
Nebula Graph Database

Manual

v2.0.0

Min Wu, Yao Zhou, Amber Zhang, Cooper Liang

2021 Vesoft Inc.

Table of contents

41. About

52. Introduction

52.1 What is Nebula Graph

82.2 Data modeling

112.3 Nebula Graph architecture

173. Quick start

173.1 FAQ

213.2 Quick start workflow

223.3 Deploy Nebula Graph with Docker Compose

263.4 Manage Nebula Graph services

293.5 Connect to Nebula Graph

323.6 Nebula Graph CRUD

423.7 Useful links

444. nGQL guide

444.1 nGQL overview

494.2 Data types

624.3 Variables and composite queries

674.4 Operators

804.5 Functions and expressions

1024.6 General queries statements

1384.7 Clauses and options

1604.8 Space statements

1664.9 Tag statements

1724.10 Edge type statements

1784.11 Vertex statements

1834.12 Edge statements

1874.13 Native index statements

1954.14 Full-text index statements

2044.15 Subgraph and path

2094.16 Query tuning statements

2124.17 Operation and maintenance statements

2164.18 Appendix

2225. Deployment and installation

2225.1 Prepare resources for compiling, installing, and running Nebula Graph

2295.2 Compile and install Nebula Graph

Table of contents

- 2/287 - 2021 Vesoft Inc.

2355.3 Deploy Nebula Graph cluster

2365.4 Upgrade Nebula Graph to v2.0.0

2426. Configurations and logs

2426.1 Configurations

2566.2 Log management

2587. Monitor and metrics

2587.1 Query Nebula Graph metrics

2608. Data security

2608.1 Authentication and authorization

2658.2 Backup & Restore

2778.3 Backup and restore data with snapshots

2799. Service Tuning

2799.1 Compaction

2819.2 Storage load balance

28410. Contribution

28410.1 How to Contribute

Table of contents

- 3/287 - 2021 Vesoft Inc.

1. About

Document of v2.0.0 is not maintained.

A new version has been released. Refer to the new document.

Last update: September 9, 2021

1. About

- 4/287 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/

2. Introduction

2.1 What is Nebula Graph

Nebula Graph is an open-source, distributed, easily scalable, and native graph database. It is capable of hosting graphs with

hundreds of billions of vertices and trillions of edges, and serving queries with millisecond-latency.

2.1.1 What is a graph database

A graph database, such as Nebula Graph, is a database that specializes in storing vast graph networks and retrieving information

from them. It efficiently stores data as vertices (nodes) and edges (relationships) in labeled property graphs. Properties can be

attached to both vertices and edges. Each vertex can have one or multiple tags (labels).

Graph databases are well suited for storing most kinds of data models abstracted from reality. Things are connected in almost all

fields in the world. Modeling systems like relational databases extract the relationships between entities and squeeze them into

table columns alone, with their types and properties stored in other columns or even other tables. This makes the data

management time-consuming and cost-ineffective. Nebula Graph, as a typical native graph database, allows you to store the rich

relationships as edges with edge types and properties directly attached to them.

2. Introduction

- 5/287 - 2021 Vesoft Inc.

2.1.2 Benefits of Nebula Graph

Open-source

Nebula Graph is open under the Apache 2.0 license. More and more people such as database developers, data scientists, security

experts, and algorithm engineers are participating in the designing and development of Nebula Graph. To join the opening of

source code and ideas, surf the Nebula Graph GitHub page.

Outstanding performance

Written in C++ and born for graph, Nebula Graph handles graph queries in milliseconds. Among most databases, Nebula Graph

shows superior performance in providing graph data services. The larger the data size, the greater the superiority of Nebula

Graph. For more information, see Nebula Graph benchmarking.

Developer friendly

Nebula Graph supports clients in popular programming languages like Java, Python, C++, and Go, and more are being

developed. For more information, see Nebula Graph clients.

Diversified ecosystem

More and more native tools of Nebula Graph have been released, such as Nebula Graph Studio, nebula-console, and Nebula

Graph Exchange. Besides, Nebula Graph has the ability to be integrated with many cutting-edge technologies, such as Spark,

Flink, and HBase, for the purpose of mutual strengthening in a world of increasing challenges and chances. For more

information, see Ecosystem development.

OpenCypher-compatible query language

The native Nebula Graph Query Language, also known as nGQL, is a declarative, openCypher-compatible textual query language.

It is easy to understand and easy to use. For more information, see nGQL guide.

Easy data modeling and high flexibility

You can easily model the connected data into Nebula Graph for your business without forcing them into a structure such as a

relational table, and properties can be added, updated, and deleted freely. For more information, see Data modeling.

Reliable access control

Nebula Graph supports strict role-based access control and external authentication servers such as LDAP (Lightweight Directory

Access Protocol) servers to enhance data security. For more information, see Authentication and authorization.

High scalability

Nebula Graph is designed in a shared-nothing architecture and supports scaling in and out without interrupting the database

service.

High popularity

Nebula Graph is being used by tech leaders such as Tencent, Vivo, Meituan, and JD Digits. For more information, visit the Nebula

Graph official website.

2.1.3 Use cases

Nebula Graph can be used to support various graph-based scenarios. To spare the time spent on pushing the kinds of data

mentioned in this section into relational databases and on bothering with join queries, use Nebula Graph.

2.1.2 Benefits of Nebula Graph

- 6/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/t/nebula-graph-1-0-benchmark-report/581
https://github.com/vesoft-inc/nebula-web-docker
https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-java/tree/master/tools/exchange
https://github.com/vesoft-inc/nebula-java/tree/master/tools/exchange
https://github.com/vesoft-inc/nebula-docs/tree/master/docs-2.0/3.ngql-guide
https://nebula-graph.io/
https://nebula-graph.io/

Fraud detection

Financial institutions have to traverse countless transactions to piece together potential crimes and understand how

combinations of transactions and devices might be related to a single fraud scheme. This kind of scenario can be modeled in

graphs, and with the help of Nebula Graph, fraud rings and other sophisticated scams can be easily detected.

Real-time recommendation

Nebula Graph offers the ability to instantly process the real-time information produced by a visitor and make accurate

recommendations on articles, videos, products, and services.

Intelligent question-answer system

Natural languages can be transformed into knowledge graphs and stored in Nebula Graph. A question organized in a natural

language can be resolved by a semantic parser in an intelligent question-answer system and re-organized. Then, possible

answers to the question can be retrieved from the knowledge graph and provided to the one who asked the question.

Social networking

Information on people and their relationships are typical graph data. Nebula Graph can easily handle the social networking

information of billions of people and trillions of relationships, and provide lightning-fast queries for friend recommendations and

job promotions in the case of massive concurrency.

Last update: November 3, 2021

2.1.3 Use cases

- 7/287 - 2021 Vesoft Inc.

2.2 Data modeling

A data model is a model that organizes data and specifies how they are related to one another. This topic describes the

Nebula Graph data model and provides suggestions for data modeling with Nebula Graph.

2.2.1 Data structures

Nebula Graph data model uses five data structures to store data. They are vertices, edges, properties, tags, and edge types.

Vertices: Vertices are used to store entities.

In Nebula Graph, vertices are identified with vertex identifiers (i.e. VID). The VID must be unique in the same graph

space.

A vertex must have at least one tag.

Edges: Edges are used to connect vertices. An edge is a connection or behavior between two vertices.

An edge is identified uniquely with a source vertex, an edge type, a rank value, and a destination vertex.

Edges are directed. -> identifies the directions of edges. Edges can be traversed in either direction.

An edge must have one and only one edge type.

The rank value is an immutable user-assigned 64-bit signed integer. It identifies the edges with the same edge type

between two vertices. Edges are sorted by their rank values. The edge with the greatest rank value is listed first. The

default rank value is zero.

Properties: Properties are key-value pairs. Both vertices and edges are containers for properties.

Tags: Tags are used to categorize vertices. Vertices that have the same tag share the same definition of properties.

Edge types: Edge types are used to categorize edges. Edges that have the same edge type share the same definition of

properties.

2.2.2 Directed property graph

Nebula Graph stores data in directed property graphs. A directed property graph has a set of vertices connected by edges. And

the edges have directions. A directed property graph is represented as:

G = < V, E, PV, PE >

V is a set of vertices.

E is a set of directed edges.

PV is the property of vertices.

PE is the property of edges.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2 Data modeling

- 8/287 - 2021 Vesoft Inc.

The following table is an example of the structure of the basketball player dataset. We have two types of vertices, that is player

and team, and two types of edges, that is serve and like.

2.2.3 Graph data modeling suggestions

This section provides general suggestions for modeling data in Nebula Graph.

NOTE: The following suggestions may not apply to some special scenarios. In these cases, find help in the Nebula Graph

community.

Model for performance

There is no perfect method to model in Nebula Graph. Graph modeling depends on the questions that you want to know from the

data. Your data drives your graph model. Graph data modeling is intuitive and convenient. Create your data model based on your

business model. Test your model and gradually optimize it to fit your business. To get better performance, you can change or re-

design your model multiple times.

Edges as properties

Traversal depth decreases the traversal performance. To decrease the traversal depth, use vertex properties instead of edges.

For example, to model a graph that have the name, age, and eye color elements, you can:

(RECOMMENDED) Create a tag person , then add the name, age, and eye color as its properties.

(WRONG WAY) Create a new tag eye color and a new edge type has , then create an edge to indicate that a person has an

eye color.

The first modeling solution leads to much better performance. DO NOT use the second solution unless you have to.

Multiple properties under one tag are permitted. But make sure that tags are fine-grained. For more information, see the

Granulated vertices section.

Granulated vertices

In graph modeling, use the data models with a higher level of granularity. Put a set of parallel properties into one tag, i.e.,

separate different concepts.

Use indexes correctly

Correct use of indexes speeds up queries, but indexes reduce the write performance by 90% or more. ONLY use indexes when

you locate vertices or edges by their properties.

Element Name Property name

(Data type)

Description

Tag player name (string)

age (int)

Represents players in the team.

