in the current major version, including a smaller version than the current minor

version.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management.

On the right side of the target cluster, click Detail.

On the left-side navigation bar of the page, click Operation->Version Upgrade.

On the Version Upgrade page, confirm Current NebulaGraph version, select the upgrade version and then click Next.

If you do not find the suitable version, click Package Management to download or upload the required version installation package.

For details, see Package management.

Perform the upgrade check, and then click Next. The cluster will be shut down during the upgrade and automatically restart the

services after the upgrade. You can use the diagnostics report to help you judge whether the timing to upgrade is suitable.

Confirm the upgrade information again, including Cluster Name, Current NebulaGraph Version and Upgrade NebulaGraph

Version, then click Upgrade. Users can view the upgrade task information in task center, the task type is version update .

Note

•

•

•

•

1.

2.

3.

4.

Note

5.

6.

Last update: March 13, 2023

16.5.6 Cluster operation

- 609/927 - 2022 Vesoft Inc.

16.5.7 Back up and restore NebulaGraph data

To prevent data loss due to operational errors or system failures, NebulaGraph offers the Backup & Restore (BR) tool to help

users back up and restore graph data. Dashboard Enterprise Edition integrates BR capabilities and offers simple UIs that allow

users to perform data backup and restore operations in just a few steps. This document describes how to use Dashboard

Enterprise Edition to backup and restore NebulaGraph data.

Limits

Currently, Dashboard only supports backup data to cloud storage services compatible with the S3 protocol (e.g. OSS, MinIO,

Ceph RGW, etc.) and does not support local backups.

To back up data to a local device, see What is Backup & Restore.

Currently, only full backup and full restore of data are supported, and incremental backup and incremental restore are not

supported.

Backup and restoration of space-level data are not supported.

Backup data can only be restored to the original cluster, and cannot be restored across clusters.

Breakpoint moving of backup and restore data is not supported.

Currently, only the logs generated by backup and restore operations are supported.

Prerequisites

A cluster is created with Dashboard.

A cloud storage service that is compatible with the S3 protocol is activated and a storage bucket is created. For details, see the

documentation for the corresponding cloud storage service.

Steps

ENTRY

In the top navigation bar, click Cluster Management.

On the right side of the target cluster, click Detail.

In the left navigation bar, click Information->Backup&Restore.

•

Note

•

•

•

•

•

•

•

1.

2.

3.

16.5.7 Back up and restore NebulaGraph data

- 610/927 - 2022 Vesoft Inc.

BACK UP DATA

Data is backed up to the cloud storage service by creating a backup file as follows.

16.5.7 Back up and restore NebulaGraph data

- 611/927 - 2022 Vesoft Inc.

On the Backup&Restore page, click the Backup List tab.

In the upper right corner of the page, click S3 Service Settings.

Fill in the configuration information for the corresponding cloud storage service and click Submit.

The following configurations are examples for Alibaba Cloud Object Storage Service and Amazon S3:

For Amazon S3:

For Alibaba Cloud Object Storage Service:

To back up data to OSS, you need to replace oss with s3 for the OSS storage path. For example, change the original OSS path oss://

nebula-br-test/ to s3://nebula-br-test/ .

1.

2.

3.

Parameter Description

s3.access_key The Access Key ID that is used to identify a user. For example, AKIAI44QH8DHBxxxx .

s3.endpoint The domain URL of the entry point for the cloud storage service. For example, https://s3.us-east-2.amazonaws.com .

The URL containing bucket_name is not supported, such as https://{bucket_name}.s3.us-west-2.amazonaws.com .

s3.region The physical location of a data center. For example, us-east-1 .

s3.secret_key The Access Key Secret that is used to verify the identity of the user. For example, je7MtGbClwBF/2Zp9Utk/h3yCoxxxx .

storage path The data storage path which must start with s3 . For example, s3://br-test/backup/ .

•

•

Caution

16.5.7 Back up and restore NebulaGraph data

- 612/927 - 2022 Vesoft Inc.

In the upper right corner of the page, click Create New Backup.

On the Create New Backup page, click Environment check to check whether the relevant configurations are working properly,

and then click Submit.

Environment check includes:

Your NebulaGraph cluster is running.

The access key to log onto the storage service has not expired.

The status of business traffic. It only checks if the QPS of your business is 0. When QPS is not 0, you are prompted to back up data

during off-peak hours.

You are unable to submit the backup when your cluster works abnormally or the access key to the storage service has expired.

View the created backup file in the backup list.

The backup list shows backups created within 30 days by default, showing backup name, time, status, backup spaces, backup type,

storage path, and related operations.

The backup status includes running , success , and failed .

Related operations include restoring the backup, viewing restoration records, viewing logs generated by the backup operation, and

deleting the backup.

You can filter created backups by creation time and status) or search backup file names for backups.

You are unable to perform a new backup until the previous backup is completed.

4.

5.

•

•

•

Note

6.

•

•

•

•

Note

16.5.7 Back up and restore NebulaGraph data

- 613/927 - 2022 Vesoft Inc.

Check if the created backup file exists in the storage service. Successfully created backup files are stored to the storage path set

above, like s3://nebula-br-test .

Amazon S3:

Alibaba Cloud Object Storage Service:

Do not modify the file name and storage path of backup files, otherwise, the backup data cannot be restored to the cluster.

RESTORE DATA

You can restore the backed-up data stored in the cloud storage service to the original cluster.

Before restoring the data, please make sure that the name and storage path of the backup file stored in the cloud storage service are

not changed, otherwise, the data restoration will fail.

During the data restoration process, all data in the cluster is removed and replaced with the data in the backup file.

The restoration process is executed offline, and you cannot perform other operations during the data restoration process.

7.

•

•

Danger

Caution

•

•

•

16.5.7 Back up and restore NebulaGraph data

- 614/927 - 2022 Vesoft Inc.

Follow the steps below to restore data.

On the Backup&Restore page, click the Backup list tab.

To the right of the target backup file, click Restore.

Click Environment check, and when the environment check is passed, click Submit.

Environment check includes:

Your NebulaGraph cluster is running.

The access key to log onto the storage service has not expired.

No business website traffic.

On the Restore record list page, view restoration records.

Restoration records cannot be deleted.

The list page displays restoration records created within 30 days.

The list page displays the restoration ID, backup file name, status, time, graph space, storage path, operator, and the log generated

by the restoration operation.

The restoration status includes running , success , and failed .

You're unable to restore the backup data until the previous restoration is complete.

You can filter restoration records by creation time and status, or search backup file names for restoration records.

1.

2.

3.

•

•

•

4.

•

•

•

•

Note

•

Last update: March 13, 2023

16.5.7 Back up and restore NebulaGraph data

- 615/927 - 2022 Vesoft Inc.

16.5.8 Operation record

This topic shows how to use the operation record feature in Nebula Dashboard.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management, and click Detail at the right of

the target cluster, and on the left-side navigation bar, click Operation Record to enter the operation history page.

On the Operation record page, you can check the operation records of the latest 1 hour, 6 hours, 1 day, 3 days, 7days, or 14

days. You can also view who runs what operation on which cluster at what time.

Last update: July 20, 2022

16.5.8 Operation record

- 616/927 - 2022 Vesoft Inc.

16.5.9 Other settings

The following shows other settings in Nebula Dashboard.

At the top navigation bar of the Dashboard Enterprise Edition page, click Cluster Management, click Details on the right side

of the target cluster, and on the left-side navigation bar, click Other Settings to enter the other settings page.

Information: shows the cluster name, the creation time, the creator, and the owner of the current cluster.

Unbind: Unbind a cluster and remove its information from the platform. The unbound cluster info will be removed and no

operations will be done on cluster services or Nebula data.

To unbind a cluster, enter the cluster name first.

Delete: Delete a cluster and remove its information from the platform. Deleting the cluster will stop its service and unbind the

cluster info, but retain its Nebula data. Be cautious when you delete a cluster.

To delete a cluster, enter the cluster name first

•

•

Note

•

Note

Last update: April 22, 2022

16.5.9 Other settings

- 617/927 - 2022 Vesoft Inc.

16.6 Task Center

It takes a certain amount of time for you to make sure whether a cluster is created or scaled successfully in Nebula Dashboard

Enterprise Edition. You can view the progress of such operations in Task Center. It displays the progress of ongoing operations

and the history of complete operations.

The operations on clusters are defined as tasks in Task Center. Currently, there are two task types in Task Center, cluster

creation and cluster scaling.

At the top navigation bar of the Dashboard Enterprise Edition page, click Task Center to view task information.

16.6.1 Running tasks

On the Task Center page, click Running Task to view the progress of tasks that clusters are being created or scaled.

Click a task name to view the ID, node name, type, create time, and operator of the running task.

Clink Task information to view task details.

16.6.2 Task history

On the Task Center page, click Task History to view all complete tasks.

You can filter historical tasks by status, type, date, and time.

On the right side of the target historical task, click Task information to view task details, and click Logs to view task

execution logs.

16.6.3 Delete tasks

It is currently not possible to cancel running tasks or delete historical tasks.

•

•

•

•

Last update: March 8, 2022

16.6 Task Center

- 618/927 - 2022 Vesoft Inc.

16.7 Authority management

You can log into Nebula Dashboard Enterprise Edition with different types of accounts. Different accounts have different

permissions. This article introduces account types, roles, and permissions.

16.7.1 Account types

Once you log into Dashboard Enterprise Edition using the initialized account name nebula and password nebula , you can create

different types of accounts: LDAP accounts and general accounts.

LDAP accounts

Dashboard Enterprise Edition enables you to log into it with your enterprise account by accessing LDAP (Lightweight Directory

Access Protocol).

Before using an LDAP account, LDAP configurations are required.

In the Dashboard Enterprise Edition installation path, such as nebula-graph-dashboard-ent/nebula-dashboard-ent/config , find the configuration

file config.yaml .

In config.yaml , add the following content.

Restart Dashboard Enterprise Edition to apply changes.

After the LDAP is configured successfully, and use the initialized account name nebula and password nebula to log into Dashboard

Enterprise Edition, you can create an LDAP account then. For information about how to create an account, see Create accounts.

General accounts

All accounts are general accounts except for LDAP accounts.

16.7.2 Account roles

You can set different roles for your accounts. Roles are different in permissions. There are two types of account roles in

Dashboard Enterprise Edition: system roles (admin and user) and cluster roles (owner and operator).

The relationship between system roles and cluster roles and their descriptions are as follows.

1.

2.

ldap:

 server: ldap://127.0.0.1

 bindDN: cn=admin,dc=vesoft,dc=com

 bindPassword: ""

 baseDN: dc=vesoft,dc=com

 userFilter: "&(objectClass=*)"

 emailKey: mail

Parameter Description

server The LDAP server address.

bindDN The LDAP login username.

bindPassword The LDAP login password.

baseDN Set the path to query user data.

userFilter Set a filter to LDAP search queries.

emailKey Set the field name used to restore email in LDAP.

3.

16.7 Authority management

- 619/927 - 2022 Vesoft Inc.

https://ldap.com/
https://ldap.com/

System roles:

Cluster roles:

Roles Permission Description

admin 1. Create accounts.

2. Modify the role of an existing account.

3. Perform platform settings, system-level alert

settings.

4. Delete accounts.

1. There can be multiple admin roles, i.e. system

administrators.

2. An admin is the operator of all clusters by default, i.e. an

admin can manage all clusters.

3. Displayed in the cluster member list by default. An

owner cannot remove an admin unless the admin is

converted to user , and the system will automatically

remove the admin from the cluster member list.

user 1. Has read-only permissions for the system

dimension.

2. After an admin creates a new account with the

user role, the user account cannot view any

clusters if the corresponding cluster is not

assigned to the account.

3. Can create clusters and become the owner of

the clusters.

1. General role.

2. There can be multiple user roles.

Roles Permission Description

operator 1. Scale clusters.

2. Set cluster alerts.

3. Manage cluster nodes.

4. Manage cluster services.

1. The cluster operator.

2. There can be multiple operator roles in a cluster.

owner 1. Have all the permissions of operator .

2. Unbind and delete clusters.

3. Add and remove accounts with operator roles.

4. Transfer the owner role.

1. The cluster owner.

2. There can only be one owner in a cluster.

16.7.2 Account roles

- 620/927 - 2022 Vesoft Inc.

16.7.3 Create accounts

Accounts with admin roles can create other accounts. The steps are as follows:

At the top navigation bar of the Dashboard Enterprise Edition page, click Authority, and click Create.

Select one method and input information to create an account, and click OK.

Invite: Set the invitee's enterprise email and role. After the invitee clicks the Accept button in the email to activate the account,

the invitee needs to click Login to automatically jump to the Dashboard Enterprise Edition login page. The invitee can log into

Dashboard with his/her enterprise email account and password.

When selecting the Invite method to add accounts, ensure that the invitee's email has been added to the enterprise LDAP server.

Create Account: Set the login name, password, and role for the new account. For information about roles, Account roles.

16.7.4 View accounts

The created accounts are displayed on the Authority page.

You can view the username, account type, role, associated cluster, and create time of accounts.

Account Type: Includes platform and ldap. platform is a general account and ldap is an LDAP account.

Role: Displays the role of an account, including admin and user. For more information about roles, see the above content.

Associated Clusters: Displays all the clusters that can be operated by an account. If the cluster was created by the account,

the associated cluster has the owner tag.

You can search for accounts in the search box, and filter accounts by selecting an associated cluster.

16.7.5 Other operations

In the Action column on the Authority page, click to edit account information.

In the Action column on the Authority page, click to delete an account.

1.

2.

•

Note

•

•

•

•

•

•

•

•

Last update: July 20, 2022

16.7.3 Create accounts

- 621/927 - 2022 Vesoft Inc.

16.8 Package management

Nebula Dashboard Enterprise Edition supports managing NebulaGraph installation packages, such as downloading the

community edition installation packages or manually uploading the installation packages.

16.8.1 Precautions

Only the admin user can manage the installation package.

Do not support downloading enterprise edition installation packages. For downloading Enterprise Edition packages, please

send email to inquiry@vesoft.com.

16.8.2 View packages

At the top navigation bar of the Dashboard Enterprise Edition page, click System Settings.

On the left-side navigation bar of the page, click Package Management, and the list of existing installation packages are

displayed on the right-side, showing the package name, version, size, and created time.

Users can filter packages through the search box in the upper right corner.

16.8.3 Download packages

At the top navigation bar of the Dashboard Enterprise Edition page, click System Settings.

On the left-side navigation bar of the page, click Package Management.

Click Download Package, select the installation package you want to download. The description are as follows:

If you download an existing installation package, the system will prompt you to overwrite the existing installation package.

Version: Supports stable versions later than v2.5. It is recommended to use the latest version.

Platform: Supports CentOS 7/8 and Ubuntu 1604/1804/2004.

Package Type: Supports RPM, DEB and tar.gz.

Click Download.

•

•

1.

2.

1.

2.

3.

Note

•

•

•

4.

16.8 Package management

- 622/927 - 2022 Vesoft Inc.

Users can view the download task information in task center, the task type is package download . If the task status is success , users

can return to the Package Management page to view the newly downloaded installation package.

16.8.4 Upload packages

If the required installation package is not listed in the downloaded list, users can manually upload installation packages, such as

upload an enterprise edition installation package.

At the top navigation bar of the Dashboard Enterprise Edition page, click System Settings.

On the left-side navigation bar of the page, click Package Management.

Click Upload Package, select the local installation package you want to upload. The package type can be RPM, DEB, or tar.gz.

View the upload progress on the upper of the page and wait until the upload is complete.

Users can view the upload task information in task center, the task type is package upload . If the task status is success , users can

return to the Package Management page to view the newly uploaded installation package.

16.8.5 Delete packages

At the top navigation bar of the Dashboard Enterprise Edition page, click System Settings.

On the left-side navigation bar of the page, click Package Management, and the list of existing installation packages are

displayed on the right-side. Locate the installation package you want to delete.

In the operation column of the target installation package, click Delete and confirm.

16.8.6 FAQ

How to resolve the error Request Entity Too Large ?

If users use Nginx as the reverse proxy, the default limit for uploaded files is 1 MB. Add client_max_body_size 200m; to the http{}

section of nginx.conf , that means the file of up to 200 MB is allowed to be uploaded.

1.

2.

3.

1.

2.

3.

Last update: March 13, 2023

16.8.4 Upload packages

- 623/927 - 2022 Vesoft Inc.

16.9 Global settings

This article describes the global settings of using Dashboard Enterprise Edition, including interface settings, help center, and

user information.

16.9.1 Interface settings

At the top navigation bar of the Dashboard Enterprise Edition, click Interface settings to set system, notification, and other

settings.

System settings

On the left-side navigation bar of the Interface Settings, click System Settings to modify the page title, logo image, and cover

image.

Notification Endpoints

Mail：Dashboard Enterprise Edition supports sending and receiving alert messages for all clusters via E-mail.

On the left-side navigation bar of the Interface Settings page, click Notification Endpoints->Mail:

You need to set the following parameters to send alert messages.

You need to set a receiver to receive alert messages.

Webhook：Supports configuring Webhook to bring all cluster alert messages into third-party projects.

On the left-side navigation bar of the Interface Settings page, click Notification Endpoints->Webhook to input the

Webhook URL used to receive alert messages. You can turn on or off the Webhook feature at the top right of the page.

•

•

Parameter Description

SMTP Server Address The SMTP server address corresponding to your mailbox.

Port The port number of the SMTP server corresponding to your mailbox.

Use SSL Check the box to enable SSL for encrypted data transmission.

SMTP User Name The SMTP server account name.

SMTP Password The SMTP server password.

Sender Email The email address of the one who sent you the email.

•

Parameter Description

Receiver Set the email address to receive alert messages. This email address will receive alert messages for all

clusters created on Dashboard.

•

16.9 Global settings

- 624/927 - 2022 Vesoft Inc.

Other settings

On the left-side navigation bar of the Interface Settings page, click Other Settings to have the following operations:

Change the display language. Currently, only Chinese and English are supported.

Turn on or off help tips. An example of tips is as follows.

16.9.2 Help center

At the top navigation bar of the Dashboard Enterprise Edition, click Help. On the Help page, you can jump to Dashboard Docs,

NebulaGraph Docs, NebulaGraph Website, or NebulaGraph Forum.

16.9.3 User information

At the top right of the Dashboard Enterprise Edition page, hover mouse to your account name, such as nebula:

Click Profile to view your account information and modify the account login password.

For an LDAP account, the login password cannot be modified. For more information about accounts, see Authority management.

Click Logout to log out of the current account.

•

•

•

Note

•

Last update: March 13, 2023

16.9.2 Help center

- 625/927 - 2022 Vesoft Inc.

16.10 Macro Rendering Error

File: nebula-dashboard-ent/7.monitor-parameter.md

TemplateNotFound: /source-monitoring-metrics.md

Traceback (most recent call last):

 File "/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/mkdocs_macros/plugin.py", line 527, in render

 return md_template.render(**page_variables)

 File "/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/jinja2/environment.py", line 1301, in render

 self.environment.handle_exception()

 File "/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/jinja2/environment.py", line 936, in handle_exception

 raise rewrite_traceback_stack(source=source)

 File "<template>", line 84, in top-level template code

 File "/opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/jinja2/loaders.py", line 204, in get_source

 raise TemplateNotFound(template)

jinja2.exceptions.TemplateNotFound: /source-monitoring-metrics.md

Last update: March 13, 2023

16.10 Macro Rendering Error

- 626/927 - 2022 Vesoft Inc.

16.11 FAQ

This topic lists the frequently asked questions for using Nebula Dashboard. You can use the search box in the help center or the

search function of the browser to match the questions you are looking for.

16.11.1 "What are Cluster, Node, and Service?"

Cluster: refers to a group of systems composed of nodes where multiple NebulaGraph services are located.

Node: refers to the physical or virtual machine hosting NebulaGraph services.

Service: refers to Nebula services, including Metad, Storaged, and Graphd services.

16.11.2 "What is the cluster status?"

The status of a cluster is as follows:

installing: The cluster is being created. The process will take about 3 to 10 minutes.

healthy: All services in the cluster are healthy.

unhealthy: There is an unhealthy service in the cluster service.

16.11.3 "Why authorizing nodes?"

Managing clusters requires the SSH information of the corresponding node. Therefore, you need to have at least an SSH account

and the corresponding password with executable permissions before performing operations on Dashboard.

16.11.4 "What is scaling?"

NebulaGraph is a distributed graph database that supports dynamic scaling services at runtime. Therefore, you can dynamically

scale Storaged and Graphd services through Dashboard. The Metad service cannot be scaled.

16.11.5 "Why cannot operate on the Metad service?"

The Metad service stores the metadata of the NebulaGraph database. Once the Metad service fails to function, the entire cluster

may break down. Besides, the amount of data processed by the Metad service is not much, so it is not recommended to scale the

Metad service. And we directly disabled operating on the Metad service in Dashboard to prevent the cluster from being

unavailable due to the misoperation of users.

16.11.6 "What impact will the scaling have on the data?"

Scale out the Storaged service: Dashboard will create and start the Storaged service on the specified machine, which will not

affect the existing data. You can choose to perform Balance Leader in the Storage Leader Distribution area and Balance Data in the

Partition Distribution area on the Information->Overview Info page according to your own needs.

Scale in the Storaged service: Dashboard will not scale in Storage services until you execute Balance Data Remove to migrate all

the partitions from the specified Storage service to other Storage services in the Partition Distribution area on the Information-

>Overview Info page.

Scaling the Graphd service will not affect the data.

16.11.7 "Why Dashboard Enterprise Edition cannot be started?"

Make sure that the license file is copied to the Dashboard directory and sudo ./dashboard.service start all is executed.

Make sure that the license is not expired.

•

•

•

•

•

•

•

•

•

•

•

16.11 FAQ

- 627/927 - 2022 Vesoft Inc.

You can also execute cat logs/webserver.log in the Dashboard directory to view the startup information of each module. If the above

conditions are met but Dashboard still cannot be started, go to NebulaGraph Official Forum for consultation.

16.11.8 "Can I add the NebulaGraph installation package manually?"

You can add the installation package manually in Dashboard. To download the system and RPM/DEB package you need, see How

to download NebulaGraph and add the package to nebula-dashboard-ent/download/nebula-graph . And you can select the added package

for deployment when creating and scaling out a cluster.

16.11.9 Why does it prompt “SSH connection error” when importing a cluster？

If Service Host shows 127.0.0.1 , and your Dashboard and NebulaGraph are deployed on the same machine when authorizing

service hosts, the system will prompt "SSH connection error”. You need to change the Host IP of each service to the real machine

IP in the configuration files of all NebulaGraph services. For more information, see Configuration management.

If you import a cluster deployed with Docker, it also prompts "SSH connection error". Dashboard does not support importing a

cluster deployed with Docker.

Last update: March 13, 2023

16.11.8 "Can I add the NebulaGraph installation package manually?"

- 628/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/
https://nebula-graph.io/download/
https://nebula-graph.io/download/

17. Nebula Explorer

17.1 What is Nebula Explorer

Nebula Explorer (Explorer in short) is a browser-based visualization tool. It is used with the NebulaGraph core to visualize

interaction with graph data. Even if there is no experience in graph database, you can quickly become a graph exploration

expert.

Explorer is only available in the enterprise version.

You can also try some functions online in Explorer.

17.1.1 Scenarios

You can use Explorer in one of these scenarios:

You need to quickly find neighbor relationships from complex relationships, analyze suspicious targets, and display graph data

in a visual manner.

For large-scale data sets, the data needs to be filtered, analyzed, and explored in a visual manner.

17.1.2 Features

Explorer has these features:

Easy to use: Explorer can be deployed in simple steps. And

User-friendly: Explorer uses simple visual interaction, no need to conceive nGQL sentences, easy to realize graph exploration.

Flexible: Explorer supports querying data through VID, Tag, and Subgraph.

Exploration operations: Explorer supports exploration operations on multiple vertices, querying the common neighbors of

multiple vertices, and querying the path between the source vertex and the destination vertex.

Various display: Explorer supports modifying the color and icon of the vertex in the canvas to highlight key nodes. Data can

also be displayed in different modes.

Data storage: Data on a canvas can be stored and exported.

17.1.3 Authentication

Authentication is not enabled in NebulaGraph by default. Users can log into Studio with the root account and any password.

When NebulaGraph enables authentication, users can only sign into Studio with the specified account. For more information, see

Authentication.

17.1.4 Video

Nebula Explorer Intro Demo(5 minutes 22 seconds)

Enterpriseonly

Note

•

•

•

•

•

•

•

•

•

17. Nebula Explorer

- 629/927 - 2022 Vesoft Inc.

https://explorer.nebula-graph.io/
https://www.youtube.com/watch?v=1Hj5puN9jeg

Last update: March 13, 2023

17.1.4 Video

- 630/927 - 2022 Vesoft Inc.

17.2 Deploy and connect

17.2.1 Deploy Explorer

This topic describes how to deploy Explorer locally by RPM and tar packages.

NebulaGraph version

Explorer is released separately, not synchronized with NebulaGraph. And the version naming of Explorer is different from that of

NebulaGraph. The version correspondence between NebulaGraph and Explorer is as follows.

Prerequisites

Before deploying Explorer, you must check the following information:

The NebulaGraph services are deployed and started. For more information, see NebulaGraph Database Manual.

Before the installation starts, the following ports are not occupied.

By default, Explorer uses the port 7002 . You can modify the httpport in the conf/app.conf file in the installation directory and restart

the service.

The Linux distribution is CentOS.

The license is ready.

License is only available in the Enterprise Edition. To obtain the license, apply for Nebula Explorer Free Trial.

RPM-based deployment

INSTALLATION

Select and download the RPM package according to your needs. It is recommended to select the latest version.

Note

NebulaGraph version Explorer version

3.1.0 ~ 3.1.0 3.1.0

3.0.0 ~ 3.1.0 3.0.0

2.5.x ~ 3.0.0 2.2.0

2.6.x 2.1.0

2.5.x 2.0.0

•

•

Port Description

7002 Web service provided by Explorer

Caution

•

•

Enterpriseonly

1.

17.2 Deploy and connect

- 631/927 - 2022 Vesoft Inc.

https://nebula-graph.io/visualization-tools-free-trial

You can apply online for Explorer free trial. To purchase, contact our sales team via email (inquiry@vesoft.com). For features of

Explorer, see Pricing.

Use sudo rpm -i <rpm> to install RPM package.

For example, use the following command to install Explorer. The default installation path is /usr/local/nebula-explorer .

You can also install it to the specified path using the following command:

Copy the license to the installation path.

For example:

Start the service using the following command.

START AND STOP

You can use SystemCTL to start and stop the service.

You can also start or stop the service manually using the following command in the installation directory.

UNINSTALLATION

You can uninstall Explorer using the following command:

DEB-based deployment

INSTALLATION

Select and download the RPM package according to your needs. It is recommended to select the latest version. Common links are

as follows:

You can apply online for Explorer free trial. To purchase, contact our sales team via email (inquiry@vesoft.com). For features of

Explorer, see Pricing.

Run sudo dpkg -i <package_name> to unpack the DEB package.

For example, run the following command to install Explorer (The default installation path is /usr/local/nebula-explorer).

Enterpriseonly

2.

sudo rpm -i nebula-explorer-<version>.x86_64.rpm

sudo rpm -i nebula-explorer-<version>.x86_64.rpm --prefix=<path>

3.

cp -r <license> <explorer_path>

cp -r nebula.license /usr/local/nebula-explorer

4.

systemctl start nebula-explorer

systemctl status nebula-explorer #Check the status

systemctl stop nebula-explorer #Stop the service

systemctl start nebula-explorer #Start the service

cd ./scripts/rpm

bash ./start.sh #Start the service

bash ./stop.sh #Stop the service

sudo rpm -e nebula-graph-explorer-<version>.x86_64

1.

Enterpriseonly

2.

sudo dpkg -i nebula-explorer-3.1.0.x86_64.deb

17.2.1 Deploy Explorer

- 632/927 - 2022 Vesoft Inc.

https://nebula-graph.io/visualization-tools-free-trial
https://nebula-graph.io/pricing/
https://nebula-graph.io/visualization-tools-free-trial
https://nebula-graph.io/pricing/

You cannot customize the installation path of Explorer when installing a DEB package.

Copy the license to the Explorer installation path.

For example:

Run the following command to start the service.

You can also start the service manually using the following command in the nebula-explorer/lib directory.

VIEW THE STATUS

STOP THE SERVICE

UNINSTALLATION

Run the following command to uninstall Explorer:

TAR-based deployment

INSTALLATION

Select and download the TAR package according to your needs. It is recommended to select the latest version. Common links are

as follows:

Explorer is only available in the Enterprise Edition. Click Pricing to see more.

Use tar -xvf to decompress the TAR package.

Copy the license to the nebula-explorer directory.

For example:

Enter the nebula-explorer folder to start Explorer.

Note

3.

Sudo cp -r <license> <explorer_path>

Sudo cp -r nebula.license /usr/local/nebula-explorer

4.

sudo systemctl start nebula-explorer.service

sudo bash ./start.sh

sudo systemctl status nebula-explorer.service

sudo systemctl stop nebula-explorer.service

sudo dpkg -r nebula-explorer

1.

Enterpriseonly

2.

tar -xvf nebula-explorer-<version>.tar.gz

3.

cp -r <license> <explorer_path>

cp -r nebula.license /usr/local/nebula-explorer

4.

cd nebula-explorer

nohup ./nebula-explorer-server &

17.2.1 Deploy Explorer

- 633/927 - 2022 Vesoft Inc.

https://nebula-graph.io/pricing/

STOP SERVICE

You can use kill pid to stop the service.

Next to do

When Explorer is started, use http://<ip_address>:7002 to get access to Explorer.

The following login page shows that Explorer is successfully connected to NebulaGraph.

When logging into Nebula Explorer for the first time, the content of END USER LICENSE AGREEMENT is displayed on the login

page. Please read it and then click I agree.

After entering the Explorer login interface, you need to connect to NebulaGraph. For more information, refer to Connecting to

the NebulaGraph.

kill $(lsof -t -i :7002)

Note

17.2.1 Deploy Explorer

- 634/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

17.2.1 Deploy Explorer

- 635/927 - 2022 Vesoft Inc.

17.2.2 Connect to NebulaGraph

After successfully launching Explorer, you need to configure to connect to NebulaGraph. This topic describes how Explorer

connects to the NebulaGraph database.

Prerequisites

Before connecting to the NebulaGraph database, you need to confirm the following information:

The NebulaGraph services and Explorer are started. For more information, see Deploy Explorer.

You have the local IP address and the port used by the Graph service of NebulaGraph. The default port is 9669 .

You have a NebulaGraph account and its password.

Procedure

To connect Explorer to NebulaGraph, follow these steps:

On the Config Server page of Explorer, configure these fields:

Host: Enter the IP address and the port of the Graph service of NebulaGraph. The valid format is IP:port . The default port is 9669 .

When NebulaGraph and Explorer are deployed on the same machine, you must enter the IP address of the machine, but not 127.0.0.1 or

localhost , in the Host field.

When connecting a NebulaGraph database on a new tab, The new session will overwrite the sessions of the old TAB. If you need to log

in to multiple NebulaGraph databases at the same time, you can use different browsers or non-trace mode.

Username and Password: Fill in the log in account according to the authentication settings of NebulaGraph.

If authentication is not enabled, you can use root and any password as the username and its password.

If authentication is enabled and no account information has been created, you can only log in as GOD role and use root and nebula

as the username and its password.

If authentication is enabled and different users are created and assigned roles, users in different roles log in with their accounts

and passwords.

After the configuration, click the Login button.

One session continues for up to 30 minutes. If you do not operate Explorer within 30 minutes, the active session will time out and you

must connect to NebulaGraph again.

Clear connection

When Explorer is still connected to a NebulaGraph database, on the upper right corner of the page, select > Clear

Connect.

After that, if the configuration database page is displayed on the browser, it means that Explorer has successfully disconnected

from the NebulaGraph.

•

•

•

1.

•

Note

•

•

•

•

•

•

2.

Note

17.2.2 Connect to NebulaGraph

- 636/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

17.2.2 Connect to NebulaGraph

- 637/927 - 2022 Vesoft Inc.

17.2.3 Nebula Explorer license

A license is a software authorization certificate used to authorize the use of a software product. When deploying Nebula Explorer,

you need to add a license to start it. This document describes the license information on Nebula Explorer.

Precautions

If the license file is not deployed, Nebula Explorer cannot be started.

Do not modify the license file, otherwise the license will become invalid.

If the license is about to expire, send email to inquiry@vesoft.com to apply for renewal.

The transition period after the license expires is 14 days:

If you start the Enterprise Edition within 30 days before the license expires or on the day the license expires, a log will be

printed as a reminder.

The license can still be used for 14 days after it expires.

If the license has expired for 14 days, you will not be able to start the Enterprise Edition, and a log will be printed as a

reminder.

Obtain a Nebula Explorer license

Send email to inquiry@vesoft.com to apply for a Nebula Explorer license.

You can apply online for a 30-day free trial of Nebula Explorer.

License description

Nebula Explorer license is a file named nebula.license that contains the following information:

•

•

•

•

•

•

•

Note

----------License Content Start----------

{

 "vendor": "vesoft",

 "organization": "doc",

 "issuedDate": "2022-06-06T16:00:00.000Z",

 "expirationDate": "2023-05-31T15:59:59.000Z",

 "product": "nebula_graph_explorer",

 "version": ">=3.2.0",

 "licenseType": "enterprise",

 "gracePeriod": 14,

 "clusterCode": "BAIAEAiAQAAG"

}

----------License Content End----------

----------License Key Start----------

Rrjip5cxxxxxxxxxxxxx5zKoQ==

----------License Key End----------

17.2.3 Nebula Explorer license

- 638/927 - 2022 Vesoft Inc.

https://nebula-graph.io/visualization-tools-free-trial

The license file contains information such as issuedDate and expirationDate . The description is as follows.

Use a Nebula Explorer license

For how to use a Nebula Explorer license, see Deploy Nebula Explorer.

Renew a Nebula Explorer license

Follow the steps below to renew your Nebula Explorer license.

Email us at inquiry@vesoft.com to apply for a new Nebula Explorer license file nebula.license .

In the Nebula Explorer installation directory, such as /usr/local/nebula-explorer , replace the old license file with the new one.

You cannot log into Nebula Explorer once the license expires. To avoid business interruptions, please renew your license in time.

Parameter Description

vendor The supplier.

organization The username.

issuedDate The date that the license is issued.

expirationDate The date that the license expires.

product The product type. The product type of Nebula Explorer is nebula_graph_explorer .

version The version information.

licenseType The license type (a reserved parameter), including enterprise , samll_bussiness , pro , and individual .

gracePeriod The buffer time (in days) for the service to continue to be used after the license expires, and the service will

be stopped after the buffer period. The trial version of license has no buffer period after expiration and the

default value of this parameter is 0.

clusterCode The user's hardware information, which is also the unique identifier of the cluster. This parameter is not

available in the trial version of the license.

1.

2.

Note

Last update: July 20, 2022

17.2.3 Nebula Explorer license

- 639/927 - 2022 Vesoft Inc.

17.3 Page overview

This topic introduces the Nebula Explorer page to help you learn more about Nebula Explorer's functions.

The Nebula Explorer page consists of three modules top navigation bar, left-side navigation bar, and canvas.

17.3.1 Top navigation bar

Icon/

Element

Description

Explorer Visually explore and analyze data. For more information, see Start querying, Vertex Filter, Graph

exploration and Graph algorithm.

Visual Query Visually construct scenarios for data queries. For more information, see Visual Query.

Workflow Visually construct custom workflows for complex graph computing. For more information, see Workflow

overview.

Manage NebulaGraph database graph spaces. For more information, see Create a schema.

Bulk import of data into NebulaGraph. For more information, see Import data.

Query the NebulaGraph data with nGQL statements. For more information, see Console.

Select the language of Nebula Explorer page. Chinese and English are supported.

Guide and help you in using NebulaGraph.

Show the NebulaGraph version and allow you to disconnect from Nebula Explorer.

17.3 Page overview

- 640/927 - 2022 Vesoft Inc.

17.3.2 Left-side navigation bar

After logging into Explorer, select a graph space and click on it to unlock query and exploration functions in the left-side navigation

bar. For more information, see Choose graph spaces.

Click the icons in the left-side navigation bar to import, analyze, and explore graph data. The descriptions of the icons are as

follows:

17.3.3 Canvas

After logging into Explorer, select a graph space and click on it to enter the canvas page. For more information, see Choose graph

spaces.

Note

Icon Description

Enter VIDs or tags to query data. For more information, see Ways to query data.

Search for target vertexes displayed on the canvas. For more information, see Filter vertices.

Perform explorations on the vertices on the canvas by setting edge directions, steps, and filtering conditions.

For more information, see Graph exploration.

Select at least two vertices on the canvas to search for their common neighbors. For more information, see

Graph exploration.

Find all paths, the shortest path, and the non-loop paths from the source to the destination vertex. For more

information, see Graph exploration.

Choose whether to display the properties of vertices or edges on the canvas. For more information, see Graph

exploration.

Perform graph computing based on the vertexes and edges in the canvas. For more Information see Graph

computing.

View historical snapshots. For more information, see Canvas snapshots.

View all graph spaces. Click a graph space to create a canvas corresponding to it. For more information, see

Choose graph spaces.

View Explorer documents and NebulaGraph forum.

View your account, explorer version and shortcuts, limit returned results.

Note

17.3.2 Left-side navigation bar

- 641/927 - 2022 Vesoft Inc.

Graph data can be displayed visually on a canvas. The canvas consists of the following parts:

Tabs on the Top

Visualization modes

Data storage

Search box

Layouts

Minimap

Data overview

For more information, see Canvas overview.

•

•

•

•

•

•

•

Last update: March 13, 2023

17.3.3 Canvas

- 642/927 - 2022 Vesoft Inc.

17.4 Database management

17.4.1 Create a schema

Explorer allows you to create a schema both using GUI and using commands.

At the upper right corner of the page, click to enter the schema creation page.

The Explorer's schema feature is the same as Studio's. For more information, see Create a schema.

Last update: July 20, 2022

17.4 Database management

- 643/927 - 2022 Vesoft Inc.

17.4.2 Import data

Explorer allows you to import data into NebulaGraph using GUI.

At the upper right corner of the page, click to enter the data import page.

The Explorer's data import feature is the same as Studio's. For more information, see Import data.

Last update: March 13, 2023

17.4.2 Import data

- 644/927 - 2022 Vesoft Inc.

17.4.3 Explorer console

Explorer console allows you to enter nGQL statements and visualize the query results.

At the upper right corner of the page, click to enter the console page.

The Explorer's console feature is the same as Studio's. For more information, see Console.

Last update: July 20, 2022

17.4.3 Explorer console

- 645/927 - 2022 Vesoft Inc.

17.5 Graph explorer

17.5.1 Choose graph spaces

You must first choose a graph space and then query and analyze data with Explorer. This topic introduces how to choose a graph

space.

Prerequisite

You have connected to Explorer. For details, see Connect to Explorer.

Steps

After connecting to Explorer, the system automatically displays the graph space selection page. You only need to select the target

graph space.

If you want to select a graph space again, follow the below steps to choose one.

In the navigation bar on the left side of the Explorer page, click the graph space icon .

Choose the target graph space.

You can select the same or different graph spaces multiple times, and each selection creates a new canvas.

1.

2.

Note

Last update: July 20, 2022

17.5 Graph explorer

- 646/927 - 2022 Vesoft Inc.

17.5.2 Start querying

To explore graph data, users need to query some initial data, and based on these initial data, can further analysis and filtering.

This topic describes how to query initial data.

Prerequisites

Select a target graph space before querying data. For more information, see Choose graph spaces.

For versions of NebulaGraph below 3.0.0, you need to create an index before querying data. For more information, see Create an

index.

Steps

Click the Start icon to query target data on the Explorer page. The queried data will be displayed on the canvas. You have

the following ways to query data:

Query by VID

Query by Tag

Query Subgraph

QUERY BY VID

You can enter VIDs to query the target vertices.

There are three ways to generate VIDs: Manual input, Random import, and File import.

Only one VID per row is supported in the querying area. Press Enter to separate the VIDs.

The following GIF shows how to query data using the basketballplayer graph space and related data.

Legacy version compatibility

•

•

•

Note

17.5.2 Start querying

- 647/927 - 2022 Vesoft Inc.

QUERY BY TAG

You can select the tag and corresponding index to query the target vertices, and set the number of results limit or filter

conditions.

Make sure that the corresponding tags and indexes exist in the graph space when querying by tag. For more information, Create tags

and Create indexes.

The following example queries 10 players whose age is greater than 30 years old and not equal to 40 years old.

QUERY SUBGRAPH

When querying subgraphs, you can specify the number of steps, edge types, and the direction of inflow and outflow of the

subgraph. VID is mandatory. The default value of optional steps is 1, and the default value of optional edge type is all.

When multiple VIDs are entered, the VIDs are separated by the Enter key.

The following is an example of VIDs Kings and Suns , step number 2 , and incoming edge types with a VID value of 101, the

number of steps of 4, and edge types of server and like .

Note

Note

17.5.2 Start querying

- 648/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

17.5.2 Start querying

- 649/927 - 2022 Vesoft Inc.

17.5.3 Vertex Filter

The Vertex Filter helps you filter the vertices and edges displayed on the canvas. You can filter data by tag only or by one or more

sets of filter conditions.

Prerequisite

Make sure that there are vertices on the canvas. For more information, see Start query.

Notes

When filtering vertices and associated edges by Tag:

All the tags in the graph space are displayed on the Filters panel.

The selected tag turns gray, and the vertices and associated edges of the corresponding tag are hidden.

For multi-tag vertices, if any of its tags is selected, the vertices are hidden.

You can enter a tag name in the search box to search for tags.

When filtering vertices and associated edges by filter conditions.

Each set of filter conditions is only for the data with the target tag. The filtering conditions include Tag, Property, Operator,

and Value. If the conditions are met, and the corresponding vertices will be automatically selected. If the conditions are not

met, the corresponding vertices can be set to be hidden or turning gray. The vertices with other tags are not affected.

The filtering priority by Tag is the highest. If the filter conditions include a selected tag (in gray), the corresponding data will

not be displayed on the canvas.

Each time you perform Vertex Filter, only one tag can be selected. If you want to filter data based on more tags, conduct Add

New Filter multiple times.

The same tag cannot be filtered multiple times. Only the result of the first filtering is displayed.

Example

EXAMPLE 1 FILTER VERTICES ON THE CANVAS WITH THE TAG PLAYER

In the left navigation bar, click Vertex Filter .

On the Filters panel, click player.

Only vertices with the tag team are displayed on the canvas.

The orange vertices filtered out in the above figure are the vertices with the tag team.

•

•

•

•

•

•

•

•

•

•

1.

2.

3.

17.5.3 Vertex Filter

- 650/927 - 2022 Vesoft Inc.

EXAMPLE 2 FILTER PLAYERS OLDER THAN 33 YEARS OLD

In the left navigation bar, click Vertex Filter .

Click Add New Filter, and set filter conditions (The values in the example are player , age , > , and 33).

Click Grayscale to gray the vertices that do not meet the filter conditions.

Turn on the Apply Filter button.

1.

2.

3.

4.

Last update: July 20, 2022

17.5.3 Vertex Filter

- 651/927 - 2022 Vesoft Inc.

17.5.4 Graph exploration

The graph exploration can be performed from the following four aspects:

Expand

Common Neighbor

Search for Path

Inspect Property

Prerequisite

Make sure that there are vertices on the canvas. For more information, see Start querying.

Expand

In the navigation bar on the left side of the page, click to open the Expand panel. You can set expansion conditions on the

panel, including edge type, direction, vertex style, steps or filter, as described below.

Select the vertex you want to expand, either by holding down the right mouse to select or by holding down the Shift key and

clicking on multiple vertexes on the canvas, and then click the Expand button in the Expand panel. For a single vertex, you can

double-click the left mouse on the vertex to expand.

•

•

•

•

1.

Parameter Description

Edge type All edges in the graph space are displayed and selected by default.

Direction Define the edge direction for the selected vertices, including Outgoing , Incoming , and Bidirect .

Vertex Style Group by vertex tag : The target vertices are displayed in the same color as the corresponding tag.

Custom Style : You can customize the color of the target vertices.

Steps Single : Customize the number of steps from the selected vertex to the target vertex.

Range : Customize the step range from the selected vertex to the target vertex.

Filter Query target vertices by filtering conditions.

2.

17.5.4 Graph exploration

- 652/927 - 2022 Vesoft Inc.

The system saves the current configurations on the panel. When you double-click or right-click on a vertex for exploration, the

exploration will be performed based on the saved configurations.

Common Neighbor

In the navigation bar on the left side of the page, click to open the Common Neighbor panel. You can select two or more

vertices either by holding down the right mouse to select or by holding down the Shift key and clicking on multiple vertexes on

the canvas and query their common neighbors. When the selected vertices have no common neighbor, the default returns

**There is no data.

Search for Path

In the navigation bar on the left side of the page, click to open the Search Path panel. You can set the edge type, direction,

query type or filter, as described below.

Hold down the Shift key and left-click to select two vertexes on the canvas. The first selected vertex is the source and the second is

the destination vertex by default. Then click Find Path in the Search Path window.

Inspect Property

In the navigation bar on the left side of the page, click to open the Inspect Property panel. Properties of vertices or edges

can be hidden or displayed on the canvas.

Vertex properties are displayed on the canvas only when the zoom ratio is greater than 90%, and properties are automatically hidden

when the zoom ratio is less than 90%.

Edge properties are displayed on the canvas only when the zoom ratio is greater than 100%, and properties are automatically hidden

when the zoom ratio is less than 100%.

Note

1.

Parameter Description

Edge Type All edges in the graph space are displayed and selected by default.

Direction Define the edge direction for the selected vertices, including Outgoing , Incoming , and Bidirect .

Query Type All path : Request for vertices and edges in all paths from the source vertex to the destination vertex.

Shortest Path : Request for vertices and edges in the shortest path from the source vertex to the destination

vertex.

NoLoop Path : Request for vertices and edges in non-loop paths from the source vertex to the destination vertex.

Steps Customize the number of steps from the source vertex to the destination vertex.

Filter Query target vertices by filtering conditions.

2.

Note

•

•

Last update: July 20, 2022

17.5.4 Graph exploration

- 653/927 - 2022 Vesoft Inc.

17.5.5 Graph computing

To better mine and analyze the graph data, users can perform graph computing based on the vertexes and edges in the canvas

and view the graph computing results directly.

This function only performs graph computing for existing vertexes in the canvas. If you need to perform complex graph computing, it

is recommended to use Workflow to perform complex visual graph computing.

Prerequisites

Ensure the canvas has the vertex and edge data needed for the graph calculation. For details, see Start querying.

Steps

In the navigation bar on the left side of the page, click button to open Graph algorithm panel.

Select the algorithm and set related parameters. For more Information about algorithm and parameter, see Algorithm overview。

Click Run and the result pops up from below the canvas.

On the result page, you can do the following operations:

Click Auto complete 1-degree edges to completes the one-degree path relationship between all vertexes in the canvas.

Click Export CSV File to download the graph computing result file in CSV format.

Note

1.

2.

3.

4.

•

•

Last update: July 20, 2022

17.5.5 Graph computing

- 654/927 - 2022 Vesoft Inc.

17.6 Visual Query

The Visual Query feature uses a visual representation to express related requests. It allows you to create query scenarios to look

up the desired data and view the corresponding statements. You can construct visual query statements by simply dragging and

dropping, and then the system displays the query results on the query panel.

The Visual Query feature is not compatible with NebulaGraph versions below 3.0.0.

Currently, the Visual Query feature is still in beta.

17.6.1 Prerequisite

You have choosen a graph space. For details, see Choose graph spaces.

You have created indexes for particular queries. For details, see MATCH precautions and CREATE INDEX.

17.6.2 Page elements

At the top of the Explorer page, click Visual Query to enter the visual query page. On the left side of the Visual Query page, all

the Tag(s) corresponding to the graph space (e.g.player and team) and the Tag named Any Tag are displayed. You can query

vertices without tags by the Tag named Any Tag.

Any Tag can also be used to query the vertex without a tag.

Compatibility

Note

•

•

Note

17.6 Visual Query

- 655/927 - 2022 Vesoft Inc.

On the page, the descriptions of other icons are as follows.

17.6.3 Steps

Drag several target tags from the left side of the Visual Query page to the canvas to create the corresponding vertices.

Click a vertex, hold down the left mouse button on the anchor point at the edge of the vertex, and drag it to another vertex to

create the corresponding edge.

Set a vertex by clicking it. The descriptions of configuration options are as follows.

Tag Name: Set zero, one, or multiple tags.

Icon/

Element

Description

The selected vertices and edges are the results to be queried. Double-click on the query pattern frame to limit

the number of queries (with a priority higher than the value of the maximum number of returns in the global

settings). Only querying edges is not supported.

Zoom in on the query page.

Zoom out on the query page.

Save the current query graph. The saved graph is cached in the browser.

View all stored query graphs. Up to 10 recently saved visual graphs are displayed. Click any of the stored

graphs to display them on the visual query page.

nGQL Click nGQL to view the statement corresponding to the query pattern.

Run Query Click Run Query to display the query results visually on the canvas.

1.

2.

3.

•

17.6.3 Steps

- 656/927 - 2022 Vesoft Inc.

One vertex can have zero or multiple tags:

When 0 tag is set, query the vertex without tags.

When 1 tag is set, query the vertex with that tag.

When multiple tags are set, query the vertex that has all the tags you set.

Filter: Add one or more sets of filter conditions, including vertex properties, operators, and property values.

When setting multiple tags in the Tag Name dialog box, it is not supported to set filter conditions to query data.

Set an edge by clicking. The descriptions configuration options are as follows.

Edge Type: Set one or multiple edge types.

One edge have one and only one edge type:

When one edge type is set, query the edge with that edge type.

When multiple edge types are set, query the edge that has any of the edge types you set.

Direction: Set the edge direction between two vertices, including Outgoing, Incoming, and Bidirect.

Single: Set a fixed-length path.

Range: Set a variable-length.

Filter: Add one or more sets of filter conditions, including edge properties, operators, and property values.

Note

•

•

•

•

Note

4.

•

Note

•

•

•

•

•

•

17.6.3 Steps

- 657/927 - 2022 Vesoft Inc.

When setting multiple edge types in the Edge Type dialog box, it is not supported to set filter conditions to query data.

After the query scenarios (pattern) is created, click and select the result you want to return.

Click Run Query on the upper right corner of the Visual Query page to display the query results on the canvas.

17.6.4 Examples

Example 1

Find out players who follow each other with Yao Ming and older than 35, and which teams these players are loyal to, and limit

the number of the query patterns of the players and teams to 6.

Create a query pattern by dragging and dropping Tags to the panel (2 players and 1 team).

Configure filter conditions.

Set the filter condition for the first player to player.name == Yao Ming .

Set the edge type of the edge between the first and second vertices of the tag player to follow , set the direction to Bidirect , and the

steps to 1 .

Set the filter condition for the second player to player.age > 35 .

Set the edge type of the edge between the second player and the team to serve , the direction to Outgoing , and the steps to 1 .

Click to select the second player, the team, and the serve edge between them.

Click the Query Pattern frame, and set the Limit Number to 6 .

Click Run Query, and the system displays 6 query patterns on the canvas.

Example 2

Find out what teams two mutually-following players are loyal to and query for all players on that team who are older than 30.

Note

5.

6.

1.

2.

a.

b.

c.

d.

e.

f.

3.

17.6.4 Examples

- 658/927 - 2022 Vesoft Inc.

Create a query pattern by dragging and dropping Tags to the panel (3 players and 1 team).

Configure filter conditions.

Set the edge type of the edge between the first and second players to follow , set the direction to Bidirect , and the steps to 1 .

Set the edge type of the edge between the first player and the team to serve , the direction to Outgoing , and the steps to 1 .

Set the edge type of the edge between the second player and the team to serve , the direction to Outgoing , and the steps to 1 .

Set the filter conditions for the third player to player.age > 30 .

Set the edge type of the edge between the third player and the team to serve , the direction to Outgoing , and the steps to 1 .

Click to select the third player, the team, and the serve edge between them.

Click Run Query.

1.

2.

a.

b.

c.

d.

e.

f.

3.

Last update: March 13, 2023

17.6.4 Examples

- 659/927 - 2022 Vesoft Inc.

17.7 Canvas

17.7.1 Canvas overview

You can visually explore data on a canvas. This topic introduces the composition of a canvas and its related functions.