Tag team name (string) Represents the teams.

Edge type serve start_year (int)

end_year (int)

Represents actions taken by players in the team. An action links a

player and a team and the direction is from a player to a team.

Edge type like likeness (int) Represents actions taken by players in the team. An action links a

player and another player and the direction is from one player to

the other player.

•

•

2.2.3 Graph data modeling suggestions

- 9/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/

No long string properties on edges

Be careful when you create long string properties for edges. Nebula Graph supports storing such properties on edges. But note

that these properties are stored both in the outgoing edges and the incoming edges. Thus be careful with the write amplification.

Last update: April 13, 2021

2.2.3 Graph data modeling suggestions

- 10/287 - 2021 Vesoft Inc.

2.3 Nebula Graph architecture

2.3.1 Architecture overview

Nebula Graph consists of three services: the Graph Service, the Storage Service, and the Meta Service.

Each service has its executable binaries and processes launched from the binaries. You can deploy a Nebula Graph cluster on a

single machine or multiple machines using these binaries.

The following figure shows the architecture of a typical Nebula Graph cluster.

The Meta Service

The Meta Service in the Nebula Graph architecture is run by the nebula-metad processes. It is responsible for metadata

management, such as schema operations, cluster administration, and user privilege management.

For details on the Meta Service, see Meta Service.

2.3 Nebula Graph architecture

- 11/287 - 2021 Vesoft Inc.

The Graph Service and the Storage Service

Nebula Graph applies a disaggregated storage and compute architecture. The Graph Service is responsible for querying. The

Storage Service is responsible for storage. And they run on different processes, i.e., nebula-graphd and nebula-storaged. The

benefits of disaggregated storage and compute are as follows:

Great scalability. A disaggregated structure makes both the Graph Service and the Storage Service flexible and easy to scale

in or out.

High availability. If part of the Graph Service fails, the data stored by the Storage Service suffers no loss. And if the rest part

of the Graph Service is still able to serve the clients, service recovery can be performed quickly, or even unfelt by the users.

Cost-effective. The separation of computing and storage provides a higher resource utilization rate, and it enables you to

manage the cost flexibly according to business demands. The cost savings can be more significant if you use the Nebula

Graph Cloud service.

Open to more possibilities. With the ability to run separately, the Graph Service may work with multiple types of storage

engines, and the Storage Service may serve more types of computing engines.

For details on the Graph Service and the Storage Service, see Graph Service and Storage Service.

•

•

•

•

Last update: March 25, 2021

2.3.1 Architecture overview

- 12/287 - 2021 Vesoft Inc.

https://www.nebula-cloud.io/
https://www.nebula-cloud.io/

2.3.2 Meta Service

This topic describes the architecture and functions of the Meta Service.

The architecture of the Meta Service

The architecture of the Meta Service is as follows.

The Meta Service is run by the nebula-metad processes. You can deploy nebula-metad processes according to the scenario:

In a test environment, you can deploy one or three nebula-metad processes on different machines or a single machine.

In a production environment, we recommend that you deploy three processes on different machines for high availability.

All the nebula-metad processes form a Raft-based cluster, with one process as the leader and the others as the followers. The

leader is elected by quorum, and only the leader can provide service to the clients and other components of Nebula Graph. The

followers run in a standby way and each has a data replication of the leader. Once the leader fails, one of the followers will be

elected as the new leader.

Functions of the Meta Service

MANAGES USER ACCOUNTS

The Meta Service stores the information of user accounts and the privileges granted to the accounts. When the clients send

queries to the Graph Service through an account, the Graph Service checks the account information and whether the account

has the right privileges to execute the queries or not.

For more information on Nebula Graph access control, see Authentication and authorization.

MANAGES PARTITIONS

The Meta Service stores and manages the locations of the storage partitions and helps balance the partitions.

•

•

2.3.2 Meta Service

- 13/287 - 2021 Vesoft Inc.

MANAGES GRAPH SPACES

Nebula Graph supports multiple graph spaces. Data stored in different graph spaces are securely isolated. The Meta Service

stores the metadata of all graph spaces and tracks the changes of them, such as adding or dropping a graph space.

MANAGES SCHEMA INFORMATION

Nebula Graph is a strong-typed graph database. Its schema contains tags (i.e., the vertex types), edge types, tag properties, and

edge type properties.

The Meta Service stores the schema information. Besides, it performs the addition, modification, and deletion of the schema, and

logs the versions of them.

For more information on Nebula Graph schema, see Data model.

MANAGES TTL-BASED DATA EVICTION

The Meta Service provides automatic data eviction and space reclamation based on TTL (time to live) options for Nebula Graph.

For more information on TTL, see TTL options.

MANAGES JOBS

The Job Manager module in the Meta Service is responsible for the creation, queuing, querying and deletion of jobs.

Last update: March 19, 2021

2.3.2 Meta Service

- 14/287 - 2021 Vesoft Inc.

2.3.3 Graph Service

NOTE: Writing this topic is listed in the training plan for the next Nebula Graph Technical Writer. If you want to learn about

the Graph Service, see An Introduction to Nebula Graph 2.0 Query Engine for now.

Last update: March 25, 2021

2.3.3 Graph Service

- 15/287 - 2021 Vesoft Inc.

https://nebula-graph.io/posts/nebula-query-engine-introduction/

2.3.4 Storage Service

NOTE: We are using this topic in recruitment tests. So the official version of it won't be released until the end of April. Feel

free to contact us if you want to join the team. You may also contribute to this topic if interested.

References:

An Introduction to Nebula Graph's Storage Engine

Architecture overview

Meta Service

•

•

•

Last update: March 25, 2021

2.3.4 Storage Service

- 16/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula-docs/tree/master/docs-2.0
https://nebula-graph.io/posts/nebula-graph-storage-engine-overview/

3. Quick start

3.1 FAQ

3.1.1 About openCypher compatibility

Is nGQL compatible with openCypher 9?

nGQL is partially compatible with openCypher 9. Known incompatible items are listed in Nebula Graph Issues. Submit an issue

with the incompatible tag if you find a new issue of this type. You can search in this manual with the keyword compatibility to

find major compatibility issues.

The following are some major differences (by design incompatible) between nGQL and openCypher.

NOTE: openCypher 9 and Cypher have some differences (in grammar and licence). For example, Cypher requires that All

Cypher statements are explicitly run within a transaction. While openCypher has no such requirement of transaction .

And nGQL does not support transaction.

Where can I find more nGQL examples?

Find more than 2500 nGQL examples in the features directory on the Nebula Graph GitHub page.

The features directory consists of .feature files. Each file records scenarios that you can use as nGQL examples.

Here is an example:

openCypher 9 nGQL

schema optional strong schema

equality operator '=' equality operator '=='

math exponentiation ^ ^ not supported. Use pow(x, y) instead.

no such concept edge rank (reference by @)

all DMLs (CREATE , MERGE , etc), and OPTIONAL MATCH are not supported.

Feature: Match seek by tag

 Background: Prepare space
 Given a graph with space named "basketballplayer"

 Scenario: seek by empty tag index
 When executing query:
 """
 MATCH (v:bachelor)
 RETURN id(v) AS vid
 """
 Then the result should be, in any order:
 | vid |
 | 'Tim Duncan' |
 And no side effects
 When executing query:
 """
 MATCH (v:bachelor)
 RETURN id(v) AS vid, v.age AS age
 """
 Then the result should be, in any order:
 | vid | age |
 | 'Tim Duncan' | 42 |
 And no side effects

3. Quick start

- 17/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues
http://www.opencypher.org/
https://neo4j.com/developer/cypher/
https://github.com/vesoft-inc/nebula-graph/tree/master/tests/tck/features

The keywords in the preceding example are described as follows:

Welcome to add more practical scenarios and become a Nebula Graph contributor.

3.1.2 About Data Model

Does Nebula Graph support W3C RDF (or SPARQL, GraphQL)?

No.

Nebula Graph's data model is the property graph, and it is a strong schema system.

It doesn't support rdf.

Nebula Graph Query Language does not support SPARQL nor GraphQL .

3.1.3 About executions

How is the time spent value at the end of each return message calculated?

Take the return message of SHOW SPACES as an example:

The first number 1235 shows the time spent by the database itself, that is, the time it takes for the query engine to receive a

query from the client, fetch the data from the storage server and perform a series of calculations.

The second number 1934 shows the time spent from the client's perspective, that is, the time it takes for the client from

sending a request, receiving a response, and displaying the result on the screen.

Can I set replica_factor as an even number in CREATE SPACE (e.g., replica_factor = 2) ?

NO.

The Storage Service garantees its availability based on the Raft consensus protocol. The number of failed replicas must not

exceed half of the total replica number.

When replica_factor=2 , if one replica fails, the Storage Service fails. No matter replica_factor=3 or replica_factor=4 , if more

than one replica fails, the Storage Service fails, so replica_factor=3 is recommended.

Keyword Description

Feature Describes the topic of the current .feature file.

Background Describes the background information of the current .feature file.

Given Describes the prerequisites of running the test statements in the current .feature file.

Scenario Describes the purpose of the scenario. If there is the @skip before Scenario , this scenario may not work and

don't use it as a working example.

When Describes the nGQL statement to be executed.

Then Describes the expected result of running the statement in the When clause. If the result in your environment

does not match the result described in the .feature file, submit an issue to inform the Nebula Graph team.

And Describes the side effects of running the statement in the When clause.

@skip This test case will be skipped. Commonly, the to-be-tested code is not ready.

nebula> SHOW SPACES;
+-------------------+
| Name |
+-------------------+
| basketballplayer |
+-------------------+
Got 1 rows (time spent 1235/1934 us)

•

•

3.1.2 About Data Model

- 18/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues

To prevent unnecessary waste of resources, we recommend that you set an odd replica number.

We suggest that you set replica_factor to 3 for the production environment and 1 for the test environment. Do not use an even

number.

[ERROR (-7)]: SyntaxError: syntax error near '`

In most cases, a query statement requires a YIELD or a RETURN . Check your query statement to see if YIELD or RETURN is

provided.