Canvas overview diagram:

Tabs on the Top

Click the plus sign to add a new canvas. You can have operations on multiple canvases simultaneously.

Canvas data on different canvases can come from the same graph space or from different graph spaces.

You can customize the name of a canvas except for the canvas in the left-most tab.

Visualization modes

Graph data can be visually explored in 2D mode and 3D mode. For more information, Visualization modes.

Data storage

Graph data on the current canvas can be stored by creating snapshots or exporting canvas data as images or CSV files.

•

•

17.7 Canvas

- 660/927 - 2022 Vesoft Inc.

At the top right of the page, you can:

Click to create a snapshot. For more information, see Canvas snapshots.

Click and then click Export CSV File to store canvas data as CSV files.

Click and then click Export PNG File to store canvas data as images.

Search box

In the search box at the top left of the page, click and enter a VID or the property values of tags to locate target vertices.

Layouts

Explorer provides 6 layouts to show the relationship between the data on a canvas.

Minimap

You can display the vertices on a canvas on full screen. You can also collapse the minimap, zoom in or zoom out the canvass, etc.

The percentage of a canvas graph to the total is displayed in the lower-left corner of the minimap.

•

•

•

Force Dagre Circular Grid Neural

Network

Radial

17.7.1 Canvas overview

- 661/927 - 2022 Vesoft Inc.

Data overview

On the right side of the page, click to expand the data overview panel.

17.7.1 Canvas overview

- 662/927 - 2022 Vesoft Inc.

On the data overview panel, you are enabled to:

See the number of tags and edge types, and the number of the corresponding vertices and edges on a canvas.

Click the tag color icon to customize the color, size, and icon of the vertices with the same tag.

Vertices with the same tag have the same color. Right-click a single vertex on a canvas to manually modify the style of the vertex.

Upload images to personalize the style of the vertices in the canvas, and the uploaded images are stored in the browser. To

store uploaded images permanently, save the canvas data as a snapshot. For details, see Manage snapshots.

Select vertices and edges on the canvas, and then click Selected Vertices {number} Selected Edges {number} in the lower

left corner to view the detailed information of the vertices and edges. You can export the data as a CSV file.

•

•

Note

•

17.7.1 Canvas overview

- 663/927 - 2022 Vesoft Inc.

Last update: July 20, 2022

17.7.1 Canvas overview

- 664/927 - 2022 Vesoft Inc.

17.7.2 Visualization modes

Explorer provides 2D and 3D visualization modes for you to explore data. 2D enables you to operate on graph data and view data

information. 3D lets you explore graph data from a different perspective. The 3D is suitable for cases with a large amount of data

or situations requiring presentations.

In 3D mode, operations on graph data are unavailable.

2D mode

Exploration of the data on a canvas is possible in 2D mode.

For more information about the operations available in 2D mode, see Canvas.

Note

Parameter Description

Weight

Degree

Weight Degree：Automatically resizes vertices according to the number of outgoing and incoming edges of

all the vertices on the canvas.

Reset Degree：Resets the vertices on the canvas to their original size.

Detection Outlier: Detects the vertices that connect no edges on a canvas.

Hang Edge: Detects edges associated with vertices of one degree in the canvas (associated vertices are

included).

Loop Detection: Detects the paths that connect a vertex to itself.

N-Step Vertex Detection: Starting from the selected vertex, the vertexes in the outbound direction are

displayed on the canvas hop by hop.

Edit Dismiss: Hide the selected vertices and edges on the canvas.

Dismiss Others: Hide the unselected vertices and edges on the canvas.

Undo: Undo the action in the previous step.

Redo: Restore the action that was previously undone.

17.7.2 Visualization modes

- 665/927 - 2022 Vesoft Inc.

3D mode

At the top left of the page, toggle the view button to switch to 3D mode. 3D mode allows you to switch back to 2D mode and does

not influence operations in 2D.

For versions of NebulaGraph below 3.0.0, you need to create an index before using the Bird View feature. For more information, see

Create an index.

Parameter Description

Bird View Shows a bird view of all the data in the current graph space. By default, displays data for up to 20,000

vertices and 2,000 edges in the current graph space. Click to adjust the settings, but setting them too

large may crash the browser.

Image

Quality

High: Vertices are displayed in the form of balls with better light and shadow effects.

Normal: Vertices are represented in a circle format and support a large amount of data.

Reheat Disperses the distance between vertices when the vertices overlap.

Legacy version compatibility

Last update: March 13, 2023

17.7.2 Visualization modes

- 666/927 - 2022 Vesoft Inc.

17.7.3 Canvas snapshots

Explorer provides a snapshot feature that lets you store the visualized canvas data so that the data can be restored when your

browser is opened again.

Create snapshots

In the upper right corner of a canvas page, click the camera icon .

Fill in the snapshot name and notes (optional).

Click submit.

Created snapshots are stored on the snapshot list page. For more information, see below.

Historical snapshots

Up to 50 snapshots can be stored in the snapshot list currently.

Snapshot data is stored in the browser, cleaning the browser may cause loss of snapshot data.

In the left navigation bar of the Explorer page, click to enter the Snapshot page. You can switch graph spaces and view the

historical snapshots of the corresponding graph space. You can also import snapshots to a canvas, download canvas snapshots to

your local drive, and delete snapshots.

Under the Operation column to the right of the target snapshot, you are enabled to:

Click to import a historical snapshot to a new canvas.

Click to download a snapshot in JSON format locally.

Click to delete a snapshot.

At the top left of the Snapshot page, click Import Snapshot to import previously downloaded files in JSON format to the

Snapshot page for sharing the snapshot data offline. The system automatically places the imported snapshots in the

corresponding graph space based on the graph space information recorded in the JSON file.

1.

2.

3.

Note

Note

•

•

•

•

•

Last update: July 20, 2022

17.7.3 Canvas snapshots

- 667/927 - 2022 Vesoft Inc.

17.8 Workflow

17.8.1 Workflow overview

Nebula Explorer supports visual and complex graph computing with custom workflows.

Background

Nebula Explorer provides multiple components, including graph query and graph computing components. Users can combine

these components based on the scheduling tool Dag Controller for free. For example, using the output of a graph query

component as an input to a graph computing component. The whole process is a directed acyclic workflow.

Instantiate the workflow when performing graph computing. The instantiated component is called task, and the instantiated

workflow is called job. A job can consist of multiple tasks. The Nebula Explorer sends the job to Nebula Analytics for graph

computing, and you can view the result in the job list.

Features

Add, view, modify, delete, compare, clone and rename workflows.

A workflow supports one query component and multiple graph computing components. You can search for, add, configure, and

rename component.

View the lists, progresses, results and logs of the jobs, and rerun jobs.

Search for workflows or jobs.

•

•

•

•

17.8 Workflow

- 668/927 - 2022 Vesoft Inc.

Precautions

Additional deployment of the Dag Controller and the Nebula Analytics is required to use a workflow. For details, see Deploy

dependent services.

The input to the graph query component can only be the nGQL.

The results of a graph query component can only be stored in the HDFS, which is convenient to be called by multiple

algorithms.

The input to the graph computing component can be the specified data in the NebulaGraph or HDFS, or can depend on the

results of the graph query component. If an input depends on the results of the previous graph query component, the graph

computing component must be fully connected to the graph query component, that is, the white output anchors of the previous

graph query component are all connected to the white input anchors of the graph compute component.

The parameters of some algorithms can also depend on the upstream components.

The result of the graph computing components can be stored in the NebulaGraph or HDFS, but not all algorithm results are

suitable to be stored in NebulaGraph. Some algorithms can only be saved in HDFS when configuring the save results page.

Algorithm description

See Algorithm description.

•

•

•

•

•

•

Last update: March 13, 2023

17.8.1 Workflow overview

- 669/927 - 2022 Vesoft Inc.

17.8.2 Prepare resources

You must prepare your environment for running a workflow, including NebulaGraph configurations, HDFS configurations, and

Nebula Analytics configurations.

Prerequisites

Nebula Analytics 3.2.0 or later and Dag Controller 3.2.0 or later have been deployed. For details, see Deploy dependent services.

Steps

At the top of the Explorer page, click Workflow.

In the Workflows tab, click Configuration.

Configure the following resources:

Click Confirm.

1.

2.

3.

Type Description

NebulaGraph

Configuration

The access address of the graph service that executes a graph query or to which the graph computing

result is written. The default address is the address that you use to log into Explorer and can not be

changed. You can set timeout periods for three services.

HDFS

Configuration

The HDFS address that stores the result of the graph query or graph computing. Click Add to add a

new address, you can set the HDFS name, HDFS path, and HDFS username (optional).

Nebula Analytics

Configuration

The Nebula Analytics address that performs the graph computing. Click Add to add a new address.

4.

Last update: March 13, 2023

17.8.2 Prepare resources

- 670/927 - 2022 Vesoft Inc.

17.8.3 Workflow example

This topic describes how to create a simple workflow.

Prerequisites

The data source is ready. The data source can be data in NebulaGraph or CSV files on HDFS.

The resource has been configured.

•

•

17.8.3 Workflow example

- 671/927 - 2022 Vesoft Inc.

Add workflow

With the result of the MATCH statement MATCH (v1:player)--(v2) RETURN id(v1), id(v2); as the input of the PageRank algorithm, the

following will introduce how to create a simple workflow.

17.8.3 Workflow example

- 672/927 - 2022 Vesoft Inc.

At the top of the Explorer page, click Workflow.

In the Workflows tab, click New workflow to enter the process canvas page.

In the component library list on the left side of the process canvas page, select Query->Query and drag it onto the canvas. Click

the graph query component and set the following parameters in the configuration panel on the right side.

1.

2.

3.

Parameters Description

Query

Click to modify the component name to identify the component.

Input Set custom parameters that can be used for parameterized query. Click Add parameter to add more custom

parameters.

Query

language

Select the graph space to execute the nGQL statement and fill in the nGQL statement. Click Parse

Parameter to display the returned column name in the Output.

Output The column name returned by parsing the query language. You can change the name, which is equivalent to

aliasing the column with AS .

Results Set the saving project of the result. To call the results expediently for other algorithms, the results of the

graph query component can only be saved in the HDFS.

17.8.3 Workflow example

- 673/927 - 2022 Vesoft Inc.

The connection anchors are shown in yellow, indicating that it is optional and can be set by user or provided by any other component.

In the component library list on the left side of the process canvas page, select Node importance->PageRank and drag it onto

the canvas. Connect the anchor output0 to the anchor input0 and the anchor output1 to the anchor input1 .

Click the graph computing component and set the following parameters in the configuration panel on the right side.

Note

4.

5.

17.8.3 Workflow example

- 674/927 - 2022 Vesoft Inc.

Parameters Description

PageRank

Click to modify the component name to identify the component.

Input Three data sources are supported as input.

NebulaGraph: Users must select one graph space and corresponding edge types.

Dependence: The system will automatically recognize the data source according to the connection of the

anchor.

HDFS: Users must select HDFS and fill in the relative path of the data source file.

Parameter

settings

Set the parameters of the graph algorithm. The parameters of different algorithms are different. Some

parameters can be obtained from any upstream component where the anchor are shown in yellow.

Output Display the column name of the graph computing results. The name can not be modified.

Execution

settings

Machine num: The number of machines executing the algorithm.

Processes: The total number of processes executing the algorithm. Allocate these processes equally to each

machine based on the number of machines.

Threads: How many threads are started per process.

Results Set the restoration path of the results in HDFS or NebulaGraph.

HDFS: The save path is automatically generated based on the job and task ID.

NebulaGraph: Tags need to be created beforehand in the corresponding graph space to store the results.

For more information about the properties of the tag, see Algorithm overview.

Some algorithms can only be saved in the HDFS.

17.8.3 Workflow example

- 675/927 - 2022 Vesoft Inc.

Click next to the automatically generated workflow name at the upper left corner of the canvas page to modify the workflow

name, and click Run at the upper right corner of the canvas page. The job page is automatically displayed to show the job

progress. You can view the result after the job is completed. For details, see Job management.

When you click Run, the workflow will be automatically saved. If you do not perform graph computing and only make modifications,

click to save the modification, or click to save the workflow as a new workflow.

6.

Note

Last update: March 13, 2023

17.8.3 Workflow example

- 676/927 - 2022 Vesoft Inc.

17.8.4 Workflow management

This topic describes how to manage workflows, including view, modify, rename, clone, delete, and compare workflows.

Steps

At the top of the Explorer page, click Workflow.

In the Workflows tab, users can view all saved workflows. The list displays Workflow name , Created time , Update time , and Algorithm .

At the top of the list page, click Comparison and select two workflows or different historical versions of the same workflow for

code comparison.

At the top of the list page, users can search the workflow by keywords in the search box.

In the Operation column of the list page, users an perform the following operations:

Run: Instantiate the workflow directly as a job and execute the job.

Open: Open a workflow to view and modify the workflow. After modifying the workflow, click to save the modification or click

 to save the workflow as a new workflow.

View jobs: Jump to the job list to view all the jobs instantiated by this workflow.

: Users can view the workflow code, rename the workflow, clone the workflow, and delete the workflow.

1.

2.

•

•

•

•

•

•

•

Last update: July 20, 2022

17.8.4 Workflow management

- 677/927 - 2022 Vesoft Inc.

17.8.5 Job management

This topic describes how to view the lists, progresses, results, logs of the jobs and rerun jobs.

Steps

At the top of the Explorer page, click Workflow.

In the Jobs tab, users can view all the jobs. The page displays Job ID , Job name , Status , CREATE time , End time and Workflow version .

At the top of the list page, click Comparison and select two workflows or different jobs of the same workflow for code comparison.

At the top of the list page, users can filter the workflow and version in the filter box.

At the top of the list page, users can search the job by keywords in the search box.

In the Operation column of the list page, users an perform the following operations:

View in Explorer: For successfully executed jobs, users can select the graph space and the component to view the output of the

component. Users can export the results to a CSV file.

Rerun: For failed executed jobs, users can rerun the job.

Open: Users can rerun the job and view the results and logs of the job. Users can also jump to the corresponding workflow for

editing (the workflow is the latest version).

1.

2.

•

•

•

•

•

•

•

Last update: July 20, 2022

17.8.5 Job management

- 678/927 - 2022 Vesoft Inc.

17.8.6 Workflow API

Workflow API overview

Nebula Explorer provides some APIs for using workflow.

The supported APIs are as follows:

Add a new job

Get a list of all jobs

Get a list of jobs for a specified workflow

Query details for a specified job

Cancel a running job

Get the result data of a specified task

REQUEST METHOD

Users can use curl to call APIs to achieve corresponding functions.

The format is as follows:

<options> : Curl supports a large number of options. The most commonly used options for workflow are -X , -H and -d . For more

information about options, see curl official documentation.

<explorer_address> : The access address of the Nebula Explorer.

<explorer_port> : The access port of the Nebula Explorer.

<api_path> : The call path of APIs. For example: api-open/v1/jobs .

<body> : The body parameters that needs to be supplied when calling APIs.

GET AUTHORIZATION TOKEN

Token information verification is required when calling an API. Run the following command to get the authorization token.

<account_base64_encode> : The Base64 encoded NebulaGraph account and password. Before the encoding, the format is

<account>:<password> , for example, root:123 . After the encoding, the result is cm9vdDoxMjM= .

<nebula_address> : The access address of the NebulaGraph.

<nebula_port> : The access port of the NebulaGraph.

<explorer_address> : The access address of the Nebula Explorer.

<explorer_port> : The access port of the Nebula Explorer.

Example:

Response:

•

•

•

•

•

•

curl <options> http://<explorer_address>:<explorer_port>/<api_path>?{<body>}

•

•

•

•

•

curl -i -X POST -H "Content-Type: application/json" -H "Authorization: Bearer <account_base64_encode>" -d '{"address":"<nebula_address>","port":<nebula_port>}' http://

<explorer_address>:<explorer_port>/api-open/v1/connect

•

•

•

•

•

curl -i -X POST -H "Content-Type: application/json" -H "Authorization: Bearer cm9vdDoxMjM=" -d '{"address":"192.168.8.111","port":9669}' http://192.168.8.145:7002/api-open/v1/connect

HTTP/1.1 200 OK

Content-Type: application/json

Set-Cookie: explorer_token=eyJhbxxx; Path=/; # Max-Age=259200; HttpOnly

Traceparent: 00-1c3f55cdbf81e13a2331ed88155ce0bf-2b97474943563f20-# 00

Date: Thu, 14 Jul 2022 06:47:01 GMT

Content-Length: 54

{

 "code": 0,

17.8.6 Workflow API

- 679/927 - 2022 Vesoft Inc.

https://curl.se/docs/manpage.html

Note the following parameters:

explorer_token : The authorization token.

Max-Age : Token validity time. Unit: second. The default value is 259,200 seconds, that is 3 days. You can change the default

validity time in the config/app-config.yaml file in the installation directory.

RESPONSE

If an API is called successfully, the system returns the following information:

If an API is called failed, the system returns the corresponding common error code. For example:

For descriptions of common error codes, see the following sections.

Common error codes

 "data": {

 "success": true

 },

 "message": "Success"

}

•

•

•

{

 code: 0,

 message: 'Success',

 data: <ResponseData> //Return the results based on the API.

}

•

{

 code: 40004000,

 message: '<ErrBadRequest>', //Display the error information.

}

Error code Information Description

40004000 ErrBadRequest Request error.

40004001 ErrParam Request parameter error.

40104000 ErrUnauthorized Request authorization error.

40104001 ErrSession Login session error.

40304000 ErrForbidden Request denied.

40404000 ErrNotFound Requested resource does not exist.

50004000 ErrInternalServer Internal service error.

50004001 ErrInternalDatabase Database error.

50004002 ErrInternalController Controller error.

50004003 ErrInternalLicense Certificate verification error.

90004000 ErrUnknown Unknown error.

17.8.6 Workflow API

- 680/927 - 2022 Vesoft Inc.

Job/Task status code

Status code Description

0 Preparing

1 Running

2 Success

3 Failed

4 Interrupted

5 Stopping

Last update: March 13, 2023

17.8.6 Workflow API

- 681/927 - 2022 Vesoft Inc.

Add a new job

This topic describes how to use an API to add a new job.

API PATH

api-open/v1/workflows/<workflow_id>/jobs

<workflow_id> : The workflow ID. See request parameters below.

REQUEST PARAMETERS

Path parameters

Headers parameters

Body parameters

Users must ensure the rationality and correctness of the user-defined input parameters. Otherwise, the operation will fail.

Request example

The following is an example of using the user-defined input parameter name in an nGQL statement. Pass in the parameter value

Tim Duncan when creating a job.

Parameters Type If

required

Default

value

Example Description

workflow_id number yes - 4216617528 The workflow ID. The system

instantiates a specified workflow as a

job. The ID can be viewed in the upper

left corner of the specified workflow

page.

Parameters Type If

required

Default

value

Example Description

Content-Type string yes - application/

json

The content type.

explorer_token string yes - eyJhbxxx The authorization token that is used

to verify account information. For

details, see Workflow API overview.

Note

Parameters Type If

required

Default

value

Example Description

input object no - - The user-defined input

parameters.

 - task_id object no - query_1 The task ID. Users can view the ID

in the upper right corner of the

component settings page. A task

can set multiple parameters

represented by key-value pairs.

 - param_name:

param_value

string:

{string or

number}

no - param0:

player100

param_name is the parameter key,

that is, the parameter name.

param_value is the parameter value.

17.8.6 Workflow API

- 682/927 - 2022 Vesoft Inc.

RESPONSE PARAMETERS

Response example

curl -i -X POST -H "Content-Type: application/json" -H "Cookie: "explorer_token=eyJhbxxx"" -d '{"input":{"query_1":{"name":"Tim Duncan"}}}' http://192.168.8.145:7002/api-open/v1/workflows/

4216617528/jobs

Parameters Type Example Description

code number 0 The result code of the request. Return 0 if the request is successful,

and return an error code if the request is unsuccessful. For details, see

Workflow API overview.

message string Success The result information of the execution.

data object - The list of returned data.

 - id string 107 The ID of the new job.

{

 "cookie": [],

 "Content-Type": "application/json",

 "Traceparent": "00-1ba128615cdc2226c921973a689e9f1b-7630b12963494672-00",

 "Date": "Fri, 15 Jul 2022 07:19:25 GMT",

 "Content-Length": "48"

}

{

 "code": 0,

 "data": {

 "id": 107

 },

 "message": "Success"

}

Last update: July 20, 2022

17.8.6 Workflow API

- 683/927 - 2022 Vesoft Inc.

Get a list of all jobs

This topic describes how to use an API to get a list of all jobs.

API PATH

api-open/v1/jobs

REQUEST PARAMETERS

Path parameters

None.

Headers parameters

Body parameters

Parameters Type If

required

Default

value

Example Description

Content-Type string yes - application/

json

The content type.

explorer_token string yes - eyJhbxxx The authorization token that is used

to verify account information. For

details, see Workflow API overview.

Parameters Type If

required

Default

value

Example Description

filter object no - - The filter settings.

 - name string no - workflow_q745a_20220715092236 The job name.

 - status number no - 2 The job status code.

For details, see

Workflow API

overview.

 - fromCreateTime number no - 1657848036000 Start time stamp.

Filtering based on

the job creation

time.

 - toCreateTime number no - 1657848157000 End time stamp.

Filtering based on

the job creation

time.

 -

orderByCreateTime

string no desc - Sorting mode. The

available value are

desc and asc .

pageSize number no 10 - The number of

entries to return on

each page.

page number no 1 - The number of the

page to return.

17.8.6 Workflow API

- 684/927 - 2022 Vesoft Inc.

Request example

The content after jobs? is the body parameter, and the content of filter is the result of URL encoding. The original content of filter

was { "status": 2, "orderByCreateTime": "asc"} .

RESPONSE PARAMETERS

Response example

Note

curl -i -X GET -H "Content-Type: application/json" -H "Cookie: "explorer_token=eyJhbxxx"" http://192.168.8.145:7002/api-open/v1/jobs?

filter=%7B%20%22status%22%3A%202%2C%20%20%22orderByCreateTime%22%3A%20%22asc%22%7D&pageSize=10&page=1

Parameters Type Example Description

code number 0 The result code of the request. Return 0 if the request is

successful, and return an error code if the request is

unsuccessful. For details, see Workflow API overview.

message string Success The result information of the execution.

data object - The list of returned data.

 - total number 2 The total number of records.

 - Page number 1 The number of the page to return.

 - PageSize number 10 The number of entries to return on each page.

 - items object - The list of record details.

 - id number 105 The job ID.

 - name string workflow_q745a_20220715090915 The job name.

 -

workflowId

string 4216617528 The workflow ID.

 -

workflowName

string workflow_q745a The workflow name.

 - status number 2 The job status code. For details, see Workflow API

overview.

 -

runBeginTime

number 1657847358000 The start time of the job execution.

 -

runEndTime

number 1657847364000 The end time of the job execution.

 -

createTime

number 1657847355906 The creation time of the job.

{

 "cookie": [],

 "Content-Type": "application/json",

 "Traceparent": "00-d3a1943f5baf46771e9afc629e0b5d40-920db2f06142f5ff-00",

 "Date": "Fri, 15 Jul 2022 06:17:21 GMT",

 "Content-Length": "512"

}

{

 "code": 0,

 "data": {

 "items": [

 {

 "id": 105,

 "name": "workflow_q745a_20220715090915",

 "workflowId": "4216617528",

 "workflowName": "workflow_q745a",

17.8.6 Workflow API

- 685/927 - 2022 Vesoft Inc.

 "status": 2,

 "runBeginTime": 1657847358000,

 "runEndTime": 1657847364000,

 "createTime": 1657847355906

 },

 {

 "id": 106,

 "name": "workflow_q745a_20220715092236",

 "workflowId": "4216617528",

 "workflowName": "workflow_q745a",

 "status": 2,

 "runBeginTime": 1657848157000,

 "runEndTime": 1657848163000,

 "createTime": 1657848156290

 }

],

 "total": 2,

 "Page": 1,

 "PageSize": 10

 },

 "message": "Success"

}

Last update: July 20, 2022

17.8.6 Workflow API

- 686/927 - 2022 Vesoft Inc.

Get a list of jobs for a specified workflow

This topic describes how to use an API to get the list of jobs for a specified workflow.

API PATH

api-open/v1/workflows/<workflow_id>/jobs

<workflow_id> : The workflow ID. See request parameters below.

REQUEST PARAMETERS

Path parameters

Headers parameters

Parameters Type If

required

Default

value

Example Description

workflow_id number yes - 4216617528 The workflow ID. The system

instantiates a specified workflow as a

job. The ID can be viewed in the upper

left corner of the specified workflow

page.

Parameters Type If

required

Default

value

Example Description

Content-Type string yes - application/

json

The content type.

explorer_token string yes - eyJhbxxx The authorization token that is used

to verify account information. For

details, see Workflow API overview.

17.8.6 Workflow API

- 687/927 - 2022 Vesoft Inc.

Body parameters

Request example

The content after jobs? is the body parameter, and the content of filter is the result of URL encoding. The original content of filter

was {"status": 2, "fromCreateTime": 1657874100000} .

Parameters Type If

required

Default

value

Example Description

filter object no - - The filter settings.

 - name string no - workflow_q745a_20220715092236 The job name.

 - status number no - 2 The job status code.

For details, see

Workflow API

overview.

 - fromCreateTime number no - 1657848036000 Start time stamp.

Filtering based on

the job creation

time.

 - toCreateTime number no - 1657848157000 End time stamp.

Filtering based on

the job creation

time.

 -

orderByCreateTime

string no desc - Sorting mode. The

available value are

desc and asc .

pageSize number no 10 - The number of

entries to return on

each page.

page number no 1 - The number of the

page to return.

Note

curl -i -X GET -H "Content-Type: application/json" -H "Cookie: "explorer_token=eyJhbxxx"" http://192.168.8.145:7002/api-open/v1/workflows/4216617528/jobs?

filter=%7B%22status%22%3A%202%2C%20%20%22fromCreateTime%22%3A%201657874100000%7D&pageSize=10&page=1

17.8.6 Workflow API

- 688/927 - 2022 Vesoft Inc.

RESPONSE PARAMETERS

Response example

Parameters Type Example Description

code number 0 The result code of the request. Return 0 if the request is

successful, and return an error code if the request is

unsuccessful. For details, see Workflow API overview.

message string Success The result information of the execution.

data object - The list of returned data.

 - total number 2 The total number of records.

 - Page number 1 The number of the page to return.

 - PageSize number 10 The number of entries to return on each page.

 - items object - The list of record details.

 - id number 105 The job ID.

 - name string workflow_q745a_20220715090915 The job name.

 -

workflowId

string 4216617528 The workflow ID.

 -

workflowName

string workflow_q745a The workflow name.

 - status number 2 The job status code. For details, see Workflow API

overview.

 -

runBeginTime

number 1657847358000 The start time of the job execution.

 -

runEndTime

number 1657847364000 The end time of the job execution.

 -

createTime

number 1657847355906 The creation time of the job.

{

 "cookie": [],

 "Content-Type": "application/json",

 "Traceparent": "00-008c3056686dd3f3be38b8eda42a917e-b5616e30434cb803-00",

 "Date": "Fri, 15 Jul 2022 08:44:06 GMT",

 "Content-Length": "297"

}

{

 "code": 0,

 "data": {

 "items": [

 {

 "id": 115,

 "name": "workflow_q745a_20220715163650",

 "workflowId": "4216617528",

 "workflowName": "workflow_q745a",

 "status": 2,

 "runBeginTime": 1657874212000,

 "runEndTime": 1657874218000,

 "createTime": 1657874210088

 }

],

 "total": 1,

 "Page": 1,

 "PageSize": 10

 },

 "message": "Success"

}

Last update: July 20, 2022

17.8.6 Workflow API

- 689/927 - 2022 Vesoft Inc.

Query details for a specified job

This topic describes how to use an API to query details for a specified job.

API PATH

api-open/v1/jobs/<job_id>

<job_id> : The job ID. See request parameters below.

REQUEST PARAMETERS

Path parameters

Headers parameters

Body parameters

None.

Request example

Parameters Type If

required

Default

value

Example Description

job_id number yes - 1964 The job ID. It can be queried

through the API Get a list of all jobs

or viewed on the job list page.

Parameters Type If

required

Default

value

Example Description

Content-Type string yes - application/

json

The content type.

explorer_token string yes - eyJhbxxx The authorization token that is used

to verify account information. For

details, see Workflow API overview.

curl -i -X GET -H "Content-Type: application/json" -H "Cookie: "explorer_token=eyJhbxxx"" http://192.168.8.145:7002/api-open/v1/jobs/1964

17.8.6 Workflow API

- 690/927 - 2022 Vesoft Inc.

RESPONSE PARAMETERS

Response example

Parameters Type Example Description

code number 0 The result code of the request. Return 0 if the request

is successful, and return an error code if the request is

unsuccessful. For details, see Workflow API overview.

message string Success The result information of the execution.

data object - The list of returned data.

 - id number 1964 The job ID.

 - name string workflow_xkkjf_20220712103332 The job name.

 - workflowId string 3992429968 The workflow ID.

 -

workflowName

string workflow_xkkjf The workflow name.

 - status number 2 The job status code. For details, see Workflow API

overview.

 - tasks object - The task details.

 - id string f93dea90fc3a11ecac7e6da0662c195b The task ID.

 - name string BFS The task name.

 -

runBeginTime

datetime 2022-07-12T10:33:35+08:00 The start time of the task execution.

 -

runEndTime

datetime 2022-07-12T10:33:38+08:00 The end time of the task execution.

 - status number 2 The task status code. For details, see Workflow API

overview.

{

 "cookie": [],

 "Content-Type": "application/json",

 "Traceparent": "00-3db17c9fd9e0a4c3824973471523d214-4384705e523dce83-00",

 "Date": "Fri, 15 Jul 2022 09:08:20 GMT",

 "Content-Length": "400"

}

{

 "code": 0,

 "data": {

 "id": 1964,

 "name": "workflow_xkkjf_20220712103332",

 "workflowId": "3992429968",

 "workflowName": "workflow_xkkjf",

 "status": 2,

 "tasks": [

 {

 "id": "f93dea90fc3a11ecac7e6da0662c195b",

 "name": "BFS",

 "runBeginTime": "2022-07-12T10:33:35+08:00",

 "runEndTime": "2022-07-12T10:33:38+08:00",

 "status": 2

 }

],

 "runBeginTime": 1657593215000,

 "runEndTime": 1657593218000,

 "createTime": 1657593212505

 },

 "message": "Success"

}

Last update: July 20, 2022

17.8.6 Workflow API

- 691/927 - 2022 Vesoft Inc.

Cancel a running job

This topic describes how to use an API to cancel a running job.

API PATH

api-open/v1/jobs/<job_id>/cancel

<job_id> : The job ID. See request parameters below.

REQUEST PARAMETERS

Path parameters

Headers parameters

Body parameters

None.

Request example

RESPONSE PARAMETERS

Response example

Parameters Type If

required

Default

value

Example Description

job_id number yes - 1964 The job ID. It can be queried

through the API Get a list of all jobs

or viewed on the job list page.

Parameters Type If

required

Default

value

Example Description

Content-Type string yes - application/x-

www-form-

urlencoded

The content type.

explorer_token string yes - eyJhbxxx The authorization token that is

used to verify account information.

For details, see Workflow API

overview.

curl -i -X PUT -H "Content-Type: application/x-www-form-urlencoded" -H "Cookie: "explorer_token=eyJhbxxx"" http://192.168.8.145:7002/api-open/v1/jobs/30600/cancel

Parameters Type Example Description

code number 0 The result code of the request. Return 0 if the request is successful,

and return an error code if the request is unsuccessful. For details, see

Workflow API overview.

message string Success The result information of the execution.

data object - The list of returned data.

 - success bool true Whether the job was canceled successfully.

{

 "cookie": [],

 "Content-Type": "application/json",

 "Traceparent": "00-8b4b47413a211d9b5e0839aadc712052-4a98bae37fe5948a-00",

 "Date": "Mon, 18 Jul 2022 01:45:08 GMT",

 "Content-Length": "54"

}

{

 "code": 0,

 "data": {

17.8.6 Workflow API

- 692/927 - 2022 Vesoft Inc.

 "success": true

 },

 "message": "Success"

}

Last update: July 20, 2022

17.8.6 Workflow API

- 693/927 - 2022 Vesoft Inc.

Get the result data of a specified task

This topic describes how to use an API to get the result data of a specified task.

API PATH

api-open/v1/jobs/<job_id>/tasks/<task_id>/sample_result

<job_id> : The job ID. See request parameters below.

<task_id> : The task ID. See request parameters below.

REQUEST PARAMETERS

Path parameters

Headers parameters

Body parameters

Request example

•

•

Parameters Type If

required

Default

value

Example Description

job_id number yes - 29987 The job ID. It can be

queried through the API

Get a list of all jobs or

viewed on the job list

page.

task_id number yes - 8c171f70fb6f11ecac7e6da0662c195b The task ID. It can be

queried through the API

Query details for a

specified job or viewed

in the upper right

corner of the specified

job page by clicking the

component.

Parameters Type If

required

Default

value

Example Description

Content-Type string yes - application/x-

www-form-

urlencoded

The content type.

explorer_token string yes - eyJhbxxx The authorization token that is

used to verify account information.

For details, see Workflow API

overview.

Parameters Type If required Default

value

Example Description

limit number yes 10 - Limit the number of rows to

return results.

curl -i -X GET -H "Content-Type: application/x-www-form-urlencoded" -H "Cookie: "explorer_token=eyJhbxxx"" http://192.168.8.145:7002/api-open/v1/jobs/29987/tasks/

8c171f70fb6f11ecac7e6da0662c195b/sample_result?limit=1000

17.8.6 Workflow API

- 694/927 - 2022 Vesoft Inc.

RESPONSE PARAMETERS

Response example

Parameters Type Example Description

code number 0 The result code of the request. Return 0 if the request is

successful, and return an error code if the request is

unsuccessful. For details, see Workflow API overview.

message string Success The result information of the execution.

data object - The list of returned data.

 - items list - The list of detailed results.

 - result string "player110","0.150000" Depending on the algorithm, the result could be 2 or 3

columns.

{

 "cookie": [],

 "Content-Type": "application/json",

 "Traceparent": "00-14047b04b6810be06be22e010f500506-4c310a844b824a7f-00",

 "Date": "Fri, 15 Jul 2022 09:36:56 GMT",

 "Content-Length": "2014"

}

{

 "code": 0,

 "data": {

 "items": [

 [

 "player110",

 "0.150000"

],

 [

 "team219",

 "0.452126"

],

 [

 "player121",

 "0.262148"

]

]

 },

 "message": "Success"

}

Last update: July 20, 2022

17.8.6 Workflow API

- 695/927 - 2022 Vesoft Inc.

17.9 Basic operations and shortcuts

This topic lists the basic operations and shortcuts supported in Explorer.

17.9.1 Basic operations

17.9.2 Shortcuts

Operation Description

Move a canvas Hold down left click and drag the canvas.

Zoom in or out the canvas Mouse wheel scrolls down to zoom in and up to zoom out.

Select one single vertex or

edge

Left-click a vertex or an edge.

Select multiple vertices

and edges

Hold Shift and left-click vertices and edges.

Batch selection Hold down right click and frame vertices and edges; Or Hold Shift and hold down left click,

and then frame vertices and edges.

Move selected vertices Left-click the selected vertices and then move them.

Operation Description

Enter Expand

Shift + '-' Zoom out

Shift + '+' Zoom in

Shift + 'l' Display

Ctrl/Cmd + 'z' Undo

Ctrl/Cmd + Shift + 'z' Redo

Ctrl/Cmd + 'a' Select all vertices.

Selected + 'del' Hide the selected elements.

Selected + Shift + 'del' Hide the unselected elements.

Last update: March 8, 2022

17.9 Basic operations and shortcuts

- 696/927 - 2022 Vesoft Inc.

18. Nebula Importer

18.1 Nebula Importer

Nebula Importer (Importer) is a standalone tool for importing data from CSV files into NebulaGraph. Importer can read the local

CSV file and then import the data into the NebulaGraph database.

18.1.1 Scenario

Importer is used to import the contents of a local CSV file into the NebulaGraph.

18.1.2 Advantage

Lightweight and fast: no complex environment can be used, fast data import.

Flexible filtering: You can flexibly filter CSV data through configuration files.

18.1.3 Release note

Release

18.1.4 Prerequisites

Before using Nebula Importer, make sure:

NebulaGraph service has been deployed. There are currently three deployment modes:

Deploy NebulaGraph with Docker Compose

Install NebulaGraph with RPM or DEB package

Install NebulaGraph by compiling the source code

Schema is created in NebulaGraph, including space, Tag and Edge type, or set by parameter clientSettings.postStart.commands .

Golang environment has been deployed on the machine running the Importer. For details, see Build Go environment.

18.1.5 Steps

Configure the YAML file and prepare the CSV file to be imported to use the tool to batch write data to NebulaGraph.

Download binary package and run

Download the binary package directly and add execute permission to it.

Start the service.

Source code compile and run

Clone repository.

•

•

•

•

•

•

•

•

1.

2.

$./<binary_package_name> --config <yaml_config_file_path>

1.

$ git clone -b release-3.1 https://github.com/vesoft-inc/nebula-importer.git

18. Nebula Importer

- 697/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula-importer/releases/tag/v3.1.0
https://github.com/vesoft-inc/nebula-importer/blob/release-3.1/docs/golang-install-en.md
https://github.com/vesoft-inc/nebula-importer/releases/tag/v3.1.0

Use the correct branch. NebulaGraph 2.x and 3.x have different RPC protocols.

Access the directory nebula-importer .

Compile the source code.

Start the service.

For details about the YAML configuration file, see configuration file description at the end of topic.

No network compilation mode

If the server cannot be connected to the Internet, it is recommended to upload the source code and various dependency

packages to the corresponding server for compilation on the machine that can be connected to the Internet. The operation steps

are as follows:

Clone repository.

Use the following command to download and package the dependent source code.

Upload the compressed package to a server that cannot be connected to the Internet.

Unzip and compile.

Run in Docker mode

Instead of installing the Go locale locally, you can use Docker to pull the image of the Nebula Importer and mount the local

configuration file and CSV data file into the container. The command is as follows:

<config_file> : The absolute path to the local YAML configuration file.

<csv_data_dir> : The absolute path to the local CSV data file.

<version> : NebulaGraph 2.x Please fill in 'v3'.

Note

2.

$ cd nebula-importer

3.

$ make build

4.

$./nebula-importer --config <yaml_config_file_path>

Note

1.

$ git clone -b release-3.1 https://github.com/vesoft-inc/nebula-importer.git

2.

$ cd nebula-importer

$ go mod vendor

$ cd .. && tar -zcvf nebula-importer.tar.gz nebula-importer

3.

4.

$ tar -zxvf nebula-importer.tar.gz

$ cd nebula-importer

$ go build -mod vendor cmd/importer.go

$ docker run --rm -ti \

 --network=host \

 -v <config_file>:<config_file> \

 -v <csv_data_dir>:<csv_data_dir> \

 vesoft/nebula-importer:<version>

 --config <config_file>

•

•

•

18.1.5 Steps

- 698/927 - 2022 Vesoft Inc.

https://hub.docker.com/r/vesoft/nebula-importer

A relative path is recommended. If you use a local absolute path, check that the path maps to the path in the Docker.

18.1.6 Configuration File Description

Nebula Importer uses configuration(nebula-importer/examples/v2/example.yaml) files to describe information about the files to be

imported, the NebulaGraph server, and more. You can refer to the example configuration file: Configuration without Header/

Configuration with Header. This section describes the fields in the configuration file by category.

If users download a binary package, create the configuration file manually.

Basic configuration

The example configuration is as follows:

Client configuration

The client configuration stores the configurations associated with NebulaGraph.

The example configuration is as follows:

Note

Note

version: v3

description: example

removeTempFiles: false

Parameter Default value Required Description

version v2 Yes Target version of NebulaGraph.

description example No Description of the configuration file.

removeTempFiles false No Whether to delete temporarily generated logs and error data

files.

clientSettings:

 retry: 3

 concurrency: 10

 channelBufferSize: 128

 space: test

 connection:

 user: user

 password: password

 address: 192.168.*.13:9669,192.168.*.14:9669

 postStart:

 commands: |

 UPDATE CONFIGS storage:wal_ttl=3600;

 UPDATE CONFIGS storage:rocksdb_column_family_options = { disable_auto_compactions = true };

 afterPeriod: 8s

 preStop:

 commands: |

18.1.6 Configuration File Description

- 699/927 - 2022 Vesoft Inc.

File configuration

File configuration Stores the configuration of data files and logs, and details about the Schema.

FILE AND LOG CONFIGURATION

The example configuration is as follows:

 UPDATE CONFIGS storage:wal_ttl=86400;

 UPDATE CONFIGS storage:rocksdb_column_family_options = { disable_auto_compactions = false };

Parameter Default

value

Required Description

clientSettings.retry 3 No Retry times of nGQL statement execution failures.

clientSettings.concurrency 10 No Number of NebulaGraph client concurrency.

clientSettings.channelBufferSize 128 No Cache queue size per NebulaGraph client.

clientSettings.space - Yes Specifies the NebulaGraph space to import the data

into. Do not import multiple spaces at the same time

to avoid performance impact.

clientSettings.connection.user - Yes NebulaGraph user name.

clientSettings.connection.password - Yes The password for the NebulaGraph user name.

clientSettings.connection.address - Yes Addresses and ports for all Graph services.

clientSettings.postStart.commands - No Configure some of the operations to perform after

connecting to the NebulaGraph server, and before

inserting data.

clientSettings.postStart.afterPeriod - No The interval, between executing the above commands

and executing the insert data command, such as 8s .

clientSettings.preStop.commands - No Configure some of the actions you performed before

disconnecting from the NebulaGraph server.

logPath: ./err/test.log

files:

 - path: ./student_without_header.csv

 failDataPath: ./err/studenterr.csv

 batchSize: 128

 limit: 10

 inOrder: false

 type: csv

 csv:

 withHeader: false

18.1.6 Configuration File Description

- 700/927 - 2022 Vesoft Inc.

SCHEMA CONFIGURATION

Schema configuration describes the Meta information of the current data file. Schema types are vertex and edge. Multiple

vertexes or edges can be configured at the same time.

vertex configuration

The example configuration is as follows:

 withLabel: false

 delimiter: ","

Parameter Default

value

Required Description

logPath - No Path for exporting log information, such as errors during import.

files.path - Yes Path for storing data files. If a relative path is used, the path is

merged with the current configuration file directory. You can use an

asterisk (*) for fuzzy matching to import multiple files with similar

names, but the files need to be the same structure.

files.failDataPath - Yes Insert the failed data file storage path, so that data can be written

later.

files.batchSize 128 No The number of statements inserting data in a batch.

files.limit - No Limit on the number of rows of read data.

files.inOrder - No Whether to insert rows in the file in order. If the value is set to

false , the import rate decreases due to data skew.

files.type - Yes The file type.

files.csv.withHeader false Yes Whether there is a header.

files.csv.withLabel false Yes Whether there is a label.

files.csv.delimiter "," Yes Specifies the delimiter for the CSV file. A string delimiter that

supports only one character.

•

schema:

 type: vertex

 vertex:

 vid:

 type: string

 index: 0

 tags:

 - name: student

 props:

 - name: name

 type: string

 index: 1

 - name: age

 type: int

 index: 2

 - name: gender

18.1.6 Configuration File Description

- 701/927 - 2022 Vesoft Inc.

The sequence numbers of the columns in the CSV file start from 0, that is, the sequence numbers of the first column are 0, and the

sequence numbers of the second column are 1.

edge configuration

The example configuration is as follows:

 type: string

 index: 3

Parameter Default

value

Required Description

files.schema.type - Yes Schema type. Possible values are vertex and edge .

files.schema.vertex.vid.type - No The data type of the vertex ID. Possible values are

int and string .

files.schema.vertex.vid.index - No The vertex ID corresponds to the column number in

the CSV file.

files.schema.vertex.tags.name - Yes Tag name.

files.schema.vertex.tags.props.name - Yes Tag property name, which must match the Tag

property in the NebulaGraph.

files.schema.vertex.tags.props.type - Yes Property data type, supporting bool , int , float ,

double , timestamp and string .

files.schema.vertex.tags.props.index - No Property corresponds to the sequence number of the

column in the CSV file.

Note

•

schema:

 type: edge

 edge:

 name: follow

 withRanking: true

 srcVID:

 type: string

 index: 0

 dstVID:

 type: string

 index: 1

 rank:

 index: 2

 props:

 - name: degree

18.1.6 Configuration File Description

- 702/927 - 2022 Vesoft Inc.

18.1.7 About the CSV file header

According to whether the CSV file has a header or not, the Importer needs to make different Settings on the configuration file.

For relevant examples and explanations, please refer to:

Configuration without Header

Configuration with Header

 type: double

 index: 3

Parameter Default

value

Required Description

files.schema.type - Yes Schema type. Possible values are vertex and edge .

files.schema.edge.name - Yes Edge type name.

files.schema.edge.srcVID.type - No 边的起始点ID的数据类型.

files.schema.edge.srcVID.index - No The data type of the starting vertex ID of the edge.

files.schema.edge.dstVID.type - No The data type of the destination vertex ID of the edge.

files.schema.edge.dstVID.index - No The destination vertex ID of the edge corresponds to the

column number in the CSV file.

files.schema.edge.rank.index - No The rank value of the edge corresponds to the column

number in the CSV file.

files.schema.edge.props.name - Yes The Edge Type property name must match the Edge Type

property in the NebulaGraph.

files.schema.edge.props.type - Yes Property data type, supporting bool , int , float , double ,

timestamp and string .

files.schema.edge.props.index - No Property corresponds to the sequence number of the

column in the CSV file.

•

•

Last update: March 13, 2023

18.1.7 About the CSV file header

- 703/927 - 2022 Vesoft Inc.

18.2 Configuration with Header

For a CSV file with header, you need to set withHeader to true in the configuration file, indicating that the first behavior in the CSV

file is the header. The header content has special meanings.

If the CSV file contains headers, the Importer will parse the Schema of each row of data according to the headers and ignore the

vertex or edge settings in the YAML file.

18.2.1 Sample files

The following is an example of a CSV file with header:

sample of vertex

Example data for student_with_header.csv :

The first column is the vertex ID, followed by the properties name , age , and gender .

sample of edge

Example data for follow_with_header.csv :

The first two columns are the start vertex ID and destination vertex ID, respectively. The third column is rank, and the fourth

column is property degree .

18.2.2 Header format description

The header defines the start vertex, the destination vertex, the rank, and some special functions by keywords as follows:

:VID (mandatory): Vertex ID. Need to use :VID(type) form to set data type, for example :VID(string) or :VID(int) .

:SRC_VID (mandatory): The start vertex ID of the edge. The data type needs to be set in the form :SRC_VID(type) .

:DST_VID (mandatory): The destination vertex ID of the edge. The data type needs to be set in the form :DST_VID(type) .

:RANK (optional): The rank value of the edge.

:IGNORE (optional): Ignore this column when inserting data.

:LABEL (optional): Insert (+) or delete (-) the row. Must be column 1. For example:

Caution

•

:VID(string),student.name:string,student.age:int,student.gender:string

student100,Monica,16,female

student101,Mike,18,male

student102,Jane,17,female

•

:SRC_VID(string),:DST_VID(string),:RANK,follow.degree:double

student100,student101,0,92.5

student101,student100,1,85.6

student101,student102,2,93.2

student100,student102,1,96.2

•

•

•

•

•

•

:LABEL,

+,

-,

18.2 Configuration with Header

- 704/927 - 2022 Vesoft Inc.

All columns except the :LABEL column can be sorted in any order, so for larger CSV files, the user has the flexibility to set the header

to select the desired column.

For Tag or Edge type properties, the format is <tag_name/edge_name>.<prop_name>:<prop_type> , described as follows:

<tag_name/edge_name> : Tag or Edge type name.

<prop_name> : property name.

<prop_type> : property type. Support bool , int , float , double , timestamp and string , default string .

Such as student.name:string , follow.degree:double .

18.2.3 Sample configuration

Note

•

•

•

Connected to the NebulaGraph version, set to v3 when connected to 3.x.

version: v3

description: example

Whether to delete temporarily generated logs and error data files.

removeTempFiles: false

clientSettings:

 # Retry times of nGQL statement execution failures.

 retry: 3

 # Number of NebulaGraph client concurrency.

 concurrency: 10

 # Cache queue size per NebulaGraph client.

 channelBufferSize: 128

 # Specifies the NebulaGraph space to import the data into.

 space: student

 # Connection information.

 connection:

 user: root

 password: nebula

 address: 192.168.*.13:9669

 postStart:

 # Configure some of the operations to perform after connecting to the NebulaGraph server, and before inserting data.

 commands: |

 DROP SPACE IF EXISTS student;

 CREATE SPACE IF NOT EXISTS student(partition_num=5, replica_factor=1, vid_type=FIXED_STRING(20));

 USE student;

 CREATE TAG student(name string, age int,gender string);

 CREATE EDGE follow(degree int);

 # The interval between the execution of the above command and the execution of the insert data command.

 afterPeriod: 15s

 preStop:

 # Configure some of the actions you performed before disconnecting from the NebulaGraph server.

 commands: |

Path of the error log file.

logPath: ./err/test.log

CSV file Settings.

files:

 # Path for storing data files. If a relative path is used, the path is merged with the current configuration file directory. The first data file in this example is vertex data.

 - path: ./student_with_header.csv

 # Insert the failed data file storage path, so that data can be written later.

 failDataPath: ./err/studenterr.csv

 # The number of statements inserting data in a batch.

 batchSize: 10

 # Limit on the number of rows of read data.

 limit: 10

 # Whether to insert rows in the file in order. If the value is set to false, the import rate decreases due to data skew.

 inOrder: true

 # File type. Currently, only CSV files are supported.

18.2.3 Sample configuration

- 705/927 - 2022 Vesoft Inc.

The data type of the vertex ID must be the same as the data type of the statement in clientSettings.postStart.commands that creates the

graph space.

 type: csv

 csv:

 # Whether there is a header.

 withHeader: true

 # Whether there is a LABEL.

 withLabel: false

 # Specifies the delimiter for the CSV file. A string delimiter that supports only one character.

 delimiter: ","

 schema:

 # Schema type. Possible values are vertex and edge.

 type: vertex

 # The second data file in this example is edge data.

 - path: ./follow_with_header.csv

 failDataPath: ./err/followerr.csv

 batchSize: 10

 limit: 10

 inOrder: true

 type: csv

 csv:

 withHeader: true

 withLabel: false

 schema:

 # The type of Schema is edge.

 type: edge

 edge:

 # Edge type name.

 name: follow

 # Whether to include rank.

 withRanking: true

Note

Last update: March 13, 2023

18.2.3 Sample configuration

- 706/927 - 2022 Vesoft Inc.

18.3 Configuration without Header

For CSV files without header, you need to set withHeader to false in the configuration file, indicating that the CSV file contains only

data (excluding the header of the first row). You may also need to set the data type and corresponding columns.

18.3.1 Sample files

The following is an example of a CSV file without header:

sample of vertex

Example data for student_without_header.csv :

The first column is the vertex ID, followed by the properties name , age , and gender .

sample of edge

Example data for follow_without_header.csv :

The first two columns are the start vertex ID and destination vertex ID, respectively. The third column is rank, and the fourth

column is property degree .

18.3.2 Sample configuration

•

student100,Monica,16,female

student101,Mike,18,male

student102,Jane,17,female

•

student100,student101,0,92.5

student101,student100,1,85.6

student101,student102,2,93.2

student100,student102,1,96.2

Connected to the NebulaGraph version, set to v3 when connected to 3.x.

version: v3

description: example

Whether to delete temporarily generated logs and error data files.

removeTempFiles: false

clientSettings:

 # Retry times of nGQL statement execution failures.

 retry: 3

 # Number of NebulaGraph client concurrency.

 concurrency: 10

 # Cache queue size per NebulaGraph client.

 channelBufferSize: 128

 # Specifies the NebulaGraph space to import the data into.

 space: student

 # Connection information.

 connection:

 user: root

 password: nebula

 address: 192.168.*.13:9669

 postStart:

 # Configure some of the operations to perform after connecting to the NebulaGraph server, and before inserting data.

 commands: |

 DROP SPACE IF EXISTS student;

 CREATE SPACE IF NOT EXISTS student(partition_num=5, replica_factor=1, vid_type=FIXED_STRING(20));

 USE student;

 CREATE TAG student(name string, age int,gender string);

 CREATE EDGE follow(degree int);

 # The interval between the execution of the above command and the execution of the insert data command.

 afterPeriod: 15s

 preStop:

 # Configure some of the actions you performed before disconnecting from the NebulaGraph server.

 commands: |

18.3 Configuration without Header

- 707/927 - 2022 Vesoft Inc.

Path of the error log file.

logPath: ./err/test.log

CSV file Settings.

files:

 # Path for storing data files. If a relative path is used, the path is merged with the current configuration file directory. The first data file in this example is vertex data.

 - path: ./student_without_header.csv

 # Insert the failed data file storage path, so that data can be written later.

 failDataPath: ./err/studenterr.csv

 # The number of statements inserting data in a batch.

 batchSize: 10

 # Limit on the number of rows of read data.

 limit: 10

 # Whether to insert rows in the file in order. If the value is set to false, the import rate decreases due to data skew.

 inOrder: true

 # File type. Currently, only CSV files are supported.

 type: csv

 csv:

 # Whether there is a header.

 withHeader: false

 # Whether there is a LABEL.

 withLabel: false

 # Specifies the delimiter for the CSV file. A string delimiter that supports only one character.

 delimiter: ","

 schema:

 # Schema type. Possible values are vertex and edge.

 type: vertex

 vertex:

 # Vertex ID Settings.

 vid:

 # The vertex ID corresponds to the column number in the CSV file. Columns in the CSV file are numbered from 0.

 index: 0

 # The data type of the vertex ID. The optional values are int and string, corresponding to INT64 and FIXED_STRING in the NebulaGraph, respectively.

 type: string

 # Tag Settings.

 # Tag name.

 - name: student

 # property Settings in the Tag.

 props:

 # property name.

 - name: name

 # Property data type.

 type: string

 # Property corresponds to the sequence number of the column in the CSV file.

 index: 1

 - name: age

 type: int

 index: 2

 - name: gender

 type: string

 index: 3

 # The second data file in this example is edge data.

 - path: ./follow_without_header.csv

 failDataPath: ./err/followerr.csv

 batchSize: 10

 limit: 10

 inOrder: true

 type: csv

 csv:

 withHeader: false

 withLabel: false

 schema:

 # The type of Schema is edge.

 type: edge

 edge:

 # Edge type name.

 name: follow

 # Whether to include rank.

 withRanking: true

 # Start vertex ID setting.

 srcVID:

 # Data type.

18.3.2 Sample configuration

- 708/927 - 2022 Vesoft Inc.

The sequence numbers of the columns in the CSV file start from 0, that is, the sequence numbers of the first column are 0, and the

sequence numbers of the second column are 1.

The data type of the vertex ID must be the same as the data type of the statement in clientSettings.postStart.commands that creates the

graph space.

If the index field is not specified, the CSV file must comply with the following rules:

In the vertex data file, the first column must be the vertex ID, followed by the properties, and must correspond to the order in the

configuration file.

In the side data file, the first column must be the start vertex ID, the second column must be the destination vertex ID, if withRanking is

true , the third column must be the rank value, and the following columns must be properties, and must correspond to the order in the

configuration file.

 type: string

 # The start vertex ID corresponds to the sequence number of a column in the CSV file.

 index: 0

 # Destination vertex ID.

 dstVID:

 type: string

 index: 1

 # rank setting.

 rank:

 # Rank Indicates the rank number of a column in the CSV file. If index is not set, be sure to set the rank value in the third column. Subsequent columns set each property in

turn.

 index: 2

 # Edge Type property Settings.

 props:

 # property name.

 - name: degree

 # Data type.

 type: double

 # Property corresponds to the sequence number of the column in the CSV file.

 index: 3

Note

•

•

•

•

•

Last update: March 13, 2023

18.3.2 Sample configuration

- 709/927 - 2022 Vesoft Inc.

19. Nebula Exchange

19.1 Introduction

19.1.1 What is Nebula Exchange

Nebula Exchange (Exchange) is an Apache Spark™ application for bulk migration of cluster data to NebulaGraph in a distributed

environment, supporting batch and streaming data migration in a variety of formats.

Exchange consists of Reader, Processor, and Writer. After Reader reads data from different sources and returns a DataFrame, the

Processor iterates through each row of the DataFrame and obtains the corresponding value based on the mapping between

fields in the configuration file. After iterating through the number of rows in the specified batch, Writer writes the captured data

to the NebulaGraph at once. The following figure illustrates the process by which Exchange completes the data conversion and

migration.

Editions

Exchange has two editions, the Community Edition and the Enterprise Edition. The Community Edition is open source developed

on GitHub. The Enterprise Edition supports not only the functions of the Community Edition but also adds additional features.

For details, see Comparisons.

19. Nebula Exchange

- 710/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange
https://github.com/vesoft-inc/nebula-exchange
https://nebula-graph.com.cn/pricing/

Scenarios

Exchange applies to the following scenarios:

Streaming data from Kafka and Pulsar platforms, such as log files, online shopping data, activities of game players, information

on social websites, financial transactions or geospatial services, and telemetry data from connected devices or instruments in

the data center, are required to be converted into the vertex or edge data of the property graph and import them into the

NebulaGraph database.

Batch data, such as data from a time period, needs to be read from a relational database (such as MySQL) or a distributed file

system (such as HDFS), converted into vertex or edge data for a property graph, and imported into the NebulaGraph database.

A large volume of data needs to be generated into SST files that NebulaGraph can recognize and then imported into the

NebulaGraph database.

The data saved in NebulaGraph needs to be exported.

Exporting the data saved in NebulaGraph is supported by Exchange Enterprise Edition only.

Advantages

Exchange has the following advantages:

High adaptability: It supports importing data into the NebulaGraph database in a variety of formats or from a variety of

sources, making it easy to migrate data.

SST import: It supports converting data from different sources into SST files for data import.

SSL encryption: It supports establishing the SSL encryption between Exchange and NebulaGraph to ensure data security.

Resumable data import: It supports resumable data import to save time and improve data import efficiency.

Resumable data import is currently supported when migrating Neo4j data only.

Asynchronous operation: An insert statement is generated in the source data and sent to the Graph service. Then the insert

operation is performed.

Great flexibility: It supports importing multiple Tags and Edge types at the same time. Different Tags and Edge types can be

from different data sources or in different formats.

Statistics: It uses the accumulator in Apache Spark™ to count the number of successful and failed insert operations.

Easy to use: It adopts the Human-Optimized Config Object Notation (HOCON) configuration file format and has an object-

oriented style, which is easy to understand and operate.

•

•

•

•

Enterpriseonly

•

•

•

•

Note

•

•

•

•

19.1.1 What is Nebula Exchange

- 711/927 - 2022 Vesoft Inc.

Data source

Exchange 3.0.0 supports converting data from the following formats or sources into vertexes and edges that NebulaGraph can

recognize, and then importing them into NebulaGraph in the form of nGQL statements:

Data stored in HDFS or locally:

Apache Parquet

Apache ORC

JSON

CSV

Apache HBase™

Data repository:

Hive

MaxCompute

Graph database: Neo4j (Client version 2.4.5-M1)

Relational database:

MySQL

PostgreSQL

Column database: ClickHouse

Stream processing software platform: Apache Kafka®

Publish/Subscribe messaging platform: Apache Pulsar 2.4.5

In addition to importing data as nGQL statements, Exchange supports generating SST files for data sources and then importing

SST files via Console.

In addition, Exchange Enterprise Edition also supports exporting data to a CSV file using NebulaGraph as data sources.

Release note

Release

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: March 13, 2023

19.1.1 What is Nebula Exchange

- 712/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/releases/tag/v3.0.0

19.1.2 Limitations

This topic describes some of the limitations of using Exchange 3.x.

Version compatibility

The correspondence between the Nebula Exchange release (the JAR version) and the NebulaGraph core release is as follows.

JAR packages are available in two ways: compile them yourself or download them from the Maven repository.

If you are using NebulaGraph 1.x, use Nebula Exchange 1.x.

Environment

Exchange 3.x supports the following operating systems:

CentOS 7

macOS

Exchange client NebulaGraph

3.0-SNAPSHOT nightly

3.0.0 3.1.0

2.6.x 2.6.x

2.5.x 2.5.x

2.1.0 2.0.0, 2.0.1

2.0.1 2.0.0, 2.0.1

2.0.0 2.0.0, 2.0.1

•

•

19.1.2 Limitations

- 713/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/tree/v1.0/tools

Software dependencies

To ensure the healthy operation of Exchange, ensure that the following software has been installed on the machine:

Java version 1.8

Scala version 2.10.7, 2.11.12, or 2.12.10

Apache Spark. The requirements for Spark versions when using Exchange to export data from data sources are as follows. In

the following table, Y means that the corresponding Spark version is supported, and N means not supported.

Use the correct Exchange JAR file based on the Spark version. For example, for Spark version 2.4, use nebula-

exchange_spark_2.4-3.0.0.jar.

Hadoop Distributed File System (HDFS) needs to be deployed in the following scenarios:

Migrate HDFS data

Generate SST files

•

•

•

Note

Data source Spark 2.2 Spark 2.4 Spark 3

CSV file Y N Y

JSON file Y Y Y

ORC file Y Y Y

Parquet file Y Y Y

HBase Y Y Y

MySQL Y Y Y

PostgreSQL Y Y Y

ClickHouse Y Y Y

Neo4j N Y N

Hive Y Y Y

MaxCompute N Y N

Pulsar N Y Untested

Kafka N Y Untested

NebulaGraph N Y N

•

•

Last update: March 13, 2023

19.1.2 Limitations

- 714/927 - 2022 Vesoft Inc.

19.2 Get Exchange

This topic introduces how to get the JAR file of Nebula Exchange.

19.2.1 Download the JAR file directly

The JAR file of Exchange Community Edition can be downloaded directly.

To download Exchange Enterprise Edition, get NebulaGraph Enterprise Edition Package first.

19.2.2 Get the JAR file by compiling the source code

You can get the JAR file of Exchange Community Edition by compiling the source code. The following introduces how to compile

the source code of Exchange.

You can get Exchange Enterprise Edition in NebulaGraph Enterprise Edition Package only.

Prerequisites

Install Maven.

Install the correct version of Apache Spark. Exporting data from different sources requires different Spark versions. For more

information, see Software dependencies.

19.2.3 Steps

Clone the repository nebula-exchange in the / directory.

Switch to the directory nebula-exchange .

Package Nebula Exchange. Run the following command based on the Spark version:

For Spark 2.2：

For Spark 2.4：

For Spark 3.0：

After the compilation is successful, you can find the nebula-exchange_spark_x.x-v3.0.0.jar file in the nebula-exchange_spark_x.x/target/

directory. x.x indicates the Spark version, for example, 2.4 .

Enterpriseonly

•

•

1.

git clone -b v3.0.0 https://github.com/vesoft-inc/nebula-exchange.git

2.

cd nebula-exchange

3.

•

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true \

-pl nebula-exchange_spark_2.2 -am -Pscala-2.11 -Pspark-2.2

•

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true \

-pl nebula-exchange_spark_2.4 -am -Pscala-2.11 -Pspark-2.4

•

mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true \

-pl nebula-exchange_spark_3.0 -am -Pscala-2.12 -Pspark-3.0

19.2 Get Exchange

- 715/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/releases
https://nebula-graph.io/pricing/
https://maven.apache.org/download.cgi

The JAR file version changes with the release of the Nebula Java Client. Users can view the latest version on the Releases page.

When migrating data, you can refer to configuration file target/classes/application.conf .

Failed to download the dependency package

If downloading dependencies fails when compiling:

Check the network settings and ensure that the network is normal.

Modify the mirror part of Maven installation directory libexec/conf/settings.xml :

Note

•

•

<mirror>

 <id>alimaven</id>

 <mirrorOf>central</mirrorOf>

 <name>aliyun maven</name>

 <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>

</mirror>

Last update: March 13, 2023

19.2.3 Steps

- 716/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-java/releases
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf

19.3 Exchange configurations

19.3.1 Options for import

After editing the configuration file, run the following commands to import specified source data into the NebulaGraph database.

First import

Import the reload file

If some data fails to be imported during the first import, the failed data will be stored in the reload file. Use the parameter -r

to import the reload file.

The version number of a JAR file is subject to the name of the JAR file that is actually compiled.

If users use the yarn-cluster mode to submit a job, see the following command:

The following table lists command parameters.

For more Spark parameter configurations, see Spark Configuration.

•

<spark_install_path>/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.x.y.jar_path> -c <application.conf_path>

•

<spark_install_path>/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-2.x.y.jar_path> -c <application.conf_path> -r "<reload_file_path>"

Note

Note

$SPARK_HOME/bin/spark-submit --master yarn-cluster \

--class com.vesoft.nebula.exchange.Exchange \

--files application.conf \

--conf spark.driver.extraClassPath=./ \

--conf spark.executor.extraClassPath=./ \

nebula-exchange-3.0.0.jar \

-c application.conf

Parameter Required Default

value

Description

--class Yes - Specify the main class of the driver.

--master Yes - Specify the URL of the master process in a Spark cluster. For more

information, see master-urls.

-c /

--config

Yes - Specify the path of the configuration file.

-h / --hive No false Indicate support for importing Hive data.

-D / --dry No false Check whether the format of the configuration file meets the

requirements, but it does not check whether the configuration items of

tags and edges are correct. This parameter cannot be added when users

import data.

-r / --reload No - Specify the path of the reload file that needs to be reloaded.

Last update: March 13, 2023

19.3 Exchange configurations

- 717/927 - 2022 Vesoft Inc.

https://spark-reference-doc-cn.readthedocs.io/zh_CN/latest/deploy-guide/running-on-yarn.html
https://spark.apache.org/docs/latest/submitting-applications.html#master-urls
https://spark.apache.org/docs/latest/configuration.html#runtime-environment

19.3.2 Parameters in the configuration file

This topic describes how to configure the file application.conf when users use Nebula Exchange.

Before configuring the application.conf file, it is recommended to copy the file name application.conf and then edit the file name

according to the file type of a data source. For example, change the file name to csv_application.conf if the file type of the data

source is CSV.

The application.conf file contains the following content types:

Spark configurations

Hive configurations (optional)

NebulaGraph configurations

Vertex configurations

Edge configurations

Spark configurations

This topic lists only some Spark parameters. For more information, see Spark Configuration.

•

•

•

•

•

Parameter Type Default

value

Required Description

spark.app.name string - No The drive name in Spark.

spark.driver.cores int 1 No The number of CPU cores used by a driver, only

applicable to a cluster mode.

spark.driver.maxResultSize string 1G No The total size limit (in bytes) of the serialized

results of all partitions in a single Spark operation

(such as collect). The minimum value is 1M, and 0

means unlimited.

spark.executor.memory string 1G No The amount of memory used by a Spark driver

which can be specified in units, such as 512M or

1G.

spark.cores.max int 16 No The maximum number of CPU cores of

applications requested across clusters (rather

than from each node) when a driver runs in a

coarse-grained sharing mode on a standalone

cluster or a Mesos cluster. The default value is

spark.deploy.defaultCores on a Spark standalone

cluster manager or the value of the infinite

parameter (all available cores) on Mesos.

19.3.2 Parameters in the configuration file

- 718/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf
https://github.com/vesoft-inc/nebula-exchange/blob/master/nebula-exchange_spark_2.4/src/main/resources/application.conf
https://spark.apache.org/docs/latest/configuration.html#application-properties

Hive configurations (optional)

Users only need to configure parameters for connecting to Hive if Spark and Hive are deployed in different clusters. Otherwise,

please ignore the following configurations.

Parameter Type Default value Required Description

hive.warehouse string - Yes The warehouse path in HDFS.

Enclose the path in double quotes

and start with hdfs:// .

hive.connectionURL string - Yes The URL of a JDBC connection.

For example, "jdbc:mysql://

127.0.0.1:3306/hive_spark?

characterEncoding=UTF-8" .

hive.connectionDriverName string "com.mysql.jdbc.Driver" Yes The driver name.

hive.connectionUserName list[string] - Yes The username for connections.

hive.connectionPassword list[string] - Yes The account password.

19.3.2 Parameters in the configuration file

- 719/927 - 2022 Vesoft Inc.

NebulaGraph configurations

19.3.2 Parameters in the configuration file

- 720/927 - 2022 Vesoft Inc.

Parameter Type Default value Required Description

nebula.address.graph list[string] ["127.0.0.1:9669"] Yes The addresses of all Graph services,

including IPs and ports, separated by

commas (,). Example:

["ip1:port1","ip2:port2","ip3:port3"] .

nebula.address.meta list[string] ["127.0.0.1:9559"] Yes The addresses of all Meta services,

including IPs and ports, separated by

commas (,). Example:

["ip1:port1","ip2:port2","ip3:port3"] .

nebula.user string - Yes The username with write permissions for

NebulaGraph.

nebula.pswd string - Yes The account password.

nebula.space string - Yes The name of the graph space where data

needs to be imported.

nebula.ssl.enable.graph bool false Yes Enables the SSL encryption between

Exchange and Graph services. If the

value is true , the SSL encryption is

enabled and the following SSL

parameters take effect. If Exchange is

run on a multi-machine cluster, you need

to store the corresponding files in the

same path on each machine when setting

the following SSL-related paths.

nebula.ssl.sign string ca Yes Specifies the SSL sign. Optional values

are ca and self .

nebula.ssl.ca.param.caCrtFilePath string Specifies the

storage path of

the CA

certificate. It

takes effect

when the value

of

nebula.ssl.sign is

ca .

nebula.ssl.ca.param.crtFilePath string "/path/

crtFilePath"

Yes Specifies the storage path of the CRT

certificate. It takes effect when the value

of nebula.ssl.sign is ca .

nebula.ssl.ca.param.keyFilePath string "/path/

keyFilePath"

Yes Specifies the storage path of the key file.

It takes effect when the value of

nebula.ssl.sign is ca .

nebula.ssl.self.param.crtFilePath string "/path/

crtFilePath"

Yes Specifies the storage path of the CRT

certificate. It takes effect when the value

of nebula.ssl.sign is self .

nebula.ssl.self.param.keyFilePath string "/path/

keyFilePath"

Yes Specifies the storage path of the key file.

It takes effect when the value of

nebula.ssl.sign is self .

nebula.ssl.self.param.password string "nebula" Yes Specifies the storage path of the

password. It takes effect when the value

of nebula.ssl.sign is self .

nebula.path.local string "/tmp" No

19.3.2 Parameters in the configuration file

- 721/927 - 2022 Vesoft Inc.

https://en.wikipedia.org/wiki/Transport_Layer_Security

Vertex configurations

For different data sources, the vertex configurations are different. There are many general parameters and some specific

parameters. General parameters and specific parameters of different data sources need to be configured when users configure

vertices.

Parameter Type Default value Required Description

The local SST file path which needs to be

set when users import SST files.

nebula.path.remote string "/sst" No The remote SST file path which needs to

be set when users import SST files.

nebula.path.hdfs.namenode string "hdfs://name_node:

9000"

No The NameNode path which needs to be

set when users import SST files.

nebula.connection.timeout int 3000 No The timeout set for Thrift connections.

Unit: ms.

nebula.connection.retry int 3 No Retries set for Thrift connections.

nebula.execution.retry int 3 No Retries set for executing nGQL

statements.

nebula.error.max int 32 No The maximum number of failures during

the import process. When the number of

failures reaches the maximum, the Spark

job submitted will stop automatically .

nebula.error.output string /tmp/errors No The path to output error logs. Failed

nGQL statement executions are saved in

the error log.

nebula.rate.limit int 1024 No The limit on the number of tokens in the

token bucket when importing data.

nebula.rate.timeout int 1000 No The timeout period for getting tokens

from a token bucket. Unit: milliseconds.

19.3.2 Parameters in the configuration file

- 722/927 - 2022 Vesoft Inc.

GENERAL PARAMETERS

SPECIFIC PARAMETERS OF PARQUET/JSON/ORC DATA SOURCES

SPECIFIC PARAMETERS OF CSV DATA SOURCES

SPECIFIC PARAMETERS OF HIVE DATA SOURCES

Parameter Type Default

value

Required Description

tags.name string - Yes The tag name defined in NebulaGraph.

tags.type.source string - Yes Specify a data source. For example, csv .

tags.type.sink string client Yes Specify an import method. Optional values are

client and SST .

tags.fields list[string] - Yes The header or column name of the column

corresponding to properties. If there is a header or

a column name, please use that name directly. If a

CSV file does not have a header, use the form of

[_c0, _c1, _c2] to represent the first column, the

second column, the third column, and so on.

tags.nebula.fields list[string] - Yes Property names defined in NebulaGraph, the order

of which must correspond to tags.fields . For

example, [_c1, _c2] corresponds to [name, age] , which

means that values in the second column are the

values of the property name , and values in the third

column are the values of the property age .

tags.vertex.field string - Yes The column of vertex IDs. For example, when a CSV

file has no header, users can use _c0 to indicate

values in the first column are vertex IDs.

tags.batch int 256 Yes The maximum number of vertices written into

NebulaGraph in a single batch.

tags.partition int 32 Yes The number of Spark partitions.

Parameter Type Default

value

Required Description

tags.path string - Yes The path of vertex data files in HDFS. Enclose the

path in double quotes and start with hdfs:// .

Parameter Type Default

value

Required Description

tags.path string - Yes The path of vertex data files in HDFS. Enclose the

path in double quotes and start with hdfs:// .

tags.separator string , Yes The separator. The default value is a comma (,).

tags.header bool true Yes Whether the file has a header.

Parameter Type Default

value

Required Description

tags.exec string - Yes The statement to query data sources. For

example, select name,age from mooc.users .

19.3.2 Parameters in the configuration file

- 723/927 - 2022 Vesoft Inc.

SPECIFIC PARAMETERS OF MAXCOMPUTE DATA SOURCES

SPECIFIC PARAMETERS OF NEO4J DATA SOURCES

SPECIFIC PARAMETERS OF MYSQL/POSTGRESQL DATA SOURCES

Parameter Type Default

value

Required Description

tags.table string - Yes The table name of the MaxCompute.

tags.project string - Yes The project name of the MaxCompute.

tags.odpsUrl string - Yes The odpsUrl of the MaxCompute service. For

more information about odpsUrl, see Endpoints.

tags.tunnelUrl string - Yes The tunnelUrl of the MaxCompute service. For

more information about tunnelUrl, see Endpoints.

tags.accessKeyId string - Yes The accessKeyId of the MaxCompute service.

tags.accessKeySecret string - Yes The accessKeySecret of the MaxCompute service.

tags.partitionSpec string - No Partition descriptions of MaxCompute tables.

tags.sentence string - No Statements to query data sources. The table name

in the SQL statement is the same as the value of

the table above.

Parameter Type Default value Required Description

tags.exec string - Yes Statements to query data sources. For

example: match (n:label) return n.neo4j-field-0 .

tags.server string "bolt://

127.0.0.1:7687"

Yes The server address of Neo4j.

tags.user string - Yes The Neo4j username with read permissions.

tags.password string - Yes The account password.

tags.database string - Yes The name of the database where source data

is saved in Neo4j.

tags.check_point_path string /tmp/test No The directory set to import progress

information, which is used for resuming

transfers. If not set, the resuming transfer is

disabled.

Parameter Type Default

value

Required Description

tags.host string - Yes The MySQL/PostgreSQL server address.

tags.port string - Yes The MySQL/PostgreSQL server port.

tags.database string - Yes The database name.

tags.table string - Yes The name of a table used as a data source.

tags.user string - Yes The MySQL/PostgreSQL username with read

permissions.

tags.password string - Yes The account password.

tags.sentence string - Yes Statements to query data sources. For example:

"select teamid, name from team order by teamid" .

19.3.2 Parameters in the configuration file

- 724/927 - 2022 Vesoft Inc.

https://www.alibabacloud.com/help/doc-detail/34951.html
https://www.alibabacloud.com/help/doc-detail/34951.html

SPECIFIC PARAMETERS OF CLICKHOUSE DATA SOURCES

SPECIFIC PARAMETERS OF HBASE DATA SOURCES

SPECIFIC PARAMETERS OF PULSAR DATA SOURCES

SPECIFIC PARAMETERS OF KAFKA DATA SOURCES

Parameter Type Default

value

Required Description

tags.url string - Yes The JDBC URL of ClickHouse.

tags.user string - Yes The ClickHouse username with read

permissions.

tags.password string - Yes The account password.

tags.numPartition string - Yes The number of ClickHouse partitions.

tags.sentence string - Yes Statements to query data sources.

Parameter Type Default

value

Required Description

tags.host string 127.0.0.1 Yes The Hbase server address.

tags.port string 2181 Yes The Hbase server port.

tags.table string - Yes The name of a table used as a data

source.

tags.columnFamily string - Yes The column family to which a table

belongs.

Parameter Type Default

value

Required Description

tags.service string "pulsar://

localhost:

6650"

Yes The Pulsar server address.

tags.admin string "http://

localhost:

8081"

Yes The admin URL used to connect pulsar.

tags.options.<topic\|

topics\| topicsPattern>

string - Yes Options offered by Pulsar, which can be

configured by choosing one from topic ,

topics , and topicsPattern .

tags.interval.seconds int 10 Yes The interval for reading messages. Unit:

seconds.

Parameter Type Default

value

Required Description

tags.service string - Yes The Kafka server address.

tags.topic string - Yes The message type.

tags.interval.seconds int 10 Yes The interval for reading messages. Unit:

seconds.

19.3.2 Parameters in the configuration file

- 725/927 - 2022 Vesoft Inc.

SPECIFIC PARAMETERS FOR GENERATING SST FILES

SPECIFIC PARAMETERS OF NEBULAGRAPH

Specific parameters of NebulaGraph are used for exporting NebulaGraph data, which is supported by Exchange Enterprise Edition

only.

Edge configurations

For different data sources, configurations of edges are also different. There are general parameters and some specific

parameters. General parameters and specific parameters of different data sources need to be configured when users configure

edges.

For the specific parameters of different data sources for edge configurations, please refer to the introduction of specific

parameters of different data sources above, and pay attention to distinguishing tags and edges.

Parameter Type Default

value

Required Description

tags.path string - Yes The path of the source file specified to generate

SST files.

tags.repartitionWithNebula bool false No Whether to repartition data based on the number

of partitions of graph spaces in NebulaGraph

when generating the SST file. Enabling this

function can reduce the time required to

DOWNLOAD and INGEST SST files. If the number

of the partition (partition_num) in the graph space

is greater than 1 , set the parameter to true ,

otherwise, the generated data file may only

contain vertices without tags.

Enterpriseonly

Parameter Data

type

Default

value

Required Description

tags.path string "hdfs://

namenode:

9000/path/

vertex"

Yes Specifies the storage path of the CSV file. You need to

set a new path and Exchange will automatically create

the path you set. If you store the data to the HDFS

server, the path format is the same as the default value,

such as "hdfs://192.168.8.177:9000/vertex/player" . If you store

the data to the local, the path format is "file:///path/

vertex" , such as "file:///home/nebula/vertex/player" . If there

are multiple Tags, different directories must be set for

each Tag.

tags.noField bool false Yes If the value is true , only VIDs will be exported, not the

property data. If the value is false , VIDs and the

property data will be exported.

tags.return.fields list [] Yes Specifies the properties to be exported. For example, to

export the name and age , you need to set the parameter

value to ["name","age"] . This parameter only takes effect

when the value of tags.noField is false .

19.3.2 Parameters in the configuration file

- 726/927 - 2022 Vesoft Inc.

GENERAL PARAMETERS

SPECIFIC PARAMETERS FOR GENERATING SST FILES

Parameter Type Default

value

Required Description

edges.name string - Yes The edge type name defined in NebulaGraph.

edges.type.source string - Yes The data source of edges. For example, csv .

edges.type.sink string client Yes The method specified to import data. Optional

values are client and SST .

edges.fields list[string] - Yes The header or column name of the column

corresponding to properties. If there is a header or

column name, please use that name directly. If a

CSV file does not have a header, use the form of

[_c0, _c1, _c2] to represent the first column, the

second column, the third column, and so on.

edges.nebula.fields list[string] - Yes Edge names defined in NebulaGraph, the order of

which must correspond to edges.fields . For

example, [_c2, _c3] corresponds to [start_year,

end_year] , which means that values in the third

column are the values of the start year, and values

in the fourth column are the values of the end year.

edges.source.field string - Yes The column of source vertices of edges. For

example, _c0 indicates a value in the first column

that is used as the source vertex of an edge.

edges.target.field string - Yes The column of destination vertices of edges. For

example, _c0 indicates a value in the first column

that is used as the destination vertex of an edge.

edges.ranking int - No The column of rank values. If not specified, all rank

values are 0 by default.

edges.batch int 256 Yes The maximum number of edges written into

NebulaGraph in a single batch.

edges.partition int 32 Yes The number of Spark partitions.

Parameter Type Default

value

Required Description

edges.path string - Yes The path of the source file specified to generate

SST files.

edges.repartitionWithNebula bool false No Whether to repartition data based on the

number of partitions of graph spaces in

NebulaGraph when generating the SST file.

Enabling this function can reduce the time

required to DOWNLOAD and INGEST SST files.

19.3.2 Parameters in the configuration file

- 727/927 - 2022 Vesoft Inc.

SPECIFIC PARAMETERS OF NEBULAGRAPH

Parameter Type Default

value

Required Description

edges.path string "hdfs://

namenode:

9000/path/

edge"

Yes Specifies the storage path of the CSV file. You need to

set a new path and Exchange will automatically create

the path you set. If you store the data to the HDFS

server, the path format is the same as the default value,

such as "hdfs://192.168.8.177:9000/edge/follow" . If you store

the data to the local, the path format is "file:///path/

edge" , such as "file:///home/nebula/edge/follow" . If there are

multiple Edges, different directories must be set for

each Edge.

edges.noField bool false Yes If the value is true , source vertex IDs, destination

vertex IDs, and ranks will be exported, not the property

data. If the vaue is false , ranks, source vertex IDs,

destination vertex IDs, ranks, and the property data

will be exported.

edges.return.fields list [] Yes Specifies the properties to be exported. For example, to

export start_year and end_year , you need to set the

parameter value to ["start_year","end_year"] . This

parameter only takes effect when the value of

edges.noField is false .

Last update: March 13, 2023

19.3.2 Parameters in the configuration file

- 728/927 - 2022 Vesoft Inc.

19.4 Use Nebula Exchange

19.4.1 Import data from CSV files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local CSV files.

To import a local CSV file to NebulaGraph, see Nebula Importer.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running normally.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

19.4 Use Nebula Exchange

- 729/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS CSV FILES

Confirm the following information:

Process CSV files to meet Schema requirements.

Exchange supports uploading CSV files with or without headers.

Obtain the CSV file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set CSV data source configuration. In this example,

the copied file is called csv_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

Note

2.

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

19.4.1 Import data from CSV files

- 730/927 - 2022 Vesoft Inc.

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".

 path: "hdfs://192.168.*.*:9000/data/vertex_player.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has headers, use the actual column names.

 fields: [_c1, _c2]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The value of vertex must be the same as the column names in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:_c0

 # policy:hash

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: team

 type: {

 # Specify the data source file format to CSV.

 source: csv

19.4.1 Import data from CSV files

- 731/927 - 2022 Vesoft Inc.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".

 path: "hdfs://192.168.*.*:9000/data/vertex_team.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has headers, use the actual column names.

 fields: [_c1]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 # The value of vertex must be the same as the column names in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:_c0

 # policy:hash

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".

 path: "hdfs://192.168.*.*:9000/data/edge_follow.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has headers, use the actual column names.

 fields: [_c2]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be the same as the column names in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: _c0

 }

 target: {

 field: _c1

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # Specify a column as the source of the rank (optional).

 #ranking: rank

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

19.4.1 Import data from CSV files

- 732/927 - 2022 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import CSV data into NebulaGraph. For descriptions of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: serve

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example: "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example: "file:///tmp/xx.csv".

 path: "hdfs://192.168.*.*:9000/data/edge_serve.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has headers, use the actual column names.

 fields: [_c2,_c3]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be the same as the column names in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: _c0

 }

 target: {

 field: _c1

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # Specify a column as the source of the rank (optional).

 #ranking: _c5

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <csv_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/csv_application.conf

19.4.1 Import data from CSV files

- 733/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.1 Import data from CSV files

- 734/927 - 2022 Vesoft Inc.

19.4.2 Import data from JSON files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local JSON files.

Data set

This topic takes the basketballplayer dataset as an example. Some sample data are as follows:

player

team

follow

serve

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

•

{"id":"player100","age":42,"name":"Tim Duncan"}

{"id":"player101","age":36,"name":"Tony Parker"}

{"id":"player102","age":33,"name":"LaMarcus Aldridge"}

{"id":"player103","age":32,"name":"Rudy Gay"}

...

•

{"id":"team200","name":"Warriors"}

{"id":"team201","name":"Nuggets"}

...

•

{"src":"player100","dst":"player101","degree":95}

{"src":"player101","dst":"player102","degree":90}

...

•

{"src":"player100","dst":"team204","start_year":"1997","end_year":"2016"}

{"src":"player101","dst":"team204","start_year":"1999","end_year":"2018"}

...

•

•

•

•

•

•

19.4.2 Import data from JSON files

- 735/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS JSON FILES

Confirm the following information:

Process JSON files to meet Schema requirements.

Obtain the JSON file storage path.

•

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

19.4.2 Import data from JSON files

- 736/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set JSON data source configuration. In this example,

the copied file is called json_application.conf . For details on each configuration item, see Parameters in the configuration file.

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to JSON.

 source: json

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the JSON file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".

 path: "hdfs://192.168.*.*:9000/data/vertex_player.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The value of vertex must be the same as that in the JSON file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:id

 }

 # The number of data written to NebulaGraph in a single batch.

19.4.2 Import data from JSON files

- 737/927 - 2022 Vesoft Inc.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag Team.

{

 # Specify the Tag name defined in NebulaGraph.

 name: team

 type: {

 # Specify the data source file format to JSON.

 source: json

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the JSON file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".

 path: "hdfs://192.168.*.*:9000/data/vertex_team.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple column names need to be specified, separate them by commas.

 fields: [name]

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The value of vertex must be the same as that in the JSON file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:id

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to JSON.

 source: json

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the JSON file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".

 path: "hdfs://192.168.*.*:9000/data/edge_follow.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be the same as that in the JSON file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: src

 }

 target: {

 field: dst

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

19.4.2 Import data from JSON files

- 738/927 - 2022 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import JSON data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 # Specify the Edge type name defined in NebulaGraph.

 name: serve

 type: {

 # Specify the data source file format to JSON.

 source: json

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the JSON file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.json".

 path: "hdfs://192.168.*.*:9000/data/edge_serve.json"

 # Specify the key name in the JSON file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple column names need to be specified, separate them by commas.

 fields: [start_year,end_year]

 # Specify the column names in the edge table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be the same as that in the JSON file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: src

 }

 target: {

 field: dst

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: _c5

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <json_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-echange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/json_application.conf

GO FROM "player100" OVER follow;

19.4.2 Import data from JSON files

- 739/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

Last update: March 13, 2023

19.4.2 Import data from JSON files

- 740/927 - 2022 Vesoft Inc.

19.4.3 Import data from ORC files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local ORC files.

To import a local ORC file to NebulaGraph, see Nebula Importer.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

19.4.3 Import data from ORC files

- 741/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS ORC FILES

Confirm the following information:

Process ORC files to meet Schema requirements.

Obtain the ORC file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set ORC data source configuration. In this example,

the copied file is called orc_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

19.4.3 Import data from ORC files

- 742/927 - 2022 Vesoft Inc.

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 name: player

 type: {

 # Specify the data source file format to ORC.

 source: orc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the ORC file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".

 path: "hdfs://192.168.*.*:9000/data/vertex_player.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [age,name]

 # Specify the property names defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 # The value of vertex must be consistent with the field in the ORC file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:id

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag team.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: team

 type: {

 # Specify the data source file format to ORC.

 source: orc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the ORC file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".

 path: "hdfs://192.168.*.*:9000/data/vertex_team.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [name]

 # Specify the property names defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

19.4.3 Import data from ORC files

- 743/927 - 2022 Vesoft Inc.

 # The value of vertex must be consistent with the field in the ORC file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:id

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to ORC.

 source: orc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the ORC file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".

 path: "hdfs://192.168.*.*:9000/data/edge_follow.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [degree]

 # Specify the property names defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be consistent with the field in the ORC file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: src

 }

 target: {

 field: dst

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Edge type serve.

 {

 # Specify the Edge type name defined in NebulaGraph.

 name: serve

 type: {

 # Specify the data source file format to ORC.

 source: orc

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the ORC file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.orc".

 path: "hdfs://192.168.*.*:9000/data/edge_serve.orc"

 # Specify the key name in the ORC file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [start_year,end_year]

 # Specify the property names defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.

 # The value of vertex must be consistent with the field in the ORC file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

19.4.3 Import data from ORC files

- 744/927 - 2022 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import ORC data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 field: src

 }

 target: {

 field: dst

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: _c5

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <orc_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/orc_application.conf

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.3 Import data from ORC files

- 745/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

19.4.4 Import data from Parquet files

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HDFS or local Parquet files.

To import a local Parquet file to NebulaGraph, see Nebula Importer.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

If files are stored in HDFS, ensure that the Hadoop service is running properly.

If files are stored locally and NebulaGraph is a cluster architecture, you need to place the files in the same directory locally on

each machine in the cluster.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

19.4.4 Import data from Parquet files

- 746/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-importer
https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS PARQUET FILES

Confirm the following information:

Process Parquet files to meet Schema requirements.

Obtain the Parquet file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Parquet data source configuration. In this

example, the copied file is called parquet_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

2.

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

19.4.4 Import data from Parquet files

- 747/927 - 2022 Vesoft Inc.

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Parquet.

 source: parquet

 # Specifies how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the Parquet file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".

 path: "hdfs://192.168.*.13:9000/data/vertex_player.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [age,name]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 # The value of vertex must be consistent with the field in the Parquet file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:id

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag team.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: team

 type: {

 # Specify the data source file format to Parquet.

 source: parquet

 # Specifies how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the Parquet file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".

 path: "hdfs://192.168.11.13:9000/data/vertex_team.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [name]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

19.4.4 Import data from Parquet files

- 748/927 - 2022 Vesoft Inc.

 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 # The value of vertex must be consistent with the field in the Parquet file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:id

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # If more vertexes need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # Specify the Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Parquet.

 source: parquet

 # Specifies how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the Parquet file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".

 path: "hdfs://192.168.11.13:9000/data/edge_follow.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [degree]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertexes.

 # The values of vertex must be consistent with the fields in the Parquet file.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: src

 }

 target: {

 field: dst

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Edge type serve.

 {

 # Specify the Edge type name defined in NebulaGraph.

 name: serve

 type: {

 # Specify the data source file format to Parquet.

 source: parquet

 # Specifies how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Specify the path to the Parquet file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx".

 # If the file is stored locally, use double quotation marks to enclose the file path, starting with file://. For example, "file:///tmp/xx.parquet".

 path: "hdfs://192.168.11.13:9000/data/edge_serve.parquet"

 # Specify the key name in the Parquet file in fields, and its corresponding value will serve as the data source for the properties specified in the NebulaGraph.

 # If multiple values need to be specified, separate them with commas.

 fields: [start_year,end_year]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertexes.

 # The values of vertex must be consistent with the fields in the Parquet file.

19.4.4 Import data from Parquet files

- 749/927 - 2022 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import Parquet data into NebulaGraph. For a description of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: src

 }

 target: {

 field: dst

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: _c5

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <parquet_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/parquet_application.conf

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.4 Import data from Parquet files

- 750/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

19.4.5 Import data from HBase

This topic provides an example of how to use Exchange to import NebulaGraph data stored in HBase.

Data set

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in HBase. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

HBase: 2.2.7

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

hbase(main):002:0> scan "player"

ROW COLUMN+CELL

 player100 column=cf:age, timestamp=1618881347530, value=42

 player100 column=cf:name, timestamp=1618881354604, value=Tim Duncan

 player101 column=cf:age, timestamp=1618881369124, value=36

 player101 column=cf:name, timestamp=1618881379102, value=Tony Parker

 player102 column=cf:age, timestamp=1618881386987, value=33

 player102 column=cf:name, timestamp=1618881393370, value=LaMarcus Aldridge

 player103 column=cf:age, timestamp=1618881402002, value=32

 player103 column=cf:name, timestamp=1618881407882, value=Rudy Gay

 ...

hbase(main):003:0> scan "team"

ROW COLUMN+CELL

 team200 column=cf:name, timestamp=1618881445563, value=Warriors

 team201 column=cf:name, timestamp=1618881453636, value=Nuggets

 ...

hbase(main):004:0> scan "follow"

ROW COLUMN+CELL

 player100 column=cf:degree, timestamp=1618881804853, value=95

 player100 column=cf:dst_player, timestamp=1618881791522, value=player101

 player101 column=cf:degree, timestamp=1618881824685, value=90

 player101 column=cf:dst_player, timestamp=1618881816042, value=player102

 ...

hbase(main):005:0> scan "serve"

ROW COLUMN+CELL

 player100 column=cf:end_year, timestamp=1618881899333, value=2016

 player100 column=cf:start_year, timestamp=1618881890117, value=1997

 player100 column=cf:teamid, timestamp=1618881875739, value=team204

 ...

•

•

•

•

•

•

•

19.4.5 Import data from HBase

- 751/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set HBase data source configuration. In this

example, the copied file is called hbase_application.conf . For details on each configuration item, see Parameters in the configuration

file.

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

19.4.5 Import data from HBase

- 752/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set information about Tag player.

 # If you want to set RowKey as the data source, enter rowkey and the actual column name of the column family.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to HBase.

 source: hbase

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"player"

 columnFamily:"cf"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # For example, if rowkey is the source of the VID, enter rowkey.

 vertex:{

 field:rowkey

 }

 # Number of pieces of data written to NebulaGraph in a single batch.

 batch: 256

 # Number of Spark partitions

 partition: 32

 }

 # Set Tag Team information.

 {

 name: team

 type: {

 source: hbase

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"team"

 columnFamily:"cf"

 fields: [name]

 nebula.fields: [name]

 vertex:{

 field:rowkey

 }

 batch: 256

 partition: 32

19.4.5 Import data from HBase

- 753/927 - 2022 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import HBase data into NebulaGraph. For descriptions of the parameters, see Options for import.

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to HBase.

 source: hbase

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"follow"

 columnFamily:"cf"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source:{

 field:rowkey

 }

 target:{

 field:dst_player

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: hbase

 sink: client

 }

 host:192.168.*.*

 port:2181

 table:"serve"

 columnFamily:"cf"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source:{

 field:rowkey

 }

 target:{

 field:teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <hbase_application.conf_path>

19.4.5 Import data from HBase

- 754/927 - 2022 Vesoft Inc.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/hbase_application.conf

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.5 Import data from HBase

- 755/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

19.4.6 Import data from MySQL/PostgreSQL

This topic provides an example of how to use Exchange to export MySQL data and import to NebulaGraph. It also applies to

exporting data from PostgreSQL into NebulaGraph.

Data set

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in MySQL. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

MySQL: 8.0.23

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

mysql> desc player;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| playerid | varchar(30) | YES | | NULL | |

| age | int | YES | | NULL | |

| name | varchar(30) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

mysql> desc team;

+--------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+-------------+------+-----+---------+-------+

| teamid | varchar(30) | YES | | NULL | |

| name | varchar(30) | YES | | NULL | |

+--------+-------------+------+-----+---------+-------+

mysql> desc follow;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| src_player | varchar(30) | YES | | NULL | |

| dst_player | varchar(30) | YES | | NULL | |

| degree | int | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

mysql> desc serve;

+------------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+------------+-------------+------+-----+---------+-------+

| playerid | varchar(30) | YES | | NULL | |

| teamid | varchar(30) | YES | | NULL | |

| start_year | int | YES | | NULL | |

| end_year | int | YES | | NULL | |

+------------+-------------+------+-----+---------+-------+

•

•

•

•

•

•

•

19.4.6 Import data from MySQL/PostgreSQL

- 756/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set MySQL data source configuration. In this case,

the copied file is called mysql_application.conf . For details on each configuration item, see Parameters in the configuration file.

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

19.4.6 Import data from MySQL/PostgreSQL

- 757/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to MySQL.

 source: mysql

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:3306

 database:"basketball"

 table:"player"

 user:"test"

 password:"123456"

 sentence:"select playerid, age, name from player order by playerid;"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 vertex: {

 field:playerid

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: mysql

 sink: client

 }

 host:192.168.*.*

 port:3306

 database:"basketball"

 table:"team"

 user:"test"

 password:"123456"

 sentence:"select teamid, name from team order by teamid;"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field: teamid

19.4.6 Import data from MySQL/PostgreSQL

- 758/927 - 2022 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import MySQL data into NebulaGraph. For a description of the parameters, see Options for

import.

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to MySQL.

 source: mysql

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 host:192.168.*.*

 port:3306

 database:"basketball"

 table:"follow"

 user:"test"

 password:"123456"

 sentence:"select src_player,dst_player,degree from follow order by src_player;"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source: {

 field: src_player

 }

 target: {

 field: dst_player

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: mysql

 sink: client

 }

 host:192.168.*.*

 port:3306

 database:"basketball"

 table:"serve"

 user:"test"

 password:"123456"

 sentence:"select playerid,teamid,start_year,end_year from serve order by playerid;"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: playerid

 }

 target: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

}

19.4.6 Import data from MySQL/PostgreSQL

- 759/927 - 2022 Vesoft Inc.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <mysql_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/mysql_application.conf

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.6 Import data from MySQL/PostgreSQL

- 760/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

19.4.7 Import data from ClickHouse

This topic provides an example of how to use Exchange to import data stored on ClickHouse into NebulaGraph.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

ClickHouse: docker deployment yandex/clickhouse-server tag: latest(2021.07.01)

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

19.4.7 Import data from ClickHouse

- 761/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set ClickHouse data source configuration. In this

example, the copied file is called clickhouse_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

19.4.7 Import data from ClickHouse

- 762/927 - 2022 Vesoft Inc.

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 name: player

 type: {

 # Specify the data source file format to ClickHouse.

 source: clickhouse

 # Specify how to import the data of vertexes into NebulaGraph: Client or SST.

 sink: client

 }

 # JDBC URL of ClickHouse

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 # The number of ClickHouse partitions

 numPartition:"5"

 sentence:"select * from player"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [name,age]

 nebula.fields: [name,age]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 vertex: {

 field:playerid

 # policy:hash

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: clickhouse

 sink: client

 }

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 numPartition:"5"

 sentence:"select * from team"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field:teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to ClickHouse.

 source: clickhouse

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # JDBC URL of ClickHouse

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

19.4.7 Import data from ClickHouse

- 763/927 - 2022 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import ClickHouse data into NebulaGraph. For descriptions of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

 user:"user"

 password:"123456"

 # The number of ClickHouse partitions.

 numPartition:"5"

 sentence:"select * from follow"

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertexes.

 source: {

 field:src_player

 }

 # In target, use a column in the follow table as the source of the edge's destination vertexes.

 target: {

 field:dst_player

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: clickhouse

 sink: client

 }

 url:"jdbc:clickhouse://192.168.*.*:8123/basketballplayer"

 user:"user"

 password:"123456"

 numPartition:"5"

 sentence:"select * from serve"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field:playerid

 }

 target: {

 field:teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <clickhouse_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/clickhouse_application.conf

19.4.7 Import data from ClickHouse

- 764/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.7 Import data from ClickHouse

- 765/927 - 2022 Vesoft Inc.

19.4.8 Import data from Neo4j

This topic provides an example of how to use Exchange to import NebulaGraph data stored in Neo4j.

Implementation method

Exchange uses Neo4j Driver 4.0.1 to read Neo4j data. Before batch export, you need to write Cypher statements that are

automatically executed based on labels and relationship types and the number of Spark partitions in the configuration file to

improve data export performance.

When Exchange reads Neo4j data, it needs to do the following:

The Reader in Exchange replaces the statement following the Cypher RETURN statement in the exec part of the configuration file with

COUNT(*) , and executes this statement to get the total amount of data, then calculates the starting offset and size of each partition

based on the number of Spark partitions.

(Optional) If the user has configured the check_point_path directory, Reader reads the files in the directory. In the transferring state,

Reader calculates the offset and size that each Spark partition should have.

In each Spark partition, the Reader in Exchange adds different SKIP and LIMIT statements to the Cypher statement and calls the

Neo4j Driver for parallel execution to distribute data to different Spark partitions.

The Reader finally processes the returned data into a DataFrame.

At this point, Exchange has finished exporting the Neo4j data. The data is then written in parallel to the NebulaGraph database.

The whole process is illustrated below.

Data set

This topic takes the basketballplayer dataset as an example.

1.

2.

3.

4.

19.4.8 Import data from Neo4j

- 766/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU：Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz

CPU cores: 14

Memory: 251 GB

Spark: Stand-alone, 2.4.6 pre-build for Hadoop 2.7

Neo4j: 3.5.20 Community Edition

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with NebulaGraph write permission.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

•

•

•

•

•

•

•

•

•

•

•

•

•

19.4.8 Import data from Neo4j

- 767/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: CONFIGURING SOURCE DATA

To speed up the export of Neo4j data, create indexes for the corresponding properties in the Neo4j database. For more

information, refer to the Neo4j manual.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Neo4j data source configuration. In this example,

the copied file is called neo4j_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

 memory:1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

19.4.8 Import data from Neo4j

- 768/927 - 2022 Vesoft Inc.

https://neo4j.com/docs/cypher-manual/current/query-tuning/indexes/

 user: root

 pswd: nebula

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player

 {

 name: player

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 database:neo4j

 exec: "match (n:player) return n.id as id, n.age as age, n.name as name"

 fields: [age,name]

 nebula.fields: [age,name]

 vertex: {

 field:id

 }

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

 # Set the information about the Tag Team

 {

 name: team

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 database:neo4j

 exec: "match (n:team) return n.id as id,n.name as name"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field:id

 }

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow

 {

 name: follow

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 database:neo4j

 exec: "match (a:player)-[r:follow]->(b:player) return a.id as src, b.id as dst, r.degree as degree order by id(r)"

 fields: [degree]

 nebula.fields: [degree]

 source: {

 field: src

 }

 target: {

 field: dst

 }

19.4.8 Import data from Neo4j

- 769/927 - 2022 Vesoft Inc.

Exec configuration

When configuring either the tags.exec or edges.exec parameters, you need to fill in the Cypher query. To prevent loss of data during

import, it is strongly recommended to include ORDER BY clause in Cypher queries. Meanwhile, in order to improve data import

efficiency, it is better to select indexed properties for ordering. If there is no index, users can also observe the default order and

select the appropriate properties for ordering to improve efficiency. If the pattern of the default order cannot be found, users can

order them by the ID of the vertex or relationship and set the partition to a small value to reduce the ordering pressure of Neo4j.

Using the ORDER BY clause lengthens the data import time.

Exchange needs to execute different SKIP and LIMIT Cypher statements on different Spark partitions, so SKIP and LIMIT clauses

cannot be included in the Cypher statements corresponding to tags.exec and edges.exec .

tags.vertex or edges.vertex configuration

NebulaGraph uses ID as the unique primary key when creating vertexes and edges, overwriting the data in that primary key if it

already exists. So, if a Neo4j property value is given as the NebulaGraph'S ID and the value is duplicated in Neo4j, duplicate IDs

will be generated. One and only one of their corresponding data will be stored in the NebulaGraph, and the others will be

overwritten. Because the data import process is concurrently writing data to NebulaGraph, the final saved data is not guaranteed

to be the latest data in Neo4j.

check_point_path configuration

If breakpoint transfers are enabled, to avoid data loss, the state of the database should not change between the breakpoint and

the transfer. For example, data cannot be added or deleted, and the partition quantity configuration should not be changed.

STEP 4: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import Neo4j data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

 #ranking: rank

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

 # Set the information about the Edge Type serve

 {

 name: serve

 type: {

 source: neo4j

 sink: client

 }

 server: "bolt://192.168.*.*:7687"

 user: neo4j

 password:neo4j

 database:neo4j

 exec: "match (a:player)-[r:serve]->(b:team) return a.id as src, b.id as dst, r.start_year as start_year, r.end_year as end_year order by id(r)"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: src

 }

 target: {

 field: dst

 }

 #ranking: rank

 partition: 10

 batch: 1000

 check_point_path: /tmp/test

 }

]

}

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <neo4j_application.conf_path>

Note

19.4.8 Import data from Neo4j

- 770/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/neo4j_application.conf

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.8 Import data from Neo4j

- 771/927 - 2022 Vesoft Inc.