How to count the vertices/edges number of each tag/edge type?

See show-stats.

How to get all the vertices/edge of each tag/edge type?

Create and rebuild the index.

Use LOOKUP or MATCH .

See INDEX , LOOKUP and MATCH .

Error can’t solve the start vids from the sentence

The graphd requires start vids to begin a graph traversal. The start vids can either be specified by the user, for example,

or be found from a (property) index, for example,

Otherwise, an error like can’t solve the start vids from the sentence will be raised.

Error Storage Error: The VID must be a 64-bit integer or a string.

Check your vid is an integer or a fix_string(N) . If it is a string type, make sure your input is not longer than N (default value is

8). See create space.

3.1.4 About operation and maintenance

The log files are too large. How to recycle the logs

Nebula Graph uses glog to print logs. glog can't recycle the outdated files. You can use crontab to delete them by yourself. Refer

to the discussions of Glog should delete old log files automatically .

How to check the Nebula Graph version

Use the <binary_path> --version command to get the Git commit IDs of the Nebula Graph binary files.

1.

> CREATE TAG INDEX i_player ON player();
> REBUILD TAG INDEX i_player;

2.

> LOOKUP ON player;
> MATCH (n:player) RETURN n;

> GO FROM ${vids} ...
> MATCH (src) WHERE id(src) == ${vids}
The start vids are explicitly given by ${vids}.

CREATE TAG INDEX i_player ON player(name(20));
REBUILD TAG INDEX i_player;

> LOOKUP ON player WHERE player.name == "abc" | ... YIELD ...
> MATCH (src) WHERE src.name == "abc" ...
The start vids are found from the property index on name.

1.

3.1.4 About operation and maintenance

- 19/287 - 2021 Vesoft Inc.

https://github.com/google/glog
https://github.com/google/glog/issues/423
https://github.com/google/glog/issues/423

For exmaple, to check the version of the Graph Service, go to the directories where the nebula-graphd binary files are stored,

and run ./nebula-graphd --version as follows to get the commit IDs.

Search for the commit ID obtained in the preceding step on the GitHub commits page.

Compare the commit time of the binary files with the release time of Nebula Graph versions to find out the version of the

Nebula Graph services.

3.1.5 About manual updates

The behavior of manual is not consistent with the system

Nebula Graph 2.0 is still under development. Its behavior changes from time to time. Please tell us if the manual and the system

are not consistent.

3.1.6 About connections

Which ports should be opened on the firewalls

If you have not changed the predefined ports in the configurations, open the following ports for the Nebula Graph services:

If you have customized the configuration files and changed the predefined ports, find the port numbers in your configuration files

and open them on the firewalls.

How to test whether a port is open or closed

You can use telnet as follows to check for port status.

NOTE: If you cannot use the telnet command, check if telnet is installed or enabled on your host.

For example:

$./nebula-graphd --version
nebula-graphd version Git: ab4f683, Build Time: Mar 24 2021 02:17:30

2.

3.

Service Ports

Meta 9559, 9560, 19559, 19560

Graph 9669, 19669, 19670

Storage 9777 ~ 9780, 19779, 19780

telnet <ip> <port>

// If the port is open:
$ telnet 192.168.1.10 9669
Trying 192.168.1.10...
Connected to 192.168.1.10.
Escape character is '^]'.

// If the port is closed or blocked:
$ telnet 192.168.1.10 9777
Trying 192.168.1.10...
telnet: connect to address 192.168.1.10: Connection refused

Last update: November 3, 2021

3.1.5 About manual updates

- 20/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/commits/master
https://github.com/vesoft-inc/nebula-graph/releases

3.2 Quick start workflow

The quick start introduces the simplest workflow to using Nebula Graph, including deploying Nebula Graph, connecting to

Nebula Graph, and doing basic CRUD.

Deploy Nebula Graph with Docker Compose

Connect to Nebula Graph

CRUD in Nebula Graph

Other frequently read topics are recommended as follows. They are not in the quick start, but you may need them as soon as you

pass the quick start phase.

Read FAQ

Deploy a Nebula Graph cluster

Some useful links

Compaction

1.

2.

3.

•

•

•

•

Last update: April 1, 2021

3.2 Quick start workflow

- 21/287 - 2021 Vesoft Inc.

3.3 Deploy Nebula Graph with Docker Compose

There are multiple ways to deploy Nebula Graph, but using Docker Compose is usually considered to be a fast starter.

3.3.1 Reading guide

If you are reading this topic with the questions listed below, click them to jump to their answers.

What do I need to do before deploying Nebula Graph?

How to fast deploy Nebula Graph with Docker Compose?

How to check the status and ports of the Nebula Graph services?

How to check the data and logs of the Nebula Graph services?

How to stop the Nebula Graph services?

What are the other ways to install Nebula Graph?

3.3.2 Prerequisites

You have installed the following applications on your host.

If you are deploying Nebula Graph as a non-root user, grant the user with Docker-related privileges. For a detailed

instruction, see Docker document: Manage Docker as a non-root user.

You have started the Docker service on your host.

If you have already deployed another version of Nebula Graph with Docker Compose on your host, to avoid compatibility

issues, back up the service data if you need, and delete the nebula-docker-compose/data directory.

NOTE: To backup the Nebula Graph data, see Use B&R to backup data. TODO: It is not released.

3.3.3 How to deploy

Clone the master branch of the nebula-docker-compose repository to your host with Git.

DON'T: The master branch contains the Docker Compose solution for the latest Nebula Graph development release. DON'T

use this release for production.

Go to the nebula-docker-compose directory.

Run the following command to start all the Nebula Graph services.

NOTE: Update the Nebula Graph images and Nebula Console images first if they are out of date.

•

•

•

•

•

•

•

Application Recommended version Official installation reference

Docker Latest Install Docker Engine

Docker Compose Latest Install Docker Compose

Git Latest Download Git

•

•

•

1.

$ git clone https://github.com/vesoft-inc/nebula-docker-compose.git

2.

$ cd nebula-docker-compose/

3.

nebula-docker-compose]$ docker-compose up -d
Creating nebula-docker-compose_metad0_1 ... done
Creating nebula-docker-compose_metad2_1 ... done
Creating nebula-docker-compose_metad1_1 ... done
Creating nebula-docker-compose_graphd2_1 ... done
Creating nebula-docker-compose_graphd_1 ... done
Creating nebula-docker-compose_graphd1_1 ... done
Creating nebula-docker-compose_storaged0_1 ... done

3.3 Deploy Nebula Graph with Docker Compose

- 22/287 - 2021 Vesoft Inc.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://git-scm.com/download/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

NOTE: For more information of the preceding services, see Nebula Graph architecture.

Connect to Nebula Graph.

1. Run the following command to start a new docker container with the Nebula Console image, and connect the container to

the network where Nebula Graph is deployed.

2. Connect to Nebula Graph with Nebula Console.

3. Run the SHOW HOSTS statement to check the status of the nebula-storaged processes.

Run exit twice to switch back to your terminal (shell). You can run Step 4 to login Nebula Graph again.

3.3.4 Check the Nebula Graph service status and port

Run docker-compose ps to list all the services of Nebula Graph and their status and ports.

Nebula Graph provides services to the clients through port 9669 by default. To use other ports, modify the docker-compose.yaml

file in the nebula-docker-compose directory and restart the Nebula Graph services.

Creating nebula-docker-compose_storaged2_1 ... done
Creating nebula-docker-compose_storaged1_1 ... done

4.

  ```bash
  $ docker run --rm -ti --network nebula-docker-compose_nebula-net \
  --entrypoint=/bin/sh vesoft/nebula-console:v2-nightly
  ```

 > **Note**: Your local network (nebula-docker-compose_nebula-net) may be different from the example above. Use the following command.

  ```bash
  $ docker network  ls
  NETWORK ID          NAME                               DRIVER              SCOPE
  a74c312b1d16        bridge                             bridge              local
  dbfa82505f0e        host                               host                local
  ed55ccf356ae        nebula-docker-compose_nebula-net   bridge              local
  93ba48b4b288        none                               null                local
  ```

  ```bash
  docker> nebula-console -u user -p password --address=graphd --port=9669
  ```

 > **Note**: By default, the authentication is off, you can log in with any user name and password. To turn it on, see [Enable authentication](../7.data-
security/1.authentication/1.authentication.md).

  ```bash
  nebula> SHOW HOSTS;
  +-------------+------+----------+--------------+----------------------+------------------------+
  | Host        | Port | Status   | Leader count | Leader distribution  | Partition distribution |
  +-------------+------+----------+--------------+----------------------+------------------------+
  | "storaged0" | 9779 | "ONLINE" | 0            | "No valid partition" | "No valid partition"   |
  +-------------+------+----------+--------------+----------------------+------------------------+
  | "storaged1" | 9779 | "ONLINE" | 0            | "No valid partition" | "No valid partition"   |
  +-------------+------+----------+--------------+----------------------+------------------------+
  | "storaged2" | 9779 | "ONLINE" | 0            | "No valid partition" | "No valid partition"   |
  +-------------+------+----------+--------------+----------------------+------------------------+
  | "Total"     |      |          | 0            |                      |                        |
  +-------------+------+----------+--------------+----------------------+------------------------+
  ```

5.