19.4.9 Import data from Hive

This topic provides an example of how to use Exchange to import NebulaGraph data stored in Hive.

Data set

This topic takes the basketballplayer dataset as an example.

In this example, the data set has been stored in Hive. All vertexes and edges are stored in the player , team , follow , and serve

tables. The following are some of the data for each table.

The Hive data type bigint corresponds to the NebulaGraph int .

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

Hive: 2.3.7, Hive Metastore database is MySQL 8.0.22

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

scala> spark.sql("describe basketball.player").show

+--------+---------+-------+

|col_name|data_type|comment|

+--------+---------+-------+

|playerid| string| null|

| age| bigint| null|

| name| string| null|

+--------+---------+-------+

scala> spark.sql("describe basketball.team").show

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

| teamid| string| null|

| name| string| null|

+----------+---------+-------+

scala> spark.sql("describe basketball.follow").show

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

|src_player| string| null|

|dst_player| string| null|

| degree| bigint| null|

+----------+---------+-------+

scala> spark.sql("describe basketball.serve").show

+----------+---------+-------+

| col_name|data_type|comment|

+----------+---------+-------+

| playerid| string| null|

| teamid| string| null|

|start_year| bigint| null|

| end_year| bigint| null|

+----------+---------+-------+

Note

•

•

•

•

•

•

•

19.4.9 Import data from Hive

- 772/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

Hadoop has been installed and started, and the Hive Metastore database (MySQL in this example) has been started.

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: USE SPARK SQL TO CONFIRM HIVE SQL STATEMENTS

After the Spark-shell environment is started, run the following statements to ensure that Spark can read data in Hive.

The following is the result read from the table basketball.player .

•

•

•

•

•

•

•

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

scala> sql("select playerid, age, name from basketball.player").show

scala> sql("select teamid, name from basketball.team").show

scala> sql("select src_player, dst_player, degree from basketball.follow").show

scala> sql("select playerid, teamid, start_year, end_year from basketball.serve").show

+---------+----+-----------------+

| playerid| age| name|

19.4.9 Import data from Hive

- 773/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

STEP 3: MODIFY CONFIGURATION FILE

After Exchange is compiled, copy the conf file target/classes/application.conf to set Hive data source configuration. In this example,

the copied file is called hive_application.conf . For details on each configuration item, see Parameters in the configuration file.

+---------+----+-----------------+

|player100| 42| Tim Duncan|

|player101| 36| Tony Parker|

|player102| 33|LaMarcus Aldridge|

|player103| 32| Rudy Gay|

|player104| 32| Marco Belinelli|

+---------+----+-----------------+

...

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # If Spark and Hive are deployed in different clusters, you need to configure the parameters for connecting to Hive. Otherwise, skip these configurations.

 #hive: {

 # waredir: "hdfs://NAMENODE_IP:9000/apps/svr/hive-xxx/warehouse/"

 # connectionURL: "jdbc:mysql://your_ip:3306/hive_spark?characterEncoding=UTF-8"

 # connectionDriverName: "com.mysql.jdbc.Driver"

 # connectionUserName: "user"

 # connectionPassword: "password"

 #}

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Hive.

 source: hive

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Set the SQL statement to read the data of player table in basketball database.

 exec: "select playerid, age, name from basketball.player"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

19.4.9 Import data from Hive

- 774/927 - 2022 Vesoft Inc.

 vertex:{

 field:playerid

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: hive

 sink: client

 }

 exec: "select teamid, name from basketball.team"

 fields: [name]

 nebula.fields: [name]

 vertex: {

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Hive.

 source: hive

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Set the SQL statement to read the data of follow table in the basketball database.

 exec: "select src_player, dst_player, degree from basketball.follow"

 # Specify the column names in the follow table in Fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's starting vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source: {

 field: src_player

 }

 target: {

 field: dst_player

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: hive

 sink: client

 }

 exec: "select playerid, teamid, start_year, end_year from basketball.serve"

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source: {

 field: playerid

 }

 target: {

 field: teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

19.4.9 Import data from Hive

- 775/927 - 2022 Vesoft Inc.

STEP 4: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import Hive data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 5: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 6: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

 batch: 256

 partition: 32

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <hive_application.conf_path> -h

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/hive_application.conf -h

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.9 Import data from Hive

- 776/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

19.4.10 Import data from MaxCompute

This topic provides an example of how to use Exchange to import NebulaGraph data stored in MaxCompute.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

MaxCompute: Alibaba Cloud official version

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Hadoop service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

19.4.10 Import data from MaxCompute

- 777/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip
https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set MaxCompute data source configuration. In this

example, the copied file is called maxcompute_application.conf . For details on each configuration item, see Parameters in the

configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

19.4.10 Import data from MaxCompute

- 778/927 - 2022 Vesoft Inc.

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 name: player

 type: {

 # Specify the data source file format to MaxCompute.

 source: maxcompute

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Table name of MaxCompute.

 table:player

 # Project name of MaxCompute.

 project:project

 # OdpsUrl and tunnelUrl for the MaxCompute service.

 # The address is https://help.aliyun.com/document_detail/34951.html.

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 # AccessKeyId and accessKeySecret of the MaxCompute service.

 accessKeyId:xxx

 accessKeySecret:xxx

 # Partition description of the MaxCompute table. This configuration is optional.

 partitionSpec:"dt='partition1'"

 # Ensure that the table name in the SQL statement is the same as the value of the table above. This configuration is optional.

 sentence:"select id, name, age, playerid from player where id < 10"

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields:[name, age]

 nebula.fields:[name, age]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 vertex:{

 field: playerid

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: maxcompute

 sink: client

 }

 table:team

 project:project

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 accessKeyId:xxx

 accessKeySecret:xxx

 partitionSpec:"dt='partition1'"

 sentence:"select id, name, teamid from team where id < 10"

 fields:[name]

 nebula.fields:[name]

 vertex:{

 field: teamid

 }

 batch: 256

 partition: 32

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

19.4.10 Import data from MaxCompute

- 779/927 - 2022 Vesoft Inc.

 type:{

 # Specify the data source file format to MaxCompute.

 source:maxcompute

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink:client

 }

 # Table name of MaxCompute.

 table:follow

 # Project name of MaxCompute.

 project:project

 # OdpsUrl and tunnelUrl for MaxCompute service.

 # The address is https://help.aliyun.com/document_detail/34951.html.

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 # AccessKeyId and accessKeySecret of the MaxCompute service.

 accessKeyId:xxx

 accessKeySecret:xxx

 # Partition description of the MaxCompute table. This configuration is optional.

 partitionSpec:"dt='partition1'"

 # Ensure that the table name in the SQL statement is the same as the value of the table above. This configuration is optional.

 sentence:"select * from follow"

 # Specify the column names in the follow table in Fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields:[degree]

 nebula.fields:[degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 source:{

 field: src_player

 }

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 target:{

 field: dst_player

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of Spark partitions.

 partition:10

 # The number of data written to NebulaGraph in a single batch.

 batch:10

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type:{

 source:maxcompute

 sink:client

 }

 table:serve

 project:project

 odpsUrl:"http://service.cn-hangzhou.maxcompute.aliyun.com/api"

 tunnelUrl:"http://dt.cn-hangzhou.maxcompute.aliyun.com"

 accessKeyId:xxx

 accessKeySecret:xxx

 partitionSpec:"dt='partition1'"

 sentence:"select * from serve"

 fields:[start_year,end_year]

 nebula.fields:[start_year,end_year]

 source:{

 field: playerid

 }

 target:{

 field: teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 partition:10

 batch:10

 }

]

}

19.4.10 Import data from MaxCompute

- 780/927 - 2022 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import MaxCompute data into NebulaGraph. For a description of the parameters, see Options for

import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <maxcompute_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/maxcompute_application.conf

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.10 Import data from MaxCompute

- 781/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

19.4.11 Import data from Pulsar

This topic provides an example of how to use Exchange to import NebulaGraph data stored in Pulsar.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Pulsar service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

19.4.11 Import data from Pulsar

- 782/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set Pulsar data source configuration. In this example,

the copied file is called pulsar_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

19.4.11 Import data from Pulsar

- 783/927 - 2022 Vesoft Inc.

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertices

 tags: [

 # Set the information about the Tag player.

 {

 # The corresponding Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Pulsar.

 source: pulsar

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # The address of the Pulsar server.

 service: "pulsar://127.0.0.1:6650"

 # admin.url of pulsar.

 admin: "http://127.0.0.1:8081"

 # The Pulsar option can be configured from topic, topics or topicsPattern.

 options: {

 topics: "topic1,topic2"

 }

 # Specify the column names in the player table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [age,name]

 nebula.fields: [age,name]

 # Specify a column of data in the table as the source of VIDs in the NebulaGraph.

 vertex:{

 field:playerid

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of Spark partitions.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: pulsar

 sink: client

 }

 service: "pulsar://127.0.0.1:6650"

 admin: "http://127.0.0.1:8081"

 options: {

 topics: "topic1,topic2"

 }

 fields: [name]

 nebula.fields: [name]

 vertex:{

 field:teamid

 }

 batch: 10

 partition: 10

 interval.seconds: 10

 }

]

 # Processing edges

 edges: [

 # Set the information about Edge Type follow

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Pulsar.

 source: pulsar

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

19.4.11 Import data from Pulsar

- 784/927 - 2022 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import Pulsar data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

 # The address of the Pulsar server.

 service: "pulsar://127.0.0.1:6650"

 # admin.url of pulsar.

 admin: "http://127.0.0.1:8081"

 # The Pulsar option can be configured from topic, topics or topicsPattern.

 options: {

 topics: "topic1,topic2"

 }

 # Specify the column names in the follow table in fields, and their corresponding values are specified as properties in the NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 # If multiple column names need to be specified, separate them by commas.

 fields: [degree]

 nebula.fields: [degree]

 # In source, use a column in the follow table as the source of the edge's source vertex.

 # In target, use a column in the follow table as the source of the edge's destination vertex.

 source:{

 field:src_player

 }

 target:{

 field:dst_player

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of Spark partitions.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 }

 # Set the information about the Edge Type serve

 {

 name: serve

 type: {

 source: Pulsar

 sink: client

 }

 service: "pulsar://127.0.0.1:6650"

 admin: "http://127.0.0.1:8081"

 options: {

 topics: "topic1,topic2"

 }

 fields: [start_year,end_year]

 nebula.fields: [start_year,end_year]

 source:{

 field:playerid

 }

 target:{

 field:teamid

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 10

 partition: 10

 interval.seconds: 10

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <pulsar_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/pulsar_application.conf

19.4.11 Import data from Pulsar

- 785/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.11 Import data from Pulsar

- 786/927 - 2022 Vesoft Inc.

19.4.12 Import data from Kafka

This topic provides a simple guide to importing Data stored on Kafka into NebulaGraph using Exchange.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

NebulaGraph: 3.1.0. Deploy NebulaGraph with Docker Compose.

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

Learn about the Schema created in NebulaGraph, including names and properties of Tags and Edge types, and more.

The Kafka service has been installed and started.

•

•

•

•

•

•

•

•

•

•

•

•

19.4.12 Import data from Kafka

- 787/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: MODIFY CONFIGURATION FILES

If some data is stored in Kafka's value field, you need to modify the source code, get the value from Kafka, parse the value through

the from_JSON function, and return it as a Dataframe.

After Exchange is compiled, copy the conf file target/classes/application.conf to set Kafka data source configuration. In this example,

the copied file is called kafka_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space.

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer.

nebula> USE basketballplayer;

Create the Tag player.

nebula> CREATE TAG player(name string, age int);

Create the Tag team.

nebula> CREATE TAG team(name string);

Create the Edge type follow.

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve.

nebula> CREATE EDGE serve(start_year int, end_year int);

Note

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 cores: {

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 # Specify the IP addresses and ports for Graph and all Meta services.

 # If there are multiple addresses, the format is "ip1:port","ip2:port","ip3:port".

 # Addresses are separated by commas.

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

19.4.12 Import data from Kafka

- 788/927 - 2022 Vesoft Inc.

 # The account entered must have write permission for the NebulaGraph space.

 user: root

 pswd: nebula

 # Fill in the name of the graph space you want to write data to in the NebulaGraph.

 space: basketballplayer

 connection: {

 timeout: 3000

 retry: 3

 }

 execution: {

 retry: 3

 }

 error: {

 max: 32

 output: /tmp/errors

 }

 rate: {

 limit: 1024

 timeout: 1000

 }

 }

 # Processing vertexes

 tags: [

 # Set the information about the Tag player.

 {

 # The corresponding Tag name in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to Kafka.

 source: kafka

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: client

 }

 # Kafka server address.

 service: "127.0.0.1:9092"

 # Message category.

 topic: "topic_name1"

 # Kafka data has a fixed domain name: key, value, topic, partition, offset, timestamp, timestampType.

 # If multiple fields need to be specified after Spark reads as DataFrame, separate them with commas.

 # Specify the field name in fields. For example, use key for name in Nebula and value for age in Nebula, as shown in the following.

 fields: [key,value]

 nebula.fields: [name,age]

 # Specify a column of data in the table as the source of vertex VID in the NebulaGraph.

 # The key is the same as the value above, indicating that key is used as both VID and property name.

 vertex:{

 field:key

 }

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of Spark partitions.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 }

 # Set the information about the Tag Team.

 {

 name: team

 type: {

 source: kafka

 sink: client

 }

 service: "127.0.0.1:9092"

 topic: "topic_name2"

 fields: [key]

 nebula.fields: [name]

 vertex:{

 field:key

 }

 batch: 10

 partition: 10

 interval.seconds: 10

 }

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The corresponding Edge Type name in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to Kafka.

 source: kafka

 # Specify how to import the Edge type data into NebulaGraph.

 # Specify how to import the data into NebulaGraph: Client or SST.

19.4.12 Import data from Kafka

- 789/927 - 2022 Vesoft Inc.

STEP 3: IMPORT DATA INTO NEBULAGRAPH

Run the following command to import Kafka data into NebulaGraph. For a description of the parameters, see Options for import.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

 sink: client

 }

 # Kafka server address.

 service: "127.0.0.1:9092"

 # Message category.

 topic: "topic_name3"

 # Kafka data has a fixed domain name: key, value, topic, partition, offset, timestamp, timestampType.

 # If multiple fields need to be specified after Spark reads as DataFrame, separate them with commas.

 # Specify the field name in fields. For example, use key for degree in Nebula, as shown in the following.

 fields: [key]

 nebula.fields: [degree]

 # In source, use a column in the topic as the source of the edge's source vertex.

 # In target, use a column in the topic as the source of the edge's destination vertex.

 source:{

 field:timestamp

 }

 target:{

 field:offset

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # The number of data written to NebulaGraph in a single batch.

 batch: 10

 # The number of Spark partitions.

 partition: 10

 # The interval for message reading. Unit: second.

 interval.seconds: 10

 }

 # Set the information about the Edge Type serve.

 {

 name: serve

 type: {

 source: kafka

 sink: client

 }

 service: "127.0.0.1:9092"

 topic: "topic_name4"

 fields: [timestamp,offset]

 nebula.fields: [start_year,end_year]

 source:{

 field:key

 }

 target:{

 field:value

 }

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 batch: 10

 partition: 10

 interval.seconds: 10

 }

]

}

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c <kafka_application.conf_path>

Note

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-exchange-3.0.0.jar -c /root/nebula-

exchange/nebula-exchange/target/classes/kafka_application.conf

19.4.12 Import data from Kafka

- 790/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

You can search for batchSuccess.<tag_name/edge_name> in the command output to check the number of successes. For example,

batchSuccess.follow: 300 .

STEP 4: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 5: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.12 Import data from Kafka

- 791/927 - 2022 Vesoft Inc.

19.4.13 Import data from SST files

This topic provides an example of how to generate the data from the data source into an SST (Sorted String Table) file and save it

on HDFS, and then import it into NebulaGraph. The sample data source is a CSV file.

Precautions

The SST file can be imported only in Linux.

The default value of the property is not supported.

Background information

Exchange supports two data import modes:

Import the data from the data source directly into NebulaGraph as nGQL statements.

Generate the SST file from the data source, and use Console to import the SST file into NebulaGraph.

The following describes the scenarios, implementation methods, prerequisites, and steps for generating an SST file and

importing data.

Scenarios

Suitable for online services, because the generation almost does not affect services (just reads the Schema), and the import

speed is fast.

Although the import speed is fast, write operations in the corresponding space are blocked during the import period (about 10

seconds). Therefore, you are advised to import data in off-peak hours.

Suitable for scenarios with a large amount of data from data sources for its fast import speed.

Implementation methods

The underlying code in NebulaGraph uses RocksDB as the key-value storage engine. RocksDB is a storage engine based on the

hard disk, providing a series of APIs for creating and importing SST files to help quickly import massive data.

•

•

•

•

•

Caution

•

19.4.13 Import data from SST files

- 792/927 - 2022 Vesoft Inc.

The SST file is an internal file containing an arbitrarily long set of ordered key-value pairs for efficient storage of large amounts

of key-value data. The entire process of generating SST files is mainly done by Exchange Reader, sstProcessor, and sstWriter. The

whole data processing steps are as follows:

Reader reads data from the data source.

sstProcessor generates the SST file from the NebulaGraph's Schema information and uploads it to the HDFS. For details about the

format of the SST file, see Data Storage Format.

sstWriter opens a file and inserts data. When generating SST files, keys must be written in sequence.

After the SST file is generated, RocksDB imports the SST file into NebulaGraph using the IngestExternalFile() method. For example:

When the IngestExternalFile() method is called, RocksDB copies the file to the data directory by default and blocks the RocksDB

write operation. If the key range in the SST file overwrites the Memtable key range, flush the Memtable to the hard disk. After

placing the SST file in an optimal location in the LSM tree, assign a global serial number to the file and turn on the write operation.

Data set

This topic takes the basketballplayer dataset as an example.

Environment

This example is done on MacOS. Here is the environment configuration information:

Hardware specifications:

CPU: 1.7 GHz Quad-Core Intel Core i7

Memory: 16 GB

Spark: 2.4.7, stand-alone

Hadoop: 2.9.2, pseudo-distributed deployment

NebulaGraph: 3.1.0.

1.

2.

3.

4.

IngestExternalFileOptions ifo;

Import two SST files

Status s = db_->IngestExternalFile({"/home/usr/file1.sst", "/home/usr/file2.sst"}, ifo);

if (!s.ok()) {

 printf("Error while adding file %s and %s, Error %s\n",

 file_path1.c_str(), file_path2.c_str(), s.ToString().c_str());

 return 1;

}

•

•

•

•

•

•

19.4.13 Import data from SST files

- 793/927 - 2022 Vesoft Inc.

https://docs-cdn.nebula-graph.com.cn/dataset/dataset.zip

Prerequisites

Before importing data, you need to confirm the following information:

NebulaGraph has been installed and deployed with the following information:

IP addresses and ports of Graph and Meta services.

The user name and password with write permission to NebulaGraph.

--ws_storage_http_port in the Meta service configuration file is the same as --ws_http_port in the Storage service configuration file.

For example, 19779 .

--ws_meta_http_port in the Graph service configuration file is the same as --ws_http_port in the Meta service configuration file. For

example, 19559 .

The information about the Schema, including names and properties of Tags and Edge types, and more.

Exchange has been compiled, or download the compiled .jar file directly.

Spark has been installed.

JDK 1.8 or the later version has been installed and the environment variable JAVA_HOME has been configured.

The Hadoop service has been installed and started.

To generate SST files of other data sources, see documents of the corresponding data source and check the prerequisites.

To generate SST files only, users do not need to install the Hadoop service on the machine where the Storage service is deployed.

To delete the SST file after the ingest (data import) operation, add the configuration -- move_Files =true to the Storage Service

configuration file.

•

•

•

•

•

•

•

•

•

•

Note

•

•

•

19.4.13 Import data from SST files

- 794/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

Steps

STEP 1: CREATE THE SCHEMA IN NEBULAGRAPH

Analyze the data to create a Schema in NebulaGraph by following these steps:

Identify the Schema elements. The Schema elements in the NebulaGraph are shown in the following table.

Create a graph space basketballplayer in the NebulaGraph and create a Schema as shown below.

For more information, see Quick start workflow.

STEP 2: PROCESS CSV FILES

Confirm the following information:

Process CSV files to meet Schema requirements.

Exchange supports uploading CSV files with or without headers.

Obtain the CSV file storage path.

STEP 3: MODIFY CONFIGURATION FILES

After Exchange is compiled, copy the conf file target/classes/application.conf to set SST data source configuration. In this example,

the copied file is called sst_application.conf . For details on each configuration item, see Parameters in the configuration file.

1.

Element Name Property

Tag player name string, age int

Tag team name string

Edge Type follow degree int

Edge Type serve start_year int, end_year int

2.

Create a graph space

nebula> CREATE SPACE basketballplayer \

 (partition_num = 10, \

 replica_factor = 1, \

 vid_type = FIXED_STRING(30));

Use the graph space basketballplayer

nebula> USE basketballplayer;

Create the Tag player

nebula> CREATE TAG player(name string, age int);

Create the Tag team

nebula> CREATE TAG team(name string);

Create the Edge type follow

nebula> CREATE EDGE follow(degree int);

Create the Edge type serve

nebula> CREATE EDGE serve(start_year int, end_year int);

1.

Note

2.

{

 # Spark configuration

 spark: {

 app: {

 name: Nebula Exchange 3.0.0

 }

 master:local

 driver: {

 cores: 1

 maxResultSize: 1G

 }

 executor: {

19.4.13 Import data from SST files

- 795/927 - 2022 Vesoft Inc.

 memory:1G

 }

 cores:{

 max: 16

 }

 }

 # NebulaGraph configuration

 nebula: {

 address:{

 graph:["127.0.0.1:9669"]

 meta:["127.0.0.1:9559"]

 }

 user: root

 pswd: nebula

 space: basketballplayer

 # SST file configuration

 path:{

 # The local directory that temporarily stores generated SST files

 local:"/tmp"

 # The path for storing the SST file in the HDFS

 remote:"/sst"

 # The NameNode address of HDFS

 hdfs.namenode: "hdfs://*.*.*.*:9000"

 }

 # The connection parameters of clients

 connection: {

 # The timeout duration of socket connection and execution. Unit: milliseconds.

 timeout: 30000

 }

 error: {

 # The maximum number of failures that will exit the application.

 max: 32

 # Failed import jobs are logged in the output path.

 output: /tmp/errors

 }

 # Use Google's RateLimiter to limit requests to NebulaGraph.

 rate: {

 # Steady throughput of RateLimiter.

 limit: 1024

 # Get the allowed timeout duration from RateLimiter. Unit: milliseconds.

 timeout: 1000

 }

 }

 # Processing vertices

 tags: [

 # Set the information about the Tag player.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: player

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: sst

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".

 path: "hdfs://*.*.*.*:9000/dataset/vertex_player.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has a header, use the actual column name.

 fields: [_c1, _c2]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [age, name]

 # Specify a column of data in the table as the source of VIDs in NebulaGraph.

 # The value of vertex must be consistent with the column name in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:_c0

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

19.4.13 Import data from SST files

- 796/927 - 2022 Vesoft Inc.

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 # Whether to repartition data based on the number of partitions of graph spaces in NebulaGraph when generating the SST file.

 repartitionWithNebula: false

 }

 # Set the information about the Tag Team.

 {

 # Specify the Tag name defined in NebulaGraph.

 name: team

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: sst

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".

 path: "hdfs://*.*.*.*:9000/dataset/vertex_team.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has a header, use the actual column name.

 fields: [_c1]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [name]

 # Specify a column of data in the table as the source of VIDs in NebulaGraph.

 # The value of vertex must be consistent with the column name in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 vertex: {

 field:_c0

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 # Whether to repartition data based on the number of partitions of graph spaces in NebulaGraph when generating the SST file.

 repartitionWithNebula: false

 }

 # If more vertices need to be added, refer to the previous configuration to add them.

]

 # Processing edges

 edges: [

 # Set the information about the Edge Type follow.

 {

 # The Edge Type name defined in NebulaGraph.

 name: follow

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: sst

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".

 path: "hdfs://*.*.*.*:9000/dataset/edge_follow.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has a header, use the actual column name.

 fields: [_c2]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [degree]

 # Specify a column as the source for the source and destination vertices.

 # The value of vertex must be consistent with the column name in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: _c0

 }

19.4.13 Import data from SST files

- 797/927 - 2022 Vesoft Inc.

STEP 4: GENERATE THE SST FILE

Run the following command to generate the SST file from the CSV source file. For a description of the parameters, see Options

for import.

 target: {

 field: _c1

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # (Optional) Specify a column as the source of the rank.

 #ranking: rank

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 # Whether to repartition data based on the number of partitions of graph spaces in NebulaGraph when generating the SST file.

 repartitionWithNebula: false

 }

 # Set the information about the Edge Type serve.

 {

 # Specify the Edge type name defined in NebulaGraph.

 name: serve

 type: {

 # Specify the data source file format to CSV.

 source: csv

 # Specify how to import the data into NebulaGraph: Client or SST.

 sink: sst

 }

 # Specify the path to the CSV file.

 # If the file is stored in HDFS, use double quotation marks to enclose the file path, starting with hdfs://. For example, "hdfs://ip:port/xx/xx.csv".

 path: "hdfs://*.*.*.*:9000/dataset/edge_serve.csv"

 # If the CSV file does not have a header, use [_c0, _c1, _c2, ..., _cn] to represent its header and indicate the columns as the source of the property values.

 # If the CSV file has a header, use the actual column name.

 fields: [_c2,_c3]

 # Specify the property name defined in NebulaGraph.

 # The sequence of fields and nebula.fields must correspond to each other.

 nebula.fields: [start_year, end_year]

 # Specify a column as the source for the source and destination vertices.

 # The value of vertex must be consistent with the column name in the above fields or csv.fields.

 # Currently, NebulaGraph 3.1.0 supports only strings or integers of VID.

 source: {

 field: _c0

 }

 target: {

 field: _c1

 }

 # The delimiter specified. The default value is comma.

 separator: ","

 # (Optional) Specify a column as the source of the rank.

 #ranking: _c5

 # If the CSV file has a header, set the header to true.

 # If the CSV file does not have a header, set the header to false. The default value is false.

 header: false

 # The number of data written to NebulaGraph in a single batch.

 batch: 256

 # The number of Spark partitions.

 partition: 32

 # Whether to repartition data based on the number of partitions of graph spaces in NebulaGraph when generating the SST file.

 repartitionWithNebula: false

 }

]

 # If more edges need to be added, refer to the previous configuration to add them.

}

${SPARK_HOME}/bin/spark-submit --master "local" --conf spark.sql.shuffle.partition=<shuffle_concurrency> --class com.vesoft.nebula.exchange.Exchange <nebula-exchange-3.0.0.jar_path> -c

<sst_application.conf_path>

19.4.13 Import data from SST files

- 798/927 - 2022 Vesoft Inc.

When generating SST files, the shuffle operation of Spark will be involved. Note that the configuration of spark.sql.shuffle.partition

should be added when you submit the command.

JAR packages are available in two ways: compiled them yourself, or download the compiled .jar file directly.

For example:

After the task is complete, you can view the generated SST file in the /sst directory (specified by the nebula.path.remote parameter)

on HDFS.

If you modify the Schema, such as rebuilding the graph space, modifying the Tag, or modifying the Edge type, you need to regenerate

the SST file because the SST file verifies the space ID, Tag ID, and Edge ID.

STEP 5: IMPORT THE SST FILE

Confirm the following information before importing:

Confirm that the Hadoop service has been deployed on all the machines where the Storage service is deployed, and configure

HADOOP_HOME and JAVA_HOME .

The --ws_storage_http_port in the Meta service configuration file (add it manually if it does not exist) is the same as the --ws_http_port in

the Storage service configuration file. For example, both are 19779 .

The --ws_meta_http_port in the Graph service configuration file (add it manually if it does not exist) is the same as the --ws_http_port in the

Meta service configuration file. For example, both are 19559 .

Connect to the NebulaGraph database using the client tool and import the SST file as follows:

Run the following command to select the graph space you created earlier.

Run the following command to download the SST file:

For example:

Run the following command to import the SST file:

Note

Note

${SPARK_HOME}/bin/spark-submit --master "local" --conf spark.sql.shuffle.partition=200 --class com.vesoft.nebula.exchange.Exchange /root/nebula-exchange/nebula-exchange/target/nebula-

exchange-3.0.0.jar -c /root/nebula-exchange/nebula-exchange/target/classes/sst_application.conf

Note

Note

•

•

•

1.

nebula> USE basketballplayer;

2.

nebula> SUBMIT JOB DOWNLOAD HDFS "hdfs://<hadoop_address>:<hadoop_port>/<sst_file_path>";

nebula> SUBMIT JOB DOWNLOAD HDFS "hdfs://*.*.*.*:9000/sst";

3.

nebula> SUBMIT JOB INGEST;

19.4.13 Import data from SST files

- 799/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-exchange/

To download the SST file again, delete the download folder in the space ID in the data/storage/nebula directory in the NebulaGraph

installation path, and then download the SST file again. If the space has multiple copies, the download folder needs to be deleted on all

machines where the copies are saved.

If there is a problem with the import and re-importing is required, re-execute SUBMIT JOB INGEST; .

STEP 6: (OPTIONAL) VALIDATE DATA

Users can verify that data has been imported by executing a query in the NebulaGraph client (for example, Nebula Studio). For

example:

Users can also run the SHOW STATS command to view statistics.

STEP 7: (OPTIONAL) REBUILD INDEXES IN NEBULAGRAPH

With the data imported, users can recreate and rebuild indexes in NebulaGraph. For details, see Index overview.

Note

•

•

GO FROM "player100" OVER follow;

Last update: March 13, 2023

19.4.13 Import data from SST files

- 800/927 - 2022 Vesoft Inc.

19.4.14 Export data from NebulaGraph

This topic uses an example to illustrate how to use Exchange to export data from NebulaGraph to a CSV file.

Only Exchange Enterprise Edition supports exporting data from NebulaGraph to a CSV file.

SSL encryption is not supported when exporting data from NebulaGraph.

Preparation

This example is completed on a virtual machine equipped with Linux. The hardware and software you need to prepare before

exporting data are as follows.

HARDWARE

SYSTEM

CentOS 7.9.2009

SOFTWARE

DATASET

As the data source, NebulaGraph stores the basketballplayer dataset in this example, the Schema elements of which are shown

as follows.

Enterpriseonly

Note

Type Information

CPU 4 Intel(R) Xeon(R) Platinum 8260 CPU @ 2.30GHz

Memory 16G

Hard disk 50G

Name Version

JDK 1.8.0

Hadoop 2.10.1

Scala 2.12.11

Spark 2.4.7

NebulaGraph 3.1.0

Element Name Property

Tag player name string, age int

Tag team name string

Edge type follow degree int

Edge type serve start_year int, end_year int

19.4.14 Export data from NebulaGraph

- 801/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/2.0/basketballplayer-2.X.ngql

Steps

Get the JAR file of Exchange Enterprise Edition from the NebulaGraph Enterprise Edition Package.

Modify the configuration file.

Exchange Enterprise Edition provides the configuration template export_application.conf for exporting NebulaGraph data. For details,

see Exchange parameters. The core content of the configuration file used in this example is as follows:

Export data from NebulaGraph with the following command.

The command used in this example is as follows.

1.

2.

...

 # Processing tags

 # There are tag config examples for different dataSources.

 tags: [

 # export NebulaGraph tag data to csv, only support export to CSV for now.

 {

 name: player

 type: {

 source: Nebula

 sink: CSV

 }

 # the path to save the NebulaGrpah data, make sure the path doesn't exist.

 path:"hdfs://192.168.8.177:9000/vertex/player"

 # if no need to export any properties when export NebulaGraph tag data

 # if noField is configured true, just export vertexId

 noField:false

 # define properties to export from NebulaGraph tag data

 # if return.fields is configured as empty list, then export all properties

 return.fields:[]

 # nebula space partition number

 partition:10

 }

...

]

 # Processing edges

 # There are edge config examples for different dataSources.

 edges: [

 # export NebulaGraph tag data to csv, only support export to CSV for now.

 {

 name: follow

 type: {

 source: Nebula

 sink: CSV

 }

 # the path to save the NebulaGrpah data, make sure the path doesn't exist.

 path:"hdfs://192.168.8.177:9000/edge/follow"

 # if no need to export any properties when export NebulaGraph edge data

 # if noField is configured true, just export src,dst,rank

 noField:false

 # define properties to export from NebulaGraph edge data

 # if return.fields is configured as empty list, then export all properties

 return.fields:[]

 # nebula space partition number

 partition:10

 }

...

]

}

3.

<spark_install_path>/bin/spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange nebula-exchange-x.y.z.jar_path> -c <export_application.conf_path>

$./spark-submit --master "local" --class com.vesoft.nebula.exchange.Exchange \

 ~/exchange-ent/nebula-exchange-ent-3.0.0.jar -c ~/exchange-ent/export_application.conf

19.4.14 Export data from NebulaGraph

- 802/927 - 2022 Vesoft Inc.

https://nebula-graph.com.cn/pricing/

Check the exported data.

Check whether the CSV file is successfully generated under the target path.

Check the contents of the CSV file to ensure that the data export is successful.

4.

a.

$ hadoop fs -ls /vertex/player

Found 11 items

-rw-r--r-- 3 nebula supergroup 0 2021-11-05 07:36 /vertex/player/_SUCCESS

-rw-r--r-- 3 nebula supergroup 160 2021-11-05 07:36 /vertex/player/ part-00000-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 163 2021-11-05 07:36 /vertex/player/ part-00001-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 172 2021-11-05 07:36 /vertex/player/ part-00002-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 172 2021-11-05 07:36 /vertex/player/ part-00003-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 144 2021-11-05 07:36 /vertex/player/ part-00004-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 173 2021-11-05 07:36 /vertex/player/ part-00005-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 160 2021-11-05 07:36 /vertex/player/ part-00006-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 148 2021-11-05 07:36 /vertex/player/ part-00007-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 125 2021-11-05 07:36 /vertex/player/ part-00008-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

-rw-r--r-- 3 nebula supergroup 119 2021-11-05 07:36 /vertex/player/ part-00009-17293020-ba2e-4243-b834-34495c0536b3-c000.csv

b.

Last update: March 13, 2023

19.4.14 Export data from NebulaGraph

- 803/927 - 2022 Vesoft Inc.

19.5 Exchange FAQ

19.5.1 Compilation

Q: Some packages not in central repository failed to download, error: Could not resolve dependencies for project xxx

Please check the mirror part of Maven installation directory libexec/conf/settings.xml :

Check whether the value of mirrorOf is configured to * . If it is, change it to central or *,!SparkPackagesRepo,!bintray-streamnative-maven .

Reason: There are two dependency packages in Exchange's pom.xml that are not in Maven's central repository. pom.xml configures

the repository address for these two dependencies. If the mirrorOf value for the mirror address configured in Maven is * , all

dependencies will be downloaded from the Central repository, causing the download to fail.

Q: Unable to download SNAPSHOT packages when compiling Exchange

Problem description: The system reports Could not find artifact com.vesoft:client:jar:xxx-SNAPSHOT when compiling.

Cause: There is no local Maven repository for storing or downloading SNAPSHOT packages. The default central repository in

Maven only stores official releases, not development versions (SNAPSHOT).

Solution: Add the following configuration in the profiles scope of Maven's setting.xml file:

19.5.2 Execution

Q: How to submit in Yarn-Cluster mode?

To submit a task in Yarn-Cluster mode, run the following command:

Q: Error: method name xxx not found

Generally, the port configuration is incorrect. Check the port configuration of the Meta service, Graph service, and Storage

service.

<mirror>

 <id>alimaven</id>

 <mirrorOf>central</mirrorOf>

 <name>aliyun maven</name>

 <url>http://maven.aliyun.com/nexus/content/repositories/central/</url>

</mirror>

 <profile>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>snapshots</id>

 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

$SPARK_HOME/bin/spark-submit --class com.vesoft.nebula.exchange.Exchange \

--master yarn-cluster \

--files application.conf \

--conf spark.driver.extraClassPath=./ \

--conf spark.executor.extraClassPath=./ \

nebula-exchange-3.0.0.jar \

-c application.conf

19.5 Exchange FAQ

- 804/927 - 2022 Vesoft Inc.

Q: Error: NoSuchMethod, MethodNotFound (Exception in thread "main" java.lang.NoSuchMethodError , etc)

Most errors are caused by JAR package conflicts or version conflicts. Check whether the version of the error reporting service is

the same as that used in Exchange, especially Spark, Scala, and Hive.

Q: When Exchange imports Hive data, error: Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found

Check whether the -h parameter is omitted in the command for submitting the Exchange task and whether the table and

database are correct, and run the user-configured exec statement in spark-SQL to verify the correctness of the exec statement.

Q: Run error: com.facebook.thrift.protocol.TProtocolException: Expected protocol id xxx

Check that the NebulaGraph service port is configured correctly.

For source, RPM, or DEB installations, configure the port number corresponding to --port in the configuration file for each

service.

For docker installation, configure the docker mapped port number as follows:

Execute docker-compose ps in the nebula-docker-compose directory, for example:

Check the Ports column to find the docker mapped port number, for example:

- The port number available for Graph service is 9669.

- The port number for Meta service are 33167, 33168, 33164.

- The port number for Storage service are 33183, 33177, 33185.

Q: Error: Exception in thread "main" com.facebook.thrift.protocol.TProtocolException: The field 'code' has been assigned the invalid value -4

Check whether the version of Exchange is the same as that of NebulaGraph. For more information, see Limitations.

Q: How to correct the messy code when importing Hive data into NebulaGraph?

It may happen if the property value of the data in Hive contains Chinese characters. The solution is to add the following options

before the JAR package path in the import command:

Namely:

In YARN, use the following command:

•

•

$ docker-compose ps

 Name Command State Ports

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:33205->19669/tcp, 0.0.0.0:33204->19670/tcp, 0.0.0.0:9669->9669/tcp

nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33165->19559/tcp, 0.0.0.0:33162->19560/tcp, 0.0.0.0:33167->9559/tcp, 9560/tcp

nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33166->19559/tcp, 0.0.0.0:33163->19560/tcp, 0.0.0.0:33168->9559/tcp, 9560/tcp

nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33161->19559/tcp, 0.0.0.0:33160->19560/tcp, 0.0.0.0:33164->9559/tcp, 9560/tcp

nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33180->19779/tcp, 0.0.0.0:33178->19780/tcp, 9777/tcp, 9778/tcp, 0.0.0.0:33183->9779/tcp, 9780/

tcp

nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33175->19779/tcp, 0.0.0.0:33172->19780/tcp, 9777/tcp, 9778/tcp, 0.0.0.0:33177->9779/tcp, 9780/

tcp

nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33184->19779/tcp, 0.0.0.0:33181->19780/tcp, 9777/tcp, 9778/tcp, 0.0.0.0:33185->9779/tcp, 9780/

tcp

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8

<spark_install_path>/bin/spark-submit --master "local" \

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8 \

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8 \

--class com.vesoft.nebula.exchange.Exchange \

<nebula-exchange-3.x.y.jar_path> -c <application.conf_path>

<spark_install_path>/bin/spark-submit \

--class com.vesoft.nebula.exchange.Exchange \

--master yarn-cluster \

--files <application.conf_path> \

--conf spark.driver.extraClassPath=./ \

--conf spark.executor.extraClassPath=./ \

19.5.2 Execution

- 805/927 - 2022 Vesoft Inc.

Q: org.rocksdb.RocksDBException: While open a file for appending: /path/sst/1-xxx.sst: No such file or directory

Solution:

Check if /path exists. If not, or if the path is set incorrectly, create or correct it.

Check if Spark's current user on each machine has the operation permission on /path . If not, grant the permission.

19.5.3 Configuration

Q: Which configuration fields will affect import performance?

batch: The number of data contained in each nGQL statement sent to the NebulaGraph service.

partition: The number of Spark data partitions, indicating the number of concurrent data imports.

nebula.rate: Get a token from the token bucket before sending a request to NebulaGraph.

- limit: Represents the size of the token bucket.

- timeout: Represents the timeout period for obtaining the token.

The values of these four parameters can be adjusted appropriately according to the machine performance. If the leader of the

Storage service changes during the import process, you can adjust the values of these four parameters to reduce the import

speed.

19.5.4 Others

Q: Which versions of NebulaGraph are supported by Exchange?

See Limitations.

Q: What is the relationship between Exchange and Spark Writer?

Exchange is the Spark application developed based on Spark Writer. Both are suitable for bulk migration of cluster data to

NebulaGraph in a distributed environment, but later maintenance work will be focused on Exchange. Compared with Spark

Writer, Exchange has the following improvements:

It supports more abundant data sources, such as MySQL, Neo4j, Hive, HBase, Kafka, Pulsar, etc.

It fixed some problems of Spark Writer. For example, when Spark reads data from HDFS, the default source data is String,

which may be different from the NebulaGraph's Schema. So Exchange adds automatic data type matching and type

conversion. When the data type in the NebulaGraph's Schema is non-String (e.g. double), Exchange converts the source data

of String type to the corresponding type.

--conf spark.driver.extraJavaOptions=-Dfile.encoding=utf-8 \

--conf spark.executor.extraJavaOptions=-Dfile.encoding=utf-8 \

<nebula-exchange-3.x.y.jar_path> \

-c application.conf

1.

2.

•

•

•

•

•

Last update: March 13, 2023

19.5.3 Configuration

- 806/927 - 2022 Vesoft Inc.

20. Nebula Operator

20.1 What is Nebula Operator

20.1.1 Concept of Nebula Operator

Nebula Operator is a tool to automate the deployment, operation, and maintenance of NebulaGraph clusters on Kubernetes.

Building upon the excellent scalability mechanism of Kubernetes, NebulaGraph introduced its operation and maintenance

knowledge into the Kubernetes system, which makes NebulaGraph a real cloud-native graph database.

20.1.2 How it works

For resource types that do not exist within Kubernetes，you can register them by adding custom API objects. The common way is

to use the CustomResourceDefinition.

Nebula Operator abstracts the deployment management of NebulaGraph clusters as a CRD. By combining multiple built-in API

objects including StatefulSet, Service, and ConfigMap, the routine management and maintenance of a NebulaGraph cluster are

coded as a control loop in the Kubernetes system. When a CR instance is submitted, Nebula Operator drives database clusters to

the final state according to the control process.

20.1.3 Features of Nebula Operator

The following features are already available in Nebula Operator:

Deploy and uninstall clusters: Nebula Operator simplifies the process of deploying and uninstalling clusters for users.

Nebula Operator allows you to quickly create, update, or delete a NebulaGraph cluster by simply providing the corresponding

CR file. For more information, see Deploy NebulaGraph Clusters with Kubectl or Deploy NebulaGraph Clusters with Helm.

Scale clusters: Nebula Operator calls NebulaGraph's native scaling interfaces in a control loop to implement the scaling

logic. You can simply perform scaling operations with YAML configurations and ensure the stability of data. For more

information, see Scale clusters with Kubectl or Scale clusters with Helm.

Cluster Upgrade: Nebula Operator supports cluster upgrading from version 3.0.0 to version 3.1.x.

Self-Healing: Nebula Operator calls interfaces provided by NebulaGraph clusters to dynamically sense cluster service status.

Once an exception is detected, Nebula Operator performs fault tolerance. For more information, see Self-Healing.

Balance Scheduling: Based on the scheduler extension interface, the scheduler provided by Nebula Operator evenly

distributes Pods in a NebulaGraph cluster across all nodes.

20.1.4 Limitations

Version limitations

Nebula Operator does not support the v1.x version of NebulaGraph. Nebula Operator version and the corresponding

NebulaGraph version are as follows:

•

•

•

•

•

Nebula Operator version NebulaGraph version

1.1.0 3.0.0 ~ 3.1.x

1.0.0 3.0.0 ~ 3.1.x

0.9.0 2.5.x ~ 2.6.x

0.8.0 2.5.x

20. Nebula Operator

- 807/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://kubernetes.io
https://www.nebula-cloud.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

The 1.x version Nebula Operator is not compatible with NebulaGraph of version below v3.x.

Starting from Nebula Operator 0.9.0, logs and data are stored separately. Using Nebula Operator 0.9.0 or later versions to manage a

NebulaGraph 2.5.x cluster created with Operator 0.8.0 can cause compatibility issues. You can backup the data of the NebulaGraph

2.5.x cluster and then create a 2.6.x cluster with Operator 0.9.0.

Feature limitations

The Nebula Operator scaling feature is only available for the Enterprise Edition of NebulaGraph clusters and does not support

scaling the Community Edition version of NebulaGraph clusters.

20.1.5 Release note

Release

Legacy version compatibility

•

•

Last update: March 13, 2023

20.1.5 Release note

- 808/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/releases/tag/v1.1.0

20.2 Overview of using Nebula Operator

To use Nebula Operator to connect to NebulaGraph databases, see steps as follows:

Install Nebula Operator.

Create a NebulaGraph cluster.

For more information, see Deploy NebulaGraph clusters with Kubectl or Deploy NebulaGraph clusters with Helm.

Connect to a NebulaGraph database.

1.

2.

3.

Last update: March 13, 2023

20.2 Overview of using Nebula Operator

- 809/927 - 2022 Vesoft Inc.

20.3 Deploy Nebula Operator

You can deploy Nebula Operator with Helm.

20.3.1 Background

Nebula Operator automates the management of NebulaGraph clusters, and eliminates the need for you to install, scale, upgrade,

and uninstall NebulaGraph clusters, which lightens the burden on managing different application versions.

20.3.2 Prerequisites

Install software

Before installing Nebula Operator, you need to install the following software and ensure the correct version of the software:

If using a role-based access control policy, you need to enable RBAC (optional).

Software Requirement

Kubernetes >= 1.16

Helm >= 3.2.0

CoreDNS >= 1.6.0

CertManager >= 1.2.0

OpenKruise >= 0.8.0

20.3 Deploy Nebula Operator

- 810/927 - 2022 Vesoft Inc.

https://helm.sh/
https://kubernetes.io
https://helm.sh
https://github.com/coredns/coredns
https://cert-manager.io
https://openkruise.io
https://kubernetes.io/docs/admin/authorization/rbac

Description of software

The following software used by Nebula Operator is from the third party. Nebula Operator is not responsible for any problems that

may arise during the software installation.

CoreDNS

CoreDNS is a flexible and scalable DNS server that is installed for Pods in NebulaGraph clusters.

Components in a NebulaGraph cluster communicate with each other via DNS resolutions for domain names, like

x.default.svc.cluster.local .

cert-manager

If you have set the value of the Nebula Operator configuration item admissionWebhook.create to false , there is no need to install cert-

manager. For details about Nebula Operator configuration items, see the Customize Helm charts section in Install Nebula

Operator below.

cert-manager is a tool that automates the management of certificates. It leverages extensions of the Kubernetes API and uses

the Webhook server to provide dynamic access control to cert-manager resources. For more information about installation, see

cert-manager installation documentation.

cert-manager is used to validate the numeric value of replicas for each component in a NebulaGraph cluster. If you run it in a

production environment and care about the high availability of NebulaGraph clusters, it is recommended to set the value of

admissionWebhook.create to true before installing cert-manager.

OpenKruise

OpenKruise is a full set of standard extensions for Kubernetes. It works well with original Kubernetes and provides more

powerful and efficient features for managing Pods, sidecar containers, and even container images in clusters. OpenKruise is

required to enable advanced features for StatefulSets when Nebula Operator starts. For information about installation, see

openkruise installation documentation.

20.3.3 Steps

Install Nebula Operator

Add the Nebula Operator chart repository to Helm.

Update information of available charts locally from chart repositories.

For more information about helm repo , see Helm Repo.

Install Nebula Operator.

For example, the command to install Nebula Operator of version 1.1.0 is as follows.

Note

•

•

Note

•

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update

3.

helm install nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> --version=${chart_version}

20.3.3 Steps

- 811/927 - 2022 Vesoft Inc.

https://coredns.io/
https://github.com/coredns/deployment/tree/master/kubernetes
https://cert-manager.io/
https://cert-manager.io/docs/installation/kubernetes/
https://openkruise.io/en-us/
https://openkruise.io/en-us/docs/installation.html
https://helm.sh/docs/helm/helm_repo/

nebula-operator-system is a user-created namespace name. If you have not created this namespace, run kubectl create namespace nebula-

operator-system to create one. You can also use a different name.

1.1.0 is the version of the Nebula Operator chart. It can be unspecified when there is only one chart version in the Nebula

Operator chart repository. Run helm search repo -l nebula-operator to see chart versions.

You can customize the configuration items of the Nebula Operator chart before running the installation command. For more

information, see Customize Helm charts below.

Customize Helm charts

Run helm show values [CHART] [flags] to see configurable options.

For example:

helm install nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=1.1.0

•

•

[k8s@master ~]$ helm show values nebula-operator/nebula-operator

image:

 nebulaOperator:

 image: vesoft/nebula-operator:v1.1.0

 imagePullPolicy: Always

 kubeRBACProxy:

 image: gcr.io/kubebuilder/kube-rbac-proxy:v0.8.0

 imagePullPolicy: Always

 kubeScheduler:

 image: k8s.gcr.io/kube-scheduler:v1.18.8

 imagePullPolicy: Always

imagePullSecrets: []

kubernetesClusterDomain: ""

controllerManager:

 create: true

 replicas: 2

 env: []

 resources:

 limits:

 cpu: 200m

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 100Mi

admissionWebhook:

 create: true

scheduler:

 create: true

 schedulerName: nebula-scheduler

 replicas: 2

 env: []

 resources:

 limits:

 cpu: 200m

 memory: 20Mi

 requests:

 cpu: 100m

 memory: 100Mi

20.3.3 Steps

- 812/927 - 2022 Vesoft Inc.

Part of the above parameters are described as follows:

You can run helm install [NAME] [CHART] [flags] to specify chart configurations when installing a chart. For more information, see

Customizing the Chart Before Installing.

The following example shows how to specify the Nebula Operator's AdmissionWebhook mechanism to be turned off when you

install Nebula Operator (AdmissionWebhook is enabled by default):

For more information about helm install , see Helm Install.

Update Nebula Operator

Update the information of available charts locally from chart repositories.

Update Nebula Operator by passing configuration parameters via -set or -values flag.

--set ：Overrides values using the command line.

--values (or -f)：Overrides values using YAML files.

For configurable items, see the above-mentioned section Customize Helm charts.

For example, to disable the AdmissionWebhook (AdmissionWebhook is enabled by default), run the following command:

For more information, see Helm upgrade.

Parameter Default value Description

image.nebulaOperator.image vesoft/nebula-operator:v1.1.0 The image of Nebula Operator, version of which is 1.1.0.

image.nebulaOperator.imagePullPolicy IfNotPresent The image pull policy in Kubernetes.

imagePullSecrets - The image pull secret in Kubernetes.

kubernetesClusterDomain cluster.local The cluster domain.

controllerManager.create true Whether to enable the controller-manager component.

controllerManager.replicas 2 The numeric value of controller-manager replicas.

admissionWebhook.create true Whether to enable Admission Webhook.

shceduler.create true Whether to enable Scheduler.

shceduler.schedulerName nebula-scheduler The Scheduler name.

shceduler.replicas 2 The numeric value of nebula-scheduler replicas.

helm install nebula-operator nebula-operator/nebula-operator --namespace=<nebula-operator-system> --set admissionWebhook.create=false

1.

helm repo update

2.

•

•

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=1.1.0 --set admissionWebhook.create=false

20.3.3 Steps

- 813/927 - 2022 Vesoft Inc.

https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing
https://helm.sh/docs/helm/helm_install/
https://helm.sh/docs/helm/helm_update/

Upgrade Nebula Operator

Does not support upgrading 0.9.0 and below version NebulaGraph Operator to 1.x.

The 1.x version Nebula Operator is not compatible with NebulaGraph of version below v3.x.

Update the information of available charts locally from chart repositories.

Upgrade Operator to v1.1.0.

For example:

Output:

Pull the latest CRD configuration file.

You need to upgrade the corresponding CRD configurations after Nebula Operator is upgraded. Otherwise, the creation of NebulaGraph

clusters will fail. For information about the CRD configurations, see apps.nebula-graph.io_nebulaclusters.yaml.

Pull the Nebula Operator chart package.

--version : The Nebula Operator version you want to upgrade to. If not specified, the latest version will be pulled.

Run tar -zxvf to unpack the charts.

For example: To unpack v1.1.0 chart to the /tmp path, run the following command:

-C /tmp : If not specified, the chart files will be unpacked to the current directory.

Upgrade the CRD configuration file in the nebula-operator directory.

Output:

Uninstall Nebula Operator

Uninstall the Nebula Operator chart.

Legacy version compatibility

•

•

1.

helm repo update

2.

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=<namespace_name> --version=1.1.0

helm upgrade nebula-operator nebula-operator/nebula-operator --namespace=nebula-operator-system --version=1.1.0

Release "nebula-operator" has been upgraded. Happy Helming!

NAME: nebula-operator

LAST DEPLOYED: Tue Apr 16 02:21:08 2022

NAMESPACE: nebula-operator-system

STATUS: deployed

REVISION: 3

TEST SUITE: None

NOTES:

Nebula Operator installed!

3.

Note

a.

helm pull nebula-operator/nebula-operator --version=1.1.0

•

b.

tar -zxvf nebula-operator-1.1.0.tgz -C /tmp

•

4.

kubectl apply -f crds/nebulacluster.yaml

customresourcedefinition.apiextensions.k8s.io/nebulaclusters.apps.nebula-graph.io configured

1.

20.3.3 Steps

- 814/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.1.0/config/crd/bases/apps.nebula-graph.io_nebulaclusters.yaml

Delete CRD.

20.3.4 What's next

Automate the deployment of NebulaGraph clusters with Nebula Operator. For more information, see Deploy NebulaGraph

Clusters with Kubectl or Deploy NebulaGraph Clusters with Helm.

helm uninstall nebula-operator --namespace=<nebula-operator-system>

2.

kubectl delete crd nebulaclusters.apps.nebula-graph.io

Last update: March 13, 2023

20.3.4 What's next

- 815/927 - 2022 Vesoft Inc.

20.4 Deploy clusters

20.4.1 Deploy NebulaGraph clusters with Kubectl

The 1.x version Nebula Operator is not compatible with NebulaGraph of version below v3.x.

Prerequisites

Install Nebula Operator

You have prepared the license file for NebulaGraph Enterprise Edition clusters.

The license file is required only when creating a NebulaGraph Enterprise Edition cluster.

Legacy version compatibility

•

•

Enterpriseonly

20.4 Deploy clusters

- 816/927 - 2022 Vesoft Inc.

Create clusters

The following example shows how to create a NebulaGraph cluster by creating a cluster named nebula .

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 817/927 - 2022 Vesoft Inc.

Create a file named apps_v1alpha1_nebulacluster.yaml .
1.

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 818/927 - 2022 Vesoft Inc.

The file contents are as follows:

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 819/927 - 2022 Vesoft Inc.

Community Edition

Enterprise Edition

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 name: nebula

spec:

 graphd:

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 1

 image: vesoft/nebula-graphd

 version: v3.1.0

 service:

 type: NodePort

 externalTrafficPolicy: Local

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 metad:

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 1

 image: vesoft/nebula-metad

 version: v3.1.0

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 storaged:

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 3

 image: vesoft/nebula-storaged

 version: v3.1.0

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 reference:

 name: statefulsets.apps

 version: v1

 schedulerName: default-scheduler

 imagePullPolicy: Always

Contact our sales team to get a complete NebulaGraph Enterprise Edition cluster YAML example.

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

 annotations:

 nebula-graph.io/owner: test

 name: nebula

spec:

 enablePVReclaim: true

 graphd:

 readinessProbe:

 failureThreshold: 3

 httpGet:

 path: /status

 port: 19669

 scheme: HTTP

 initialDelaySeconds: 40

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 10

 image: reg.vesoft-inc.com/vesoft-ent/nebula-graphd

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.1.0

 imagePullPolicy: Always

 imagePullSecrets:

 - name: vesoft

 metad:

 license:

 secretName: nebula-license

 licenseKey: nebula.license

 readinessProbe:

 failureThreshold: 3

 httpGet:

 path: /status

 port: 19559

 scheme: HTTP

 initialDelaySeconds: 5

 periodSeconds: 5

 successThreshold: 1

 timeoutSeconds: 5

 image: reg.vesoft-inc.com/vesoft-ent/nebula-metad

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 replicas: 1

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.1.0

 reference:

 name: statefulsets.apps

 version: v1

 schedulerName: default-scheduler

 storaged:

 readinessProbe:

 failureThreshold: 3

 httpGet:

 path: /status

 port: 19779

 scheme: HTTP

 initialDelaySeconds: 40

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 5

 image: reg.vesoft-inc.com/vesoft-ent/nebula-storaged

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: fast-disks

 replicas: 3

 resources:

 limits:

 cpu: "1"

 memory: 1Gi

 requests:

 cpu: 500m

 memory: 500Mi

 version: v3.1.0

 enableAutoBalance: true

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 820/927 - 2022 Vesoft Inc.

The parameters in the file are described as follows:

Make sure that you have access to NebulaGraph Enterprise Edition images before pulling the image. For details, contact our sales team

(inqury@vesoft.com)

Parameter Default value Description

metadata.name - The name of the created NebulaGraph

cluster.

spec.graphd.replicas 1 The numeric value of replicas of the

Graphd service.

spec.graphd.images vesoft/nebula-graphd The container image of the Graphd

service.

spec.graphd.version v3.1.0 The version of the Graphd service.

spec.graphd.service - The Service configurations for the

Graphd service.

spec.graphd.logVolumeClaim.storageClassName - The log disk storage configurations for

the Graphd service.

spec.metad.replicas 1 The numeric value of replicas of the

Metad service.

spec.metad.images vesoft/nebula-metad The container image of the Metad

service.

spec.metad.version v3.1.0 The version of the Metad service.

spec.metad.dataVolumeClaim.storageClassName - The data disk storage configurations

for the Metad service.

spec.metad.logVolumeClaim.storageClassName - The log disk storage configurations for

the Metad service.

spec.storaged.replicas 3 The numeric value of replicas of the

Storaged service.

spec.storaged.images vesoft/nebula-storaged The container image of the Storaged

service.

spec.storaged.version v3.1.0 The version of the Storaged service.

spec.storaged.dataVolumeClaim.storageClassName - The data disk storage configurations

for the Storaged service.

spec.storaged.logVolumeClaim.storageClassName - The log disk storage configurations for

the Storaged service.

spec.reference.name - The name of the dependent controller.

spec.schedulerName - The scheduler name.

spec.imagePullPolicy The image policy to pull the

NebulaGraph image. For details, see

Image pull policy.

The image pull policy in Kubernetes.

spec.metad.license - The configuration of the license for

creating a NebulaGraph Enterprise

Edition cluster.

Enterpriseonly

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 821/927 - 2022 Vesoft Inc.

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy
mailto:inqury@vesoft.com

Create a NebulaGraph cluster.

Output:

Configure the license for the Enterprise Edition cluster.

This step is required only for creating a Nebula Grpah Enterprise Edition cluster.

Ignore this step if you are creating a NebulaGraph Community Edition cluster.

To check the details of the license, run the following command:

Check the status of the NebulaGraph cluster.

Output:

Scaling clusters

The cluster scaling feature is for NebulaGraph Enterprise Edition only.

Scaling a NebulaGraph cluster for Enterprise Edition is supported only with Nebula Operator version 1.1.0 or later.

You can modify the value of replicas in apps_v1alpha1_nebulacluster.yaml to scale a NebulaGraph cluster.

2.

kubectl create -f apps_v1alpha1_nebulacluster.yaml

nebulacluster.apps.nebula-graph.io/nebula created

3.

Enterpriseonly

•

•

kubectl create secret generic nebula-license --from-file=nebula.license

kubectl get secrets nebula-license -o yaml

4.

kubectl get nebulaclusters.apps.nebula-graph.io nebula

NAME GRAPHD-DESIRED GRAPHD-READY METAD-DESIRED METAD-READY STORAGED-DESIRED STORAGED-READY AGE

nebula 1 1 1 1 3 3 86s

Enterpriseonly

•

•

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 822/927 - 2022 Vesoft Inc.

SCALE OUT CLUSTERS

The following shows how to scale out a NebulaGraph cluster by changing the number of Storage services to 5:

Change the value of the storaged.replicas from 3 to 5 in apps_v1alpha1_nebulacluster.yaml .

Run the following command to update the NebulaGraph cluster CR.

Check the number of Storage services.

Output:

As you can see above, the number of Storage services is scaled up to 5.

SCALE IN CLUSTERS

The principle of scaling in a cluster is the same as scaling out a cluster. You scale in a cluster if the numeric value of the replicas

in apps_v1alpha1_nebulacluster.yaml is changed smaller than the current number. For more information, see the Scale out clusters

section above.

Nebula Operator currently only supports scaling Graph and Storage services and does not support scale Meta services.

Delete clusters

Run the following command to delete a NebulaGraph cluster with Kubectl:

What's next

Connect to NebulaGraph databases

1.

 storaged:

 resources:

 requests:

 cpu: "500m"

 memory: "500Mi"

 limits:

 cpu: "1"

 memory: "1Gi"

 replicas: 5

 image: vesoft/nebula-storaged

 version: v3.1.0

 dataVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 logVolumeClaim:

 resources:

 requests:

 storage: 2Gi

 storageClassName: gp2

 reference:

 name: statefulsets.apps

 version: v1

 schedulerName: default-scheduler

2.

kubectl apply -f apps_v1alpha1_nebulacluster.yaml

3.

kubectl get pods -l app.kubernetes.io/cluster=nebula

NAME READY STATUS RESTARTS AGE

nebula-graphd-0 1/1 Running 0 2m

nebula-metad-0 1/1 Running 0 2m

nebula-storaged-0 1/1 Running 0 2m

nebula-storaged-1 1/1 Running 0 2m

nebula-storaged-2 1/1 Running 0 2m

nebula-storaged-3 1/1 Running 0 5m

nebula-storaged-4 1/1 Running 0 5m

Caution

kubectl delete -f apps_v1alpha1_nebulacluster.yaml

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 823/927 - 2022 Vesoft Inc.

Last update: March 13, 2023

20.4.1 Deploy NebulaGraph clusters with Kubectl

- 824/927 - 2022 Vesoft Inc.

20.4.2 Deploy NebulaGraph clusters with Helm

The 1.x version Nebula Operator is not compatible with NebulaGraph of version below v3.x.

Prerequisite

Install Nebula Operator

Create clusters

Add the Nebula Operator chart repository to Helm（If you have already added the chart, skip the 1-2 steps and start from step 3).

Update information of available charts locally from chart repositories.

Set environment variables to your desired values.

Create a namespace for your NebulaGraph cluster（If you have created one, skip this step）.

Apply the variables to the Helm chart to create a NebulaGraph cluster.

Check the status of the NebulaGraph cluster you created.

Output:

Scaling clusters

The cluster scaling feature is for NebulaGraph Enterprise Edition only.

Scaling a NebulaGraph cluster for Enterprise Edition is supported only with Nebula Operator version 1.1.0 or later.

You can scale a NebulaGraph cluster by defining the value of the replicas corresponding to the different services in the cluster.

Legacy version compatibility

1.

helm repo add nebula-operator https://vesoft-inc.github.io/nebula-operator/charts

2.

helm repo update

3.

export NEBULA_CLUSTER_NAME=nebula # The desired NebulaGraph cluster name.

export NEBULA_CLUSTER_NAMESPACE=nebula # The desired namespace where your NebulaGraph cluster locates.

export STORAGE_CLASS_NAME=gp2 # The desired StorageClass name in your NebulaGraph cluster.

4.

kubectl create namespace "${NEBULA_CLUSTER_NAMESPACE}"

5.

helm install "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \

 --namespace="${NEBULA_CLUSTER_NAMESPACE}" \

 --set nameOverride=${NEBULA_CLUSTER_NAME} \

 --set nebula.storageClassName="${STORAGE_CLASS_NAME}"

6.

kubectl -n "${NEBULA_CLUSTER_NAMESPACE}" get pod -l "app.kubernetes.io/cluster=${NEBULA_CLUSTER_NAME}"

NAME READY STATUS RESTARTS AGE

nebula-graphd-0 1/1 Running 0 5m34s

nebula-graphd-1 1/1 Running 0 5m34s

nebula-metad-0 1/1 Running 0 5m34s

nebula-metad-1 1/1 Running 0 5m34s

nebula-metad-2 1/1 Running 0 5m34s

nebula-storaged-0 1/1 Running 0 5m34s

nebula-storaged-1 1/1 Running 0 5m34s

nebula-storaged-2 1/1 Running 0 5m34s

Enterpriseonly

•

•

20.4.2 Deploy NebulaGraph clusters with Helm

- 825/927 - 2022 Vesoft Inc.

For example, run the following command to scale out a NebulaGraph cluster by changing the number of Storage services from 2

(the original value) to 5:

Similarly, you can scale in a NebulaGraph cluster by setting the value of the replicas corresponding to the different services in

the cluster smaller than the original value.

Nebula Operator currently only supports scaling Graph and Storage services and does not support scale Meta services.

You can click on nebula-cluster/values.yaml to see more configurable parameters of the nebula-cluster chart. For more

information about the descriptions of configurable parameters, see Configuration parameters of the nebula-cluster Helm

chart below.

Delete clusters

Run the following command to delete a NebulaGraph cluster with Helm:

Or use variable values to delete a NebulaGraph cluster with Helm:

```bash helm uninstall nebula --namespace=nebula

What's next

Connect to NebulaGraph Databases

helm upgrade "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \

    --namespace="${NEBULA_CLUSTER_NAMESPACE}" \

    --set nameOverride=${NEBULA_CLUSTER_NAME} \

    --set nebula.storageClassName="${STORAGE_CLASS_NAME}" \

    --set nebula.storaged.replicas=5

Caution

helm uninstall "${NEBULA_CLUSTER_NAME}" --namespace="${NEBULA_CLUSTER_NAMESPACE}"

20.4.2 Deploy NebulaGraph clusters with Helm

- 826/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.1.0/charts/nebula-cluster/values.yaml


Configuration parameters of the nebula-cluster Helm chart

20.4.2 Deploy NebulaGraph clusters with Helm

- 827/927 - 2022 Vesoft Inc.



Parameter Default value Description

nameOverride nil Replaces the name of the chart in the

Chart.yaml  file.

nebula.version v3.1.0 The version of NebulaGraph.

nebula.imagePullPolicy IfNotPresent The NebulaGraph image pull policy.

For details, see Image pull policy.

nebula.storageClassName nil The StorageClass name.

StorageClass is the default persistent

volume type.

nebula.schedulerName default-scheduler The scheduler name of a

NebulaGraph cluster.

nebula.reference {"name": "statefulsets.apps", "version": "v1"} The workload referenced for a

NebulaGraph cluster.

nebula.graphd.image vesoft/nebula-graphd The image name for a Graphd

service. Uses the value of 

nebula.version  as its version.

nebula.graphd.replicas 2 The number of the Graphd service.

nebula.graphd.env [] The environment variables for the

Graphd service.

nebula.graphd.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

The resource configurations for the

Graphd service.

nebula.graphd.logStorage 500Mi The log disk storage capacity for the

Graphd service.

nebula.graphd.podLabels {} Labels for the Graphd pod in a

NebulaGraph cluster.

nebula.graphd.podAnnotations {} Pod annotations for the Graphd pod

in a NebulaGraph cluster.

nebula.graphd.nodeSelector {} Labels for the Graphd pod to be

scheduled to the specified node.

nebula.graphd.tolerations {} Tolerations for the Graphd pod.

nebula.graphd.affinity {} Affinity for the Graphd pod.

nebula.graphd.readinessProbe {} ReadinessProbe for the Graphd pod.

nebula.graphd.sidecarContainers {} Sidecar containers for the Graphd

pod.

nebula.graphd.sidecarVolumes {} Sidecar volumes for the Graphd pod.

nebula.metad.image vesoft/nebula-metad The image name for a Metad service.

Uses the value of nebula.version  as its

version.

nebula.metad.replicas 3 The number of the Metad service.

nebula.metad.env [] The environment variables for the

Metad service.

nebula.metad.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

The resource configurations for the

Metad service.

20.4.2 Deploy NebulaGraph clusters with Helm

- 828/927 - 2022 Vesoft Inc.

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy


Parameter Default value Description

nebula.metad.logStorage 500Mi The log disk capacity for the Metad

service.

nebula.metad.dataStorage 1Gi The data disk capacity for the Metad

service.

nebula.metad.podLabels {} Labels for the Metad pod in a

NebulaGraph cluster.

nebula.metad.podAnnotations {} Pod annotations for the Metad pod in

a NebulaGraph cluster.

nebula.metad.nodeSelector {} Labels for the Metad pod to be

scheduled to the specified node.

nebula.metad.tolerations {} Tolerations for the Metad pod.

nebula.metad.affinity {} Affinity for the Metad pod.

nebula.metad.readinessProbe {} ReadinessProbe for the Metad pod.

nebula.metad.sidecarContainers {} Sidecar containers for the Metad

pod.

nebula.metad.sidecarVolumes {} Sidecar volumes for the Metad pod.

nebula.storaged.image vesoft/nebula-storaged The image name for a Storaged

service. Uses the value of 

nebula.version  as its version.

nebula.storaged.replicas 3 The number of Storaged services.

nebula.storaged.env [] The environment variables for

Storaged services.

nebula.storaged.resources {"resources":{"requests":

{"cpu":"500m","memory":"500Mi"},"limits":

{"cpu":"1","memory":"1Gi"}}}

The resource configurations for

Storagedss services.

nebula.storaged.logStorage 500Mi The log disk capacity for the Metad

service.

nebula.storaged.dataStorage 1Gi The data disk capacity for the Metad

service.

nebula.storaged.podLabels {} Labels for the Metad pod in a

NebulaGraph cluster.

nebula.storaged.podAnnotations {} Pod annotations for the Metad pod in

a NebulaGraph cluster.

nebula.storaged.nodeSelector {} Labels for the Metad pod to be

scheduled to the specified node.

nebula.storaged.tolerations {} Tolerations for the Metad pod.

nebula.storaged.affinity {} Affinity for the Metad pod.

nebula.storaged.readinessProbe {} ReadinessProbe for the Metad pod.

nebula.storaged.sidecarContainers {} Sidecar containers for the Metad

pod.

nebula.storaged.sidecarVolumes {} Sidecar volumes for the Metad pod.

imagePullSecrets []

20.4.2 Deploy NebulaGraph clusters with Helm

- 829/927 - 2022 Vesoft Inc.



Parameter Default value Description

The Secret to pull the NebulaGraph

cluster image.

Last update: March 13, 2023 

20.4.2 Deploy NebulaGraph clusters with Helm

- 830/927 - 2022 Vesoft Inc.



20.5 Configure clusters

20.5.1 Customize configuration parameters for a NebulaGraph cluster

Meta, Storage, and Graph services in a Nebula Cluster have their configurations, which are defined as config  in the YAML file of

the CR instance (NebulaGraph cluster) you created. The settings in config  are mapped and loaded into the ConfigMap of the

corresponding service in Kubernetes.

It is not available to customize configuration parameters for Nebula Clusters deployed with Helm.

The structure of config  is as follows.

Prerequisites

You have created a NebulaGraph cluster. For how to create a cluster with Kubectl, see Create a cluster with Kubectl. 

Steps

The following example uses a cluster named nebula  and the cluster's configuration file named nebula_cluster.yaml  to show how to

set config  for the Graph service in a NebulaGraph cluster.

Run the following command to access the edit page of the nebula  cluster.

Add enable_authorize  and auth_type  under spec.graphd.config .

Run kubectl apply -f nebula_cluster.yaml  to push your configuration changes to the cluster.

After customizing the parameters enable_authorize  and auth_type , the configurations in the corresponding ConfigMap ( nebula-graphd ) of

the Graph service will be overwritten.

Note

Config map[string]string `json:"config,omitempty"`

1. 

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2. 

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

  name: nebula

  namespace: default

spec:

  graphd:

    resources:

      requests:

        cpu: "500m"

        memory: "500Mi"

      limits:

        cpu: "1"

        memory: "1Gi"

    replicas: 1

    image: vesoft/nebula-graphd

    version: v3.1.0

    storageClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: gp2

    config: // Custom configuration parameters for the Graph service in a cluster.

      "enable_authorize": "true"

      "auth_type": "password"

...

3. 

20.5 Configure clusters

- 831/927 - 2022 Vesoft Inc.



Learn more

For more information on the configuration parameters of Meta, Storage, and Graph services, see Configurations.

Last update: March 13, 2023 

20.5.1 Customize configuration parameters for a NebulaGraph cluster

- 832/927 - 2022 Vesoft Inc.



20.5.2 Reclaim PVs

Nebula Operator uses PVs (Persistent Volumes) and PVCs (Persistent Volume Claims) to store persistent data. If you accidentally

deletes a NebulaGraph cluster, PV and PVC objects and the relevant data will be retained to ensure data security.

You can define whether to reclaim PVs or not in the configuration file of the cluster's CR instance with the parameter 

enablePVReclaim .

If you need to release a graph space and retain the relevant data, update your nebula cluster by setting the parameter 

enablePVReclaim  to true .

Prerequisites

You have created a cluster. For how to create a cluster with Kubectl, see Create a cluster with Kubectl. 

20.5.2 Reclaim PVs

- 833/927 - 2022 Vesoft Inc.



Steps

The following example uses a cluster named nebula  and the cluster's configuration file named nebula_cluster.yaml  to show how to

set enablePVReclaim :

Run the following command to access the edit page of the nebula  cluster.

Add enablePVReclaim  and set its value to true  under spec .

Run kubectl apply -f nebula_cluster.yaml  to push your configuration changes to the cluster.

1. 

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2. 

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

  name: nebula

spec:

  enablePVReclaim: true  //Set its value to true.

  graphd:

    image: vesoft/nebula-graphd

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    replicas: 1

    resources:

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 500m

        memory: 500Mi

    version: v3.1.0

  imagePullPolicy: IfNotPresent

  metad:

    dataVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    image: vesoft/nebula-metad

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    replicas: 1

    resources:

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 500m

        memory: 500Mi

    version: v3.1.0

  nodeSelector:

    nebula: cloud

  reference:

    name: statefulsets.apps

    version: v1

  schedulerName: default-scheduler

  storaged:

    dataVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    image: vesoft/nebula-storaged

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    replicas: 3

    resources:

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 500m

        memory: 500Mi

    version: v3.1.0

...    

a. 

20.5.2 Reclaim PVs

- 834/927 - 2022 Vesoft Inc.



Last update: March 13, 2023 

20.5.2 Reclaim PVs

- 835/927 - 2022 Vesoft Inc.



20.5.3 Balance storage data after scaling out

This feature is for NebulaGraph Enterprise Edition only.

After the Storage service is scaled out, you can decide whether to balance the data in the Storage service. 

The scaling out of the NebulaGraph's Storage service is divided into two stages. In the first stage, the status of all pods is

changed to Ready . In the second stage, the commands of BALANCE DATA  and BALANCE LEADER  are executed to balance data. These two

stages decouple the scaling out process of the controller replica from the balancing data process, so that you can choose to

perform the data balancing operation during low traffic period. The decoupling of the scaling out process from the balancing

process can effectively reduce the impact on online services during data migration.

You can define whether to balance data automatically or not with the parameter enableAutoBalance  in the configuration file of the

CR instance of the cluster you created.

Prerequisites

You have created a NebulaGraph cluster. For how to create a cluster with Kubectl, see Create a cluster with Kubectl. 

Enterpriseonly

20.5.3 Balance storage data after scaling out

- 836/927 - 2022 Vesoft Inc.



Steps

The following example uses a cluster named nebula  and the cluster's configuration file named nebula_cluster.yaml  to show how to

set enableAutoBalance .

20.5.3 Balance storage data after scaling out

- 837/927 - 2022 Vesoft Inc.



Run the following command to access the edit page of the nebula  cluster.

Add enableAutoBalance  and set its value to true  under spec.storaged .

When the value of enableAutoBalance  is set to true , the Storage data will be automatically balanced after the Storage service is scaled

out.

When the value of enableAutoBalance  is set to false , the Storage data will not be automatically balanced after the Storage service is

scaled out.

When the enableAutoBalance  parameter is not set, the system will not automatically balance Storage data by default after the Storage

service is scaled out. 

1. 

kubectl edit nebulaclusters.apps.nebula-graph.io nebula

2. 

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

  name: nebula

spec:

  graphd:

    image: vesoft/nebula-graphd

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    replicas: 1

    resources:

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 500m

        memory: 500Mi

    version: v3.1.0

  imagePullPolicy: IfNotPresent

  metad:

    dataVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    image: vesoft/nebula-metad

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    replicas: 1

    resources:

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 500m

        memory: 500Mi

    version: v3.1.0

  nodeSelector:

    nebula: cloud

  reference:

    name: statefulsets.apps

    version: v1

  schedulerName: default-scheduler

  storaged:

    enableAutoBalance: true   //Set its value to true which means storage data will be balanced after the Storage service is scaled out.

    dataVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    image: vesoft/nebula-storaged

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: fast-disks

    replicas: 3

    resources:

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 500m

        memory: 500Mi

    version: v3.1.0

...    

• 

• 

• 

20.5.3 Balance storage data after scaling out

- 838/927 - 2022 Vesoft Inc.



Run kubectl apply -f nebula_cluster.yaml  to push your configuration changes to the cluster.
3. 

Last update: March 13, 2023 

20.5.3 Balance storage data after scaling out

- 839/927 - 2022 Vesoft Inc.



20.6 Upgrade NebulaGraph clusters created with Nebula Operator

This topic introduces how to upgrade a NebulaGraph cluster created with Nebula Operator.

The 1.x version Nebula Operator is not compatible with NebulaGraph of version below v3.x.

20.6.1 Limits

Only for NebulaGraph clusters that have been created with Nebula Operator.

Only support upgrading the NebulaGraph version from 3.0.0 to 3.1.x.

20.6.2 Upgrade a NebulaGraph cluster with Kubectl

Prerequisites

You have created a NebulaGraph cluster with Kubectl. For details, see Create a NebulaGraph cluster with Kubectl.

The version of the NebulaGraph cluster to be upgraded in this topic is 3.0.0 , and its YAML file name is 

apps_v1alpha1_nebulacluster.yaml .

Steps

Check the image version of the services in the cluster.

Output:

Edit the apps_v1alpha1_nebulacluster.yaml  file by changing the values of all the version  parameters from 3.0.0 to v3.1.0.

The modified YAML file reads as follows:

Legacy version compatibility

• 

• 

1. 

kubectl get pods -l app.kubernetes.io/cluster=nebula  -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

      1 vesoft/nebula-graphd:3.0.0

      1 vesoft/nebula-metad:3.0.0

      3 vesoft/nebula-storaged:3.0.0  

2. 

apiVersion: apps.nebula-graph.io/v1alpha1

kind: NebulaCluster

metadata:

  name: nebula

spec:

  graphd:

    resources:

      requests:

        cpu: "500m"

        memory: "500Mi"

      limits:

        cpu: "1"

        memory: "1Gi"

    replicas: 1

    image: vesoft/nebula-graphd

    version: v3.1.0 //Change the value from 3.0.0 to v3.1.0.

    service:

      type: NodePort

      externalTrafficPolicy: Local

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: gp2

  metad:

    resources:

      requests:

        cpu: "500m"

        memory: "500Mi"

      limits:

        cpu: "1"

20.6 Upgrade NebulaGraph clusters created with Nebula Operator

- 840/927 - 2022 Vesoft Inc.



Run the following command to apply the version update to the cluster CR.

After waiting for about 2 minutes, run the following command to see if the image versions of the services in the cluster have been

changed to v3.1.0.

Output:

20.6.3 Upgrade a NebulaGraph cluster with Helm

Prerequisites

You have created a NebulaGraph cluster with Helm. For details, see Create a NebulaGraph cluster with Helm.

Steps

Update the information of available charts locally from chart repositories.

Set environment variables to your desired values.

Upgrade a NebulaGraph cluster.

For example, upgrade a cluster to v3.1.0.

        memory: "1Gi"

    replicas: 1

    image: vesoft/nebula-metad

    version: v3.1.0 //Change the value from 3.0.0 to v3.1.0.

    dataVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: gp2

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: gp2

  storaged:

    resources:

      requests:

        cpu: "500m"

        memory: "500Mi"

      limits:

        cpu: "1"

        memory: "1Gi"

    replicas: 3

    image: vesoft/nebula-storaged

    version: v3.1.0 //Change the value from 3.0.0 to v3.1.0.

    dataVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: gp2

    logVolumeClaim:

      resources:

        requests:

          storage: 2Gi

      storageClassName: gp2

  reference:

    name: statefulsets.apps

    version: v1

  schedulerName: default-scheduler

  imagePullPolicy: Always

3. 

kubectl apply -f apps_v1alpha1_nebulacluster.yaml

4. 

kubectl get pods -l app.kubernetes.io/cluster=nebula  -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

      1 vesoft/nebula-graphd:v3.1.0

      1 vesoft/nebula-metad:v3.1.0

      3 vesoft/nebula-storaged:v3.1.0 

1. 

helm repo update

2. 

export NEBULA_CLUSTER_NAME=nebula         # The desired NebulaGraph cluster name.

export NEBULA_CLUSTER_NAMESPACE=nebula    # The desired namespace where your NebulaGraph cluster locates.

3. 

20.6.3 Upgrade a NebulaGraph cluster with Helm

- 841/927 - 2022 Vesoft Inc.



The value of --set nebula.version  specifies the version of the cluster you want to upgrade to.

Run the following command to check the status and version of the upgraded cluster.

Check cluster status:

Check cluster version:

helm upgrade "${NEBULA_CLUSTER_NAME}" nebula-operator/nebula-cluster \

    --namespace="${NEBULA_CLUSTER_NAMESPACE}" \

    --set nameOverride=${NEBULA_CLUSTER_NAME} \

    --set nebula.version=v3.1.0

4. 

$ kubectl -n "${NEBULA_CLUSTER_NAMESPACE}" get pod -l "app.kubernetes.io/cluster=${NEBULA_CLUSTER_NAME}"

NAME                READY   STATUS    RESTARTS   AGE

nebula-graphd-0     1/1     Running   0          2m

nebula-graphd-1     1/1     Running   0          2m

nebula-metad-0      1/1     Running   0          2m

nebula-metad-1      1/1     Running   0          2m

nebula-metad-2      1/1     Running   0          2m

nebula-storaged-0   1/1     Running   0          2m

nebula-storaged-1   1/1     Running   0          2m

nebula-storaged-2   1/1     Running   0          2m

$ kubectl get pods -l app.kubernetes.io/cluster=nebula  -o jsonpath="{.items[*].spec.containers[*].image}" |tr -s '[[:space:]]' '\n' |sort |uniq -c

      1 vesoft/nebula-graphd:v3.1.0

      1 vesoft/nebula-metad:v3.1.0

      3 vesoft/nebula-storaged:v3.1.0

Last update: March 13, 2023 

20.6.3 Upgrade a NebulaGraph cluster with Helm

- 842/927 - 2022 Vesoft Inc.



20.7 Connect to NebulaGraph databases with Nebular Operator

After creating a NebulaGraph cluster with Nebula Operator on Kubernetes, you can connect to NebulaGraph databases from

within the cluster and outside the cluster.

20.7.1 Prerequisites

Create a NebulaGraph cluster with Nebula Operator on Kubernetes. For more information, see Deploy NebulaGraph clusters

with Kubectl or Deploy NebulaGraph clusters with Helm.

20.7.2 Connect to NebulaGraph databases from within a NebulaGraph cluster

When a NebulaGraph cluster is created, Nebula Operator automatically creates a Service named <cluster-name>-graphd-svc  with the

type ClusterIP  under the same namespace. With the IP of the Service and the port number of the NebulaGraph database, you can

connect to the NebulaGraph database.

Run the following command to check the IP of the Service:

Services of the ClusterIP  type only can be accessed by other applications in a cluster. For more information, see ClusterIP.

Run the following command to connect to the NebulaGraph database using the IP of the <cluster-name>-graphd-svc  Service above:

For example:

You can also connect to NebulaGraph databases with Fully Qualified Domain Name (FQDN). The domain format is <cluster-

name>-graphd.<cluster-namespace>.svc.<CLUSTER_DOMAIN> :

The default value of CLUSTER_DOMAIN  is cluster.local .

20.7.3 Connect to NebulaGraph databases from outside a NebulaGraph cluster via NodePort

You can create a Service of type NodePort  to connect to NebulaGraph databases from outside a NebulaGraph cluster with a node

IP and an exposed node port. You can also use load balancing software provided by cloud providers (such as Azure, AWS, etc.)

and set the Service of type LoadBalancer .

The Service of type NodePort  forwards the front-end requests via the label selector spec.selector  to Graphd pods with labels 

app.kubernetes.io/cluster: <cluster-name>  and app.kubernetes.io/component: graphd .

1. 

$ kubectl get service -l app.kubernetes.io/cluster=<nebula>  #<nebula> is a variable value. Replace it with the desired name.

NAME                       TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)                                          AGE

nebula-graphd-svc          ClusterIP   10.98.213.34   <none>        9669/TCP,19669/TCP,19670/TCP                     23h

nebula-metad-headless      ClusterIP   None           <none>        9559/TCP,19559/TCP,19560/TCP                     23h

nebula-storaged-headless   ClusterIP   None           <none>        9779/TCP,19779/TCP,19780/TCP,9778/TCP            23h

2. 

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- <nebula_console_name> -addr <cluster_ip>  -port <service_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- nebula-console -addr 10.98.213.34  -port 9669 -u root -p vesoft

- `--image`: The image for the tool Nebula Console used to connect to NebulaGraph databases.

- `<nebula-console>`: The custom Pod name.

- `-addr`: The IP of the `ClusterIP` Service, used to connect to Graphd services.

- `-port`: The port to connect to Graphd services, the default port of which is 9669.

- `-u`: The username of your NebulaGraph account. Before enabling authentication, you can use any existing username. The default username is root.

- `-p`: The password of your NebulaGraph account. Before enabling authentication, you can use any characters as the password.

A successful connection to the database is indicated if the following is returned:

```bash

If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- <nebula_console_name> -addr <cluster_name>-graphd-svc.default.svc.cluster.local -port <service_port> -u <username> -

p <password>

20.7 Connect to NebulaGraph databases with Nebular Operator

- 843/927 - 2022 Vesoft Inc.

https://kubernetes.io/docs/concepts/services-networking/service/

Steps:

Create a YAML file named graphd-nodeport-service.yaml . The file contents are as follows:

NebulaGraph uses port 9669 by default. 19669 is the port of the Graph service in a NebulaGraph cluster.

The value of targetPort is the port mapped to the database Pods, which can be customized.

Run the following command to create a NodePort Service.

Check the port mapped on all of your cluster nodes.

Output:

As you see, the mapped port of NebulaGraph databases on all cluster nodes is 32236 .

Connect to NebulaGraph databases with your node IP and the node port above.

For example:

--image : The image for the tool Nebula Console used to connect to NebulaGraph databases.

<nebula-console> : The custom Pod name. The above example uses nebula-console2 .

-addr : The IP of any node in a NebulaGraph cluster. The above example uses 192.168.8.24 .

-port : The mapped port of NebulaGraph databases on all cluster nodes. The above example uses 32236 .

-u : The username of your NebulaGraph account. Before enabling authentication, you can use any existing username. The default

username is root.

-p : The password of your NebulaGraph account. Before enabling authentication, you can use any characters as the password.

1.

apiVersion: v1

kind: Service

metadata:

 labels:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: graphd

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 name: nebula-graphd-svc-nodeport

 namespace: default

spec:

 externalTrafficPolicy: Local

 ports:

 - name: thrift

 port: 9669

 protocol: TCP

 targetPort: 9669

 - name: http

 port: 19669

 protocol: TCP

 targetPort: 19669

 selector:

 app.kubernetes.io/cluster: nebula

 app.kubernetes.io/component: graphd

 app.kubernetes.io/managed-by: nebula-operator

 app.kubernetes.io/name: nebula-graph

 type: NodePort

•

•

2.

kubectl create -f graphd-nodeport-service.yaml

3.

kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

nebula-graphd-svc ClusterIP 10.98.213.34 <none> 9669/TCP,19669/TCP,19670/TCP 23h

nebula-graphd-svc-nodeport NodePort 10.107.153.129 <none> 9669:32236/TCP,19669:31674/TCP,19670:31057/TCP 24h

nebula-metad-headless ClusterIP None <none> 9559/TCP,19559/TCP,19560/TCP 23h

nebula-storaged-headless ClusterIP None <none> 9779/TCP,19779/TCP,19780/TCP,9778/TCP 23h

4.

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- <nebula_console_name> -addr <node_ip> -port <node_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- nebula-console2 -addr 192.168.8.24 -port 32236 -u root -p vesoft

If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

•

•

•

•

•

•

20.7.3 Connect to NebulaGraph databases from outside a NebulaGraph cluster via NodePort

- 844/927 - 2022 Vesoft Inc.

20.7.4 Connect to NebulaGraph databases from outside a NebulaGraph cluster via Ingress

Nginx Ingress is an implementation of Kubernetes Ingress. Nginx Ingress watches the Ingress resource of a Kubernetes cluster

and generates the Ingress rules into Nginx configurations that enable Nginx to forward 7 layers of traffic.

You can use Nginx Ingress to connect to a NebulaGraph cluster from outside the cluster using a combination of the HostNetwork

and DaemonSet pattern.

As HostNetwork is used, the Nginx Ingress pod cannot be scheduled to the same node. To avoid listening port conflicts, some

nodes can be selected and labeled as edge nodes in advance, which are specially used for the Nginx Ingress deployment. Nginx

Ingress is then deployed on these nodes in a DaemonSet mode.

Ingress does not support TCP or UDP services. For this reason, the nginx-ingress-controller pod uses the flags --tcp-services-

configmap and --udp-services-configmap to point to an existing ConfigMap where the key refers to the external port to be used and the

value refers to the format of the service to be exposed. The format of the value is <namespace/service_name>:<service_port> .

For example, the configurations of the ConfigMap named as tcp-services is as follows:

apiVersion: v1

kind: ConfigMap

metadata:

 name: tcp-services

 namespace: nginx-ingress

data:

 # update

 9769: "default/nebula-graphd-svc:9669"

20.7.4 Connect to NebulaGraph databases from outside a NebulaGraph cluster via Ingress

- 845/927 - 2022 Vesoft Inc.

Steps are as follows.

Create a file named nginx-ingress-daemonset-hostnetwork.yaml .

Click on nginx-ingress-daemonset-hostnetwork.yaml to view the complete content of the example YAML file.

The resource objects in the YAML file above use the namespace nginx-ingress . You can run kubectl create namespace nginx-ingress to create this

namespace, or you can customize the namespace.

Label a node where the DaemonSet named nginx-ingress-controller in the above YAML file (The node used in this example is named

worker2 with an IP of 192.168.8.160) runs.

Run the following command to enable Nginx Ingress in the cluster you created.

Output:

Since the network type that is configured in Nginx Ingress is hostNetwork , after successfully deploying Nginx Ingress, with the IP

(192.168.8.160) of the node where Nginx Ingress is deployed and with the external port (9769) you define, you can access

NebulaGraph.

Use the IP address and the port configured in the preceding steps. You can connect to NebulaGraph with Nebula Console.

Output:

--image : The image for the tool Nebula Console used to connect to NebulaGraph databases.

<nebula-console> The custom Pod name. The above example uses nebula-console .

-addr : The IP of the node where Nginx Ingress is deployed. The above example uses 192.168.8.160 .

-port : The port used for external network access. The above example uses 9769 .

-u : The username of your NebulaGraph account. Before enabling authentication, you can use any existing username. The default

username is root.

-p : The password of your NebulaGraph account. Before enabling authentication, you can use any characters as the password.

A successful connection to the database is indicated if the following is returned:

1.

Note

2.

kubectl label node worker2 nginx-ingress=true

3.

kubectl create -f nginx-ingress-daemonset-hostnetwork.yaml

configmap/nginx-ingress-controller created

configmap/tcp-services created

serviceaccount/nginx-ingress created

serviceaccount/nginx-ingress-backend created

clusterrole.rbac.authorization.k8s.io/nginx-ingress created

clusterrolebinding.rbac.authorization.k8s.io/nginx-ingress created

role.rbac.authorization.k8s.io/nginx-ingress created

rolebinding.rbac.authorization.k8s.io/nginx-ingress created

service/nginx-ingress-controller-metrics created

service/nginx-ingress-default-backend created

service/nginx-ingress-proxy-tcp created

daemonset.apps/nginx-ingress-controller created

4.

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- <nebula_console_name> -addr <host_ip> -port <external_port> -u <username> -p <password>

kubectl run -ti --image vesoft/nebula-console:v3.0.0 --restart=Never -- nebula-console -addr 192.168.8.160 -port 9769 -u root -p vesoft

•

•

•

•

•

•

If you don't see a command prompt, try pressing enter.

(root@nebula) [(none)]>

Last update: March 13, 2023

20.7.4 Connect to NebulaGraph databases from outside a NebulaGraph cluster via Ingress

- 846/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-operator/blob/v1.1.0/config/samples/nginx-ingress-daemonset-hostnetwork.yaml

20.8 Self-healing

Nebula Operator calls the interface provided by NebulaGraph clusters to dynamically sense cluster service status. Once an

exception is detected (for example, a component in a NebulaGraph cluster stops running), Nebula Operator automatically

performs fault tolerance. This topic shows how Nebular Operator performs self-healing by simulating cluster failure of deleting

one Storage service Pod in a NebulaGraph cluster.

20.8.1 Prerequisites

Install Nebula Operator

20.8.2 Steps

Create a NebulaGraph cluster. For more information, see Deploy NebulaGraph clusters with Kubectl or Deploy NebulaGraph

clusters with Helm.

Delete the Pod named <cluster_name>-storaged-2 after all pods are in the Running status.

<cluster_name> is the name of your NebulaGraph cluster.

Nebula Operator automates the creation of the Pod named <cluster-name>-storaged-2 to perform self-healing.

Run the kubectl get pods command to check the status of the Pod <cluster-name>-storaged-2 .

When the status of <cluster-name>-storaged-2 is changed from ContainerCreating to Running , the self-healing is performed successfully.

1.

2.

kubectl delete pod <cluster-name>-storaged-2 --now

3.

...

nebula-cluster-storaged-1 1/1 Running 0 5d23h

nebula-cluster-storaged-2 0/1 ContainerCreating 0 1s

...

...

nebula-cluster-storaged-1 1/1 Running 0 5d23h

nebula-cluster-storaged-2 1/1 Running 0 4m2s

...

Last update: March 13, 2023

20.8 Self-healing

- 847/927 - 2022 Vesoft Inc.

20.9 FAQ

20.9.1 Does Nebula Operator support the v1.x version of NebulaGraph?

No, because the v1.x version of NebulaGraph does not support DNS, and Nebula Operator requires the use of DNS.

20.9.2 Does Nebula Operator support the rolling upgrade feature for NebulaGraph clusters?

Nebula Operator currently supports cluster upgrading from version 2.5.x to version 2.6.x.

20.9.3 Is cluster stability guaranteed if using local storage?

There is no guarantee. Using local storage means that the Pod is bound to a specific node, and Nebula Operator does not

currently support failover in the event of a failure of the bound node.

20.9.4 How to ensure the stability of a cluster when scaling the cluster?

It is suggested to back up data in advance so that you can roll back data in case of failure.

Last update: March 13, 2023

20.9 FAQ

- 848/927 - 2022 Vesoft Inc.

21. Graph computing

21.1 Algorithm overview

Graph computing can detect the graph structure, such as the communities in a graph and the division of a graph. It can also

reveal the inherent characteristics of the correlation between various vertexes, such as the centrality and similarity of the

vertices. This topic introduces the algorithms and parameters supported by NebulaGraph.

This topic only introduces the parameters of Nebula Analytics. For details about the parameters of Nebula Algorithm, see algorithm.

The algorithm parameters need to be set when performing graph computing, and there are requirements for data sources. The data

source needs to contain source vertexes and destination vertexes. PageRank, DegreeWithTime, SSSP, APSP, LPA, HANP, and Louvain

algorithms must include weight.

If the data source comes from HDFS, users need to specify a CSV file that contains src and dst columns. Some algorithms also need

to contain a weight column.

If the data source comes from NebulaGraph, users need to specify the edge types that provide src and dst columns. Some algorithms

also need to specify the properties of the edge types as weight columns.

21.1.1 Node importance measurement

PageRank

The PageRank algorithm calculates the relevance and importance of vertices based on their relationships. It is commonly used in

search engine page rankings. If a page is linked by many other pages, the page is more important (PageRank value is higher). If

a page with a high PageRank value links to other pages, the PageRank value of the linked pages will increase.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

Note

Note

•

•

•

•

Parameter Predefined

value

Description

ITERATIONS 10 The maximum number of iterations.

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

EPS 0.0001 The convergence accuracy. When the difference between the result of two

iterations is less than the EPS value, the iteration is not continued.

DAMPING 0.85 The damping coefficient. It is the jump probability after visiting a page.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

VALUE double The PageRank value of the vertex.

21. Graph computing

- 849/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/tree/v3.0.0/example/src/main/scala/com/vesoft/nebula/algorithm

KCore

The KCore algorithm is used to calculate the subgraph composed of no vertexes less than K degree, usually used in community

discovery, financial risk control and other scenarios. The calculation result is one of the most commonly used reference values to

judge the importance of a vertex, which reflects the propagation ability of a vertex.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters when TYPE=vertex

Output parameters when TYPE=subgraph

DegreeCentrality (NStepDegree)

The DegreeCentrality algorithm is used to find the popular vertexes in a graph. Degree centrality measures the number of

incoming or outgoing (or both) relationships from a vertex, depending on the direction of the projection of the relationship. The

greater the degree of a vertex is, the higher the degree centrality of the vertex is, and the more important the vertex is in the

network.

Nebula Analytics only estimates DegreeCentrality roughly.

•

•

Parameter Predefined

value

Description

TYPE vertex The calculation type. Available values are vertex and subgraph . When set to vertex ,

the system calculates the number of cores for each vertex.

KMIN 1 Set the minimum value of K when performing the range calculation. Takes effect

only when TYPE = subgraph .

KMAX 1000000 Set the maximum value of K when performing the range calculation. Takes effect

only when TYPE = subgraph .

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

VALUE int Outputs the core degree of the vertex.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

VALUE The same with VID Outputs the neighbors of the vertex.

Note

21.1.1 Node importance measurement

- 850/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters when TYPE=both

Output parameters when TYPE=out

Output parameters when TYPE=in

DegreeWithTime

The DegreeWithTime algorithm is used to count neighbors based on the time range of edges to find out the popular vertexes in a

graph.

This algorithm is supported by Nebula Analytics only.

•

•

Parameter Predefined

value

Description

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

STEP 3 The degree of calculation. -1 means infinity.

BITS 6 The hyperloglog bit width for cardinality estimation.

TYPE both The direction of the edges for calculation. Optional values are in , out and both .

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

BOTH_DEGREE int Outputs the bidirectional degree centrality of the vertex.

OUT_DEGREE int Outputs the outbound degree centrality of the vertex.

IN_DEGREE int Outputs the inbound degree centrality of the vertex.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

OUT_DEGREE int Outputs the outbound degree centrality of the vertex.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

IN_DEGREE int Outputs the inbound degree centrality of the vertex.

Note

21.1.1 Node importance measurement

- 851/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Input parameters

Output parameters when TYPE=both

Output parameters when TYPE=out

Output parameters when TYPE=in

BetweennessCentrality

The BetweennessCentrality algorithm is used to detect the amount of influence a vertex has on the flow of information in a

graph. It is used to find the vertexes that act as bridges between one part of the graph and another. Each vertex is given a score,

the betweenness centrality score, based on the number of shortest paths through that vertex.

•

Parameter Predefined

value

Description

ITERATIONS 10 The maximum number of iterations.

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

BEGIN_TIME - The begin time.

END_TIME - The end time.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

BOTH_DEGREE int Outputs the bidirectional popularity of the vertex.

OUT_DEGREE int Outputs the outbound popularity of the vertex.

IN_DEGREE int Outputs the inbound popularity of the vertex.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

OUT_DEGREE int Outputs the outbound popularity of the vertex.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

IN_DEGREE int Outputs the inbound popularity of the vertex.

21.1.1 Node importance measurement

- 852/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

ClosenessCentrality

The ClosenessCentrality algorithm is used to calculate the reciprocal of the average of the shortest distance from one vertex to

all other reachable vertexes. The larger the value is, the closer the vertex is to the center of the graph, and it can also be used to

measure how long it takes for information to be transmitted from that vertex to other vertexes.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

21.1.2 Path

APSP

The APSP (Full Graph Shortest Path) algorithm is used to find all shortest paths between two vertexes in a graph.

This algorithm is supported by Nebula Analytics only.

•

•

Parameter Predefined

value

Description

ITERATIONS 10 The maximum number of iterations.

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

CHOSEN -1 The selected vertex ID, -1 means random selection.

CONSTANT 2 The constant.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

VALUE double The betweenness centrality score of the vertex.

•

•

Parameter Predefined

value

Description

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

NUM_SAMPLES 10 The number of sample vertices.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

VALUE double The closeness centrality score of the vertex.

Note

21.1.2 Path

- 853/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Output parameters

SSSP

The SSSP (Single source shortest Path) algorithm is used to calculate the shortest path length from a given vertex (source

vertex) to other vertexes. It is usually used in scenarios such as network routing and path designing.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

BFS

The BFS (Breadth First traversal) algorithm is a basic graph traversal algorithm. It gives a source vertex and accesses other

vertexes with increasing hops, that is, it traverses all the adjacent vertexes of the vertex first and then extends to the adjacent

vertexes of the adjacent vertexes.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

•

Parameter Type Description

VID1 Determined by vid_type The VID of the source vertex.

VID2 Determined by vid_type The VID of the destination vertex.

DISTANCE double Outputs the distance from VID1 to VID2 .

•

•

Parameter Predefined value Description

ROOT - The VID of the source vertex.

•

Parameter Type Description

VID Determined by vid_type The VID of the source vertex.

DISTANCE double Outputs the distance from ROOT to VID .

•

•

Parameter Predefined

value

Description

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

ROOT - The VID of the source vertex.

•

Parameter Type Description

ROOT Determined by vid_type The VID of the source vertex.

VISITED int Outputs the number of the vertex accessed by ROOT .

21.1.2 Path

- 854/927 - 2022 Vesoft Inc.

21.1.3 Community discovery

LPA

The LPA (label propagation) algorithm is a semi-supervised learning method based on graph. Its basic idea is to use label

information of labeled vertexes to predict label information of unlabeled vertexes. vertexes include labeled and unlabeled data,

and their edges represent the similarity of two vertexes. The labels of vertexes are transferred to other vertexes according to the

similarity. Label data is like a source that can be labeled for unlabeled data. The greater the similarity of vertexes is, the easier

the label is to spread.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

HANP

The HANP (Hop Preference & Node Preference) algorithm is an optimization algorithm of LPA algorithm, which considers other

information of labels, such as degree information, distance information, etc., and introduces attenuation coefficient during

propagation to prevent transition propagation.

•

•

Parameter Predefined

value

Description

ITERATIONS 10 The maximum number of iterations.

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

IS_CALC_MODULARITY false Whether to calculate modularity.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

LABEL The same with VID Outputs the vertex IDs that have the same label.

21.1.3 Community discovery

- 855/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

ConnectedComponent

The ConnectedComponent algorithm is used to calculate a subgraph of a graph in which all vertexes are connected to each other.

Strongly Connected Component takes the path direction into account, while Weakly Connected Component does not.

Nebula Analytics only supports Weakly Connected Component.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

•

•

Parameter Predefined

value

Description

ITERATIONS 10 The maximum number of iterations.

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

PREFERENCE 1.0 The bias of the neighbor vertex degree. m>0 indicates biasing the neighbor with high

vertex degree, m<0 indicates biasing the neighbor with low vertex degree, and m=0

indicates ignoring the neighbor vertex degree.

HOP_ATT 0.1 The attenuation coefficient. The value ranges from 0 to 1 . The larger the value, the

faster it decays and the fewer times it can be passed.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

LABEL The same with VID Outputs the vertex IDs that have the same label.

Note

•

•

Parameter Predefined

value

Description

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

IS_CALC_MODULARITY false Whether to calculate modularity.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

LABEL The same with VID Outputs the vertex IDs that have the same label.

21.1.3 Community discovery

- 856/927 - 2022 Vesoft Inc.