$ docker-compose ps
nebula-docker-compose_graphd1_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:33170->19669/tcp, 0.0.0.0:33169->19670/tcp, 0.0.0.0:33173->9669/
tcp
nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:33174->19669/tcp, 0.0.0.0:33171->19670/tcp, 0.0.0.0:33176->9669/
tcp
nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:33205->19669/tcp, 0.0.0.0:33204->19670/tcp, 0.0.0.0:9669->9669/tcp
nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33165->19559/tcp, 0.0.0.0:33162->19560/tcp, 0.0.0.0:33167->9559/
tcp,
 9560/tcp
nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33166->19559/tcp, 0.0.0.0:33163->19560/tcp, 0.0.0.0:33168->9559/
tcp,
 9560/tcp
nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:33161->19559/tcp, 0.0.0.0:33160->19560/tcp, 0.0.0.0:33164->9559/
tcp,
 9560/tcp
nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33180->19779/tcp, 0.0.0.0:33178->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:33183->9779/tcp, 9780/tcp
nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33175->19779/tcp, 0.0.0.0:33172->19780/tcp, 9777/tcp, 9778/tcp,
 0.0.0.0:33177->9779/tcp, 9780/tcp
nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:33184->19779/tcp, 0.0.0.0:33181->19780/tcp, 9777/tcp, 9778/tcp,
 0.0.0.0:33185->9779/tcp, 9780/tcp

3.3.4 Check the Nebula Graph service status and port

- 23/287 - 2021 Vesoft Inc.

3.3.5 Check the service data and logs

All the data and logs of Nebula Graph are stored persistently in the nebula-docker-compose/data and nebula-docker-compose/logs

directories.

The structure of the directories is as follows:

3.3.6 Stop the Nebula Graph services

You can run the following command to stop the Nebula Graph services:

The following information indicates you have successfully stopped the Nebula Graph services:

Note: Command docker-compose down -v will delete all your local Nebula Graph storage data. Try this command if you're using

a developing/nightly version and having some compatibility issues.

3.3.7 Other ways to install Nebula Graph

Use Source Code

Use RPM or DEB package

Deploy Nebula Graph cluster

3.3.8 FAQ

How to update the docker images of Nebula Graph services

To update the images of the Graph Service, Storage Service, and Meta Service, run docker-compose pull in the nebula-docker-

compose directory.

nebula-docker-compose/
 |-- docker-compose.yaml
 ├── data
 │ ├── meta0
 │ ├── meta1
 │ ├── meta2
 │ ├── storage0
 │ ├── storage1
 │ └── storage2
 └── logs
 ├── graph
 ├── graph1
 ├── graph2
 ├── meta0
 ├── meta1
 ├── meta2
 ├── storage0
 ├── storage1
 └── storage2

$ docker-compose down

Stopping nebula-docker-compose_storaged0_1 ... done
Stopping nebula-docker-compose_graphd1_1 ... done
Stopping nebula-docker-compose_graphd_1 ... done
Stopping nebula-docker-compose_storaged1_1 ... done
Stopping nebula-docker-compose_graphd2_1 ... done
Stopping nebula-docker-compose_storaged2_1 ... done
Stopping nebula-docker-compose_metad0_1 ... done
Stopping nebula-docker-compose_metad2_1 ... done
Stopping nebula-docker-compose_metad1_1 ... done
Removing nebula-docker-compose_storaged0_1 ... done
Removing nebula-docker-compose_graphd1_1 ... done
Removing nebula-docker-compose_graphd_1 ... done
Removing nebula-docker-compose_storaged1_1 ... done
Removing nebula-docker-compose_graphd2_1 ... done
Removing nebula-docker-compose_storaged2_1 ... done
Removing nebula-docker-compose_metad0_1 ... done
Removing nebula-docker-compose_metad2_1 ... done
Removing nebula-docker-compose_metad1_1 ... done
Removing network nebula-docker-compose_nebula-net

•

•

•

3.3.5 Check the service data and logs

- 24/287 - 2021 Vesoft Inc.

ERROR: toomanyrequests when docker-compose pull

You may meet the following error.

ERROR: toomanyrequests: You have reached your pull rate limit. You may increase the limit by authenticating and upgrading:

https://www.docker.com/increase-rate-limit .

You have met the rate limit of Docker Hub. Learn more on Understanding Docker Hub Rate Limiting.

How to update the Nebula Console client

To update the Nebula Console client, run the following command.

How to upgrade Nebula Graph services

To upgrade Nebula Graph, update the Nebula Graph docker images and restart the services.

In the nebula-docker-compose directory, run docker-compose pull to update the Nebula Graph docker images.

Run docker-compose down to stop the Nebula Graph services.

Run docker-compose up -d to start the Nebula Graph services again.

Why can't I connect to Nebula Graph through port 3699 after updating the nebula-docker-compose repository? (Nebula Graph 2.0.0-RC)

On the release of Nebula Graph 2.0.0-RC, the default port for connection changed from 3699 to 9669. To connect to Nebula

Graph after updating the repository, use port 9669 or modify the port number in the docker-compose.yaml file.

Why can't I access the data after updating the nebula-docker-compose repository? (Jan 4, 2021)

If you updated the nebula-docker-compose repository after Jan 4, 2021 and there are pre-existing data, modify the docker-

compose.yaml file and change the port numbers to the previous ones before connecting to Nebula Graph.

Why can't I access the data after updating the nebula-docker-compose repository? (Jan 27, 2021)

The data format is incompatible before and after in Jan 27, 2021. Run docker-compose down -v to delete all your local data.

Where are the data stored when Nebula Graph is deployed with Docker Compose

If deployed with Docker Compose, Nebula Graph stores all data in nebula-docker-compose/data/ .

docker pull vesoft/nebula-console:v2-nightly

1.

2.

3.

Last update: April 13, 2021

3.3.8 FAQ

- 25/287 - 2021 Vesoft Inc.

https://www.docker.com/increase-rate-limit
https://github.com/vesoft-inc/nebula-docker-compose/commit/2a612f1c4f0e2c31515e971b24b355b3be69420a

3.4 Manage Nebula Graph services

You can use the nebula.service script to start, stop, restart, terminate, and check the Nebula Graph services. This topic takes

starting, stopping and checking the Nebula Graph services for examples.

nebula.service is stored in the /usr/local/nebula/ directory by default, which is also the default installation path of Nebula

Graph. If you have customized the path, use the actual path in your environment.

3.4.1 Syntax

3.4.2 Start Nebula Graph

In non-container environment

Run the following command to start Nebula Graph.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to start Nebula Graph.

$ sudo /usr/local/nebula/scripts/nebula.service
[-v] [-c <config_file_path>]
<start|stop|restart|status|kill>
<metad|graphd|storaged|all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .

start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the Nebula Graph services as the target services.

$ sudo /usr/local/nebula/scripts/nebula.service start all
[INFO] Starting nebula-metad...
[INFO] Done
[INFO] Starting nebula-graphd...
[INFO] Done
[INFO] Starting nebula-storaged...
[INFO] Done

3.4 Manage Nebula Graph services

- 26/287 - 2021 Vesoft Inc.

3.4.3 Stop Nebula Graph

DON'T: Don't run kill -9 to forcibly terminate the processes, otherwise, there is a low probability of data loss.

In non-container environment

Run the following command to stop Nebula Graph.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to stop Nebula Graph.

If you are using a development or nightly version for testing and have compatibility issues, try to run 'docker-compose down-v' to

DELETE all data stored in Nebula Graph and import data again.

3.4.4 Check the service status

In non-container environment

Run the following command to check the service status of Nebula Graph.

Nebula Graph is running normally if the following information is returned.

If the return information is similar to the following one, there is a problem.

nebula-docker-compose]$ docker-compose up -d
Building with native build. Learn about native build in Compose here: https://docs.docker.com/go/compose-native-build/
Creating network "nebula-docker-compose_nebula-net" with the default driver
Creating nebula-docker-compose_metad0_1 ... done
Creating nebula-docker-compose_metad2_1 ... done
Creating nebula-docker-compose_metad1_1 ... done
Creating nebula-docker-compose_storaged2_1 ... done
Creating nebula-docker-compose_graphd1_1 ... done
Creating nebula-docker-compose_storaged1_1 ... done
Creating nebula-docker-compose_storaged0_1 ... done
Creating nebula-docker-compose_graphd2_1 ... done
Creating nebula-docker-compose_graphd_1 ... done

sudo /usr/local/nebula/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...
[INFO] Done
[INFO] Stopping nebula-graphd...
[INFO] Done
[INFO] Stopping nebula-storaged...
[INFO] Done

nebula-docker-compose]$ docker-compose down
Stopping nebula-docker-compose_graphd_1 ... done
Stopping nebula-docker-compose_graphd2_1 ... done
Stopping nebula-docker-compose_storaged0_1 ... done
Stopping nebula-docker-compose_storaged1_1 ... done
Stopping nebula-docker-compose_graphd1_1 ... done
Stopping nebula-docker-compose_storaged2_1 ... done
Stopping nebula-docker-compose_metad1_1 ... done
Stopping nebula-docker-compose_metad2_1 ... done
Stopping nebula-docker-compose_metad0_1 ... done
Removing nebula-docker-compose_graphd_1 ... done
Removing nebula-docker-compose_graphd2_1 ... done
Removing nebula-docker-compose_storaged0_1 ... done
Removing nebula-docker-compose_storaged1_1 ... done
Removing nebula-docker-compose_graphd1_1 ... done
Removing nebula-docker-compose_storaged2_1 ... done
Removing nebula-docker-compose_metad1_1 ... done
Removing nebula-docker-compose_metad2_1 ... done
Removing nebula-docker-compose_metad0_1 ... done
Removing network nebula-docker-compose_nebula-net

$ sudo /usr/local/nebula/scripts/nebula.service status all

•

[INFO] nebula-metad: Running as 26601, Listening on 9559
[INFO] nebula-graphd: Running as 26644, Listening on 9669
[INFO] nebula-storaged: Running as 26709, Listening on 9779

•

3.4.3 Stop Nebula Graph

- 27/287 - 2021 Vesoft Inc.

The Nebula Graph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three

services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the

return information to troubleshoot problems.

You may also go to the Nebula Graph community for help.

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to check the service status of Nebula Graph.

To troubleshoot for a specific service:

Confirm the container name in the preceding return information.

Run docker ps to find the CONTAINER ID .

Use the CONTAINER ID to log in the container and troubleshoot.