Louvain

The Louvain algorithm is a community discovery algorithm based on modularity. This algorithm performs well in efficiency and

effect, and can be used to find hierarchical community structures. Its optimization goal is to maximize the modularity of the

whole community network. Modularity is used to distinguish the differences in link density within and between communities, and

to measure how well each vertex divides the community. In general, a good clustering approach will result in more modularity

within communities than between communities.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

21.1.4 Graph feature

TriangleCount

The TriangleCount algorithm is used to count the number of triangles in a graph. The more triangles, the higher the degree of

vertex association in the graph, the tighter the organizational relationship.

•

•

Parameter Predefined

value

Description

IS_DIRECTED true Whether to consider the direction of the edges. If set to false , the system

automatically adds the reverse edge.

OUTER_ITERATION 20 The maximum number of iterations in the first phase.

INNER_ITERATION 10 The maximum number of iterations in the second phase.

IS_CALC_MODULARITY false Whether to calculate modularity.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

LABEL The same with VID Outputs the vertex IDs that have the same label.

21.1.4 Graph feature

- 857/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters when OPT=1

Output parameters when OPT=2

Output parameters when OPT=3

21.1.5 Clustering

ClusteringCoefficient

The ClusteringCoefficient algorithm is used to calculate the clustering degree of vertexes in a graph. In all kinds of network

structures reflecting the real world, especially social network structures, network groups with relatively high density tend to be

formed between various vertexes. In other words, compared with the networks randomly connected between two vertexes, the

aggregation coefficient of the real world network is higher.

•

•

Parameter Predefined

value

Description

OPT 3 The calculation type. Optional values are 1 , 2 and 3 . 1 indicates counting

the entire graph, 2 indicates counting through each vertex, 3 indicates

listing all triangles.

REMOVED_DUPLICATION_EDGE true Whether to exclude repeated edges.

REMOVED_SELF_EDGE true Whether to exclude self-loop edge.

•

Parameter Type Description

COUNT int Outputs the number of the triangles in the full graph space.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

COUNT int Outputs the number of the triangles based on the vertex.

•

Parameter Type Description

VID1 The same with VID Outputs the ID of the vertex A that forms the triangle.

VID2 The same with VID Outputs the ID of the vertex B that forms the triangle.

VID3 The same with VID Outputs the ID of the vertex C that forms the triangle.

21.1.5 Clustering

- 858/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters when TYPE=local

Output parameters when TYPE=global

21.1.6 Similarity

Jaccard

The Jaccard algorithm is used to calculate the similarity of two vertexes (or sets) and predict the relationship between them. It is

suitable for social network friend recommendation, relationship prediction and other scenarios.

•

•

Parameter Predefined

value

Description

TYPE local The clustering type. Optional values are local and global . local indicates

counting through each vertex, global indicates counting the entire graph.

REMOVED_DUPLICATION_EDGE true Whether to exclude repeated edges.

REMOVED_SELF_EDGE true Whether to exclude self-loop edge.

•

Parameter Type Description

VID Determined by vid_type The vertex ID.

VALUE double Outputs the clustering coefficient of the vertex.

•

Parameter Type Description

VID Determined by

vid_type

The vertex ID.

VALUE double Outputs the clustering coefficient of the full graph space. There is only one

line of data.

21.1.6 Similarity

- 859/927 - 2022 Vesoft Inc.

Parameter descriptions are as follows:

Nebula Analytics

Input parameters

Output parameters

•

•

Parameter Predefined

value

Description

IDS1 - A set of VIDs. Multiple VIDs are separated by commas (,). It is not allowed to be

empty.

IDS2 - A set of VIDs. Multiple VIDs are separated by commas (,). It can be empty, and

empty represents all vertexes.

REMOVED_SELF_EDGE true Whether to exclude self-loop edges.

•

Parameter Type Description

VID1 Determined by vid_type The ID of the first vertex.

VID2 Determined by vid_type The ID of the second vertex.

VALUE double The similarity between VID1 and VID2 .

Last update: March 13, 2023

21.1.6 Similarity

- 860/927 - 2022 Vesoft Inc.

21.2 Nebula Algorithm

Nebula Algorithm (Algorithm) is a Spark application based on GraphX. It uses a complete algorithm tool to perform graph

computing on the data in the NebulaGraph database by submitting a Spark task. You can also programmatically use the

algorithm under the lib repository to perform graph computing on DataFrame.

21.2.1 Version compatibility

The correspondence between the Nebula Algorithm release and the NebulaGraph core release is as follows.

21.2.2 Prerequisites

Before using the Nebula Algorithm, users need to confirm the following information:

The NebulaGraph services have been deployed and started. For details, see Nebula Installation.

The Spark version is 2.4.x.

The Scala version is 2.11.

(Optional) If users need to clone, compile, and package the latest Algorithm in Github, install Maven.

21.2.3 Limitations

When submitting the algorithm package directly, the data of the vertex ID must be an integer. That is, the vertex ID can be INT

or String, but the data itself is an integer.

For non-integer String data, it is recommended to use the algorithm interface. You can use the dense_rank function of SparkSQL

to encode the data as the Long type instead of the String type.

Graph computing outputs vertex datasets, and the algorithm results are stored in DataFrames as the properties of vertices.

You can do further operations such as statistics and filtering according to your business requirements.

Nebula Algorithm NebulaGraph

3.0-SNAPSHOT nightly

3.0.0 3.1.0

2.6.x 2.6.x

2.5.0 2.5.0,2.5.1

2.1.0 2.0.0,2.0.1

•

•

•

•

•

•

•

21.2 Nebula Algorithm

- 861/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm
https://spark.apache.org/graphx/
https://maven.apache.org/download.cgi

21.2.4 Supported algorithms

The graph computing algorithms supported by Nebula Algorithm are as follows.

21.2.4 Supported algorithms

- 862/927 - 2022 Vesoft Inc.

Algorithm Description Scenario Properties name Properties

type

PageRank The rank of

pages

Web page

ranking, key

node mining

pagerank double/

string

Louvain Louvain Community

mining,

hierarchical

clustering

louvain int/string

KCore K core Community

discovery,

financial risk

control

kcore int/string

LabelPropagation Label

propagation

Information

spreading,

advertising, and

community

discovery

lpa int/string

Hanp Label

propagation

advanced

Community

discovery,

recommendation

system

hanp int/string

ConnectedComponent Weakly

connected

component

Community

discovery, island

discovery

cc int/string

StronglyConnectedComponent Strongly

connected

component

Community

discovery

scc int/string

ShortestPath The shortest

path

Path planning,

network

planning

shortestpath string

TriangleCount Triangle

counting

Network

structure

analysis

trianglecount int/string

GraphTriangleCount Graph

triangle

counting

Network

structure and

tightness

analysis

count int

BetweennessCentrality Intermediate

centrality

Key node mining,

node influence

computing

betweenness double/

string

ClosenessCentrality Closeness

centrality

Key node mining,

node influence

computing

closeness double/

string

DegreeStatic Degree of

statistical

Graph structure

analysis

degree,inDegree,outDegree int/string

ClusteringCoefficient Aggregation

coefficient

Recommendation

system, telecom

fraud analysis

clustercoefficient double/

string

Jaccard jaccard string

21.2.4 Supported algorithms

- 863/927 - 2022 Vesoft Inc.

When writing the algorithm results into the NebulaGraph, make sure that the tag in the corresponding graph space has properties

names and data types corresponding to the table above.

21.2.5 Implementation methods

Nebula Algorithm implements the graph calculating as follows:

Read the graph data of DataFrame from the NebulaGraph database using the Nebula Spark Connector.

Transform the graph data of DataFrame to the GraphX graph.

Use graph algorithms provided by GraphX (such as PageRank) or self-implemented algorithms (such as Louvain).

For detailed implementation methods, see Scala file.

21.2.6 Get Nebula Algorithm

Compile and package

Clone the repository nebula-algorithm .

Enter the directory nebula-algorithm .

Compile and package.

After the compilation, a similar file nebula-algorithm-3.x.x.jar is generated in the directory nebula-algorithm/target .

Download maven from the remote repository

Download address

Algorithm Description Scenario Properties name Properties

type

Jaccard

similarity

Similarity

computing,

recommendation

system

BFS Breadth-

First Search

Sequence

traversal,

shortest path

planning

bfs string

Node2Vec - Graph

classification

node2vec string

Note

1.

2.

3.

1.

$ git clone -b v3.0.0 https://github.com/vesoft-inc/nebula-algorithm.git

2.

$ cd nebula-algorithm

3.

$ mvn clean package -Dgpg.skip -Dmaven.javadoc.skip=true -Dmaven.test.skip=true

21.2.5 Implementation methods

- 864/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/tree/master/nebula-algorithm/src/main/scala/com/vesoft/nebula/algorithm/lib
https://repo1.maven.org/maven2/com/vesoft/nebula-algorithm/

21.2.7 How to use

Use algorithm interface (recommended)

The lib repository provides 10 common graph algorithms.

Add dependencies to the file pom.xml .

Use the algorithm (take PageRank as an example) by filling in parameters. For more examples, see example.

By default, the DataFrame that executes the algorithm sets the first column as the starting vertex, the second column as the destination

vertex, and the third column as the edge weights (not the rank in the NebulaGraph).

If your vertex IDs are Strings, see Pagerank Example for how to encoding and decoding them.

1.

<dependency>

 <groupId>com.vesoft</groupId>

 <artifactId>nebula-algorithm</artifactId>

 <version>3.0.0</version>

</dependency>

2.

Note

val prConfig = new PRConfig(5, 1.0)

val louvainResult = PageRankAlgo.apply(spark, data, prConfig, false)

21.2.7 How to use

- 865/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/tree/master/example/src/main/scala/com/vesoft/nebula/algorithm
https://github.com/vesoft-inc/nebula-algorithm/blob/master/example/src/main/scala/com/vesoft/nebula/algorithm/PageRankExample.scala

Submit the algorithm package directly

There are limitations to use sealed packages. For example, when sinking a repository into NebulaGraph, the property name of the tag

created in the sunk graph space must match the preset name in the code. The first method is recommended if the user has

development skills.

Note

21.2.7 How to use

- 866/927 - 2022 Vesoft Inc.

Set the Configuration file.
1.

{

 # Configurations related to Spark

 spark: {

 app: {

 name: LPA

 # The number of partitions of Spark

 partitionNum:100

 }

 master:local

 }

 data: {

 # Data source. Optional values are nebula, csv, and json.

 source: csv

 # Data sink. The algorithm result will be written into this sink. Optional values are nebula, csv, and text.

 sink: nebula

 # Whether the algorithm has a weight.

 hasWeight: false

 }

 # Configurations related to NebulaGraph

 nebula: {

 # Data source. When NebulaGraph is the data source of the graph computing, the configuration of `nebula.read` is valid.

 read: {

 # The IP addresses and ports of all Meta services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".

 # To deploy NebulaGraph by using Docker Compose, fill in the port with which Docker Compose maps to the outside.

 # Check the status with `docker-compose ps`.

 metaAddress: "192.168.*.10:9559"

 # The name of the graph space in NebulaGraph.

 space: basketballplayer

 # Edge types in NebulaGraph. When there are multiple labels, the data of multiple edges will be merged.

 labels: ["serve"]

 # The property name of each edge type in NebulaGraph. This property will be used as the weight column of the algorithm. Make sure that it corresponds to the edge type.

 weightCols: ["start_year"]

 }

 # Data sink. When the graph computing result sinks into NebulaGraph, the configuration of `nebula.write` is valid.

 write:{

 # The IP addresses and ports of all Graph services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".

 # To deploy by using Docker Compose, fill in the port with which Docker Compose maps to the outside.

 # Check the status with `docker-compose ps`.

 graphAddress: "192.168.*.11:9669"

 # The IP addresses and ports of all Meta services. Multiple addresses are separated by commas (,). Example: "ip1:port1,ip2:port2".

 # To deploy NebulaGraph by using Docker Compose, fill in the port with which Docker Compose maps to the outside.

 # Check the staus with `docker-compose ps`.

 metaAddress: "192.168.*.12:9559"

 user:root

 pswd:nebula

 # Before submitting the graph computing task, create the graph space and tag.

 # The name of the graph space in NebulaGraph.

 space:nb

 # The name of the tag in NebulaGraph. The graph computing result will be written into this tag. The property name of this tag is as follows.

 # PageRank: pagerank

 # Louvain: louvain

 # ConnectedComponent: cc

 # StronglyConnectedComponent: scc

 # LabelPropagation: lpa

 # ShortestPath: shortestpath

 # DegreeStatic: degree,inDegree,outDegree

 # KCore: kcore

 # TriangleCount: tranglecpunt

 # BetweennessCentrality: betweennedss

 tag:pagerank

 }

 }

 local: {

 # Data source. When the data source is csv or json, the configuration of `local.read` is valid.

 read:{

 filePath: "hdfs://127.0.0.1:9000/edge/work_for.csv"

 # If the CSV file has a header or it is a json file, use the header. If not, use [_c0, _c1, _c2, ..., _cn] instead.

 # The header of the source VID column.

 srcId:"_c0"

 # The header of the destination VID column.

 dstId:"_c1"

 # The header of the weight column.

 weight: "_c2"

 # Whether the csv file has a header.

 header: false

 # The delimiter in the csv file.

 delimiter:","

 }

 # Data sink. When the graph computing result sinks to the csv or text file, the configuration of `local.write` is valid.

 write:{

 resultPath:/tmp/

 }

 }

 algorithm: {

21.2.7 How to use

- 867/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-algorithm/blob/v3.0.0/nebula-algorithm/src/main/resources/application.conf

Submit the graph computing task.

Example:

 # The algorithm to execute. Optional values are as follow:

 # pagerank, louvain, connectedcomponent, labelpropagation, shortestpaths,

 # degreestatic, kcore, stronglyconnectedcomponent, trianglecount ,

 # betweenness, graphtriangleCount.

 executeAlgo: pagerank

 # PageRank

 pagerank: {

 maxIter: 10

 resetProb: 0.15

 }

 # Louvain

 louvain: {

 maxIter: 20

 internalIter: 10

 tol: 0.5

 }

 # ...

}

}

2.

${SPARK_HOME}/bin/spark-submit --master <mode> --class com.vesoft.nebula.algorithm.Main <nebula-algorithm-3.0.0.jar_path> -p <application.conf_path>

${SPARK_HOME}/bin/spark-submit --master "local" --class com.vesoft.nebula.algorithm.Main /root/nebula-algorithm/target/nebula-algorithm-3.0-SNAPSHOT.jar -p /root/nebula-algorithm/src/main/

resources/application.conf

Last update: March 13, 2023

21.2.7 How to use

- 868/927 - 2022 Vesoft Inc.

21.3 Nebula Analytics

Nebula Analytics is a high-performance graph computing framework tool that performs graph analysis of data in the

NebulaGraph database.

Only available for the NebulaGraph Enterprise Edition.

21.3.1 Scenarios

You can import data from data sources as NebulaGraph clusters, CSV files on HDFS, or local CSV files into Nebula Analytics and

export the graph computation results to NebulaGraph clusters, CSV files on HDFS, or local CSV files from Nebula Analytics.

21.3.2 Limitations

When you import NebulaGraph cluster data into Nebula Analytics and export the graph computation results from Nebula

Analytics to a NebulaGraph cluster, the graph computation results can only be exported to the graph space where the data

source is located.

21.3.3 Version compatibility

The version correspondence between Nebula Analytics and NebulaGraph is as follows.

Enterpriseonly

Nebula Analytics NebulaGraph

3.2.0 3.1.0

1.0.x 3.0.x

0.9.0 2.6.x

21.3 Nebula Analytics

- 869/927 - 2022 Vesoft Inc.

21.3.4 Graph algorithms

Nebula Analytics supports the following graph algorithms.

21.3.5 Install Nebula Analytics

When installing a cluster of multiple Nebula Analytics on multiple nodes, you need to install Nebula Analytics to the same path

and set up SSH-free login between nodes.

Algorithm Description Category

APSP All Pair Shortest Path Path

SSSP Single Source Shortest Path Path

BFS Breadth-first search Path

PageRank It is used to rank web pages. Node importance

measurement

KCore k-Cores Node importance

measurement

DegreeCentrality It is a simple count of the total number of connections linked to

a vertex.

Node importance

measurement

DegreeWithTime Neighbor statistics based on the time range of edge ranks Node importance

measurement

BetweennessCentrality Intermediate centrality Node importance

measurement

ClosenessCentrality Closeness centrality Node importance

measurement

TriangleCount It counts the number of triangles. Graph feature

LPA Label Propagation Algorithm Community discovery

WCC Weakly connected component Community discovery

LOUVAIN It detects communities in large networks. Community discovery

HANP Hop attenuation & Node Preference Community discovery

Clustering Coefficient It is a measure of the degree to which nodes in a graph tend to

cluster together.

Clustering

Jaccard Jaccard similarity Similarity

sudo rpm -i nebula-analytics-3.2.0-centos.x86_64.rpm --prefix /home/xxx/nebula-analytics

21.3.4 Graph algorithms

- 870/927 - 2022 Vesoft Inc.

21.3.6 How to use Nebula Analytics

After installation, you can set parameters of different algorithms and then execute a script to obtain the results of the algorithms

and export them to the specified format.

21.3.6 How to use Nebula Analytics

- 871/927 - 2022 Vesoft Inc.

Select one node from the Nebula Analytics cluster and then access the scripts directory.
1.

$ cd scripts

21.3.6 How to use Nebula Analytics

- 872/927 - 2022 Vesoft Inc.

Confirm the data source and export path. Configuration steps are as follows.

NebulaGraph clusters as the data source

Modify the configuration file nebula.conf to configure the NebulaGraph cluster.

Modify the related parameters in the script to be used, such as run_pagerank.sh .

2.

•

a.

The number of retries connecting to NebulaGraph.

--retry=3

The name of the graph space where you read or write data.

--space=baskeyballplayer

Read data from NebulaGraph.

The metad process address.

--meta_server_addrs=192.168.8.100:9559, 192.168.8.101:9559, 192.168.8.102:9559

The name of edges.

--edges=LIKES

The name of the property to be read as the weight of the edge. Can be either the attribute name or _rank.

#--edge_data_fields

The number of rows read per scan.

--read_batch_size=10000

Write data to NebulaGraph.

The graphd process address.

--graph_server_addrs=192.168.8.100:9669

The account to log into NebulaGraph.

--user=root

The password to log into NebulaGraph.

--password=nebula

The pattern used to write data back to NebulaGraph: insert or update.

--mode=insert

The tag name written back to NebulaGraph.

--tag=pagerank

The property name corresponding to the tag.

--prop=pr

The property type corresponding the the tag.

--type=double

The number of rows per write.

--write_batch_size=1000

The file path where the data failed to be written back to NebulaGraph is stored.

--err_file=/home/xxx/analytics/err.txt

b.

The sum of the number of processes running on all machines in the cluster. It is recommended to be the number of machines or the number of nodes in the NUMA architecture.

WNUM=3

The number of threads per process. It is recommended to set the maximum value to be the number of hardware threads of the machine.

WCORES=4

The path to the data source.

Set to read data from NebulaGraph via the nebula.conf file.

INPUT=${INPUT:="nebula:$PROJECT/scripts/nebula.conf"}

Set to read data from the CSV files on HDFS or on local directories.

#INPUT=${INPUT:="$PROJECT/data/graph/v100_e2150_ua_c3.csv"}

The export path to the graph computation results.

Data can be exported to a NebulaGraph. If the data source is also a NebulaGraph, the results will be exported to the graph space specified in nebula.conf.

OUTPUT=${OUTPUT:="nebula:$PROJECT/scripts/nebula.conf"}

Data can also be exported to the CSV files on HDFS or on local directories.

OUTPUT=${OUTPUT:='hdfs://192.168.8.100:9000/_test/output'}

If the value is true, it is a directed graph, if false, it is an undirected graph.

IS_DIRECTED=${IS_DIRECTED:=true}

Set whether to encode ID or not.

NEED_ENCODE=${NEED_ENCODE:=true}

The ID type of the data source vertices. For example string, int32, and int64.

VTYPE=${VTYPE:=int32}

Encoding type. The value distributed specifies the distributed vertex ID encoding. The value single specifies the single-machine vertex ID encoding.

ENCODER=${ENCODER:="distributed"}

The parameter for the PageRank algorithm. Algorithms differ in parameters.

EPS=${EPS:=0.0001}

DAMPING=${DAMPING:=0.85}

The number of iterations.

ITERATIONS=${ITERATIONS:=100}

21.3.6 How to use Nebula Analytics

- 873/927 - 2022 Vesoft Inc.

Local or HDFS CSV files as the data source

Modify parameters in the script to be used, such as run_pagerank.sh .

Modify the configuration file cluster to set the Nebula Analytics cluster nodes and task assignment weights for executing the

algorithm.

Run the algorithm script. For example:

View the graph computation results in the export path.

For exporting to a NebulaGraph cluster, check the results according to the settings in nebula.conf .

For exporting the results to the CSV files on HDFS or on local directories, check the results according to the settings in OUTPUT ,

which is a compressed file in the .gz format.

•

The sum of the number of processes running on all machines in the cluster. It is recommended to be the number of machines or the number of nodes in the NUMA architecture.

WNUM=3

The number of threads per process. It is recommended to set the maximum value to be the number of hardware threads of the machine.

WCORES=4

The path to the data source.

Set to read data from NebulaGraph via the nebula.conf file.

INPUT=${INPUT:="nebula:$PROJECT/scripts/nebula.conf"}

Set to read data from the CSV files on HDFS or on local directories.

INPUT=${INPUT:="$PROJECT/data/graph/v100_e2150_ua_c3.csv"}

The export path to the graph computation results.

Data can be exported to a NebulaGraph. If the data source is also a NebulaGraph, the results will be exported to the graph space specified in nebula.conf.

OUTPUT=${OUTPUT:="nebula:$PROJECT/scripts/nebula.conf"}

Data can also be exported to the CSV files on HDFS or on local directories.

OUTPUT=${OUTPUT:='hdfs://192.168.8.100:9000/_test/output'}

If the value is true, it is a directed graph, if false, it is an undirected graph.

IS_DIRECTED=${IS_DIRECTED:=true}

Set whether to encode ID or not.

NEED_ENCODE=${NEED_ENCODE:=true}

The ID type of the data source vertices. For example string, int32, and int64.

VTYPE=${VTYPE:=int32}

The value distributed specifies the distributed vertex ID encoding. The value single specifies the single-machine vertex ID encoding.

ENCODER=${ENCODER:="distributed"}

The parameter for the PageRank algorithm. Algorithms differ in parameters.

EPS=${EPS:=0.0001}

DAMPING=${DAMPING:=0.85}

The number of iterations.

ITERATIONS=${ITERATIONS:=100}

3.

Nebula Analytics Cluster Node IP Addresses: Task Assignment Weights

192.168.8.200:1

192.168.8.201:1

192.168.8.202:1

4.

./run_pagerank.sh

5.

•

•

Last update: March 13, 2023

21.3.6 How to use Nebula Analytics

- 874/927 - 2022 Vesoft Inc.

21.4 Nebula Explorer Workflow

Nebula Explorer provides workflows for visual calculations.

For more details, see Workflows.

Nebula Explorer is only available in the enterprise version.

Enterpriseonly

Last update: July 20, 2022

21.4 Nebula Explorer Workflow

- 875/927 - 2022 Vesoft Inc.

21.5 Dag Controller

Dag Controller is a task scheduling tool that can schedule the jobs which type is DAG (directed acyclic graph). The job consists of

multiple tasks to form a directed acyclic graph, and there is a dependency between the tasks.

The Dag Controller can perform complex graph computing with Nebula Analytics. For example, the Dag Controller sends an

algorithm request to Nebula Analytics, which saves the result to NebulaGraph or HDFS. The Dag Controller then takes the result

as input to the next algorithmic task to create a new task.

This topic describes how to use the Dag Controller.

Only available for the NebulaGraph Enterprise Edition.

21.5.1 Prerequisites

The HDFS 2.2.x or later has been deployed.

The JDK 1.8 has been deployed.

21.5.2 Preparations

There are some differences between installation packages and commands in different environments. The preparations are as

follows

The operating system is CentOS 7.

If the Nebula Analytics and the Dag Controller are deployed on multiple machines, ensure network connectivity between the

machines.

If the Nebula Analytics is a cluster with distributed architecture, ensure the paths and ports are configured identically for each

machine.

21.5.3 Precautions

The BFS and SSSP algorithms need to verify the parameter root . They support only one upstream component and must specify

rows and columns. If multiple files exist, a random file is selected. If a row, column, or file is not found, an error will be

reported.

The similarity algorithm does not restrict the format of the upstream component, but it must specify columns. If multiple files

exist, the file will be superimposed randomly, and the first N rows of data will be processed. If rows and columns are specified,

or the specified column does not exist, an error will be reported.

21.5.4 Deploy Nebula Analytics

Install libatomic and psmisc.

Install the Nebula Analytics.

For example:

Enterpriseonly

•

•

•

•

•

•

•

1.

sudo yum -y install libatomic psmisc

2.

sudo rpm -ivh <analytics_package_name> --prefix <install_path>

sudo chown <user>:<user> -R <install path>

sudo rpm -ivh nebula-analytics-3.2.0-centos.x86_64.rpm --prefix=/home/vesoft/nebula-analytics

sudo chown vesoft:vesoft -R /home/vesoft/nebula-analytics

21.5 Dag Controller

- 876/927 - 2022 Vesoft Inc.

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html

Configure the correct Hadoop path and JDK path in the file set_env.sh , the file path is nebula-analytics/scripts/set_env.sh . If there are

multiple machines, ensure that the paths are the same.

21.5.5 Deploy Dag Controller

Complete the SSH password-free configurations so that the Dag Controller machine can log directly into the Nebula Analytics

machines and all machines within the Nebula Analytics cluster can connect directly to each other without passwords.

For example, the user in the machine A (Dag Controller) log directly into machine B-1 in the Nebula Analytics cluster over SSH

without passwords. Run the following commands on the machine A:

In the same way, complete the SSH password-free configurations so that the user in the machine A can log directly into the

machine B-2, B-3, etc. and all machines within the Nebula Analytics cluster can connect directly to each other without passwords.

Add the following to the file ~/.bash_profile and run the command source ~/.bash_profile to make it effective.

Install the Dag Controller.

For example:

Configure the username and port of the Nebula Analytics in the file dag-ctrl-api.yaml , the file path is dag-ctrl/etc/dag-ctrl-api.yaml . If

there are multiple machines, ensure that the usernames are the same.

Configure the algorithm file path (exec_file) in the file tasks.yaml , the file path is dag-ctrl/etc/tasks.yaml . If there are multiple

machines, ensure that the paths are the same.

Start the Dag Controller.

Check whether the startup is successful. The default port is 9002 which set in the file dag-Ctrl-api. yaml .

3.

export HADOOP_HOME=<hadoop_path>

export JAVA_HOME=<java_path>

1.

//Press Enter to execute the default option to generate the key.

ssh-keygen -t rsa

//After the public key file of machine A is installed to the user of the machine B-1, you can log into the machine B-1 from the machine A without passwords.

ssh-copy-id -i ~/.ssh/id_rsa.pub <B_user>@<B_IP>

2.

eval $(ssh-agent)

ssh-add ~/.ssh/id_rsa

3.

sudo rpm -ivh <analytics_package_name> --prefix <install_path>

sudo chown <user>:<user> -R <install path>

sudo rpm -ivh dag-ctrl-3.2.0-centos.x86_64.rpm --prefix=/home/vesoft/dag-ctrl

sudo chown vesoft:vesoft -R /home/vesoft/dag-ctrl

4.

The user name and SSH port of the Nebula Analytics machine.

SSH:

 UserName: vesoft

 Port: 22

#The parallel thread pool sizes of the tasks and jobs.

JobPool:

 Sleep: 3 # Check every 3 seconds for any outstanding jobs.

 Size: 3 # Up to 3 jobs can be executed in parallel.

TaskPool:

 CheckStatusSleep: 1 # Check the task status every second.

 Size: 10 # Up to 10 tasks can be executed in parallel.

Dag:

 VarDataListMaxSize: 100 # If HDFS columns are read, the number is limited to 100 at a time.

5.

6.

cd <dag_ctrl_install_path>

./scripts/start.sh

7.

netstat -aon | grep 9002

21.5.5 Deploy Dag Controller

- 877/927 - 2022 Vesoft Inc.

21.5.6 Next to do

After the Nebula Analytics and the Dag Controller are configured and started, you need to configure resources on the Nebula

Explorer to perform complex algorithm computing. For details, see Prepare resources.

21.5.7 FAQ

Will the Dag Controller service crash if the Graph service returns too much result data?

The Dag Controller service only provides scheduling capabilities and will not crash, but the Nebula Analytics service may crash

due to insufficient memory when writing too much data to HDFS or NebulaGraph, or reading too much data from HDFS or

NebulaGraph.

Can I continue a job from a failed task?

Not supported. You can only re-execute the entire job.

How can I speed it up if a task result is saved slowly or data is transferred slowly between tasks?

The Dag Controller contains graph query components and graph computing components. Graph queries send requests to a graph

service for queries, so the graph queries can only be accelerated by increasing the memory of the graph service. Graph

computing is performed on distributed nodes provided by Nebula Analytics, so graph computing can be accelerated by

increasing the size of the Nebula Analytics cluster.

The HDFS server cannot be connected and the task status is running.

Set the timeout period and times for HDFS connections as follows:

How to resolve the error Err:dial unix: missing address ?

Modify the configuration file dag-ctrl/etc/dag-ctrl-api.yaml to configure the UserName of the SSH.

How to resolve the error bash: /home/xxx/nebula-analytics/scripts/run_algo.sh: No such file or directory ?

Modify the configuration file dag-ctrl/etc/tasks.yaml to configure the algorithm execution path parameter exec_file .

How to resolve the error /lib64/libm.so.6: version 'GLIBC_2.29' not found (required by /home/vesoft/jdk-18.0.1/jre/lib/amd64/server/libjvm.so)?

Because the operating system version does not support JDK18, the command YUM cannot download GLIBC_2.29 , you can install

JDK1.8. Does not forget to change the JDK address in nebula-analytics/scripts/set_env.sh .

How to resolve the error handshake failed: ssh: unable to authenticate, attempted methods [none publickey], no supported methods remain?

Reconfigure the permissions to 744 on the folder .ssh and 600 on the file .ssh/authorized_keys .

<configuration>

<property>

 <name>ipc.client.connect.timeout</name>

 <value>3000</value>

</property>

<property>

 <name>ipc.client.connect.max.retries.on.timeouts</name>

 <value>3</value>

</property>

</configuration>

21.5.6 Next to do

- 878/927 - 2022 Vesoft Inc.

How to resolve the error There are 0 Nebula Analytics available. clusterSize should be less than or equal to it ?

The possible causes are as follows:

The Nebula Analytics has not been deployed. Configure the Nebula Analytics as described in this document.

The Nebula Analytics has been deployed, but can not connect to the Dag Controller. For example, the IP address is incorrect,

SSH is not configured, and the startup users of the two services are inconsistent (causing SSH login failures).

How to resolve the error broadcast.hpp:193] Check failed: (size_t)recv_bytes >= sizeof(chunk_tail_t) recv message too small: 0?

The amount of data to be processed is too small, but the number of compute nodes and processes is too large. Smaller clusterSize

and processes need to be set when submitting jobs.

•

•

Last update: March 13, 2023

21.5.7 FAQ

- 879/927 - 2022 Vesoft Inc.

22. Nebula Spark Connector

Nebula Spark Connector is a Spark connector application for reading and writing NebulaGraph data in Spark standard format.

Nebula Spark Connector consists of two parts: Reader and Writer.

Reader

Provides a Spark SQL interface. This interface can be used to read NebulaGraph data. It reads one vertex or edge type data at

a time and assemble the result into a Spark DataFrame.

Writer

Provides a Spark SQL interface. This interface can be used to write DataFrames into NebulaGraph in a row-by-row or batch-

import way.

For more information, see Nebula Spark Connector.

22.1 Use cases

Nebula Spark Connector applies to the following scenarios:

Migrate data between different NebulaGraph clusters.

Migrate data between different graph spaces in the same NebulaGraph cluster.

Migrate data between NebulaGraph and other data sources.

Graph computing with Nebula Algorithm.

22.2 Benefits

The features of Nebula Spark Connector 3.0.0 are as follows:

Supports multiple connection settings, such as timeout period, number of connection retries, number of execution retries, etc.

Supports multiple settings for data writing, such as setting the corresponding column as vertex ID, starting vertex ID,

destination vertex ID or attributes.

Supports non-attribute reading and full attribute reading.

Supports reading NebulaGraph data into VertexRDD and EdgeRDD, and supports non-Long vertex IDs.

Unifies the extended data source of SparkSQL, and uses DataSourceV2 to extend NebulaGraph data.

Three write modes, insert , update and delete , are supported. insert mode will insert (overwrite) data, update mode will only

update existing data, and delete mode will only delete data.

22.3 Release note

Release

•

•

•

•

•

•

•

•

•

•

•

•

22. Nebula Spark Connector

- 880/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-spark-connector/blob/v3.0.0/README_CN.md
https://github.com/vesoft-inc/nebula-spark-connector/releases/tag/v3.0.0

22.4 Get Nebula Spark Connector

22.4.1 Compile package

Install Nebula Spark Connector of version 2.4.x.

Clone repository nebula-spark-connector .

Make the nebula-spark-connector directory the current working directory.

Compile package.

After compilation, a similar file nebula-spark-connector-3.0.0-SHANPSHOT.jar is generated in the directory nebula-spark-connector/nebula-spark-

connector/target/ .

22.4.2 Download maven remote repository

Download

22.5 How to use

When using Nebula Spark Connector to reading and writing NebulaGraph data, You can refer to the following code.

nebula() receives two configuration parameters, including connection configuration and read-write configuration.

22.5.1 Reading data from NebulaGraph

Note

1.

$ git clone -b v3.0.0 https://github.com/vesoft-inc/nebula-spark-connector.git

2.

$ cd nebula-spark-connector/nebula-spark-connector

3.

$ mvn clean package -Dmaven.test.skip=true -Dgpg.skip -Dmaven.javadoc.skip=true

Read vertex and edge data from NebulaGraph.

spark.read.nebula().loadVerticesToDF()

spark.read.nebula().loadEdgesToDF()

Write dataframe data into NebulaGraph as vertex and edges.

dataframe.write.nebula().writeVertices()

dataframe.write.nebula().writeEdges()

val config = NebulaConnectionConfig

 .builder()

 .withMetaAddress("127.0.0.1:9559")

 .withConenctionRetry(2)

 .withExecuteRetry(2)

 .withTimeout(6000)

 .build()

val nebulaReadVertexConfig: ReadNebulaConfig = ReadNebulaConfig

 .builder()

 .withSpace("test")

 .withLabel("person")

 .withNoColumn(false)

 .withReturnCols(List("birthday"))

 .withLimit(10)

 .withPartitionNum(10)

 .build()

val vertex = spark.read.nebula(config, nebulaReadVertexConfig).loadVerticesToDF()

val nebulaReadEdgeConfig: ReadNebulaConfig = ReadNebulaConfig

 .builder()

 .withSpace("test")

 .withLabel("knows")

 .withNoColumn(false)

 .withReturnCols(List("degree"))

 .withLimit(10)

22.4 Get Nebula Spark Connector

- 881/927 - 2022 Vesoft Inc.

https://repo1.maven.org/maven2/com/vesoft/nebula-spark-connector/

NebulaConnectionConfig is the configuration for connecting to the NebulaGraph, as described below.

ReadNebulaConfig is the configuration to read NebulaGraph data, as described below.

22.5.2 Write data into NebulaGraph

The values of columns in a dataframe are automatically written to the NebulaGraph as property values.

 .withPartitionNum(10)

 .build()

val edge = spark.read.nebula(config, nebulaReadEdgeConfig).loadEdgesToDF()

•

Parameter Required Description

withMetaAddress Yes Specifies the IP addresses and ports of all Meta Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... . Read data is no need

to configure withGraphAddress .

withConnectionRetry No The number of retries that the Nebula Java Client connected to the NebulaGraph.

The default value is 1 .

withExecuteRetry No The number of retries that the Nebula Java Client executed query statements. The

default value is 1 .

withTimeout No The timeout for the Nebula Java Client request response. The default value is 6000 ,

Unit: ms.

•

Parameter Required Description

withSpace Yes NebulaGraph space name.

withLabel Yes The Tag or Edge type name within the NebulaGraph space.

withNoColumn No Whether the property is not read. The default value is false , read property. If the

value is true , the property is not read, the withReturnCols configuration is invalid.

withReturnCols No Configures the set of properties for vertex or edges to read. the format is

List(property1,property2,...) , The default value is List() , indicating that all properties

are read.

withLimit No Configure the number of rows of data read from the server by the Nebula Java

Storage Client at a time. The default value is 1000 .

withPartitionNum No Configures the number of Spark partitions to read the NebulaGraph data. The default

value is 100 . This value should not exceed the number of slices in the graph space

(partition_num).

Note

val config = NebulaConnectionConfig

 .builder()

 .withMetaAddress("127.0.0.1:9559")

 .withGraphAddress("127.0.0.1:9669")

 .withConenctionRetry(2)

 .build()

val nebulaWriteVertexConfig: WriteNebulaVertexConfig = WriteNebulaVertexConfig

 .builder()

 .withSpace("test")

 .withTag("person")

 .withVidField("id")

 .withVidPolicy("hash")

 .withVidAsProp(true)

 .withUser("root")

 .withPasswd("nebula")

 .withBatch(1000)

 .build()

df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

val nebulaWriteEdgeConfig: WriteNebulaEdgeConfig = WriteNebulaEdgeConfig

22.5.2 Write data into NebulaGraph

- 882/927 - 2022 Vesoft Inc.

The default write mode is insert , which can be changed to update via withWriteMode configuration:

 .builder()

 .withSpace("test")

 .withEdge("friend")

 .withSrcIdField("src")

 .withSrcPolicy(null)

 .withDstIdField("dst")

 .withDstPolicy(null)

 .withRankField("degree")

 .withSrcAsProperty(true)

 .withDstAsProperty(true)

 .withRankAsProperty(true)

 .withUser("root")

 .withPasswd("nebula")

 .withBatch(1000)

 .build()

df.write.nebula(config, nebulaWriteEdgeConfig).writeEdges()

val config = NebulaConnectionConfig

 .builder()

 .withMetaAddress("127.0.0.1:9559")

 .withGraphAddress("127.0.0.1:9669")

 .build()

val nebulaWriteVertexConfig = WriteNebulaVertexConfig

 .builder()

 .withSpace("test")

 .withTag("person")

 .withVidField("id")

 .withVidAsProp(true)

 .withBatch(1000)

 .withWriteMode(WriteMode.UPDATE)

22.5.2 Write data into NebulaGraph

- 883/927 - 2022 Vesoft Inc.

NebulaConnectionConfig is the configuration for connecting to the NebulaGraph, as described below.

WriteNebulaVertexConfig is the configuration of the write vertex, as described below.

 .build()

df.write.nebula(config, nebulaWriteVertexConfig).writeVertices()

•

Parameter Required Description

withMetaAddress Yes Specifies the IP addresses and ports of all Meta Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... .

withGraphAddress Yes Specifies the IP addresses and ports of Graph Services. Separate multiple

addresses with commas. The format is ip1:port1,ip2:port2,... .

withConnectionRetry No Number of retries that the Nebula Java Client connected to the NebulaGraph. The

default value is 1 .

•

Parameter Required Description

withSpace Yes NebulaGraph space name.

withTag Yes The Tag name that needs to be associated when a vertex is written.

withVidField Yes The column in the DataFrame as the vertex ID.

withVidPolicy No When writing the vertex ID, NebulaGraph use mapping function, supports HASH only.

No mapping is performed by default.

withVidAsProp No Whether the column in the DataFrame that is the vertex ID is also written as an

property. The default value is false . If set to true , make sure the Tag has the same

property name as VidField .

withUser No NebulaGraph user name. If authentication is disabled, you do not need to configure

the user name and password.

withPasswd No The password for the NebulaGraph user name.

withBatch Yes The number of rows of data written at a time. The default value is 1000 .

withWriteMode No Write mode. The optional values are insert and update . The default value is insert .

22.5.2 Write data into NebulaGraph

- 884/927 - 2022 Vesoft Inc.

WriteNebulaEdgeConfig is the configuration of the write edge, as described below.
•

Parameter Required Description

withSpace Yes NebulaGraph space name.

withEdge Yes The Edge type name that needs to be associated when a edge is written.

withSrcIdField Yes The column in the DataFrame as the vertex ID.

withSrcPolicy No When writing the starting vertex ID, NebulaGraph use mapping function, supports

HASH only. No mapping is performed by default.

withDstIdField Yes The column in the DataFrame that serves as the destination vertex.

withDstPolicy No When writing the destination vertex ID, NebulaGraph use mapping function,

supports HASH only. No mapping is performed by default.

withRankField No The column in the DataFrame as the rank. Rank is not written by default.

withSrcAsProperty No Whether the column in the DataFrame that is the starting vertex is also written as

an property. The default value is false . If set to true , make sure Edge type has the

same property name as SrcIdField .

withDstAsProperty No Whether column that are destination vertex in the DataFrame are also written as

property. The default value is false . If set to true , make sure Edge type has the

same property name as DstIdField .

withRankAsProperty No Whether column in the DataFrame that is the rank is also written as property.The

default value is false . If set to true , make sure Edge type has the same property

name as RankField .

withUser No NebulaGraph user name. If authentication is disabled, you do not need to configure

the user name and password.

withPasswd No The password for the NebulaGraph user name.

withBatch Yes The number of rows of data written at a time. The default value is 1000 .

withWriteMode No Write mode. The optional values are insert and update . The default value is insert .

Last update: March 13, 2023

22.5.2 Write data into NebulaGraph

- 885/927 - 2022 Vesoft Inc.

23. Nebula Flink Connector

Nebula Flink Connector is a connector that helps Flink users quickly access NebulaGraph. Nebula Flink Connector supports

reading data from the NebulaGraph database or writing other external data to the NebulaGraph database.

For more information, see Nebula Flink Connector.

23.1 Use cases

Nebula Flink Connector applies to the following scenarios:

Migrate data between different NebulaGraph clusters.

Migrate data between different graph spaces in the same NebulaGraph cluster.

Migrate data between NebulaGraph and other data sources.

23.2 Release note

Release

•

•

•

Last update: March 13, 2023

23. Nebula Flink Connector

- 886/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-flink-connector/releases/tag/v3.0.0

24. Nebula Bench

Nebula Bench is a performance test tool for NebulaGraph using the LDBC data set.

24.1 Scenario

Generate test data and import NebulaGraph.

Performance testing in the NebulaGraph cluster.

24.2 Release note

Release

24.3 Test process

For detailed usage instructions, see Nebula Bench.

•

•

Last update: March 13, 2023

24. Nebula Bench

- 887/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench/releases/tag/v1.2.0
https://github.com/vesoft-inc/nebula-bench/blob/release-1.2/README.md

25. Appendix

25.1 NebulaGraph learning path

This topic is for anyone interested in learning more about NebulaGraph. You can master NebulaGraph from zero to hero through

the documentation and videos in NebulaGraph learning path.

25.1.1 1. About NebulaGraph

1.1 What is NebulaGraph?

1.2 Data models

1.3 Path

Document Video

What is NebulaGraph NebulaGraph

Document

Data modeling

Document

Path

25. Appendix

- 888/927 - 2022 Vesoft Inc.

https://www.youtube.com/watch?v=LNwCzn2xdYI

1.4 NebulaGraph architecture

25.1.2 2. Quick start

2.1 Install NebulaGraph

2.2 Start NebulaGraph

2.3 Connect to NebulaGraph

2.4 Use nGQL statements

25.1.3 3. Hands-on practices

3.1 Deploy a multi-machine cluster

3.2 Upgrade NebulaGraph

Document

Meta service

Graph service

Storage service

Document Video

Install with a RPM or DEB package -

Install with a TAR package -

Install with Docker Install NebulaGraph with Docker and Docker Compose

Install from source Install NebulaGraph with Source Code

Document

Start and stop NebulaGraph

Document

Connect to NebulaGraph

Document

nGQL cheatsheet

Document

Deploy a NebulaGraph cluster with RPM/DEB

Document

Upgrade NebulaGraph to release-3.1

25.1.2 2. Quick start

- 889/927 - 2022 Vesoft Inc.

https://www.youtube.com/watch?v=yM5GDpJedEI
https://www.youtube.com/watch?v=x-I835eEBz0

3.3 Configure NebulaGraph

3.4 Configure logs

3.5 O&M and Management

Account authentication and authorization

Balance the distribution of partitions

Monitoring

Data snapshot

Backup & Restore

SSL encryption

Document

Configure Meta

Configure Graph

Configure Storage

Configure Linux kernel

Document

Log managements

•

Document

Local authentication

OpenLDAP

User management

Roles and privileges

•

Document

Storage load balancing

•

Document

NebulaGraph metrics

RocksDB statistics

•

Document

Create snapshots

•

Document

Backup&Restore

•

Document

SSL

25.1.3 3. Hands-on practices

- 890/927 - 2022 Vesoft Inc.

3.6 Performance tuning

Document

Graph data modeling suggestions

System design suggestions

Compaction

25.1.3 3. Hands-on practices

- 891/927 - 2022 Vesoft Inc.

3.7 Derivative software

Visualization

Data import and export

Performance test

Cluster O&M

Graph algorithm

Clients

25.1.4 4. API & SDK

•

Visualization tools Document Video

Data visualization Nebula Studio Nebula Studio

Data monitoring and

O&M

Nebula Dashboard Community Edition Nebula Dashboard Enterprise

Edition

Nebula

Dashboard

Data analysis Nebula Explorer Enterprise Edition Nebula Explorer

•

Import and export Document Video

Data import Nebula Importer Nebula Importer

Data import Nebula Spark Connector -

Data import Nebula Flink Connector -

Data import Nebula Exchange Community Edition -

Data export Nebula Exchange Enterprise Edition -

•

Document

Nebula Bench

•

Document

Nebula Operator

•

Document

Nebula Algorithm

•

Document

Nebula Console

Nebula CPP

Nebula Java

Nebula Python

Nebula Go

Document

API & SDK

25.1.4 4. API & SDK

- 892/927 - 2022 Vesoft Inc.

https://www.youtube.com/watch?v=6V4salpkIbc&list=PL4ArMmsAnb86R2MfUKFjzTQizCZCrhu2p
https://www.youtube.com/watch?v=S9gmYcNXwVY
https://www.youtube.com/watch?v=S9gmYcNXwVY
https://www.youtube.com/watch?v=1Hj5puN9jeg
https://www.bilibili.com/video/BV1ny4y1u7i4

25.1.5 5. Best practices

25.1.6 6. FAQ

25.1.7 7. Practical tasks

You can check if you have mastered NebulaGraph by completing the following practical tasks.

25.1.8 8. Get NebulaGraph Certifications

Now you could get NebulaGraph Certifications from Nebula Academy.

NebulaGraph Certified Insider(NGCI): The NGCI certification provides a birdview to graph databases and the NebulaGraph

database. Passing NGCI shows that you have a good understanding of NebulaGraph.

NebulaGraph Certified Professional(NGCP): The NGCP certification drives you deep into the NebulaGraph database and its

ecosystem, providing a 360-degree view of the leading-edge graph database. Passing NGCP proves that you are a professional

with a profound understanding of NebulaGraph.

Document

Handling Tens of Billions of Threat Intelligence Data with Graph Database at Kuaishou

Import data from Neo4j to NebulaGraph via Nebula Exchange: Best Practices

Hands-On Experience: Import Data to NebulaGraph with Spark

How to Select a Graph Database: Best Practices at RoyalFlush

Practicing Nebula Operator on Cloud

Using Ansible to Automate Deployment of NebulaGraph Cluster

Document

FAQ

Task Reference

Compile the source code of NebulaGraph Install NebulaGraph by compiling the source code

Deploy Studio, Dashboard, and Explorer Deploy Studio, Deploy Dashboard, and Deploy

Explorer

Load test NebulaGraph with K6 Nebula Bench

Query LDBC data (such as queries for vertices, paths, or

subgraphs.)

LDBC and interactive-short-1.cypher

•

•

Last update: March 13, 2023

25.1.5 5. Best practices

- 893/927 - 2022 Vesoft Inc.

https://nebula-graph.io/posts/kuaishou-security-intelligence-platform-with-nebula-graph/
https://nebula-graph.io/posts/neo4j-nebula-graph-import-best-practice/
https://nebula-graph.io/posts/best-practices-import-data-spark-nebula-graph/
https://nebula-graph.io/posts/how-to-select-a-graph-database/
https://nebula-graph.io/posts/nebula-operator-practice/
https://nebula-graph.io/posts/deploy-nebula-graph-with-ansible/
chrome-extension://gfbliohnnapiefjpjlpjnehglfpaknnc/pages/pdf_viewer.html?r=http://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/ldbc/ldbc_snb_interactive/blob/main/cypher/queries/interactive-short-1.cypher
https://academic.nebula-graph.io

25.2 NebulaGraph 3.1.0 release notes

25.2.1 Enhancement

Patterns can now be used in WHERE statements. For example: MATCH (v:player) WHERE (v)-[:like]->() RETURN v . #3997

CLEAR SPACE can be used to clear graph space and index data, but the graph space schema and index names are reserved. #3989

The vertex alias can be repeated in match patterns, like MATCH (v)-->(v) . #3929

Optimized SUBGRAPH and FIND PATH for better performance. #3871 #4095

Optimized query paths to reduce redundant paths and time complexity.4126

Optimized the method to get properties for better performance of MATCH statements. #3750

Optimized GO and YIELD clauses to avoid extracting redundant properties. #3974

Support for filter and limit pushdown when getting properties. 3844 3839

maxHop is optional in MATCH variable-length paths.#3881

Graph spaces are physically deleted after using DROP SPACE . #3913

Optimized number parsing in date time, date, time. #3797

Added the toSet function which converts LIST or SET to SET . #3594

nGQL statements can be used to display the HTTP port of NebulaGraph services and the HTTP2 port has been disabled. #3808

The number of sessions for connections to each graphd with the same client IP and the same user is limited. #3729

Optimized the waiting mechanism to ensure a timely connection to the metad after the storaged starts. #3971

When a node has multiple paths and an error of the disk corresponding to a particular path occurs, it is no longer to rebuild

the node. #4131

Optimized the job manager. #3976 #4045 #4001

The DOWNLOAD and INGEST SST files are now managed with the job manager. #3994

Support for error code display when a job fails. #4067

The OS page cache can be disabled and the block cache and NebulaGraph storage cache can only be used in a shared

environment, to avoid memory usage interference between applications. #3890

Updated the default value of the KV separation threshold from 0 to 100. #3879

Support for using gflag to set the upper limit of expression depth for a better fit of different machine environments. #3722

Added a permission check for KILL QUERY . When the authorization is enabled, the GOD user can kill any query and the users with

other roles can only kill queries that they own. #3896

Support for more complier launchers, including distcc and sccache. #3896

More dumping tables are supported with the meta dump tool. #3870

The storage layer controls the concurrency of write operations (INSERT VERTEX or EDGE) from reporting an error and

requiring a client retry to using the internal queueing mechanism. #3926

25.2.2 Bugfix

Fixed the crash when using a function call as part of a filter in a LOOKUP statement. #4111

Fixed the crash when there were non-indexed properties in an IN clause. #3986

Fixed the storage service crash when concurrently scanning vertices and edges. #4190

Fixed the crash when performing aggregation queries with patterns in a MATCH statement. #4180

Fixed the crash when getting the JSON results of a profile query. #3998

Fixed the crash when the async interface in the Lambda function finished running and the task in threadManager was not

executed. #4000

Fixed the GROUP BY output bug. #4128

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

25.2 NebulaGraph 3.1.0 release notes

- 894/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/pull/3997
https://github.com/vesoft-inc/nebula/pull/3989
https://github.com/vesoft-inc/nebula/pull/3929
https://github.com/vesoft-inc/nebula/pull/3871
https://github.com/vesoft-inc/nebula/pull/4095
https://github.com/vesoft-inc/nebula/pull/4162
https://github.com/vesoft-inc/nebula/pull/3750
https://github.com/vesoft-inc/nebula/pull/3974
https://github.com/vesoft-inc/nebula/pull/3844
https://github.com/vesoft-inc/nebula/pull/3839
https://github.com/vesoft-inc/nebula/pull/3881
https://github.com/vesoft-inc/nebula/pull/3913
https://github.com/vesoft-inc/nebula/pull/3797
https://github.com/vesoft-inc/nebula/pull/3594
https://github.com/vesoft-inc/nebula/pull/3808
https://github.com/vesoft-inc/nebula/pull/3729
https://github.com/vesoft-inc/nebula/pull/3971
https://github.com/vesoft-inc/nebula/pull/4131
https://github.com/vesoft-inc/nebula/pull/3976
https://github.com/vesoft-inc/nebula/pull/4045
https://github.com/vesoft-inc/nebula/pull/4001
https://github.com/vesoft-inc/nebula/pull/3994
https://github.com/vesoft-inc/nebula/pull/4067
https://github.com/vesoft-inc/nebula/pull/3890
https://github.com/vesoft-inc/nebula/pull/3879
https://github.com/vesoft-inc/nebula/pull/3722
https://github.com/vesoft-inc/nebula/pull/3896
https://github.com/vesoft-inc/nebula/pull/3896
https://github.com/vesoft-inc/nebula/pull/3870
https://github.com/vesoft-inc/nebula/pull/3926
https://github.com/vesoft-inc/nebula/pull/4111
https://github.com/vesoft-inc/nebula/pull/3986
https://github.com/vesoft-inc/nebula/pull/4190
https://github.com/vesoft-inc/nebula/pull/4180
https://github.com/vesoft-inc/nebula/pull/3998
https://github.com/vesoft-inc/nebula/pull/4000
https://github.com/vesoft-inc/nebula/pull/4128

Fixed the bug that the version wasn't displayed with SHOW HOSTS sometimes. #4116

Fixed the bug on parameters for id(n) == $var , id(n) IN [$var] , id(n) == $var.foo.bar , and id(n) IN $var.foo.bar . #4024

Fixed the bug that an incorrect path direction occurred in MATCH...WHERE . #4091

Fixed the bug that the result of referencing multiple MATCH variables in a WHERE clause was incorrect. #4143

Fixed the optimizer bug. #4146

Fixed the bug that the storage service failed to handle Raft snapshots. #4019

Fixed the bug that the storage service would not accept more logs after receiving a snapshot. #3909

Fixed the bug that snapshots did not contain the vertices without tags. #4189

Fixed the latest schema version read failure when the schema version is greater than 255. #4023

Fixed the bug that SHOW STATS did not count the vertices that had no tags. #3967

Fixed the bug that the timestamp was fetched incorrectly sometimes. #3958

Fixed the bug that the root user could be granted with other roles in the graph space. #3868

Fixed the duplicate count of column indexes in the lexical parser bug. #3626

25.2.3 Legacy versions

Release notes of legacy versions

•

•

•

•

•

•

•

•

•

•

•

•

•

Last update: March 13, 2023

25.2.3 Legacy versions

- 895/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/pull/4116
https://github.com/vesoft-inc/nebula/pull/4024
https://github.com/vesoft-inc/nebula/pull/4091
https://github.com/vesoft-inc/nebula/pull/4143
https://github.com/vesoft-inc/nebula/pull/4146
https://github.com/vesoft-inc/nebula/pull/4019
https://github.com/vesoft-inc/nebula/pull/3909
https://github.com/vesoft-inc/nebula/pull/4189
https://github.com/vesoft-inc/nebula/pull/4023
https://github.com/vesoft-inc/nebula/pull/3967
https://github.com/vesoft-inc/nebula/pull/3958
https://github.com/vesoft-inc/nebula/pull/3868
https://github.com/vesoft-inc/nebula/pull/3626
https://nebula-graph.io/posts/

25.3 FAQ

This topic lists the frequently asked questions for using NebulaGraph 3.1.0. You can use the search box in the help center or the

search function of the browser to match the questions you are looking for.