[INFO] nebula-metad: Running as 25600, Listening on 9559
[INFO] nebula-graphd: Exited
[INFO] nebula-storaged: Running as 25646, Listening on 9779

nebula-docker-compose]$ docker-compose ps
 Name Command State Ports

nebula-docker-compose_graphd1_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/tcp, 0.0.0.0:49224->9669/
tcp
nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/tcp, 0.0.0.0:49230->9669/
tcp
nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/tcp, 0.0.0.0:9669->9669/tcp
nebula-docker-compose_metad0_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49212->19559/tcp, 0.0.0.0:49211->19560/tcp, 0.0.0.0:49213->9559/
tcp,
 9560/tcp
nebula-docker-compose_metad1_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49209->19559/tcp, 0.0.0.0:49208->19560/tcp, 0.0.0.0:49210->9559/
tcp,
 9560/tcp
nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49206->19559/tcp, 0.0.0.0:49205->19560/tcp, 0.0.0.0:49207->9559/
tcp,
 9560/tcp
nebula-docker-compose_storaged0_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49218->19779/tcp, 0.0.0.0:49217->19780/tcp, 9777/tcp, 9778/tcp,
 0.0.0.0:49219->9779/tcp, 9780/tcp
nebula-docker-compose_storaged1_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49215->19779/tcp, 0.0.0.0:49214->19780/tcp, 9777/tcp, 9778/tcp,
 0.0.0.0:49216->9779/tcp, 9780/tcp
nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49226->19779/tcp, 0.0.0.0:49225->19780/tcp, 9777/tcp, 9778/tcp,
 0.0.0.0:49227->9779/tcp, 9780/tcp

1.

2.

3.

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash
[root@2a6c56c405f5 nebula]#

Last update: March 23, 2021

3.4.4 Check the service status

- 28/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

3.5 Connect to Nebula Graph

Nebula Graph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular

programming languages. This topic provides an overview of Nebula Graph clients and basic instructions on how to use the native

CLI client, Nebula Console.

3.5.1 Nebula Graph clients

You can use supported clients or console to connect to Nebula Graph.

3.5.2 Use Nebula Console to connect to Nebula Graph

Prerequisites

You have started the Nebula Graph services. For how to start the services, see Start and Stop Nebula Graph.

The machine you plan to run Nebula Console on has network access to the Nebula Graph services.

Steps

On the nebula-console page, select a Nebula Console version and click Assets.

NOTE: We recommend that you select the latest release.

In the Assets area, find the correct binary file for the machine where you want to run Nebula Console and download the file to

the machine.

(Optional) Rename the binary file to nebula-console for convenience.

NOTE: For Windows, rename the file to nebula-console.exe .

•

•

1.

2.

3.

3.5 Connect to Nebula Graph

- 29/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/releases

On the machine to run Nebula Console, grant the execute permission of the nebula-console binary file to the user.

NOTE: For Windows, skip this step.

In the command line interface, change the working directory to the one where the nebula-console binary file is stored.

Run the following command to connect to Nebula Graph.

* For Linux or macOS:

* For Windows:

The description of the parameters is as follows.

You can find more details in the Nebula Console Repository.

3.5.3 Nebula Console export mode

When the export mode is enabled, Nebula Console exports all the query results into a CSV file. When the export mode is

disabled, the export stops. The syntax is as follows.

NOTE:

The following commands are case insensitive.

The CSV file is stored in the working directory. Run the Linux command pwd to show the working directory.

Enable Nebula Console export mode:

Disable Nebula Console export mode:

4.

$ chmod 111 nebula-console

5.

6.

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

Option Description

-h Shows the help menu.

-addr Sets the IP address of the graphd service. The default address is 127.0.0.1.

-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your Nebula Graph account. Before enabling authentication, you can use any

characters as the username.

-p/-password Sets the password of your Nebula Graph account. Before enabling authentication, you can use any

characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The

connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.

You'll get the return messages and the connection stops then.

•

•

•

nebula> :SET CSV <your_file.csv>

•

nebula> :UNSET CSV

3.5.3 Nebula Console export mode

- 30/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/v2.0.0-ga

3.5.4 Disconnect Nebula Console from Nebula Graph

You can use :EXIT or :QUIT to disconnect from Nebula Graph. For convenience, Nebula Console supports using these commands

in lower case without the colon (":"), such as quit .

3.5.5 FAQ

How can I install Nebula Console from the source code

To download and compile the latest source code of Nebula Console, follow the instructions on the nebula console GitHub page.

nebula> :QUIT

Bye root!

Last update: March 23, 2021

3.5.4 Disconnect Nebula Console from Nebula Graph

- 31/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console#build-nebula-graph-console

3.6 Nebula Graph CRUD

This topic describes the basic CRUD operations in Nebula Graph.

3.6.1 Graph space and Nebula Graph schema

A Nebula Graph instance consists of one or more graph spaces. Graph spaces are physically isolated from each other. You can

use different graph spaces in the same instance to store different datasets.

To insert data into a graph space, define a schema for the graph database. Nebula Graph schema is based on the following

components.

For more information, see Data modeling.

In this topic, we use the following dataset to demonstrate basic CRUD operations.

Schema component Description

Vertex Represents an entity in the real world. A vertex can have one or more tags.

Tag The type of a vertex. It defines a group of properties that describes a type of vertices.

Edge Represents a directed relationship between two vertices.

Edge type The type of an edge. It defines a group of properties that describes a type of edges.

3.6 Nebula Graph CRUD

- 32/287 - 2021 Vesoft Inc.

3.6.2 Check the machine status in the Nebula Graph cluster

First, we recommend that you check the machine status to make sure that all the Storage services are connected to the Meta

Services. Run SHOW HOSTS as follows.

From the Status column of the table in the return message, you can see that all the Storage services are online.

nebula> SHOW HOSTS;
+-------------+-----------+-----------+--------------+----------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+-----------+-----------+--------------+----------------------+------------------------+
| "storaged0" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
+-------------+-----------+-----------+--------------+----------------------+------------------------+
| "storaged1" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
+-------------+-----------+-----------+--------------+----------------------+------------------------+
| "storaged2" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
+-------------+-----------+-----------+--------------+----------------------+------------------------+
| "Total" | __EMPTY__ | __EMPTY__ | 0 | __EMPTY__ | __EMPTY__ |
+-------------+-----------+-----------+--------------+----------------------+------------------------+
Got 4 rows (time spent 1061/2251 us)

3.6.2 Check the machine status in the Nebula Graph cluster

- 33/287 - 2021 Vesoft Inc.

Asynchronous implementation of creation and alteration

Nebula Graph implements the following creation or alteration operations asynchronously in the next heartbeat cycle. The

operations won't take effect until they finish.

CREATE SPACE

CREATE TAG

CREATE EDGE

ALTER TAG

ALTER EDGE

CREATE TAG INDEX

CREATE EDGE INDEX

NOTE:The default heartbeat interval is 10 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs

parameter in the configuration files for all services.

To make sure the follow-up operations work as expected, take one of the following approaches:

Run SHOW or DESCRIBE statements accordingly to check the status of the objects, and make sure the creation or alteration is

complete. If it is not, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

3.6.3 Create and use a graph space

nGQL syntax

Create a graph space:

List graph spaces and check if the creation is successful:

Use a graph space:

Examples

Use the following statement to create a graph space named basketballplayer .

Check the partition distribution with SHOW HOSTS to make sure that the partitions are distributed in a balanced way.

•

•

•

•

•

•

•

•

•

•

CREATE SPACE [IF NOT EXISTS] <graph_space_name>
 [(partition_num = <partition_number>,
 replica_factor = <replica_number>,
 vid_type = {FIXED_STRING(<N>) | INT64})];

| Property |
Description
|

partition_num
if you have 3 hard disks in the cluster, we recommend that you set 15 partitions.
replica_factor
environment. The replica number must always be an **odd** number for the need of quorum-based voting.
vid_type
VIDs and it must be a positive integer. The default value is `FIXED_STRING(8)`. If you set a VID length greater than `N`, Nebula Graph throws an error. To
set the integer VID for vertices, set `vid_type` to `INT64`. |

•

nebula> SHOW SPACES;

•

USE <graph_space_name>

1.

nebula> CREATE SPACE basketballplayer(partition_num=15, replica_factor=1, vid_type=fixed_string(30));
Execution succeeded (time spent 2817/3280 us)

2.

3.6.3 Create and use a graph space

- 34/287 - 2021 Vesoft Inc.

If the Leader distribution is uneven, use BALANCE LEADER to redistribute the partitions. For more information, see BALANCE.

Use the basketballplayer graph space.

You can use SHOW SPACES to check the graph space you created.

3.6.4 Create tags and edge types

nGQL syntax

Examples

Create tags player and team , edge types follow and serve .

3.6.5 Insert vertices and edges

You can use the INSERT statement to insert vertices or edges based on existing tags or edge types.

nebula> SHOW HOSTS;
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
| "storaged0" | 9779 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" |
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
| "storaged1" | 9779 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" |
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
| "storaged2" | 9779 | "ONLINE" | 5 | "basketballplayer:5" | "basketballplayer:5" |
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
| "Total" | __EMPTY__ | __EMPTY__ | 15 | "basketballplayer:15" | "basketballplayer:15" |
+-------------+-----------+-----------+--------------+----------------------------------+------------------------+
Got 4 rows (time spent 1633/2867 us)

3.

nebula> USE basketballplayer;
Execution succeeded (time spent 1322/2206 us)

nebula> SHOW SPACES;
+-------------------+
| Name |
+-------------------+
| basketballplayer |
+-------------------+
Got 1 rows (time spent 1235/1934 us)

CREATE {TAG | EDGE} {<tag_name> | <edge_type>}(<property_name> <data_type>
[, <property_name> <data_type> ...]);

Component name Type Property

player Tag name (string), age (int)

team Tag name (string)

follow Edge type degree (int)

serve Edge type start_year (int), end_year (int)

nebula> CREATE TAG player(name string, age int);
Execution succeeded (time spent 2694/3116 us)

Thu, 15 Oct 2020 06:22:29 UTC

nebula> CREATE TAG team(name string);
Execution succeeded (time spent 2630/3002 us)

Thu, 15 Oct 2020 06:22:37 UTC

nebula> CREATE EDGE follow(degree int);
Execution succeeded (time spent 3087/3467 us)

Thu, 15 Oct 2020 06:22:43 UTC

nebula> CREATE EDGE serve(start_year int, end_year int);
Execution succeeded (time spent 2645/3123 us)

Thu, 15 Oct 2020 06:22:50 UTC

3.6.4 Create tags and edge types

- 35/287 - 2021 Vesoft Inc.

nGQL syntax

Insert vertices:

VID is short for vertex ID. A VID must be a unique string value in a graph space.