If the solutions described in this topic cannot solve your problems, ask for help on the NebulaGraph forum or submit an issue on

GitHub issue.

25.3.1 About manual updates

"Why is the behavior in the manual not consistent with the system?"

NebulaGraph is still under development. Its behavior changes from time to time. Users can submit an issue to inform the team if

the manual and the system are not consistent.

If you find some errors in this topic:

Click the pencil button at the top right side of this page.

Use markdown to fix this error. Then click "Commit changes" at the bottom, which will start a Github pull request.

Sign the CLA. This pull request will be merged after the acceptance of at least two reviewers.

25.3.2 About legacy version compatibility

Neubla Graph 3.1.0 is not compatible with NebulaGraph 1.x nor 2.0-RC in both data formats and RPC-protocols, and vice versa.

The service process may quit if using an lower version client to connect to a higher version server.

To upgrade data formats, see Upgrade NebulaGraph to the current version. Users must upgrade all clients.

25.3.3 About execution errors

"How to resolve the error SemanticError: Missing yield clause. ?"

Starting with NebulaGraph 3.0.0, the statements LOOKUP , GO , and FETCH must output results with the YIELD clause. For more

information, see YIELD.

"How to resolve the error Host not enough! ?"

From NebulaGraph version 3.0.0, the Storage services added in the configuration files CANNOT be read or written directly. The

configuration files only register the Storage services into the Meta services. You must run the ADD HOSTS command to read and

write data on Storage servers. For more information, see Manage Storage hosts.

"How to resolve the error To get the property of the vertex in 'v.age', should use the format 'var.tag.prop' ?"

From NebulaGraph version 3.0.0, patterns support matching multiple tags at the same time, so you need to specify a tag name

when querying properties. The original statement RETURN variable_name.property_name is changed to RETURN

variable_name.<tag_name>.property_name .

Note

1.

2.

3.

X version compatibility

25.3 FAQ

- 896/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula/issues
https://github.com/vesoft-inc/nebula/issues/new

"How to resolve the error Storage Error E_RPC_FAILURE ?"

The reason for this error is usually that the storaged process returns too many data back to the graphd process. Possible

solutions are as follows:

Modify configuration files: Modify the value of --storage_client_timeout_ms in the nebula-graphd.conf file to extend the connection

timeout of the Storage client. This configuration is measured in milliseconds (ms). For example, set --

storage_client_timeout_ms=60000 . If this parameter is not specified in the nebula-graphd.conf file, specify it manually. Tip: Add --

local_config=true at the beginning of the configuration file and restart the service.

Optimize the query statement: Reduce queries that scan the entire database. No matter whether LIMIT is used to limit the

number of returned results, use the GO statement to rewrite the MATCH statement (the former is optimized, while the latter is

not).

Check whether the Storaged process has OOM. (dmesg |grep nebula).

Use better SSD or memory for the Storage Server.

Retry.

"How to resolve the error The leader has changed. Try again later ?"

It is a known issue. Just retry 1 to N times, where N is the partition number. The reason is that the meta client needs some

heartbeats to update or errors to trigger the new leader information.

Unable to download SNAPSHOT packages when compiling Exchange, Connectors, or Algorithm

Problem description: The system reports Could not find artifact com.vesoft:client:jar:xxx-SNAPSHOT when compiling.

Cause: There is no local Maven repository for storing or downloading SNAPSHOT packages. The default central repository in

Maven only stores official releases, not development versions (SNAPSHOTs).

Solution: Add the following configuration in the profiles scope of Maven's setting.xml file:

"How to resolve [ERROR (-1004)]: SyntaxError: syntax error near ?"

In most cases, a query statement requires a YIELD or a RETURN . Check your query statement to see if YIELD or RETURN is provided.

"How to resolve the error can’t solve the start vids from the sentence ?"

The graphd process requires start vids to begin a graph traversal. The start vids can be specified by the user. For example:

It can also be found from a property index. For example:

•

•

•

•

•

 <profile>

 <activation>

 <activeByDefault>true</activeByDefault>

 </activation>

 <repositories>

 <repository>

 <id>snapshots</id>

 <url>https://oss.sonatype.org/content/repositories/snapshots/</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

 </repositories>

 </profile>

> GO FROM ${vids} ...

> MATCH (src) WHERE id(src) == ${vids}

The "start vids" are explicitly given by ${vids}.

CREATE TAG INDEX IF NOT EXISTS i_player ON player(name(20));

REBUILD TAG INDEX i_player;

> LOOKUP ON player WHERE player.name == "abc" | ... YIELD ...

> MATCH (src) WHERE src.name == "abc" ...

The "start vids" are found from the property index "name".

25.3.3 About execution errors

- 897/927 - 2022 Vesoft Inc.

Otherwise, an error like can’t solve the start vids from the sentence will be returned.

"How to resolve the error Wrong vertex id type: 1001 ?"

Check whether the VID is INT64 or FIXED_STRING(N) set by create space . For more information, see create space.

"How to resolve the error The VID must be a 64-bit integer or a string fitting space vertex id length limit. ?"

Check whether the length of the VID exceeds the limitation. For more information, see create space.

"How to resolve the error edge conflict or vertex conflict ?"

NebulaGraph may return such errors when the Storage service receives multiple requests to insert or update the same vertex or

edge within milliseconds. Try the failed requests again later.

"How to resolve the error RPC failure in MetaClient: Connection refused ?"

The reason for this error is usually that the metad service status is unusual, or the network of the machine where the metad and

graphd services are located is disconnected. Possible solutions are as follows:

Check the metad service status on the server where the metad is located. If the service status is unusual, restart the metad

service.

Use telnet meta-ip:port to check the network status under the server that returns an error.

Check the port information in the configuration file. If the port is different from the one used when connecting, use the port in

the configuration file or modify the configuration.

"How to resolve the error StorageClientBase.inl:214] Request to "x.x.x.x":9779 failed: N6apache6thrift9transport19TTransportExceptionE: Timed Out in nebula-

graph.INFO ?"

The reason for this error may be that the amount of data to be queried is too large, and the storaged process has timed out.

Possible solutions are as follows:

When importing data, set Compaction manually to make read faster.

Extend the RPC connection timeout of the Graph service and the Storage service. Modify the value of --storage_client_timeout_ms

in the nebula-storaged.conf file. This configuration is measured in milliseconds (ms). The default value is 60000ms.

"How to resolve the error MetaClient.cpp:65] Heartbeat failed, status:Wrong cluster! in nebula-storaged.INFO , or HBProcessor.cpp:54] Reject wrong cluster

host "x.x.x.x":9771! in nebula-metad.INFO ?

The reason for this error may be that the user has modified the IP or the port information of the metad process, or the storage

service has joined other clusters before. Possible solutions are as follows:

Delete the cluster.id file in the installation directory where the storage machine is deployed (the default installation directory

is /usr/local/nebula), and restart the storaged service.

25.3.4 About design and functions

"How is the time spent value at the end of each return message calculated?"

Take the returned message of SHOW SPACES as an example:

•

•

•

•

•

nebula> SHOW SPACES;

+--------------------+

| Name |

+--------------------+

| "basketballplayer" |

25.3.4 About design and functions

- 898/927 - 2022 Vesoft Inc.

The first number 1235 shows the time spent by the database itself, that is, the time it takes for the query engine to receive a

query from the client, fetch the data from the storage server, and perform a series of calculations.

The second number 1934 shows the time spent from the client's perspective, that is, the time it takes for the client from

sending a request, receiving a response, and displaying the result on the screen.

Why does the port number of the nebula-storaged process keep showing red after connecting to NebulaGraph?

Because the nebula-storaged process waits for nebula-metad to add the current Storage service during the startup process. The

Storage works after it receives the ready signal. Starting from NebulaGraph 3.0.0, the Meta service cannot directly read or write

data in the Storage service that you add in the configuration file. The configuration file only registers the Storage service to the

Meta service. You must run the ADD HOSTS command to enable the Meta to read and write data in the Storage service. For more

information, see Manage Storage hosts.

Why is there no line separating each row in the returned result of NebulaGraph 2.6.0?

This is caused by the release of Nebula Console 2.6.0, not the change of NebulaGraph core. And it will not affect the content of

the returned data itself.

About dangling edges

A dangling edge is an edge that only connects to a single vertex and only one part of the edge connects to the vertex.

Dangling edges may appear in NebulaGraph 3.1.0 as the design. And there is no MERGE statements of openCypher. The guarantee

for dangling edges depends entirely on the application level. For more information, see INSERT VERTEX, DELETE VERTEX,

INSERT EDGE, DELETE EDGE.

"Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2 ?"

NO.

The Storage service guarantees its availability based on the Raft consensus protocol. The number of failed replicas must not

exceed half of the total replica number.

When the number of machines is 1, replica_factor can only be set to 1 .

When there are enough machines and replica_factor=2 , if one replica fails, the Storage service fails. No matter replica_factor=3 or

replica_factor=4 , if more than one replica fails, the Storage Service fails. To prevent unnecessary waste of resources, we

recommend that you set an odd replica number.

We suggest that you set replica_factor=3 for a production environment and replica_factor=1 for a test environment. Do not use an

even number.

"Is stopping or killing slow queries supported?"

Yes. For more information, see Kill query.

+--------------------+

Got 1 rows (time spent 1235/1934 us)

•

•

25.3.4 About design and functions

- 899/927 - 2022 Vesoft Inc.

"Why are the query results different when using GO and MATCH to execute the same semantic query?"

The possible reasons are listed as follows.

GO statements find the dangling edges.

RETURN commands do not specify the sequence.

The dense vertex truncation limitation defined by max_edge_returned_per_vertex in the Storage service is triggered.

Using different types of paths may cause different query results.

GO statements use walk . Both vertices and edges can be repeatedly visited in graph traversal.

MATCH statements are compatible with openCypher and use trail . Only vertices can be repeatedly visited in graph traversal.

The example is as follows.

All queries that start from A with 5 hops will end at C (A->B->C->D->E->C). If it is 6 hops, the GO statement will end at D (A->B->C->D-

>E->C->D), because the edge C->D can be visited repeatedly. However, the MATCH statement returns empty, because edges cannot be

visited repeatedly.

Therefore, using GO and MATCH to execute the same semantic query may cause different query results.

For more information, see Wikipedia.

"How to count the vertices/edges number of each tag/edge type?"

See show-stats.

"How to get all the vertices/edge of each tag/edge type?"

Create and rebuild the index.

Use LOOKUP or MATCH . For example:

For more information, see INDEX , LOOKUP , and MATCH .

"How to get all the vertices/edges without specifying the types?"

By nGQL, you CAN NOT directly getting all the vertices without specifying the tags, neither the edges, or you can use the LIMIT

clause to limit the number of returns.

•

•

•

•

•

•

1.

> CREATE TAG INDEX IF NOT EXISTS i_player ON player();

> REBUILD TAG INDEX IF NOT EXISTS i_player;

2.

> LOOKUP ON player;

> MATCH (n:player) RETURN n;

25.3.4 About design and functions

- 900/927 - 2022 Vesoft Inc.

https://en.wikipedia.org/wiki/Path_(graph_theory)#Walk,_trail,_path

E.g., You CAN NOT run MATCH (n) RETURN (n) . An error like Scan vertices or edges need to specify a limit number, or limit number can not push

down. will be returned.

You can use Nebula Algorithm.

Or get vertices by each tag, and then group them by yourself.

Can non-English characters be used as identifiers, such as the names of graph spaces, tags, edge types, properties, and indexes?

Yes, for more information, see Keywords and reserved words.

"How to get the out-degree/the in-degree of a vertex with a given name"?

The out-degree of a vertex refers to the number of edges starting from that vertex, while the in-degree refers to the number of

edges pointing to that vertex.

This is a very slow operation to get the out/in degree since no accelaration can be applied (no indices or caches). It also could be

out-of-memory when hitting a supper-node.

"How to quickly get the out-degree and in-degree of all vertices?"

There is no such command.

You can use Nebula Algorithm.

25.3.5 About operation and maintenance

"The runtime log files are too large. How to recycle the logs?"

By default, the runtime logs of NebulaGraph are stored in /usr/local/nebula/logs/ . The INFO level log files are nebula-graphd.INFO,

nebula-storaged.INFO, nebula-metad.INFO . If an alarm or error occurs, the suffixes are modified as .WARNING or .ERROR .

NebulaGraph uses glog to print logs. glog cannot recycle the outdated files. To rotate logs, you can:

Use crontab to delete logs periodically. For more information, see Glog should delete old log files automatically .

Use logrotate to manage log files. Before using logrotate, modify the configurations of corresponding services and set

timestamp_in_logfile_name to false .

"How to check the NebulaGraph version?"

If the service is running: run command SHOW HOSTS META in nebula-console . See SHOW HOSTS.

If the service is not running:

Different installation methods make the method of checking the version different. The instructions are as follows:

If the service is not running, run the command ./<binary_name> --version to get the version and the Git commit IDs of the

NebulaGraph binary files. For example:

nebula > MATCH (s)-[e]->() WHERE id(s) == "given" RETURN count(e); #Out-degree

nebula > MATCH (s)<-[e]-() WHERE id(s) == "given" RETURN count(e); #In-degree

•

•

25.3.5 About operation and maintenance

- 901/927 - 2022 Vesoft Inc.

https://github.com/google/glog
https://github.com/google/glog/issues/423
https://github.com/google/glog/issues/423
https://github.com/logrotate/logrotate

If you deploy NebulaGraph with Docker Compose

Check the version of NebulaGraph deployed by Docker Compose. The method is similar to the previous method, except that

you have to enter the container first. The commands are as follows:

If you install NebulaGraph with RPM/DEB package

Run rpm -qa |grep nebula to check the version of NebulaGraph.

"How to scale out or scale in? (Enterprise Edition only)"

You can scale Graph and Storage services with Dashboard Enterprise Edition. For details, see Scale.

You can also use Nebula Operator to scale Graph and Storage services. For details, see Deploy NebulaGraph clusters with

Kubectl and Deploy NebulaGraph clusters with Helm.

NebulaGraph 3.1.0 does not provide any commands to support automatic scale out/in. You can refer to the following steps:

Scale out and scale in metad: The metad process can not be scaled out or scale in. The process cannot be moved to a new machine.

You cannot add a new metad process to the service.

You can use the Meta transfer script tool to migrate Meta services. Note that the Meta-related settings in the configuration files of

Storage and Graph services need to be modified correspondingly.

Scale in graphd: Remove the IP of the graphd process from the code in the client. Close this graphd process.

Scale out graphd: Prepare the binary and config files of the graphd process in the new host. Modify the config files and add all

existing addresses of the metad processes. Then start the new graphd process.

Scale in storaged: See Balance remove command. After the command is finished, stop this storaged process.

Scale out storaged: Prepare the binary and config files of the storaged process in the new host, Modify the config files and add all

existing addresses of the metad processes. Then register the storaged process to the metad, and then start the new storaged

process. For details, see Register storaged services.

You also need to run Balance Data and Balance leader after scaling in/out storaged.

"After changing the name of the host, the old one keeps displaying OFFLINE . What should I do?"

Hosts with the status of OFFLINE will be automatically deleted after one day.

25.3.6 About connections

"Which ports should be opened on the firewalls?"

If you have not modified the predefined ports in the Configurations, open the following ports for the NebulaGraph services:

$./nebula-graphd --version

•

docker exec -it nebula-docker-compose_graphd_1 bash

cd bin/

./nebula-graphd --version

•

•

•

1.

Note

2.

3.

4.

5.

Service Port

Meta 9559, 9560, 19559, 19560

Graph 9669, 19669, 19670

Storage 9777 ~ 9780, 19779, 19780

25.3.6 About connections

- 902/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/scripts/meta-transfer-tools.sh

If you have customized the configuration files and changed the predefined ports, find the port numbers in your configuration files

and open them on the firewalls.

For those eco-tools, see the corresponding document.

"How to test whether a port is open or closed?"

You can use telnet as follows to check for port status.

If you cannot use the telnet command, check if telnet is installed or enabled on your host.

For example:

25.3.7 About license

Are the Dashboard/Explorer/NebulaGraph Enterprise Edition licenses the same?

No, the licenses of Dashboard, Explorer, and NebulaGraph Enterprise Editions are independent of each other and cannot be used

interchangeably.

During the validity period of the NebulaGraph Enterprise Edition license, after replacing the enterprise edition Meta with the community edition

Meta, can the community edition Meta be used with the enterprise edition Graph and Storage?

No, mixed deployments of the enterprise edition services and the community edition services are not supported.

After the NebulaGraph Enterprise Edition license expires, is it possible that copy the data in the data directory and paste it to the same

directory of NebulaGraph Community Edition, and then use NebulaGraph services as normal?

Yes, it is possible. The data of the Enterprise Edition can be used in the Community Edition. The pasted data will only work

properly in the services deployed in the Community Edition. Mixed deployments of the enterprise edition services and the

community edition services are not supported. For example, the mixed deployment of the enterprise edition Meta service and the

community edition Graph and Storage services is not supported.

Is there any message before the license expires, and how to renew the license after it expires?

The system will send expiration notifications before the license expires.

telnet <ip> <port>

Note

// If the port is open:

$ telnet 192.168.1.10 9669

Trying 192.168.1.10...

Connected to 192.168.1.10.

Escape character is '^]'.

// If the port is closed or blocked:

$ telnet 192.168.1.10 9777

Trying 192.168.1.10...

telnet: connect to address 192.168.1.10: Connection refused

25.3.7 About license

- 903/927 - 2022 Vesoft Inc.

The notification time before the license expires is different for the full version license and the trial version license.

For the full version license:

Within 30 days before the license expires or on the day the license expires, there is an expiration reminder when NebulaGraph/

Dashboard/Explorer is started.

There is a 14-day buffer period after expiration. During the buffer period, you will receive expiration notifications and can

continue using NebulaGraph/Dashboard/Explorer. After the buffer period ends, the corresponding service will be down and

cannot be started.

For the trial version license:

Within 7 days before the license expires or on the day the license expires, there is an expiration reminder when NebulaGraph/

Dashboard/Explorer is started.

There is no buffer period after expiration. Once the license expires, the corresponding service will be down and cannot be

started.

After your license expires, contact us via inqury@vesoft.com to renew it.

•

•

•

•

•

•

Last update: March 13, 2023

25.3.7 About license

- 904/927 - 2022 Vesoft Inc.

mailto:inqury@vesoft.com

25.4 Ecosystem tools overview

The core release number naming rule is X.Y.Z , which means Major version X , Medium version Y , and Minor version Z . The upgrade

requirements for the client are:

Upgrade the core from X.Y.Z1 to X.Y.Z2 : It means that the core is fully forward compatible and is usually used for bugfixes. It is

recommended to upgrade the minor version of the core as soon as possible. At this time, the client can stay not upgraded.

Upgrade the core from X.Y1.* to X.Y2.* : It means that there is some incompatibility of API, syntax, and return value. It is usually used

to add functions, improve performance, and optimize code. The client needs to be upgraded to X.Y2.* .

Upgrade the core from X1.*.* to X2.*.* : It means that there is a major incompatibility in storage formats, API, syntax, etc. You need to

use tools to upgrade the core data. The client must be upgraded.

The default core and client do not support downgrade: You cannot downgrade from X.Y.Z2 to X.Y.Z1 .

The release cycle of a Y version is about 6 months, and its maintenance and support cycle is 6 months.

The version released at the beginning of the year is usually named X.0.0 , and in the middle of the year, it is named X.5.0 .

The file name contains RC to indicate an unofficial version (Release Candidate) that is only used for preview. Its maintenance period is

only until the next RC or official version is released. Its client, data compatibility, etc. are not guaranteed.

The files with nightly , SNAPSHOT , or date are the nightly versions. There is no quality assurance and maintenance period.

25.4.1 Nebula Studio

Nebula Studio (Studio for short) is a graph database visualization tool that can be accessed through the Web. It can be used with

NebulaGraph DBMS to provide one-stop services such as composition, data import, writing nGQL queries, and graph exploration.

For details, see What is Nebula Studio.

The release of the Studio is independent of NebulaGraph core, and its naming method is also not the same as the core naming rules.

Compatibility

•

•

•

•

•

•

•

•

Note

NebulaGraph version Studio version

v3.1.0 v3.3.0

25.4 Ecosystem tools overview

- 905/927 - 2022 Vesoft Inc.

25.4.2 Nebula Dashboard Community Edition

Nebula Dashboard Community Edition (Dashboard for short) is a visualization tool for monitoring the status of machines and

services in the NebulaGraph cluster. For details, see What is Nebula Dashboard.

25.4.3 Nebula Dashboard Enterprise Edition

Nebula Dashboard Enterprise Edition (Dashboard for short) is a visualization tool that monitors and manages the status of

machines and services in NebulaGraph cluster. For details, see What is Nebula Dashboard.

25.4.4 Nebula Explorer

Nebula Explorer (Explorer for short) is a graph exploration visualization tool that can be accessed through the Web. It is used

with the NebulaGraph core to visualize interaction with graph data. Users can quickly become map experts, even without

experience in map data manipulation. For details, see What is Nebula Explorer.

25.4.5 Nebula Stats Exporter

Nebula-stats-exporter exports monitor metrics to Promethus.

25.4.6 Nebula Exchange

Nebula Exchange (Exchange for short) is an Apache Spark&trade application for batch migration of data in a cluster to

NebulaGraph in a distributed environment. It can support the migration of batch data and streaming data in a variety of different

formats. For details, see What is Nebula Exchange.

25.4.7 Nebula Operator

Nebula Operator (Operator for short) is a tool to automate the deployment, operation, and maintenance of NebulaGraph clusters

on Kubernetes. Building upon the excellent scalability mechanism of Kubernetes, NebulaGraph introduced its operation and

maintenance knowledge into the Kubernetes system, which makes NebulaGraph a real cloud-native graph database. For more

information, see What is Nebula Operator.

NebulaGraph version Dashboard Community version

v3.1.0 v1.1.2

NebulaGraph version Dashboard Enterprise version

v3.1.0 v3.1.0

NebulaGraph version Explorer Enterprise version

v3.1.0 v3.1.0

NebulaGraph version Stats Exporter version

v3.1.0 v3.1.0

NebulaGraph version Exchange Community version Exchange Enterprise version

v3.1.0 v3.0.0 v3.0.0

NebulaGraph version Operator version

v3.1.0 v1.1.0

25.4.2 Nebula Dashboard Community Edition

- 906/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-stats-exporter

25.4.8 Nebula Importer

Nebula Importer (Importer for short) is a CSV file import tool for NebulaGraph. The Importer can read the local CSV file, and

then import the data into the NebulaGraph database. For details, see What is Nebula Importer.

25.4.9 Nebula Spark Connector

Nebula Spark Connector is a Spark connector that provides the ability to read and write NebulaGraph data in the Spark standard

format. Nebula Spark Connector consists of two parts, Reader and Writer. For details, see What is Nebula Spark Connector.

25.4.10 Nebula Flink Connector

Nebula Flink Connector is a connector that helps Flink users quickly access NebulaGraph. It supports reading data from the

NebulaGraph database or writing data read from other external data sources to the NebulaGraph database. For details, see What

is Nebula Flink Connector.

25.4.11 Nebula Algorithm

Nebula Algorithm (Algorithm for short) is a Spark application based on GraphX, which uses a complete algorithm tool to analyze

data in the NebulaGraph database by submitting a Spark task To perform graph computing, use the algorithm under the lib

repository through programming to perform graph computing for DataFrame. For details, see What is Nebula Algorithm.

25.4.12 Nebula Analytics

Nebula Analytics is an application that integrates the open-source Plato Graph Computing Framework, with which Nebula

Analytics performs graph computations on NebulaGraph database data. For details, see What is Nebula Analytics.

25.4.13 Nebula Console

Nebula Console is the native CLI client of NebulaGraph. For how to use it, see Nebula Console.

NebulaGraph version Importer version

v3.1.0 v3.1.0

NebulaGraph version Spark Connector version

v3.1.0 v3.0.0

NebulaGraph version Flink Connector version

v3.1.0 v3.0.0

NebulaGraph version Algorithm version

v3.1.0 v3.0.0

NebulaGraph version Analytics version

v3.1.0 v3.2.0

NebulaGraph version Console version

v3.1.0 v3.0.0

25.4.8 Nebula Importer

- 907/927 - 2022 Vesoft Inc.

https://spark.apache.org/graphx/

25.4.14 Nebula Docker Compose

Docker Compose can quickly deploy NebulaGraph clusters. For how to use it, please refer to Docker Compose Deployment

NebulaGraph.

25.4.15 Backup & Restore

Backup&Restore (BR for short) is a command line interface (CLI) tool that can help back up the graph space data of

NebulaGraph, or restore it through a backup file data.

25.4.16 Nebula Bench

Nebula Bench is used to test the baseline performance data of NebulaGraph. It uses the standard data set of LDBC.

25.4.17 API, SDK

Select the latest version of X.Y.* which is the same as the core version.

25.4.18 Not Released

Rust Client

Node.js Client

Object Graph Mapping Library (OGM, or ORM)

NebulaGraph version Docker Compose version

v3.1.0 v3.1.0

NebulaGraph version BR version

v3.1.0 v0.6.1

NebulaGraph version Bench version

v3.1.0 v1.2.0

Compatibility

NebulaGraph version Language

v3.1.0 C++

v3.1.0 Go

v3.1.0 Python

v3.1.0 Java

v3.1.0 HTTP

•

•

•

Last update: March 13, 2023

25.4.14 Nebula Docker Compose

- 908/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench/releases/tag/v1.2.0
https://github.com/vesoft-inc/nebula-cpp/releases/tag/v3.0.2
https://github.com/vesoft-inc/nebula-go/releases/tag/v3.1.0
https://github.com/vesoft-inc/nebula-python/releases/tag/v3.1.0
https://github.com/vesoft-inc/nebula-java/releases/tag/v3.0.0
https://github.com/vesoft-inc/nebula-http-gateway/releases/tag/v3.1.2
https://github.com/vesoft-inc/nebula-rust
https://github.com/vesoft-inc/nebula-node

25.5 Import tools

There are many ways to write NebulaGraph 3.1.0:

Import with the command -f: This method imports a small number of prepared nGQL files, which is suitable to prepare for a

small amount of manual test data.

Import with Studio: This method uses a browser to import multiple csv files of this machine. A single file cannot exceed 100

MB, and its format is limited.

Import with Importer: This method imports multiple csv files on a single machine with unlimited size and flexible format.

Import with Exchange: This method imports from various distribution sources, such as Neo4j, Hive, MySQL, etc., which

requires a Spark cluster.

Import with Spark-connector/Flink-connector: This method has corresponding components (Spark/Flink) and writes a small

amount of code.

Import with C++/GO/Java/Python SDK: This method imports in the way of writing programs, which requires certain

programming and tuning skills.

The following figure shows the positions of these ways:

•

•

•

•

•

•

Last update: March 13, 2023

25.5 Import tools

- 909/927 - 2022 Vesoft Inc.

25.6 How to Contribute

25.6.1 Before you get started

Commit an issue on the github or forum

You are welcome to contribute any code or files to the project. But firstly we suggest you raise an issue on the github or the

forum to start a discussion with the community. Check through the topic for Github.

Sign the Contributor License Agreement (CLA)

What is CLA?

Here is the vesoft inc. Contributor License Agreement.

Click the Sign in with GitHub to agree button to sign the CLA.

If you have any questions, send an email to info@vesoft.com .

25.6.2 Modify a single document

This manual is written in the Markdown language. Click the pencil icon on the right of the document title to commit the

modification.

This method applies to modify a single document only.

25.6.3 Batch modify or add files

This method applies to contribute codes, modify multiple documents in batches, or add new documents.

25.6.4 Step 1: Fork in the github.com

The NebulaGraph project has many repositories. Take the nebul repository for example:

Visit https://github.com/vesoft-inc/nebula.

Click the Fork button to establish an online fork.

25.6.5 Step 2: Clone Fork to Local Storage

Define a local working directory.

Set user to match the Github profile name.

Create your clone.

1.

2.

1.

Define the working directory.

working_dir=$HOME/Workspace

2.

user={the Github profile name}

3.

mkdir -p $working_dir

cd $working_dir

git clone https://github.com/$user/nebula.git

or: git clone git@github.com:$user/nebula.git

cd $working_dir/nebula

git remote add upstream https://github.com/vesoft-inc/nebula.git

or: git remote add upstream git@github.com:vesoft-inc/nebula.git

Never push to upstream master since you do not have write access.

git remote set-url --push upstream no_push

Confirm that the remote branch is valid.

25.6 How to Contribute

- 910/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula
https://discuss.nebula-graph.io/
https://www.apache.org/licenses/contributor-agreements.html
https://cla-assistant.io/vesoft-inc/
https://github.com/vesoft-inc
https://github.com/vesoft-inc/nebula
https://github.com/vesoft-inc/nebula

(Optional) Define a pre-commit hook.

Please link the NebulaGraph pre-commit hook into the .git directory.

This hook checks the commits for formatting, building, doc generation, etc.

Sometimes, the pre-commit hook cannot be executed. You have to execute it manually.

25.6.6 Step 3: Branch

Get your local master up to date.

Checkout a new branch from master.

Because the PR often consists of several commits, which might be squashed while being merged into upstream. We strongly suggest

you to open a separate topic branch to make your changes on. After merged, this topic branch can be just abandoned, thus you could

synchronize your master branch with upstream easily with a rebase like above. Otherwise, if you commit your changes directly into

master, you need to use a hard reset on the master branch. For example:

25.6.7 Step 4: Develop

Code style

The correct format is:

origin git@github.com:$(user)/nebula.git (fetch)

origin git@github.com:$(user)/nebula.git (push)

upstream https://github.com/vesoft-inc/nebula (fetch)

upstream no_push (push)

git remote -v

4.

cd $working_dir/nebula/.git/hooks

ln -s $working_dir/nebula/.linters/cpp/hooks/pre-commit.sh .

cd $working_dir/nebula/.git/hooks

chmod +x pre-commit

1.

cd $working_dir/nebula

git fetch upstream

git checkout master

git rebase upstream/master

2.

git checkout -b myfeature

Note

git fetch upstream

git checkout master

git reset --hard upstream/master

git push --force origin master

•

25.6.6 Step 3: Branch

- 911/927 - 2022 Vesoft Inc.

NebulaGraph adopts cpplint to make sure that the project conforms to Google's coding style guides. The checker will be

implemented before the code is committed.

Unit tests requirements

Please add unit tests for the new features or bug fixes.

Build your code with unit tests enabled

For more information, see Install NebulaGraph by compiling the source code.

Make sure you have enabled the building of unit tests by setting -DENABLE_TESTING=ON .

Run tests

In the root directory of nebula , run the following command:

25.6.8 Step 5: Bring Your Branch Update to Date

Users need to bring the head branch up to date after other contributors merge PR to the base branch.

25.6.9 Step 6: Commit

Commit your changes.

Users can use the command --amend to re-edit the previous code.

25.6.10 Step 7: Push

When ready to review or just to establish an offsite backup, push your branch to your fork on github.com :

25.6.11 Step 8: Create a Pull Request

Visit your fork at https://github.com/$user/nebula (replace $user here).

Click the Compare & pull request button next to your myfeature branch.

25.6.12 Step 9: Get a Code Review

Once your pull request has been created, it will be assigned to at least two reviewers. Those reviewers will do a thorough code

review to make sure that the changes meet the repository's contributing guidelines and other quality standards.

•

•

Note

•

cd nebula/build

ctest -j$(nproc)

While on your myfeature branch.

git fetch upstream

git rebase upstream/master

git commit -a

git push origin myfeature

1.

2.

25.6.8 Step 5: Bring Your Branch Update to Date

- 912/927 - 2022 Vesoft Inc.

25.6.13 Add test cases

For detailed methods, see How to add test cases.

25.6.14 Donation

Step 1: Confirm the project donation

Contact the official NebulaGraph staff via email, WeChat, Slack, etc. to confirm the donation project. The project will be donated

to the Nebula Contrib organization.

Email address: info@vesoft.com

WeChat: NebulaGraphbot

Slack: Join Slack

Step 2: Get the information of the project recipient

The NebulaGraph official staff will give the recipient ID of the Nebula Contrib project.

Step 3: Donate a project

The user transfers the project to the recipient of this donation, and the recipient transfers the project to the Nebula Contrib

organization. After the donation, the user will continue to lead the development of community projects as a Maintainer.

For operations of transferring a repository on GitHub, see Transferring a repository owned by your user account.

Last update: March 13, 2023

25.6.13 Add test cases

- 913/927 - 2022 Vesoft Inc.

https://github.com/vesoft-inc/nebula/blob/master/tests/README.md#how-to-add-test-case
https://github.com/nebula-contrib
https://join.slack.com/t/nebulagraph/shared_invite/zt-7ybejuqa-NCZBroh~PCh66d9kOQj45g
https://docs.github.com/en/enterprise-server@3.0/github/administering-a-repository/managing-repository-settings/transferring-a-repository#transferring-a-repository-owned-by-your-user-account

25.7 History timeline for NebulaGraph

2018.9: dutor wrote and submitted the first line of NebulaGraph database code.

2019.5: NebulaGraph v0.1.0-alpha was released as open-source.

1.

2.

25.7 History timeline for NebulaGraph

- 914/927 - 2022 Vesoft Inc.

https://github.com/dutor

NebulaGraph v1.0.0-beta, v1.0.0-rc1, v1.0.0-rc2, v1.0.0-rc3, and v1.0.0-rc4 were released one after another within a year

thereafter.

25.7 History timeline for NebulaGraph

- 915/927 - 2022 Vesoft Inc.

2019.7: NebulaGraph's debut at HBaseCon
1
. @dangleptr3.

25.7 History timeline for NebulaGraph

- 916/927 - 2022 Vesoft Inc.

https://github.com/dangleptr

2020.3: NebulaGraph v2.0 was starting developed in the final stage of v1.0 development.

2020.6: The first major version of NebulaGraph v1.0.0 GA was released.

4.

5.

25.7 History timeline for NebulaGraph

- 917/927 - 2022 Vesoft Inc.

2021.3: The second major version of NebulaGraph v2.0 GA was released.6.

25.7 History timeline for NebulaGraph

- 918/927 - 2022 Vesoft Inc.

2021.8: NebulaGraph v2.5.0 was released.

2021.10: NebulaGraph v2.6.0 was released.

2022.2: NebulaGraph v3.0.0 was released.

2022.4: NebulaGraph v3.1.0 was released.

NebulaGraph v1.x supports both RocksDB and HBase as its storage engines. NebulaGraph v2.x removes HBase supports.

7.

8.

9.

10.

1.

Last update: March 13, 2023

25.7 History timeline for NebulaGraph

- 919/927 - 2022 Vesoft Inc.

25.8 Error code

NebulaGraph returns an error code when an error occurs. This topic describes the details of the error code returned.

25.8 Error code

- 920/927 - 2022 Vesoft Inc.

If an error occurs but no error code is returned, or if the error code description is unclear, we welcome your feedback or suggestions

on the forum or GitHub.

When the code returned is 0 , it means that the operation is successful.

Note

•

•

25.8 Error code

- 921/927 - 2022 Vesoft Inc.

https://discuss.nebula-graph.com.cn/
https://github.com/vesoft-inc/nebula/issues

Error Code Description

-1 Lost connection

-2 Unable to establish connection

-3 RPC failure

-4 Raft leader has been changed

-5 Graph space does not exist

-6 Tag does not exist

-7 Edge type does not exist

-8 Index does not exist

-9 Edge type property does not exist

-10 Tag property does not exist

-11 The current role does not exist

-12 The current configuration does not exist

-13 The current host does not exist

-15 Listener does not exist

-16 The current partition does not exist

-17 Key does not exist

-18 User does not exist

-19 Statistics do not exist

-20 No current service found

-21 Drainer does not exist

-22 Drainer client does not exist

-24 Backup failed

-25 The backed-up table is empty

-26 Table backup failure

-27 MultiGet could not get all data

-28 Index rebuild failed

-29 Password is invalid

-30 Unable to get absolute path

-1001 Authentication failed

-1002 Invalid session

-1003 Session timeout

-1004 Syntax error

-1005 Execution error

-1006 Statement is empty

-1008 Permission denied

25.8 Error code

- 922/927 - 2022 Vesoft Inc.

Error Code Description

-1009 Semantic error

-1010 Maximum number of connections exceeded

-1011 Access to storage failed (only some requests succeeded)

-2001 Host does not exist

-2002 Host already exists

-2003 Invalid host

-2004 The current command, statement, or function is not supported

-2007 Configuration items cannot be changed

-2008 Parameters conflict with meta data

-2009 Invalid parameter

-2010 Wrong cluster

-2011 Listener conflicts

-2021 Failed to store data

-2022 Illegal storage segment

-2023 Invalid data balancing plan

-2024 The cluster is already in the data balancing status

-2025 There is no running data balancing plan

-2026 Lack of valid hosts

-2027 A data balancing plan that has been corrupted

-2029 Lack of valid drainers

-2030 Failed to recover user role

-2031 Number of invalid partitions

-2032 Invalid replica factor

-2033 Invalid character set

-2034 Invalid character sorting rules

-2035 Character set and character sorting rule mismatch

-2040 Failed to generate a snapshot

-2041 Failed to write block data

-2044 Failed to add new task

-2045 Failed to stop task

-2046 Failed to save task information

-2047 Data balancing failed

-2048 The current task has not been completed

-2049 Task report failed

-2050 The current task is not in the graph space

25.8 Error code

- 923/927 - 2022 Vesoft Inc.

Error Code Description

-2051 The current task needs to be resumed

-2065 Invalid task

-2066 Backup terminated (index being created)

-2067 Graph space does not exist at the time of backup

-2068 Backup recovery failed

-2069 Session does not exist

-2070 Failed to get cluster information

-2071 Failed to get absolute path when getting cluster information

-2072 Unable to get an agent when getting cluster information

-2073 Query not found

-2074 Failed to receive heartbeat from agent

-2080 Invalid variable

-2081 Variable value and type do not match

-3001 Consensus cannot be reached during an election

-3002 Key already exists

-3003 Data type mismatch

-3004 Invalid field value

-3005 Invalid operation

-3006 Current value is not allowed to be empty

-3007 Field value must be set if the field value is NOT NULL or has no default value

-3008 The value is out of the range of the current type

-3010 Data conflict

-3011 Writes are delayed

-3021 Incorrect data type

-3022 Invalid VID length

-3031 Invalid filter

-3032 Invalid field update

-3033 Invalid KV storage

-3034 Peer invalid

-3035 Out of retries

-3036 Leader change failed

-3037 Invalid stat type

-3038 VID is invalid

-3040 Failed to load meta information

-3041 Failed to generate checkpoint

25.8 Error code

- 924/927 - 2022 Vesoft Inc.

Error Code Description

-3042 Generating checkpoint is blocked

-3043 Data is filtered

-3044 Invalid data

-3045 Concurrent write conflicts on the same edge

-3046 Concurrent write conflict on the same vertex

-3047 Lock is invalid

-3051 Invalid task parameter

-3052 The user canceled the task

-3053 Task execution failed

-3060 Execution plan was cleared

-3061 Client and server versions are not compatible

-3062 Failed to get ID serial number

-3070 The heartbeat process was not completed when the request was received

-3071 Out-of-date heartbeat received from the old leader (the new leader has been elected)

-3073 Concurrent write conflicts with later requests

-3500 Unknown partition

-3501 Raft logs lag behind

-3502 Raft logs are out of date

-3503 Heartbeat messages are out of date

-3504 Unknown additional logs

-3511 Waiting for the snapshot to complete

-3512 There was an error sending the snapshot

-3513 Invalid receiver

-3514 Raft did not start

-3515 Raft has stopped

-3516 Wrong role

-3521 Write to a WAL failed

-3522 The host has stopped

-3523 Too many requests

-3524 Persistent snapshot failed

-3525 RPC exception

-3526 No WAL logs found

-3527 Host suspended

-3528 Writes are blocked

-3529 Cache overflow

25.8 Error code

- 925/927 - 2022 Vesoft Inc.

Error Code Description

-3530 Atomic operation failed

-3531 Leader lease expired

-3532 Data has been synchronized on Raft

-4001 Drainer logs lag behind

-4002 Drainer logs are out of date

-4003 The drainer data storage is invalid

-4004 Graph space mismatch

-4005 Partition mismatch

-4006 Data conflict

-4007 Request conflict

-4008 Illegal data

-5001 Cache configuration error

-5002 Insufficient space

-5003 No cache hit

-5005 Write cache failed

-7001 Number of machines exceeded the limit

-7002 Failed to resolve certificate

-8000 Unknown error

Last update: March 13, 2023

25.8 Error code

- 926/927 - 2022 Vesoft Inc.

https://docs.nebula-graph.io/3.1.0

NebulaGraph Database Manual 2022 Vesoft Inc.

https://docs.nebula-graph.io/3.1.0
https://docs.nebula-graph.io/3.1.0
https://docs.nebula-graph.io/3.1.0
https://docs.nebula-graph.io/3.1.0

	NebulaGraph Database Manual
	1. Welcome to NebulaGraph 3.1.0 Documentation
	1.1 Getting started
	1.2 Other Sources
	1.3 Symbols used in this manual
	1.4 Modify errors

	2. Introduction
	2.1 An introduction to graphs
	2.1.1 What are graphs?
	2.1.2 Property graphs
	2.1.3 Why do we use graph databases?
	2.1.4 RDF

	2.2 Market overview of graph databases
	2.2.1 Third-party services market predictions
	DB-Engines ranking
	Gartner’s predictions
	Market size of graph databases

	2.2.2 Market participants
	Neo4j, the pioneer of (first generation) graph databases
	Overview of the recent history of graph databases
	The early history of Neo4j
	The creation of Gremlin
	The creation of Cypher
	Subsequent events

	Distributed graph databases
	The second generation (distributed) graph database: Titan and its successor JanusGraph
	Famous products of the same period OrientDB, TigerGraph, ArangoDB, and DGraph
	Traditional giants Microsoft, Amazon, and Oracle
	NebulaGraph, a new generation of open-source distributed graph databases

	2.3 Related technologies
	2.3.1 Databases
	Relational databases
	Relationships in relational databases
	Origins of relational databases

	NoSQL databases
	Key-value Data Store
	Columnar Store
	Document Store
	Graph Store

	2.3.2 Graph-related technologies
	Graph language
	Graph database and graph processing systems
	Graph sharding methods
	Technical challenges
	Open-source graph tools on single machines
	Industry databases and benchmarks
	LDBC

	2.3.3 Trends
	Graph technologies of different origins and goals are learning from and integrating with each other
	The trends in cloud computing place higher demands on scalability.
	Trends in hardware that SSD will be the mainstream persistent device

	2.4 What is NebulaGraph
	2.4.1 What is a graph database
	2.4.2 Advantages of NebulaGraph
	Open source
	Outstanding performance
	High scalability
	Developer friendly
	Reliable access control
	Diversified ecosystem
	OpenCypher-compatible query language
	Future-oriented hardware with balanced reading and writing
	Easy data modeling and high flexibility
	High popularity

	2.4.3 Use cases
	Fraud detection
	Real-time recommendation
	Intelligent question-answer system
	Social networking

	2.4.4 Related links

	2.5 Data modeling
	2.5.1 Data structures
	2.5.2 Directed property graph

	2.6 Path types
	2.6.1 Walk
	2.6.2 Trail
	2.6.3 Path

	2.7 VID
	2.7.1 Features
	2.7.2 VID Operation
	2.7.3 VID Generation
	2.7.4 Define and modify a VID and its data type
	2.7.5 Query start vid and global scan

	2.8 NebulaGraph architecture
	2.8.1 Architecture overview
	The Meta Service
	The Graph Service and the Storage Service

	2.8.2 Meta Service
	The architecture of the Meta Service
	Functions of the Meta Service
	Manages user accounts
	Manages partitions
	Manages graph spaces
	Manages schema information
	Manages TTL information
	Manages jobs

	2.8.3 Graph Service
	The architecture of the Graph Service
	Parser
	Validator
	Planner
	Executor
	Source code hierarchy

	2.8.4 Storage Service
	Advantages
	The architecture of the Storage Service
	Storage writing process
	KVStore
	Data storage structure
	Property descriptions

	Data partitioning
	Edge partitioning and storage amplification
	Partition algorithm

	Raft
	Raft implementation
	Multi Group Raft
	Batch
	Transfer Leadership
	Peer changes

	Cache
	Differences with HDFS

	3. Quick start
	3.1 Quick start workflow
	3.1.1 Steps

	3.2 Step 1: Install NebulaGraph
	3.2.1 Prerequisites
	3.2.2 Download the package from cloud service
	3.2.3 Install NebulaGraph
	3.2.4 Next to do

	3.3 Step 2: Manage NebulaGraph Service
	3.3.1 Manage services with script
	Syntax

	3.3.2 Manage services with systemd
	Syntax

	3.3.3 Start NebulaGraph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.3.4 Stop NebulaGraph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.3.5 Check the service status
	In non-container environment
	In docker container (deployed with docker-compose)

	3.3.6 Next to do

	3.4 Step 3: Connect to NebulaGraph
	3.4.1 Prerequisites
	Steps

	3.5 Register the Storage Service
	3.5.1 Prerequisites
	3.5.2 Steps

	3.6 Step 4: Use nGQL (CRUD)
	3.6.1 Graph space and NebulaGraph schema
	Async implementation of CREATE and ALTER

	3.6.2 Create and use a graph space
	nGQL syntax
	Examples

	3.6.3 Create tags and edge types
	nGQL syntax
	Examples

	3.6.4 Insert vertices and edges
	nGQL syntax
	Examples

	3.6.5 Read data
	nGQL syntax
	Examples of GO statement
	Example of FETCH statement

	3.6.6 Update vertices and edges
	nGQL syntax
	Examples

	3.6.7 Delete vertices and edges
	nGQL syntax
	Examples

	3.6.8 About indexes
	nGQL syntax
	Examples of LOOKUP and MATCH (index-based)

	3.7 nGQL cheatsheet
	3.7.1 Functions
	3.7.2 General queries statements
	3.7.3 Clauses and options
	3.7.4 Space statements
	3.7.5 TAG statements
	3.7.6 Edge type statements
	3.7.7 Vertex statements
	3.7.8 Edge statements
	3.7.9 Index
	3.7.10 Subgraph and path statements
	3.7.11 Query tuning statements
	3.7.12 Operation and maintenance statements

	4. nGQL guide
	4.1 nGQL overview
	4.1.1 NebulaGraph Query Language (nGQL)
	What is nGQL
	What can nGQL do
	Example data Basketballplayer
	Placeholder identifiers and values
	About openCypher compatibility
	Native nGQL and openCypher
	Is nGQL compatible with openCypher 9 completely?
	What are the major differences between nGQL and openCypher 9?
	Where can I find more nGQL examples?
	Does it support TinkerPop Gremlin?
	Does NebulaGraph support W3C RDF (SPARQL) or GraphQL?