Insert edges:

Examples

Insert vertices representing basketball players and teams:

Insert edges representing the relations between basketball players and teams:

3.6.6 Read data

The GO statement traverses the database based on specific conditions. A GO traversal starts from one or more vertices,

along one or more edges, and return information in a form specified in the YIELD clause.

The FETCH statement is used to get properties from vertices or edges.

The LOOKUP statement is based on indexes. It is used together with the WHERE clause to search for the data that meet the

specific conditions.

The MATCH statement is the most commonly used statement for graph data querying. But, it relies on indexes to match data

patterns in Nebula Graph.

•

INSERT VERTEX <tag_name> (<property_name>[, <property_name>...])
[, <tag_name> (<property_name>[, <property_name>...]), ...]
{VALUES | VALUE} <vid>: (<property_value>[, <property_value>...])
[, <vid>: (<property_value>[, <property_value>...];

•

INSERT EDGE <edge_type> (<property_name>[, <property_name>...])
{VALUES | VALUE} <src_vid> -> <dst_vid>[@<rank>] : (<property_value>[, <property_value>...])
[, <src_vid> -> <dst_vid>[@<rank> : (<property_name>[, <property_name>...]), ...]

•

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);
Execution succeeded (time spent 2919/3485 us)

Fri, 16 Oct 2020 03:41:00 UTC

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);
Execution succeeded (time spent 3007/3539 us)

Fri, 16 Oct 2020 03:41:58 UTC

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);
Execution succeeded (time spent 2449/2934 us)

Fri, 16 Oct 2020 03:42:16 UTC

nebula> INSERT VERTEX team(name) VALUES "team200":("Warriors"), "team201":("Nuggets");
Execution succeeded (time spent 3514/4331 us)

Fri, 16 Oct 2020 03:42:45 UTC

•

nebula> INSERT EDGE follow(degree) VALUES "player100" -> "player101":(95);
Execution succeeded (time spent 1488/1918 us)

Wed, 21 Oct 2020 06:57:32 UTC

nebula> INSERT EDGE follow(degree) VALUES "player100" -> "player102":(90);
Execution succeeded (time spent 2483/2890 us)

Wed, 21 Oct 2020 07:05:48 UTC

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player101":(75);
Execution succeeded (time spent 1208/1689 us)

Wed, 21 Oct 2020 07:07:12 UTC

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player100" -> "team200":(1997, 2016), "player101" -> "team201":(1999, 2018);
Execution succeeded (time spent 2170/2651 us)

Wed, 21 Oct 2020 07:08:59 UTC

•

•

•

•

3.6.6 Read data

- 36/287 - 2021 Vesoft Inc.

nGQL syntax

GO

FETCH

Fetch properties on tags:

Fetch properties on edges:

LOOKUP

MATCH

Examples of GO

Find the vertices that VID "player100" follows.

•

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [REVERSELY] [BIDIRECT]
[WHERE <expression> [AND | OR expression ...])]
YIELD [DISTINCT] <return_list>

•

•

FETCH PROP ON {<tag_name> | <tag_name_list> | *} <vid_list>
[YIELD [DISTINCT] <return_list>]

•

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>]
[, <src_vid> -> <dst_vid> ...]
[YIELD [DISTINCT] <return_list>]

•

LOOKUP ON {<tag_name> | <edge_type>}
WHERE <expression> [AND expression ...])]
[YIELD <return_list>]

•

MATCH <pattern> [<WHERE clause>] RETURN <output>

•

nebula> GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| player101 |
+-------------+
| player102 |

3.6.6 Read data

- 37/287 - 2021 Vesoft Inc.

Search for the players that the player with VID "player100" follows. Filter the players that the player with VID "player100"

follows whose age is equal to or greater than 35. Rename the columns in the result with Teammate and Age .

Search for the players that the player with VID "player100" follows. Then Retrieve the teams of the players that the player

with VID "player100" follows. To combine the two queries, use a pipe or a temporary variable.

With a pipe:

With a temporary variable:

NOTE: Once a compound statement is submitted to the server as a whole, the life cycle of the temporary variables in

the statement ends.

Example of FETCH

Use FETCH : Fetch the properties of the player with VID player100.

Examples of Match and Lookup are provided after index is introduced in the following.

+-------------+
Got 2 rows (time spent 1935/2420 us)

•

nebula> GO FROM "player100" OVER follow WHERE $$.player.age >= 35 \
YIELD $$.player.name AS Teammate, $$.player.age AS Age;
+-------------+-----+
| Teammate | Age |
+-------------+-----+
| Tony Parker | 36 |
+-------------+-----+
Got 1 rows (time spent 3871/4349 us)

Clause/Sign Description

YIELD Specifies what values or results you want to return from the query.

$$ Represents the target vertices.

\ A line-breaker.

•

•

nebula> GO FROM "player100" OVER follow YIELD follow._dst AS id | \
GO FROM $-.id OVER serve YIELD $$.team.name AS Team, \
$^.player.name AS Player;
+---------+-------------+
| Team | Player |
+---------+-------------+
| Nuggets | Tony Parker |
+---------+-------------+
Got 1 rows (time spent 2902/3496 us)

Clause/Sign Description

$^ Represents the source vertex of the edge.

\| A pipe symbol that can combine multiple queries.

$- Represents the output of the query before the pipe symbol.

•

nebula> $var = GO FROM "player100" OVER follow YIELD follow._dst AS id; \
GO FROM $var.id OVER serve YIELD $$.team.name AS Team, \
$^.player.name AS Player;
+---------+-------------+
| Team | Player |
+---------+-------------+
| Nuggets | Tony Parker |
+---------+-------------+
Got 1 rows (time spent 3103/3711 us)

nebula> FETCH PROP ON player "player100";
+--+
| vertices_ |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+
Got 1 rows (time spent 2006/2406 us)

3.6.6 Read data

- 38/287 - 2021 Vesoft Inc.

3.6.7 Update vertices and edges

You can use the UPDATE statement or the UPSERT statement to update existing data.

UPSERT is the combination of UPDATE and INSERT . If you update a vertex or an edge with UPSERT , it inserts a new vertex or edge if

it does not exist.

Note: UPSERT operates in serial a (partition-based) order and therefore is slower comparing with INSERT OR UPDATE .

nGQL syntax

UPDATE vertices:

UPDATE edges:

UPSERT vertices or edges:

Examples

UPDATE the name property of the vertex with VID "player100" and check the result with the FETCH statement:

UPDATE the degree value of an edge and check the result with the FETCH statement:

Insert a vertex with VID "player111" and UPSERT it.

•

UPDATE VERTEX <vid> SET <properties to be updated>
[WHEN <condition>] [YIELD <columns>]

•

UPDATE EDGE <source vid> -> <destination vid> [@rank] OF <edge_type>
SET <properties to be updated> [WHEN <condition>] [YIELD <columns to be output>]

•

UPSERT {VERTEX <vid> | EDGE <edge_type>} SET <update_columns>
[WHEN <condition>] [YIELD <columns>]

•

nebula> UPDATE VERTEX "player100" SET player.name = "Tim";
Execution succeeded (time spent 3483/3914 us)

Wed, 21 Oct 2020 10:53:14 UTC

nebula> FETCH PROP ON player "player100";
+---+
| vertices_ |
+---+
| ("player100" :player{age: 42, name: "Tim"}) |
+---+
Got 1 rows (time spent 2463/3042 us)

•

nebula> UPDATE EDGE "player100" -> "player101" OF follow SET degree = 96;
Execution succeeded (time spent 3932/4432 us)

nebula> FETCH PROP ON follow "player100" -> "player101";
+--+
| edges_ |
+--+
| [:follow "player100"->"player101" @0 {degree: 96}] |
+--+
Got 1 rows (time spent 2205/2800 us)

•

nebula> INSERT VERTEX player(name, age) VALUES "player111":("Ben Simmons", 22);
Execution succeeded (time spent 2115/2900 us)

Wed, 21 Oct 2020 11:11:50 UTC

nebula> UPSERT VERTEX "player111" SET player.name = "Dwight Howard", player.age = $^.player.age + 11 \
WHEN $^.player.name == "Ben Simmons" AND $^.player.age > 20 \
YIELD $^.player.name AS Name, $^.player.age AS Age;
+---------------+-----+
| Name | Age |
+---------------+-----+
| Dwight Howard | 33 |
+---------------+-----+
Got 1 rows (time spent 1815/2329 us)

3.6.7 Update vertices and edges

- 39/287 - 2021 Vesoft Inc.

3.6.8 Delete vertices and edges

nGQL syntax

Delete vertices:

Delete edges:

Examples

Delete vertices:

Delete edges:

3.6.9 About indexes

You can add indexes to tags or edge types with the CREATE INDEX statement.

Must-read for using index

Both MATCH and LOOKUP depend on index. But indexes can dramatically reduce the write performance. The performance

reduction can be as much as 90% or even more. DO NOT use indexes in production environments unless you are fully aware

of their influences on your service.

You MUST rebuild indexes for pre-existing data. Otherwise, the pre-existing data can't be indexed (and therefore can't be

returned in Match or Lookup). For more information, see REBUILD INDEX.

nGQL syntax

Create an index:

Rebuild an index:

Examples

Create an index for the name property on all vertices with the tag player .

NOTE: Define the index length when creating an index for a variable-length property. For more information, see CREATE

INDEX

•

DELETE VERTEX <vid1>[, <vid2>...]

•

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>]
[, <src_vid> -> <dst_vid>...]