	4.1.2 Patterns
	Patterns for vertices
	Patterns for related vertices
	Patterns for tags
	Patterns for properties
	Patterns for edges
	Variable-length pattern
	Assigning to path variables

	4.1.3 Comments
	Examples
	OpenCypher compatibility

	4.1.4 Identifier case sensitivity
	Identifiers are Case-Sensitive
	Keywords and Reserved Words are Case-Insensitive
	Functions are Case-Insensitive

	4.1.5 Keywords
	Reserved keywords
	Non-reserved keywords

	4.1.6 nGQL style guide
	Newline
	Identifier naming
	Pattern
	String
	Statement termination

	4.2 Data types
	4.2.1 Numeric types
	Integer
	Floating-point number
	Reading and writing of data values

	4.2.2 Boolean
	4.2.3 String
	Declaration and literal representation
	String reading and writing
	Escape characters
	OpenCypher compatibility

	4.2.4 Date and time types
	Precautions
	OpenCypher Compatibility
	DATE
	TIME
	DATETIME
	TIMESTAMP
	DURATION
	Examples

	4.2.5 NULL
	Logical operations with NULL
	OpenCypher compatibility
	Comparisons with NULL
	Operations and RETURN with NULL

	Examples
	Use NOT NULL
	Use NOT NULL and set the default

	4.2.6 Lists
	OpenCypher compatibility
	List operations
	Index syntax

	Examples
	OpenCypher compatibility

	4.2.7 Sets
	OpenCypher compatibility
	Examples

	4.2.8 Maps
	OpenCypher compatibility
	Examples

	4.2.9 Type Conversion/Type coercions
	Type coercions functions
	Examples

	4.2.10 Geography
	Type description
	Examples

	4.3 Variables and composite queries
	4.3.1 Composite queries (clause structure)
	OpenCypher compatibility
	Composite queries are not transactional queries (as in SQL/Cypher)
	Examples

	4.3.2 User-defined variables
	OpenCypher compatibility
	Native nGQL
	Example

	4.3.3 Property reference
	Property reference for vertex
	For source vertex
	For destination vertex

	Property reference for edge
	For user-defined edge property
	For built-in properties

	Examples

	4.4 Operators
	4.4.1 Comparison operators
	OpenCypher compatibility
	Examples
	==
	>
	>=
	<
	<=
	!=
	IS [NOT] NULL
	IS [NOT] EMPTY

	4.4.2 Boolean operators
	Legacy version compatibility

	4.4.3 Pipe operators
	OpenCypher compatibility
	Syntax
	Examples
	Performance tips

	4.4.4 Reference operators
	OpenCypher compatibility
	Reference operator List
	Examples

	4.4.5 Set operators
	OpenCypher compatibility
	UNION, UNION DISTINCT, and UNION ALL
	Examples

	INTERSECT
	Example

	MINUS
	Example

	Precedence of the set operators and pipe operators
	Examples

	4.4.6 String operators
	Examples
	+
	CONTAINS
	(NOT) IN
	(NOT) STARTS WITH
	(NOT) ENDS WITH
	Regular expressions

	4.4.7 List operators
	Examples

	4.4.8 Operator precedence
	Examples
	OpenCypher compatibility

	4.5 Functions and expressions
	4.5.1 Built-in math functions
	Function descriptions
	Example

	4.5.2 Built-in string functions
	Explanations for the return of substr() and substring()

	4.5.3 Built-in date and time functions
	Examples

	4.5.4 Schema functions
	For nGQL statements
	For statements compatible with openCypher
	Examples

	4.5.5 CASE expressions
	The simple form of CASE expressions
	Syntax
	Examples

	The generic form of CASE expressions
	Syntax
	Examples

	Differences between the simple form and the generic form

	4.5.6 List functions
	Examples

	4.5.7 count() function
	Syntax
	Examples

	4.5.8 collect()
	Examples

	4.5.9 reduce() function
	OpenCypher Compatibility
	Syntax
	Examples

	4.5.10 hash function
	Legacy version compatibility
	Hash a number
	Hash a string
	Hash a list
	Hash a boolean
	Hash NULL
	Hash an expression

	4.5.11 concat function
	concat() function
	Syntax
	Examples

	concat_ws() function
	Syntax
	Examples

	4.5.12 Predicate functions
	Syntax
	Examples

	4.5.13 Geography functions
	Descriptions
	Examples

	4.5.14 User-defined functions
	OpenCypher compatibility

	4.6 General queries statements
	4.6.1 MATCH
	Syntax
	Precautions
	Using patterns in MATCH statements
	Create indexes
	Match vertices
	Match tags
	Match vertex properties
	Match VIDs
	Match connected vertices
	Match paths
	Match edges
	Match edge types
	Match edge type properties
	Match multiple edge types
	Match multiple edges
	Match fixed-length paths
	Match variable-length paths
	Match variable-length paths with multiple edge types
	Match multiple patterns

	Retrieve with multiple match
	Retrieve with optional match

	4.6.2 OPTIONAL MATCH
	OpenCypher Compatibility
	Example

	4.6.3 LOOKUP
	OpenCypher compatibility
	Precautions
	Prerequisites
	Syntax
	Limitations of using WHERE in LOOKUP
	Retrieve vertices
	Retrieve edges
	List vertices or edges with a tag or an edge type
	Count the numbers of vertices or edges

	4.6.4 GO
	OpenCypher compatibility
	Syntax
	Examples

	4.6.5 FETCH
	OpenCypher Compatibility
	Fetch vertex properties
	Syntax
	Fetch vertex properties by one tag
	Fetch specific properties of a vertex
	Fetch properties of multiple vertices
	Fetch vertex properties by multiple tags
	Fetch vertex properties by all tags

	Fetch edge properties
	Syntax
	Fetch all properties of an edge
	Fetch specific properties of an edge
	Fetch properties of multiple edges

	Fetch properties based on edge rank
	Use FETCH in composite queries

	4.6.6 SHOW
	SHOW CHARSET
	Syntax
	Example

	SHOW COLLATION
	Syntax
	Example

	SHOW CREATE SPACE
	Syntax
	Example

	SHOW CREATE TAG/EDGE
	Syntax
	Examples

	SHOW HOSTS
	Syntax
	Examples

	SHOW INDEX STATUS
	Syntax
	Examples
	Related topics

	SHOW INDEXES
	Syntax
	Examples

	SHOW PARTS
	Syntax
	Examples

	SHOW ROLES
	Syntax
	Example

	SHOW SNAPSHOTS
	Role requirement
	Syntax
	Example

	SHOW SPACES
	Syntax
	Example

	SHOW STATS
	Prerequisites
	Syntax
	Examples

	SHOW TAGS/EDGES
	Syntax
	Examples

	SHOW USERS
	Role requirement
	Syntax
	Example

	SHOW SESSIONS
	Precautions
	Syntax
	Examples

	SHOW QUERIES
	Precautions
	Syntax
	Examples

	SHOW META LEADER
	Syntax
	Example

	4.7 Clauses and options
	4.7.1 GROUP BY
	OpenCypher Compatibility
	Syntax
	Examples
	Group and calculate with functions

	4.7.2 LIMIT AND SKIP
	LIMIT in native nGQL statements
	General LIMIT syntax in native nGQL statements
	LIMIT in GO statements

	LIMIT in openCypher compatible statements
	Examples of LIMIT
	Examples of SKIP
	Example of SKIP and LIMIT

	4.7.3 SAMPLE
	4.7.4 ORDER BY
	Native nGQL Syntax
	Examples

	OpenCypher Syntax
	Examples

	Order of NULL values

	4.7.5 RETURN
	OpenCypher compatibility
	Map order description
	Return vertices or edges
	Return VIDs
	Return Tag
	Return properties
	Return edge type
	Return paths
	Return vertices in a path
	Return edges in a path
	Return path length

	Return all elements
	Rename a field
	Return a non-existing property
	Return expression results
	Return unique fields

	4.7.6 TTL
	OpenCypher Compatibility
	Precautions
	Data expiration and deletion
	Vertex property expiration
	Edge property expiration
	Data deletion

	TTL options
	Use TTL options
	Set a timeout if a tag or an edge type exists
	Set a timeout when creating a tag or an edge type

	Remove a timeout

	4.7.7 WHERE
	OpenCypher compatibility
	Basic usage
	Define conditions with boolean operators
	Filter on properties
	Filter on dynamically-calculated properties
	Filter on existing properties
	Filter on edge rank

	Filter on strings
	STARTS WITH
	ENDS WITH
	CONTAINS
	Negative string matching

	Filter on lists
	Match values in a list
	Match values not in a list

	4.7.8 YIELD
	OpenCypher compatibility
	YIELD clauses
	Syntax
	Use a YIELD clause in a statement

	YIELD statements
	Syntax
	Use a YIELD statement in a composite query
	Use a standalone YIELD statement

	4.7.9 WITH
	OpenCypher compatibility
	Combine statements and form a composite query
	Example 1
	Example 2

	Filter composite queries
	Process the output before using collect()
	Use with RETURN

	4.7.10 UNWIND
	Syntax
	Split a list
	Return a list with distinct items
	Example 1

	Example 2

	4.8 Space statements
	4.8.1 CREATE SPACE
	Prerequisites
	Syntax
	Create graph spaces
	Clone graph spaces

	Examples
	Implementation of the operation
	Check partition distribution

	4.8.2 USE
	Prerequisites
	Syntax
	Examples

	4.8.3 SHOW SPACES
	Syntax
	Example

	4.8.4 DESCRIBE SPACE
	Syntax
	Example

	4.8.5 CLEAR SPACE
	Permission requirements
	Caution
	Syntax
	Data reserved

	4.8.6 DROP SPACE
	Prerequisites
	Syntax

	4.9 Tag statements
	4.9.1 CREATE TAG
	OpenCypher compatibility
	Prerequisites
	Syntax
	Examples

	Implementation of the operation

	4.9.2 DROP TAG
	Prerequisites
	Syntax
	Example

	4.9.3 ALTER TAG
	Prerequisites
	Syntax
	Examples
	Implementation of the operation

	4.9.4 SHOW TAGS
	Syntax
	Examples

	4.9.5 DESCRIBE TAG
	Prerequisite
	Syntax
	Example

	4.9.6 DELETE TAG
	Prerequisites
	Syntax
	Example

	4.9.7 Add and delete tags
	Examples

	4.10 Edge type statements
	4.10.1 CREATE EDGE
	OpenCypher compatibility
	Prerequisites
	Syntax
	Examples

	4.10.2 DROP EDGE
	Prerequisites
	Syntax
	Example

	4.10.3 ALTER EDGE
	Prerequisites
	Syntax
	Example
	Implementation of the operation

	4.10.4 SHOW EDGES
	Syntax
	Example

	4.10.5 DESCRIBE EDGE
	Prerequisites
	Syntax
	Example

	4.11 Vertex statements
	4.11.1 INSERT VERTEX
	Prerequisites
	Syntax
	Examples

	4.11.2 DELETE VERTEX
	Syntax
	Examples
	Process of deleting vertices

	4.11.3 UPDATE VERTEX
	Syntax
	Example

	4.11.4 UPSERT VERTEX
	Syntax
	Insert a vertex if it does not exist
	Update a vertex if it exists

	4.12 Edge statements
	4.12.1 INSERT EDGE
	Syntax
	Examples

	4.12.2 DELETE EDGE
	Syntax
	Examples

	4.12.3 UPDATE EDGE
	Syntax
	Example

	4.12.4 UPSERT EDGE
	Syntax
	Insert an edge if it does not exist
	Update an edge if it exists

	4.13 Native index statements
	4.13.1 Index overview
	Native indexes
	Operations on native indexes

	Full-text indexes
	Operations on full-text indexes

	Null values
	Range queries

	4.13.2 CREATE INDEX
	Prerequisites
	Must-read for using indexes
	Syntax
	Create tag/edge type indexes
	Create single-property indexes
	Create composite property indexes

	4.13.3 SHOW INDEXES
	Syntax
	Examples

	4.13.4 SHOW CREATE INDEX
	Syntax
	Examples

	4.13.5 DESCRIBE INDEX
	Syntax
	Examples

	4.13.6 REBUILD INDEX
	Syntax
	Examples

	4.13.7 SHOW INDEX STATUS
	Syntax
	Example

	4.13.8 DROP INDEX
	Prerequisite
	Syntax
	Example

	4.14 Full-text index statements
	4.14.1 Full-text index restrictions
	4.14.2 Deploy full-text index
	Precaution
	Deploy Elasticsearch cluster
	Sign in to the text search clients
	Syntax
	Example

	Show text search clients
	Syntax
	Example

	Sign out to the text search clients
	Syntax
	Example

	4.14.3 Deploy Raft Listener for Nebula Storage service
	Prerequisites
	Precautions
	Deployment process
	Step 1: Install the Storage service
	Step 2: Prepare the configuration file for the Listener
	Step 3: Start Listeners
	Step 4: Add Listeners to NebulaGraph

	Show Listeners
	Example

	Remove Listeners
	Example

	Next

	4.14.4 Full-text indexes
	Prerequisite
	Precaution
	Natural language full-text search
	Syntax
	Create full-text indexes
	Show full-text indexes
	Rebuild full-text indexes
	Drop full-text indexes
	Use query options

	Examples

	4.15 Subgraph and path
	4.15.1 GET SUBGRAPH
	Syntax
	Examples
	FAQ
	Why is the number of hops in the returned result greater than STEP_COUNT?
	Why is the number of hops in the returned result lower than STEP_COUNT?

	4.15.2 FIND PATH
	Syntax
	Limitations
	Examples
	FAQ
	Does it support the WHERE clause to achieve conditional filtering during graph traversal?

	4.16 Query tuning and terminating statements
	4.16.1 EXPLAIN and PROFILE
	Execution Plan
	Syntax
	Output formats
	The row format
	The dot format

	4.16.2 Kill queries
	Syntax
	Examples

	4.17 Job manager and the JOB statements
	4.17.1 SUBMIT JOB BALANCE DATA
	4.17.2 SUBMIT JOB COMPACT
	4.17.3 SUBMIT JOB FLUSH
	4.17.4 SUBMIT JOB STATS
	4.17.5 SUBMIT JOB DOWNLOAD/INGEST
	4.17.6 SHOW JOB
	Job status

	4.17.7 SHOW JOBS
	4.17.8 STOP JOB
	4.17.9 RECOVER JOB
	4.17.10 FAQ
	How to troubleshoot job problems?

	5. Deployment and installation
	5.1 Prepare resources for compiling, installing, and running NebulaGraph
	5.1.1 About storage devices
	5.1.2 About CPU architecture
	5.1.3 Requirements for compiling the source code
	Hardware requirements for compiling NebulaGraph
	Supported operating systems for compiling NebulaGraph
	Software requirements for compiling NebulaGraph
	Prepare software for compiling NebulaGraph

	5.1.4 Requirements and suggestions for installing NebulaGraph in test environments
	Hardware requirements for test environments
	Supported operating systems for test environments
	Suggested service architecture for test environments

	5.1.5 Requirements and suggestions for installing NebulaGraph in production environments
	Hardware requirements for production environments
	Supported operating systems for production environments
	Suggested service architecture for production environments

	5.1.6 Capacity requirements for running a NebulaGraph cluster

	5.2 Compile and install Nebula Graph
	5.2.1 Install NebulaGraph by compiling the source code
	Prerequisites
	Installation steps
	Update the master branch
	Next to do
	CMake variables
	Usage of CMake variables
	CMAKE_INSTALL_PREFIX
	ENABLE_WERROR
	ENABLE_TESTING
	ENABLE_ASAN
	CMAKE_BUILD_TYPE
	ENABLE_INCLUDE_WHAT_YOU_USE
	NEBULA_USE_LINKER
	CMAKE_C_COMPILER/CMAKE_CXX_COMPILER
	ENABLE_CCACHE
	NEBULA_THIRDPARTY_ROOT

	Examine problems

	5.2.2 Install NebulaGraph with RPM or DEB package
	Prerequisites
	Download the package from cloud service
	Install NebulaGraph
	Next to do

	5.2.3 Install NebulaGraph with the tar.gz file
	Installation steps
	Next to do

	5.2.4 Deploy NebulaGraph with Docker Compose
	Prerequisites
	How to deploy and connect to NebulaGraph
	Check the NebulaGraph service status and ports
	Check the service data and logs
	Stop the NebulaGraph services
	Modify configurations
	FAQ
	How to fix the docker mapping to external ports?
	How to upgrade or update the docker images of NebulaGraph services
	ERROR: TOOMANYREQUESTS when DOCKER-COMPOSE PULL
	How to update the Nebula Console client

	Related documents

	5.2.5 Deploy a NebulaGraph cluster with RPM/DEB package on multiple servers
	Deployment
	Prerequisites
	Manual deployment process
	Step 1: Install NebulaGraph
	Step 2: Modify the configurations
	Step 3: Start the cluster
	Step 4: Check the cluster status

	5.2.6 Install NebulaGraph with ecosystem tools
	Installation details

	5.3 Standalone NebulaGraph
	5.3.1 Background
	5.3.2 Scenarios
	5.3.3 Limitations
	5.3.4 Resource requirements
	5.3.5 Steps
	5.3.6 Configuration file

	5.4 Deploy a license for NebulaGraph Enterprise Edition
	5.4.1 Precautions
	5.4.2 License description
	5.4.3 Deploy the license
	5.4.4 Renew a NebulaGraph Enterprise Edition license
	5.4.5 View the license

	5.5 Manage NebulaGraph Service
	5.5.1 Manage services with script
	Syntax

	5.5.2 Manage services with systemd
	Syntax

	5.5.3 Start NebulaGraph
	In non-container environment
	In docker container (deployed with docker-compose)

	5.5.4 Stop NebulaGraph
	In non-container environment
	In docker container (deployed with docker-compose)

	5.5.5 Check the service status
	In non-container environment
	In docker container (deployed with docker-compose)

	5.5.6 Next to do

	5.6 Connect to NebulaGraph
	5.6.1 Prerequisites
	Steps

	5.7 Manage Storage hosts
	5.7.1 Add Storage hosts
	5.7.2 Drop Storage hosts

	5.8 Upgrade
	5.8.1 Upgrade NebulaGraph from version 2.x to 3.1.0
	Applicable source versions
	Limitations
	Upgrade influences
	Preparations before the upgrade
	Upgrade steps
	Upgrade failure and rollback
	FAQ
	Can I write through the client during the upgrade?
	How to upgrade if a machine has only the Graph Service, but not the Storage Service?
	How to resolve the error PERMISSION DENIED?
	Is there any change in gflags?
	Is there a tool or solution for verifying data consistency after the upgrade?
	How to solve the issue that Storage is OFFLINE and LEADER COUNT is 0?
	Why the job type changed after the upgrade, but job ID remains the same?

	5.9 Uninstall NebulaGraph
	5.9.1 Prerequisite
	5.9.2 Step 1: Delete data files of the Storage and Meta Services
	5.9.3 Step 2: Delete the installation directories
	Uninstall NebulaGraph deployed with source code
	Uninstall NebulaGraph deployed with RPM packages
	Uninstall NebulaGraph deployed with DEB packages
	Uninstall NebulaGraph deployed with Docker Compose

	6. Configurations and logs
	6.1 Configurations
	6.1.1 Configurations
	Get the configuration list and descriptions
	Get configurations
	Configuration files
	Configuration files for clusters installed from source, with an RPM/DEB package, or a TAR package
	Configuration files for clusters installed with Docker Compose
	Configuration files for clusters installed with Nebula Operator

	Modify configurations

	6.1.2 Meta Service configuration
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Networking configurations
	Storage configurations
	Misc configurations
	RocksDB options configurations

	6.1.3 Graph Service configuration
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Query configurations
	Networking configurations
	Charset and collate configurations
	Authorization configurations
	Memory configurations
	Audit configurations
	Metrics configurations
	session configurations
	Experimental configurations
	Experimental features

	6.1.4 Storage Service configurations
	How to use the configuration files
	About parameter values
	Basics configurations
	Logging configurations
	Networking configurations
	Raft configurations
	Disk configurations
	Key-Value separation configurations
	misc configurations
	RocksDB options
	Storage cache configurations
	For super-Large vertices
	Storage configurations for large dataset

	6.1.5 Kernel configurations
	Resource control
	ulimit precautions
	ulimit -c
	ulimit -n

	Memory
	vm.swappiness
	vm.min_free_kbytes
	vm.max_map_count
	vm.dirty_*
	Transparent huge page

	Networking
	net.ipv4.tcp_slow_start_after_idle
	net.core.somaxconn
	net.ipv4.tcp_max_syn_backlog
	net.core.netdev_max_backlog
	net.ipv4.tcp_keepalive_*
	net.ipv4.tcp_rmem/wmem
	scheduler

	Other parameters
	kernel.core_pattern

	Modify parameters
	sysctl
	prlimit

	6.2 Log management
	6.2.1 Runtime logs
	Log directory
	Parameter descriptions
	Check the severity level
	Change the severity level
	RocksDB runtime logs

	6.2.2 Audit logs
	Log categories
	Configure audit logs
	Audit logs format

	7. Monitor and metrics
	7.1 Query NebulaGraph metrics
	7.1.1 Metrics structure
	Space-level metrics

	7.1.2 Query metrics over HTTP
	Syntax
	Examples

	7.1.3 Metric description
	Graph
	Meta
	Storage
	Graph space

	7.2 RocksDB statistics
	7.2.1 Enable RocksDB
	7.2.2 Get RocksDB statistics
	7.2.3 Examples

	8. Data security
	8.1 Authentication and authorization
	8.1.1 Authentication
	Local authentication
	Enable local authentication

	LDAP authentication
	Enable LDAP authentication

	8.1.2 User management
	CREATE USER
	GRANT ROLE
	REVOKE ROLE
	DESCRIBE USER
	SHOW ROLES
	CHANGE PASSWORD
	ALTER USER
	DROP USER
	SHOW USERS

	8.1.3 Roles and privileges
	Built-in roles
	Role privileges and allowed nGQL

	8.1.4 OpenLDAP authentication
	Authentication method
	SimpleBindAuth
	SearchBindAuth

	Prerequisites
	Procedures

	8.2 SSL encryption
	8.2.1 Precaution
	8.2.2 Parameters
	8.2.3 Certificate modes
	8.2.4 Encryption policies
	8.2.5 Steps

	9. Backup & Restore
	9.1 Nebula BR
	9.1.1 What is Backup & Restore
	Features
	Limitations
	How to use BR

	9.1.2 Install BR
	Notes
	Version compatibility
	Install BR with a binary file
	Install BR with the source code
	Install Agent
	FAQ
	The error `E_LIST_CLUSTER_NO_AGENT_FAILURE

	9.1.3 Use BR to back up data
	Prerequisites
	Procedure
	Next to do

	9.1.4 Use BR to restore data
	Prerequisites
	Procedures

	9.2 Backup and restore data with snapshots
	9.2.1 Prerequisites
	9.2.2 Precautions
	9.2.3 Snapshot form and path
	9.2.4 Create snapshots
	9.2.5 View snapshots
	9.2.6 Delete snapshots
	9.2.7 Restore data with snapshots

	10. Synchronization & Migration
	10.1 BALANCE syntax
	10.2 Synchronize between two clusters
	10.2.1 Synchronization workflow
	10.2.2 Applicable Scenarios
	10.2.3 Precautions
	10.2.4 Prerequisites
	10.2.5 Test environment
	10.2.6 Steps
	Step 1: Set up the clusters, listeners, and drainer
	Step 2: Set up the synchronization
	Step 3: Validate the data

	10.2.7 Stop/Restart data synchronization
	10.2.8 Switch between primary and secondary clusters
	10.2.9 FAQ
	Can the pre-existent data in the primary cluster be synchronized to the secondary cluster?
	Will the pre-existent data in the secondary cluster affect the synchronization?
	Will the pre-existent schema information in the secondary cluster affect the synchronization?
	Should the number of machines, replicas, and partitions in the primary and secondary clusters be the same?
	Does altering the schema in the primary cluster affect the synchronization?
	How to deal with synchronization failures?
	How to check the data synchronization status and progress?

	11. Practices
	11.1 Compaction
	11.1.1 Automatic compaction
	11.1.2 Full compaction
	11.1.3 Operation suggestions
	11.1.4 FAQ
	"Where are the logs related to Compaction stored?"
	"Can I do full compactions for multiple graph spaces at the same time?"
	"How much time does it take for full compactions?"
	"Can I modify --rocksdb_rate_limit dynamically?"
	"Can I stop a full compaction after it starts?"

	11.2 Storage load balance
	11.2.1 Balance partition distribution
	Examples
	Stop data balancing
	Restore a balance job
	Migrate partition

	11.2.2 Balance leader distribution
	Example

	11.3 Graph data modeling suggestions
	11.3.1 Model for performance
	Design and evaluate the most important queries
	Full-graph scanning avoidance
	No predefined bonds between Tags and Edge types
	Tags/Edge types predefine a set of properties
	Control changes in the business model and the data model
	Set temporary properties through self-loop edges
	About dangling edges
	Breadth-first traversal over depth-first traversal
	Edge directions
	Set tag properties appropriately
	Use indexes correctly
	Design VIDs appropriately
	Long texts

	11.3.2 Dynamic graphs (sequence graphs) are not supported

	11.4 System design suggestions
	11.4.1 QPS or low-latency first
	11.4.2 Data transmission and optimization
	11.4.3 Query preheating and data preheating

	11.5 Execution plan
	11.6 Processing super vertices
	11.6.1 Principle introduction
	Indexes for duplicate properties
	Suggested solutions
	Solutions at the database end
	Solutions at the application end

	11.7 Best practices
	11.7.1 Scenarios
	11.7.2 Kernel
	11.7.3 Ecosystem tool

	12. Client
	12.1 Clients overview
	12.2 Nebula Console
	12.2.1 Obtain Nebula Console
	12.2.2 Nebula Console functions
	Connect to NebulaGraph
	Manage parameters
	Export query results
	Import a testing dataset
	Run a command multiple times
	Sleep
	Disconnect Nebula Console from NebulaGraph

	12.3 Nebula CPP
	12.3.1 Limitations
	12.3.2 Compatibility with NebulaGraph
	12.3.3 Install Nebula CPP
	Prerequisites
	Steps

	12.3.4 Use Nebula CPP
	12.3.5 Core of the example code

	12.4 Nebula Java
	12.4.1 Prerequisites
	12.4.2 Compatibility with NebulaGraph
	12.4.3 Download Nebula Java
	12.4.4 Use Nebula Java
	Core of the example code

	12.5 Nebula Python
	12.5.1 Prerequisites
	12.5.2 Compatibility with NebulaGraph
	12.5.3 Install Nebula Python
	Install Nebula Python with pip
	Install Nebula Python from the source code

	12.5.4 Core of the example code

	12.6 Nebula Go
	12.6.1 Prerequisites
	12.6.2 Compatibility with NebulaGraph
	12.6.3 Download Nebula Go
	12.6.4 Install or update
	12.6.5 Core of the example code

	13. NebulaGraph Cloud
	13.1 What is NebulaGraph Cloud
	13.1.1 Product features
	13.1.2 Product advantages

	13.2 NebulaGraph on AWS
	13.2.1 NebulaGraph on AWS overview
	Costs
	Licenses
	Core version

	13.2.2 Deployment Architecture
	13.2.3 Planning the deployment
	Specialized knowledge
	Account and permission
	Resource quotas
	AWS Regions
	EC2 key pairs
	Deployment options

	13.2.4 Deployment steps
	13.2.5 Connect to NebulaGraph on AWS

	13.3 NebulaGraph on Azure
	13.3.1 NebulaGraph on Azure overview
	Costs
	Licenses
	Core version

	13.3.2 Deployment Architecture
	13.3.3 Planning the deployment
	Specialized knowledge
	Account and permission
	Resource quotas

	13.3.4 Deployment steps
	13.3.5 Connect and monitor NebulaGraph on Azure

	14. Nebula Studio
	14.1 Change Log
	14.1.1 v3.3.2(2022.05.19)
	14.1.2 v3.3.1(2022.05.07)
	14.1.3 v3.3.0(2022.04.25)

	14.2 About Nebula Studio
	14.2.1 What is Nebula Studio
	Released versions
	Features
	Scenarios
	Authentication
	Check updates

	14.2.2 Limitations
	NebulaGraph versions
	Architecture
	Upload data
	nGQL statements
	Browser

	14.3 Deploy and connect
	14.3.1 Deploy Studio
	RPM-based Studio
	Prerequisites
	Install
	Uninstall
	Exception handling

	DEB-based Studio
	Prerequisites
	Install
	Uninstall

	tar-based Studio
	Prerequisites
	Install and deploy
	Stop Service

	Docker-based Studio
	Prerequisites
	Procedure

	Next to do

	14.3.2 Deploy Studio with Helm
	Prerequisites
	Install
	Uninstall
	Next to do
	Configuration

	14.3.3 Connect to NebulaGraph
	Prerequisites
	Procedure
	Next to do
	Log out

	14.4 Quick start
	14.4.1 Design a schema
	14.4.2 Create a schema
	Prerequisites
	Create a schema with Schema
	Create a schema with Console
	Next to do

	14.4.3 Import data
	Prerequisites
	Procedure
	Upload files
	Import Data

	14.4.4 Console
	14.4.5 Use Schema
	Operate graph spaces
	Prerequisites
	Create a graph space
	Delete a graph space
	Next to do

	Operate tags
	Prerequisites
	Create a tag
	Edit a tag
	Delete a tag
	Next to do

	Operate edge types
	Prerequisites
	Create an edge type
	Edit an edge type
	Delete an Edge type
	Next to do

	Operate Indexes
	Prerequisites
	Create an index
	View indexes
	Rebuild indexes
	Delete an index

	14.5 Troubleshooting
	14.5.1 Connecting to the database error
	Problem description
	Possible causes and solutions
	Step1: Confirm that the format of the HOST field is correct
	Step2: Confirm that the USERNAME and PASSWORD are correct
	Step3: Confirm that NebulaGraph service is normal
	Step4: Confirm the network connection of the Graph service is normal

	14.5.2 Cannot access to Studio
	Problem description
	Possible causes and solutions
	Step1: Confirm system architecture
	Step2: Check if the Studio service starts normally
	Step3: Confirm address
	Step4: Confirm network connection

	14.5.3 FAQ

	15. Nebula Dashboard Community Edition
	15.1 What is Nebula Dashboard Community Edition
	15.1.1 Features
	15.1.2 Scenarios
	15.1.3 Precautions
	15.1.4 Version compatibility
	15.1.5 Release note

	15.2 Deploy Dashboard
	15.2.1 Prerequisites
	15.2.2 Download Dashboard
	15.2.3 Service
	15.2.4 Procedure
	Deploy node-exporter
	Deploy nebula-stats-exporter
	Deploy prometheus
	Deploy nebula-http-gateway
	How to deploy the nebula-dashboard service

	15.2.5 Stop Dashboard

	15.3 Connect Dashboard
	15.3.1 Prerequisites
	15.3.2 Procedures

	15.4 Dashboard
	15.4.1 Overview
	15.4.2 Machine
	15.4.3 Service
	15.4.4 Management
	15.4.5 Others

	15.5 Metrics
	15.5.1 Machine
	CPU
	Memory
	Load
	Disk
	Network

	15.5.2 Service
	Period
	Metric methods
	Graph
	Meta
	Storage
	Graph space

	16. Nebula Dashboard Enterprise Edition
	16.1 What is Nebula Dashboard Enterprise Edition
	16.1.1 Features
	16.1.2 Scenarios
	16.1.3 Precautions
	16.1.4 Version compatibility
	16.1.5 Video

	16.2 Deploy Dashboard Enterprise Edition
	16.2.1 Prerequisites
	16.2.2 Deploy Dashboard Enterprise Edition with TAR
	Installation
	Manage Dashboard Service
	Examples

	16.2.3 Deploy Dashboard Enterprise Edition with RPM
	Installation
	View logs
	Uninstallation

	16.2.4 Deploy Dashboard Enterprise Edition with DEB
	Installation
	View logs
	Uninstallation

	16.2.5 Connect to Dashboard

	16.3 Nebula Dashboard Enterprise Edition license
	16.3.1 Precautions
	16.3.2 Obtain a Nebula Dashboard Enterprise Edition license
	16.3.3 License description
	16.3.4 Use a Nebula Dashboard Enterprise Edition license
	16.3.5 Renew a Nebula Dashboard Enterprise Edition license

	16.4 Create and import clusters
	16.4.1 Create clusters
	Steps
	Next to do

	16.4.2 Import clusters
	Steps
	Next to do

	16.5 Cluster management
	16.5.1 Cluster overview
	Overview
	Cluster survey
	Alert
	Information
	Node
	Status list
	Service

	16.5.2 Cluster monitoring
	Node
	Service
	Graph space

	TV Dashboard

	16.5.3 Alerts
	Alert messages
	Alert rules
	Create custom rules
	View custom rules
	Edit custom rules
	Delete custom rules
	Built-in Rules

	Receiver configuration

	16.5.4 Cluster information
	Entry
	Overview Info
	Storage Leader Distribution
	Version

	Service information
	Partition Distribution
	Partition information
	Cluster Diagnostics

	16.5.5 Cluster Diagnositics
	Features
	Entry
	Create diagnostic reports
	View diagnostic reports
	Diagnosis Result
	Basic Info
	Load Info
	Network
	Session
	Service Info
	Configuration Info

	16.5.6 Cluster operation
	Node
	Scale
	Service
	Update Config
	Member Management
	Add cluster members
	Other operations

	Version Upgrade

	16.5.7 Back up and restore NebulaGraph data
	Limits
	Prerequisites
	Steps
	Entry
	Back up data
	Restore data

	16.5.8 Operation record
	16.5.9 Other settings

	16.6 Task Center
	16.6.1 Running tasks
	16.6.2 Task history
	16.6.3 Delete tasks

	16.7 Authority management
	16.7.1 Account types
	LDAP accounts
	General accounts

	16.7.2 Account roles
	16.7.3 Create accounts
	16.7.4 View accounts
	16.7.5 Other operations

	16.8 Package management
	16.8.1 Precautions
	16.8.2 View packages
	16.8.3 Download packages
	16.8.4 Upload packages
	16.8.5 Delete packages
	16.8.6 FAQ
	How to resolve the error Request Entity Too Large?

	16.9 Global settings
	16.9.1 Interface settings
	System settings
	Notification Endpoints
	Other settings

	16.9.2 Help center
	16.9.3 User information

	16.10 Macro Rendering Error
	16.11 FAQ
	16.11.1 "What are Cluster, Node, and Service?"
	16.11.2 "What is the cluster status?"
	16.11.3 "Why authorizing nodes?"
	16.11.4 "What is scaling?"
	16.11.5 "Why cannot operate on the Metad service?"
	16.11.6 "What impact will the scaling have on the data?"
	16.11.7 "Why Dashboard Enterprise Edition cannot be started?"
	16.11.8 "Can I add the NebulaGraph installation package manually?"
	16.11.9 Why does it prompt “SSH connection error” when importing a cluster？

	17. Nebula Explorer
	17.1 What is Nebula Explorer
	17.1.1 Scenarios
	17.1.2 Features
	17.1.3 Authentication
	17.1.4 Video

	17.2 Deploy and connect
	17.2.1 Deploy Explorer
	NebulaGraph version
	Prerequisites
	RPM-based deployment
	Installation
	Start and stop
	Uninstallation

	DEB-based deployment
	Installation
	View the status
	Stop the service
	Uninstallation

	TAR-based deployment
	Installation
	Stop Service

	Next to do

	17.2.2 Connect to NebulaGraph
	Prerequisites
	Procedure
	Clear connection

	17.2.3 Nebula Explorer license
	Precautions
	Obtain a Nebula Explorer license
	License description
	Use a Nebula Explorer license
	Renew a Nebula Explorer license

	17.3 Page overview
	17.3.1 Top navigation bar
	17.3.2 Left-side navigation bar
	17.3.3 Canvas

	17.4 Database management
	17.4.1 Create a schema
	17.4.2 Import data
	17.4.3 Explorer console

	17.5 Graph explorer
	17.5.1 Choose graph spaces
	Prerequisite
	Steps

	17.5.2 Start querying
	Prerequisites
	Steps
	Query by VID
	Query by Tag
	Query Subgraph

	17.5.3 Vertex Filter
	Prerequisite
	Notes
	Example
	Example 1 Filter vertices on the canvas with the tag PLAYER
	Example 2 Filter players older than 33 years old

	17.5.4 Graph exploration
	Prerequisite
	Expand
	Common Neighbor
	Search for Path
	Inspect Property

	17.5.5 Graph computing
	Prerequisites
	Steps

	17.6 Visual Query
	17.6.1 Prerequisite
	17.6.2 Page elements
	17.6.3 Steps
	17.6.4 Examples
	Example 1
	Example 2

	17.7 Canvas
	17.7.1 Canvas overview
	Tabs on the Top
	Visualization modes
	Data storage
	Search box
	Layouts
	Minimap
	Data overview

	17.7.2 Visualization modes
	2D mode
	3D mode

	17.7.3 Canvas snapshots
	Create snapshots
	Historical snapshots

	17.8 Workflow
	17.8.1 Workflow overview
	Background
	Features
	Precautions
	Algorithm description

	17.8.2 Prepare resources
	Prerequisites
	Steps

	17.8.3 Workflow example
	Prerequisites
	Add workflow

	17.8.4 Workflow management
	Steps

	17.8.5 Job management
	Steps

	17.8.6 Workflow API
	Workflow API overview
	Request method
	Get authorization token
	Response
	Common error codes
	Job/Task status code

	Add a new job
	API path
	Request parameters
	Path parameters
	Headers parameters
	Body parameters
	Request example

	Response parameters
	Response example

	Get a list of all jobs
	API path
	Request parameters
	Path parameters
	Headers parameters
	Body parameters
	Request example

	Response parameters
	Response example

	Get a list of jobs for a specified workflow
	API path
	Request parameters
	Path parameters
	Headers parameters
	Body parameters
	Request example

	Response parameters
	Response example

	Query details for a specified job
	API path
	Request parameters
	Path parameters
	Headers parameters
	Body parameters
	Request example

	Response parameters
	Response example

	Cancel a running job
	API path
	Request parameters
	Path parameters
	Headers parameters
	Body parameters
	Request example

	Response parameters
	Response example

	Get the result data of a specified task
	API path
	Request parameters
	Path parameters
	Headers parameters
	Body parameters
	Request example

	Response parameters
	Response example

	17.9 Basic operations and shortcuts
	17.9.1 Basic operations
	17.9.2 Shortcuts

	18. Nebula Importer
	18.1 Nebula Importer
	18.1.1 Scenario
	18.1.2 Advantage
	18.1.3 Release note
	18.1.4 Prerequisites
	18.1.5 Steps
	Download binary package and run
	Source code compile and run
	No network compilation mode
	Run in Docker mode

	18.1.6 Configuration File Description
	Basic configuration
	Client configuration
	File configuration
	File and log configuration
	Schema configuration

	18.1.7 About the CSV file header

	18.2 Configuration with Header
	18.2.1 Sample files
	18.2.2 Header format description
	18.2.3 Sample configuration

	18.3 Configuration without Header
	18.3.1 Sample files
	18.3.2 Sample configuration

	19. Nebula Exchange
	19.1 Introduction
	19.1.1 What is Nebula Exchange
	Editions
	Scenarios
	Advantages
	Data source
	Release note

	19.1.2 Limitations
	Version compatibility
	Environment
	Software dependencies

	19.2 Get Exchange
	19.2.1 Download the JAR file directly
	19.2.2 Get the JAR file by compiling the source code
	Prerequisites

	19.2.3 Steps
	Failed to download the dependency package

	19.3 Exchange configurations
	19.3.1 Options for import
	19.3.2 Parameters in the configuration file
	Spark configurations
	Hive configurations (optional)
	NebulaGraph configurations
	Vertex configurations
	General parameters
	Specific parameters of Parquet/JSON/ORC data sources
	Specific parameters of CSV data sources
	Specific parameters of Hive data sources
	Specific parameters of MaxCompute data sources
	Specific parameters of Neo4j data sources
	Specific parameters of MySQL/PostgreSQL data sources
	Specific parameters of ClickHouse data sources
	Specific parameters of Hbase data sources
	Specific parameters of Pulsar data sources
	Specific parameters of Kafka data sources
	Specific parameters for generating SST files
	Specific parameters of NebulaGraph

	Edge configurations
	General parameters
	Specific parameters for generating SST files
	Specific parameters of NebulaGraph

	19.4 Use Nebula Exchange
	19.4.1 Import data from CSV files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process CSV files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	19.4.2 Import data from JSON files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process JSON files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	19.4.3 Import data from ORC files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process ORC files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	19.4.4 Import data from Parquet files
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process Parquet files
	Step 3: Modify configuration files
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	19.4.5 Import data from HBase
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	19.4.6 Import data from MySQL/PostgreSQL
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	19.4.7 Import data from ClickHouse
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	19.4.8 Import data from Neo4j
	Implementation method
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Configuring source data
	Step 3: Modify configuration files
	Exec configuration
	tags.vertex or edges.vertex configuration
	check_point_path configuration

	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	19.4.9 Import data from Hive
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Use Spark SQL to confirm Hive SQL statements
	Step 3: Modify configuration file
	Step 4: Import data into NebulaGraph
	Step 5: (optional) Validate data
	Step 6: (optional) Rebuild indexes in NebulaGraph

	19.4.10 Import data from MaxCompute
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	19.4.11 Import data from Pulsar
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	19.4.12 Import data from Kafka
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Modify configuration files
	Step 3: Import data into NebulaGraph
	Step 4: (optional) Validate data
	Step 5: (optional) Rebuild indexes in NebulaGraph

	19.4.13 Import data from SST files
	Precautions
	Background information
	Scenarios
	Implementation methods
	Data set
	Environment
	Prerequisites
	Steps
	Step 1: Create the Schema in NebulaGraph
	Step 2: Process CSV files
	Step 3: Modify configuration files
	Step 4: Generate the SST file
	Step 5: Import the SST file
	Step 6: (optional) Validate data
	Step 7: (optional) Rebuild indexes in NebulaGraph

	19.4.14 Export data from NebulaGraph
	Preparation
	Hardware
	System
	Software
	Dataset

	Steps

	19.5 Exchange FAQ
	19.5.1 Compilation
	Q: Some packages not in central repository failed to download, error: Could not resolve dependencies for project xxx
	Q: Unable to download SNAPSHOT packages when compiling Exchange

	19.5.2 Execution
	Q: How to submit in Yarn-Cluster mode?
	Q: Error: method name xxx not found
	Q: Error: NoSuchMethod, MethodNotFound (Exception in thread "main" java.lang.NoSuchMethodError, etc)
	Q: When Exchange imports Hive data, error: Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found
	Q: Run error: com.facebook.thrift.protocol.TProtocolException: Expected protocol id xxx
	Q: Error: Exception in thread "main" com.facebook.thrift.protocol.TProtocolException: The field 'code' has been assigned the invalid value -4
	Q: How to correct the messy code when importing Hive data into NebulaGraph?
	Q: org.rocksdb.RocksDBException: While open a file for appending: /path/sst/1-xxx.sst: No such file or directory

	19.5.3 Configuration
	Q: Which configuration fields will affect import performance?

	19.5.4 Others
	Q: Which versions of NebulaGraph are supported by Exchange?
	Q: What is the relationship between Exchange and Spark Writer?

	20. Nebula Operator
	20.1 What is Nebula Operator
	20.1.1 Concept of Nebula Operator
	20.1.2 How it works
	20.1.3 Features of Nebula Operator
	20.1.4 Limitations
	Version limitations
	Feature limitations

	20.1.5 Release note

	20.2 Overview of using Nebula Operator
	20.3 Deploy Nebula Operator
	20.3.1 Background
	20.3.2 Prerequisites
	Install software
	Description of software

	20.3.3 Steps
	Install Nebula Operator
	Customize Helm charts
	Update Nebula Operator
	Upgrade Nebula Operator
	Uninstall Nebula Operator

	20.3.4 What's next

	20.4 Deploy clusters
	20.4.1 Deploy NebulaGraph clusters with Kubectl
	Prerequisites
	Create clusters
	Scaling clusters
	Scale out clusters
	Scale in clusters

	Delete clusters
	What's next

	20.4.2 Deploy NebulaGraph clusters with Helm
	Prerequisite
	Create clusters
	Scaling clusters
	Delete clusters
	What's next
	Configuration parameters of the nebula-cluster Helm chart

	20.5 Configure clusters
	20.5.1 Customize configuration parameters for a NebulaGraph cluster
	Prerequisites
	Steps
	Learn more

	20.5.2 Reclaim PVs
	Prerequisites
	Steps

	20.5.3 Balance storage data after scaling out
	Prerequisites
	Steps

	20.6 Upgrade NebulaGraph clusters created with Nebula Operator
	20.6.1 Limits
	20.6.2 Upgrade a NebulaGraph cluster with Kubectl
	Prerequisites
	Steps

	20.6.3 Upgrade a NebulaGraph cluster with Helm
	Prerequisites
	Steps

	20.7 Connect to NebulaGraph databases with Nebular Operator
	20.7.1 Prerequisites
	20.7.2 Connect to NebulaGraph databases from within a NebulaGraph cluster
	20.7.3 Connect to NebulaGraph databases from outside a NebulaGraph cluster via NodePort
	20.7.4 Connect to NebulaGraph databases from outside a NebulaGraph cluster via Ingress

	20.8 Self-healing
	20.8.1 Prerequisites
	20.8.2 Steps

	20.9 FAQ
	20.9.1 Does Nebula Operator support the v1.x version of NebulaGraph?
	20.9.2 Does Nebula Operator support the rolling upgrade feature for NebulaGraph clusters?
	20.9.3 Is cluster stability guaranteed if using local storage?
	20.9.4 How to ensure the stability of a cluster when scaling the cluster?

	21. Graph computing
	21.1 Algorithm overview
	21.1.1 Node importance measurement
	PageRank
	KCore
	DegreeCentrality (NStepDegree)
	DegreeWithTime
	BetweennessCentrality
	ClosenessCentrality

	21.1.2 Path
	APSP
	SSSP
	BFS

	21.1.3 Community discovery
	LPA
	HANP
	ConnectedComponent
	Louvain

	21.1.4 Graph feature
	TriangleCount

	21.1.5 Clustering
	ClusteringCoefficient

	21.1.6 Similarity
	Jaccard

	21.2 Nebula Algorithm
	21.2.1 Version compatibility
	21.2.2 Prerequisites
	21.2.3 Limitations
	21.2.4 Supported algorithms
	21.2.5 Implementation methods
	21.2.6 Get Nebula Algorithm
	Compile and package
	Download maven from the remote repository

	21.2.7 How to use
	Use algorithm interface (recommended)
	Submit the algorithm package directly

	21.3 Nebula Analytics
	21.3.1 Scenarios
	21.3.2 Limitations
	21.3.3 Version compatibility
	21.3.4 Graph algorithms
	21.3.5 Install Nebula Analytics
	21.3.6 How to use Nebula Analytics

	21.4 Nebula Explorer Workflow
	21.5 Dag Controller
	21.5.1 Prerequisites
	21.5.2 Preparations
	21.5.3 Precautions
	21.5.4 Deploy Nebula Analytics
	21.5.5 Deploy Dag Controller
	21.5.6 Next to do
	21.5.7 FAQ
	Will the Dag Controller service crash if the Graph service returns too much result data?
	Can I continue a job from a failed task?
	How can I speed it up if a task result is saved slowly or data is transferred slowly between tasks?
	The HDFS server cannot be connected and the task status is running.
	How to resolve the error Err:dial unix: missing address?
	How to resolve the error bash: /home/xxx/nebula-analytics/scripts/run_algo.sh: No such file or directory?
	How to resolve the error /lib64/libm.so.6: version 'GLIBC_2.29' not found (required by /home/vesoft/jdk-18.0.1/jre/lib/amd64/server/libjvm.so)?
	How to resolve the error handshake failed: ssh: unable to authenticate, attempted methods [none publickey], no supported methods remain?
	How to resolve the error There are 0 Nebula Analytics available. clusterSize should be less than or equal to it?
	How to resolve the error broadcast.hpp:193] Check failed: (size_t)recv_bytes >= sizeof(chunk_tail_t) recv message too small: 0?

	22. Nebula Spark Connector
	22.1 Use cases
	22.2 Benefits
	22.3 Release note
	22.4 Get Nebula Spark Connector
	22.4.1 Compile package
	22.4.2 Download maven remote repository

	22.5 How to use
	22.5.1 Reading data from NebulaGraph
	22.5.2 Write data into NebulaGraph

	23. Nebula Flink Connector
	23.1 Use cases
	23.2 Release note

	24. Nebula Bench
	24.1 Scenario
	24.2 Release note
	24.3 Test process

	25. Appendix
	25.1 NebulaGraph learning path
	25.1.1 1. About NebulaGraph
	1.1 What is NebulaGraph?
	1.2 Data models
	1.3 Path
	1.4 NebulaGraph architecture

	25.1.2 2. Quick start
	2.1 Install NebulaGraph
	2.2 Start NebulaGraph
	2.3 Connect to NebulaGraph
	2.4 Use nGQL statements

	25.1.3 3. Hands-on practices
	3.1 Deploy a multi-machine cluster
	3.2 Upgrade NebulaGraph
	3.3 Configure NebulaGraph
	3.4 Configure logs
	3.5 O&M and Management
	3.6 Performance tuning
	3.7 Derivative software

	25.1.4 4. API & SDK
	25.1.5 5. Best practices
	25.1.6 6. FAQ
	25.1.7 7. Practical tasks
	25.1.8 8. Get NebulaGraph Certifications

	25.2 NebulaGraph 3.1.0 release notes
	25.2.1 Enhancement
	25.2.2 Bugfix
	25.2.3 Legacy versions

	25.3 FAQ
	25.3.1 About manual updates
	"Why is the behavior in the manual not consistent with the system?"

	25.3.2 About legacy version compatibility
	25.3.3 About execution errors
	"How to resolve the error SemanticError: Missing yield clause.?"
	"How to resolve the error Host not enough!?"
	"How to resolve the error To get the property of the vertex in 'v.age', should use the format 'var.tag.prop'?"
	"How to resolve the error Storage Error E_RPC_FAILURE?"
	"How to resolve the error The leader has changed. Try again later?"
	Unable to download SNAPSHOT packages when compiling Exchange, Connectors, or Algorithm
	"How to resolve [ERROR (-1004)]: SyntaxError: syntax error near?"
	"How to resolve the error can’t solve the start vids from the sentence?"
	"How to resolve the error Wrong vertex id type: 1001?"
	"How to resolve the error The VID must be a 64-bit integer or a string fitting space vertex id length limit.?"
	"How to resolve the error edge conflict or vertex conflict?"
	"How to resolve the error RPC failure in MetaClient: Connection refused?"
	"How to resolve the error StorageClientBase.inl:214] Request to "x.x.x.x":9779 failed: N6apache6thrift9transport19TTransportExceptionE: Timed Out in nebula-graph.INFO?"
	"How to resolve the error MetaClient.cpp:65] Heartbeat failed, status:Wrong cluster! in nebula-storaged.INFO, or HBProcessor.cpp:54] Reject wrong cluster host "x.x.x.x":9771! in nebula-metad.INFO?

	25.3.4 About design and functions
	"How is the time spent value at the end of each return message calculated?"
	Why does the port number of the nebula-storaged process keep showing red after connecting to NebulaGraph?
	Why is there no line separating each row in the returned result of NebulaGraph 2.6.0?
	About dangling edges
	"Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2?"
	"Is stopping or killing slow queries supported?"
	"Why are the query results different when using GO and MATCH to execute the same semantic query?"
	"How to count the vertices/edges number of each tag/edge type?"
	"How to get all the vertices/edge of each tag/edge type?"
	"How to get all the vertices/edges without specifying the types?"
	Can non-English characters be used as identifiers, such as the names of graph spaces, tags, edge types, properties, and indexes?
	"How to get the out-degree/the in-degree of a vertex with a given name"?
	"How to quickly get the out-degree and in-degree of all vertices?"

	25.3.5 About operation and maintenance
	"The runtime log files are too large. How to recycle the logs?"
	"How to check the NebulaGraph version?"
	"How to scale out or scale in? (Enterprise Edition only)"
	"After changing the name of the host, the old one keeps displaying OFFLINE. What should I do?"

	25.3.6 About connections
	"Which ports should be opened on the firewalls?"
	"How to test whether a port is open or closed?"

	25.3.7 About license
	Are the Dashboard/Explorer/NebulaGraph Enterprise Edition licenses the same?
	During the validity period of the NebulaGraph Enterprise Edition license, after replacing the enterprise edition Meta with the community edition Meta, can the community edition Meta be used with the enterprise edition Graph and Storage?
	After the NebulaGraph Enterprise Edition license expires, is it possible that copy the data in the data directory and paste it to the same directory of NebulaGraph Community Edition, and then use NebulaGraph services as normal?
	Is there any message before the license expires, and how to renew the license after it expires?

	25.4 Ecosystem tools overview
	25.4.1 Nebula Studio
	25.4.2 Nebula Dashboard Community Edition
	25.4.3 Nebula Dashboard Enterprise Edition
	25.4.4 Nebula Explorer
	25.4.5 Nebula Stats Exporter
	25.4.6 Nebula Exchange
	25.4.7 Nebula Operator
	25.4.8 Nebula Importer
	25.4.9 Nebula Spark Connector
	25.4.10 Nebula Flink Connector
	25.4.11 Nebula Algorithm
	25.4.12 Nebula Analytics
	25.4.13 Nebula Console
	25.4.14 Nebula Docker Compose
	25.4.15 Backup & Restore
	25.4.16 Nebula Bench
	25.4.17 API, SDK
	25.4.18 Not Released

	25.5 Import tools
	25.6 How to Contribute
	25.6.1 Before you get started
	Commit an issue on the github or forum
	Sign the Contributor License Agreement (CLA)

	25.6.2 Modify a single document
	25.6.3 Batch modify or add files
	25.6.4 Step 1: Fork in the github.com
	25.6.5 Step 2: Clone Fork to Local Storage
	25.6.6 Step 3: Branch
	25.6.7 Step 4: Develop
	25.6.8 Step 5: Bring Your Branch Update to Date
	25.6.9 Step 6: Commit
	25.6.10 Step 7: Push
	25.6.11 Step 8: Create a Pull Request
	25.6.12 Step 9: Get a Code Review
	25.6.13 Add test cases
	25.6.14 Donation
	Step 1: Confirm the project donation
	Step 2: Get the information of the project recipient
	Step 3: Donate a project

	25.7 History timeline for NebulaGraph
	25.8 Error code