•

nebula> DELETE VERTEX "team1", "team2";
Execution succeeded (time spent 4337/4782 us)

•

nebula> DELETE EDGE follow "team1" -> "team2";
Execution succeeded (time spent 3700/4101 us)

•

•

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name>
ON {<tag_name> | <edge_name>} (prop_name_list);

REBUILD {TAG | EDGE} INDEX <index_name>

nebula> CREATE TAG INDEX player_index_0 on player(name(20));
nebula> REBUILD TAG INDEX player_index_0;

3.6.8 Delete vertices and edges

- 40/287 - 2021 Vesoft Inc.

Examples of LOOKUP and MATCH (index-based)

Make sure there is an index for LOOKUP or MATCH to use. If there is not, create an index first.

Find the information of the vertex with the tag player and its value of the name property is "Tony Parker" .

// Create an index on the player name property.
nebula> CREATE TAG INDEX player_name_0 on player(name(10));
Execution succeeded (time spent 3465/4150 us)

// Rebuild the index to make sure it takes effect on pre-existing data.
nebula> REBUILD TAG INDEX player_name_0
+------------+
| New Job Id |
+------------+
| 31 |
+------------+
Got 1 rows (time spent 2379/3033 us)

// Use LOOKUP to retrieve the vertex property.
nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
YIELD player.name, player.age;
+-------------+---------------+------------+
| VertexID | player.name | player.age |
+-------------+---------------+------------+
| "player101" | "Tony Parker" | 36 |
+-------------+---------------+------------+

// Use MATCH to retrieve the vertex.
nebula> MATCH (v:player{name:"Tony Parker"}) RETURN v;
+---+
| v |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+---+
Got 1 rows (time spent 5132/6246 us)

Last update: April 29, 2021

3.6.9 About indexes

- 41/287 - 2021 Vesoft Inc.

3.7 Useful links

3.7.1 API Clients by Nebula Graph

The following repositories of 2.0.0 are not released yet.

Rust Client

Node.js Client

HTTP Client

3.7.2 Graph tools

The following repositories of 2.0.0 are not released yet.

Studio

Dashboard

3.7.3 Big Data and other Systems support

The following repositories of 2.0.0 are not released yet.

Flink connector

Promethus connector

This page lists all the tools and clients for Nebula Graph 2.0.0.

Note

Checkout the correct commit ID. And see each document carefully for the compatibility with Nebula Graph 2.0.0 kernel.

Warning

links commit id

C++ Client 7305c72

Go Client 542ed24

Python Client cb48e8a

Java Client 923bc04

•

•

•

links commit id

Command Line Console 1f32236

•

•

links commit id

csv (a.k.a. importer) 1d87c7b

Spark util af3fdf4

nebula-docker-compose 2c2549a

•

•

3.7 Useful links

- 42/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/tree/v2.0.0
https://github.com/vesoft-inc/nebula-go/tree/release-v2.0.0-ga
https://github.com/vesoft-inc/nebula-python/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-java/tree/v2.0.0-ga
https://github.com/vesoft-inc/nebula-rust
https://github.com/vesoft-inc/nebula-node
https://github.com/vesoft-inc/nebula-http-gateway
https://github.com/vesoft-inc/nebula-console/tree/v2.0.0-ga
https://github.com/vesoft-inc/nebula-web-docker
https://github.com/vesoft-inc/nebula-stats-exporter
https://github.com/vesoft-inc/nebula-importer/tree/release-v2.0.0-ga
https://github.com/vesoft-inc/nebula-spark-utils/tree/v2.0.0
https://github.com/vesoft-inc/nebula-docker-compose/tree/v2.0.0
https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-stats-exporter

3.7.4 Benchmark, test, and Backup tools

The following repositories of 2.0.0 are not released yet.

Benchmark

Chaos Test

Backup&Restore

3.7.5 Misc

Open Source Community

4E
2D

65
87

62
4B

51
8C

•

•

•

links commit id

Nebula Graph 1.2.1 721ae51

•

•

Last update: April 15, 2021

3.7.4 Benchmark, test, and Backup tools

- 43/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench
https://github.com/vesoft-inc/nebula-chaos
https://github.com/vesoft-inc/nebula-br
https://github.com/vesoft-inc/nebula/tree/v1.2.1
https://github.com/vesoft-inc/nebula-community
https://docs.nebula-graph.com.cn/

4. nGQL guide

4.1 nGQL overview

4.1.1 Nebula Graph Query Language (nGQL)

This document gives an introduction to the query language of Nebula Graph, nGQL.

What is nGQL

nGQL is a declarative graph query language for Nebula Graph. It allows expressive and efficient graph patterns. nGQL is

designed for both developers and operations professionals. nGQL is an SQL-like query language, so it's easy to learn. nGQL is a

project in progress. New features and optimizations are done steadily. There can be differences between syntax and

implementation. Nebula Graph 2.0 or later version support openCypher 9.

What can nGQL do

Supports graph traverse

Supports pattern match

Supports aggregation

Supports graph mutation

Supports access control

Supports composite queries

Supports index

Supports most openCypher 9 graph query syntax (but mutations and controls syntax are not supported).

Example Data

The example data in Nebula Graph document statements can be downloaded here. After downloading the example data, you can

import it to Nebula Graph by using the -f option in Nebula Graph Console.

Placeholder Identifiers and Values

Refer to the following standards in nGQL:

ISO/IEC 10646

ISO/IEC 39075

ISO/IEC NP 39075 (Draft)

OpenCypher 9

In template code, any token that is not a keyword, a literal value, or punctuation is a placeholder identifier or a placeholder

value.

•

•

•

•

•

•

•

•

•

•

•

•

4. nGQL guide

- 44/287 - 2021 Vesoft Inc.

https://www.opencypher.org/resources

For details of the symbols in nGQL, see the following table:

Token Meaning

< > name of a syntactic element

::= formula that defines an element

[] optional elements

{ } explicitly specified elements

| complete alternative elements

... may be repeated any number of times

Last update: April 13, 2021

4.1.1 Nebula Graph Query Language (nGQL)

- 45/287 - 2021 Vesoft Inc.

4.1.2 Patterns

Patterns and graph pattern matching are the very heart of a graph query language.

Patterns for vertices

A vertex is described using a pair of parentheses, and is typically given a name. For example:

This simple pattern describes a single vertex, and names that vertex using the variable a .

Patterns for related vertices

A more powerful construct is a pattern that describes multiple vertices and edges between them. Patterns describe edges by

employing an arrow between two vertices. For example:

This pattern describes a very simple data shape: two vertices, and a single edge from one to the other. In this example, the two

vertices are both named as a and b respectively, and the edge is directed : it goes from a to b .

This manner of describing vertices and edges can be extended to cover an arbitrary number of vertices and the edges between

them, for example:

Such a series of connected vertices and edges is called a "path".

Note that the naming of the vertices in these patterns is only necessary should one need to refer to the same vertex again, either

later in the pattern or elsewhere in the query. If this is not necessary, then the name may be omitted, as follows:

Patterns for tags

OpenCypher compatibility: The concept tag in nGQL have a few differences from label in openCypher. E.g., You must

create a tag before using it. And a tag also defines the properties' type.

In addition to simply describing the shape of a vertex in the pattern, one can also describe attributes. The most simple attribute

that can be described in the pattern is a tag that the vertex must have. For example:

One can also describe a vertex that has multiple tags: (a:User:Admin)-[]->(b) .

Patterns for properties

Nodes and edges are the fundamental structures in a graph. nGQL uses properties on both of these to allow for far richer

models.

Properties can be expressed in patterns using a map-construct: curly brackets surrounding a number of key-expression pairs,

separated by commas. E.g. a vertex with two properties on it would look like:

An edge with expectations on it is given by:

(a)

(a)-[]->(b)

(a)-[]->(b)<-[]-(c)

(a)-[]->()<-[]-(c)

(a:User)-[]->(b)

(a {name: 'Andres', sport: 'Brazilian Ju-Jitsu'})

(a)-[{blocked: false}]->(b)

4.1.2 Patterns

- 46/287 - 2021 Vesoft Inc.

Patterns for edges

The simplest way to describe an edge is by using the arrow between two vertices, as in the previous examples.

Using this syntax, you can describe that the edge should exist and the directionality of it. If you don’t care about the direction of

the edge, the arrowhead is omitted, as exemplified by:

As with vertices, edges may also be given names. In this case, a pair of square brackets is used to break up the arrow and the

variable is placed between. For example:

Much like tags on vertices, edges can have types. To describe an edge with a specific type, use the pattern as follows:

An edge can only have one edge type. But if we’d like to describe some data such that the edge could have any one of a set of

types, then they can all be listed in the pattern, separating them with the pipe symbol | like this:

As with vertices, the name of the edge can always be omitted, as exemplified by:

Variable-length pattern

Rather than describing a long path using a sequence of many vertex and edge descriptions in a pattern, many edges (and the

intermediate vertices) can be described by specifying a length in the edge description of a pattern. For example:

This describes a graph of three vertices and two edges, all in one path (a path of length 2). This is equivalent to:

A range of lengths can also be specified: such edge patterns are called 'variable-length edges'. For example:

The preceding example defines a path with a minimum length of 3, and a maximum length of 5. It describes a graph of either 4

vertices and 3 edges, 5 vertices and 4 edges, or 6 vertices and 5 edges, all connected in a single path.

the lower bound can be omitted. For example, to describe paths of length 5 or less, use:

OpenCypher compatibility: The upper bound must be specified. The following are NOT accepted.

Assigning to path variables

As described above, a series of connected vertices and edges is called a "path". nGQL allows paths to be named using a variable,

as exemplified by:

You can do this in MATCH .

(a)-[]-(b)

(a)-[r]->(b)

(a)-[r:REL_TYPE]->(b)

(a)-[r:TYPE1|TYPE2]->(b)

(a)-[:REL_TYPE]->(b)

(a)-[*2]->(b)

(a)-[]->()-[]->(b)

(a)-[*3..5]->(b)

(a)-[*..5]->(b)

(a)-[*3..]->(b)
(a)-[*]->(b)

p = (a)-[*3..5]->(b)

4.1.2 Patterns

- 47/287 - 2021 Vesoft Inc.

Last update: March 24, 2021

4.1.2 Patterns

- 48/287 - 2021 Vesoft Inc.

4.2 Data types

4.2.1 Numeric types

Integer

An integer is declared with keyword int , which is 64-bit signed. The supported range is [-9223372036854775808,

9223372036854775807]. Integer constants support multiple formats:

Decimal, for example 123456 .

Hexadecimal, for example 0xdeadbeaf .

Octal, for example 01234567 .

Double-precision floating-point

double-precision floating-point values is used for storing double precision floating point values. E.g., 1.2, -3.0000001. The

keyword used for double floating point data type is double .

Scientific notation is also supported. For example, 1e2, 1.1e2, .3e4, 1.e4, -1234E-10 .

1.

2.

3.

Last update: March 16, 2021

4.2 Data types

- 49/287 - 2021 Vesoft Inc.

4.2.2 Boolean

A boolean data type is declared with the bool keyword and can only take the values true or false .

Last update: November 19, 2020

4.2.2 Boolean

- 50/287 - 2021 Vesoft Inc.

4.2.3 String

The string type is used to store a sequence of characters (text). The literal constant is a sequence of characters of any length

surrounded by double or single quotes. For example "Shaquille O'Neal" or '"This is a double-quoted literal string"' . Line

breaks are not allowed in a string. Embedded escape sequences are supported within strings, for example:

"\n\t\r\b\f"

"\110ello world"

Nebula Graph supports two kind of strings: fixed length string and variable length string. For example:

OpenCypher Compatibility

Here is a tiny difference between openCypher and Cypher, as well as nGQL.

The following is what openCypher requires. Single-quotes can't be converted to double-quotes.

While Cypher accepts both single-quotes and double quotes as the return results. nGQL follows the Cypher way.

•

•

nebula> CREATE TAG t1 (p1 FIXED_STRING(10)); -- Fixed length string type

nebula> CREATE TAG t2 (p2 string); -- Variable length string type

 #File: Literals.feature
Feature: Literals

Background:
 Given any graph
 Scenario: Return a single-quoted string
 When executing query:
 """
 RETURN '' AS literal
 """
 Then the result should be, in any order:
 | literal |
 | '' | # Note: it should return single-quotes as openCypher required.
 And no side effects

nebula > YIELD '' AS quote1, "" AS quote2, "'" AS quote3, '"' AS quote4
+--------+--------+--------+--------+
| quote1 | quote2 | quote3 | quote4 |
+--------+--------+--------+--------+
| "" | "" | "'" | """ |
+--------+--------+--------+--------+

Last update: February 5, 2021

4.2.3 String

- 51/287 - 2021 Vesoft Inc.

4.2.4 Date and time types

This document describes the DATE , TIME , DATETIME , and TIMESTAMP types. Nebula Graph converts the DATE , TIME , DATETIME , and

TIMESTAMP values from the current time zone to UTC for storage. Nebula Graph converts back from UTC to the current time zone

for retrieval.

While inserting time-type property values, except for timestamps, Nebula Graph transforms them to a UTC time according to the

time zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL queries

are all UTC time.

NOTE: To change the time zone, modify the timezone_name value in the configuration files of all Nebula Graph services.

Combined with RETURN , functions date() , time() , datetime() all accept empty parameters to return the current date, time and

datetime.

OpenCypher Compatibility

In nGQL:

Year, month, day, hour, minute, and second are supported. The millisecond field is displayed in 000 .

localdatetime() , duration() are not supported.

Most string time formats are not supported. The only exception is 2017-03-04T22:30:40 .

DATE

The DATE type is used for values with a date part but no time part. Nebula Graph retrieves and displays DATE values in the YYYY-

MM-DD format. The supported range is -32768-01-01 to 32767-12-31 .

TIME

The TIME type is used for values with a time part but no date part. Nebula Graph retrieves and displays TIME values in

hh:mm:ss:usus format. The supported range is 0:0:0:0 to 23:59:59:999999 .

DATETIME

The DATETIME type is used for values that contain both date and time parts. Nebula Graph retrieves and displays DATETIME values

in YYYY-MM-DD hh:mm:ss:ususus format. The supported range is -32768-01-01 00:00:00:00 to 32767-12-31 23:59:59:999999 .

TIMESTAMP

The TIMESTAMP data type is used for values that contain both date and time parts.

TIMESTAMP has a range of 1970-01-01 00:00:01 UTC to 2262-04-11 23:47:16 UTC.

Timestamp is measured in units of seconds.

Supported TIMESTAMP inserting methods:

Call the now() function.

Input TIMESTAMP by using a string. For example: 2019-10-01 10:00:00 .

Input TIMESTAMP directly, namely the number of seconds from 1970-01-01 00:00:00 .

The underlying storage data type is: int64.

Examples

Create a tag named date.

•

•

•

•

•

•

•

•

•

•

4.2.4 Date and time types

- 52/287 - 2021 Vesoft Inc.

Insert a vertex named Date1.

Create a tag named school.

Insert a vertex named "stanford" with the foundation date "1885-10-01T08:00:00" .

Insert a vertex named "dut" with the foundation date now.

nebula> CREATE TAG date(p1 date, p2 time, p3 datetime);

nebula> INSERT VERTEX date(p1, p2, p3) VALUES "Date1":(date("2017-03-04"), time("23:01:00"), datetime("2017-03-04T22:30:40"));

nebula> CREATE TAG school(name string , found_time timestamp);

nebula> INSERT VERTEX school(name, found_time) VALUES "Stanford":("Stanford", timestamp("1885-10-01T08:00:00"));

nebula> INSERT VERTEX school(name, found_time) VALUES "dut":("dut", now());

nebula> WITH time({hour: 12, minute: 31, second: 14}) AS d RETURN d;
+--------------+
| d |
+--------------+
| 12:31:14.000 |
+--------------+

nebula> WITH date({year: 1984, month: 10, day: 11}) AS x RETURN x + 1;
+------------+
| x |
+------------+
| 1984-10-12 |
+------------+

nebula> WITH datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14}) AS d \
 RETURN toString(d) AS ts, datetime(toString(d)) == d AS b
+-------------------------+------+
| ts | b |
+-------------------------+------+
| "1984-10-11T12:31:14.0" | true |
+-------------------------+------+

Last update: April 13, 2021

4.2.4 Date and time types

- 53/287 - 2021 Vesoft Inc.

4.2.5 NULL

You can set the properties for vertices or edges to NULL . Also, you can set NOT NULL constraint to make sure that the property

values are NOT NULL .

If not specified, the property is set to NULL by default.

Logical operations with NULL

The logical operations with NULL is the same as openCypher.

Here is the truth table for AND, OR, XOR, and NOT.

OpenCypher compatibility

The comparisons and operations about NULL are different from openCypher.

The behavior may change later.

COMPARISONS WITH NULL

The comparison operations with NULL is incompatible with openCypher.

OPERATIONS AND EXPRESSION WITH NULL

The NULL operations and RETURN with NULL is incompatible with openCypher.

Examples

Create a tag named player. Specify the property name with NOT NULL . Ignore the property age constraint.

The property name is NOT NULL . The property age is NULL by default.

a b a AND b a OR b a XOR b NOT a

false false false false false true

false null false null null true

false true false true true true

true false false true true false

true null null true null false

true true true true false false

null false false null null null

null null null null null null

null true null true null null

nebula> CREATE TAG player(name string NOT NULL, age int);
Execution succeeded (time spent 5001/5980 us)

nebula> SHOW CREATE TAG player;
+-----------+-----------------------------------+
| Tag | Create Tag |
+-----------+-----------------------------------+
"student"	"CREATE TAG `player` (
	`name` string NOT NULL,
	`age` int64 NULL
) ttl_duration = 0, ttl_col = """
+-----------+-----------------------------------+

4.2.5 NULL

- 54/287 - 2021 Vesoft Inc.

nebula> INSERT VERTEX player(name, age) VALUES "Kobe":("Kobe",null);
Execution succeeded (time spent 6367/7357 us)

Last update: March 25, 2021

4.2.5 NULL

- 55/287 - 2021 Vesoft Inc.

4.2.6 Lists

The list is a composite data type. A list is a sequence of values. Individual list elements can be accessed by their positions.

A list starts with a left square bracket [and ends with a right square bracket] . A list contains zero, one, or more expressions.

List elements are separated from each other with commas (,). Whitespace around elements is ignored in list, thus line breaks,

tab stops, and blanks can be used for formatting.

Examples

nebula> RETURN [1, 2, 3] AS List;
+-----------+
| List |
+-----------+
| [1, 2, 3] |
+-----------+

nebula> RETURN range(1,5)[3];
+---------------+
| range(1,5)[3] |
+---------------+
| 4 |
+---------------+

nebula> RETURN range(1,5)[-2];
+------------------+
| range(1,5)[-(2)] |
+------------------+
| 4 |
+------------------+

nebula> RETURN [n IN range(1,5) WHERE n > 2] AS a;
+-----------+
| a |
+-----------+
| [3, 4, 5] |
+-----------+

nebula> RETURN [n IN range(1,5) WHERE n > 2 | n + 10] AS a;
+--------------+
| a |
+--------------+
| [13, 14, 15] |
+--------------+

nebula> RETURN [n IN range(1,5) | n + 10] AS a;
+----------------------+
| a |
+----------------------+
| [11, 12, 13, 14, 15] |
+----------------------+

nebula> RETURN tail([n IN range(1, 5) | 2 * n - 10]) AS a;
+-----------------+
| a |
+-----------------+
| [-6, -4, -2, 0] |
+-----------------+

nebula> RETURN [n IN range(1, 3) WHERE true | n] AS r;
+-----------+
| r |
+-----------+
| [1, 2, 3] |
+-----------+

nebula> GO FROM "player100" OVER follow WHERE follow.degree NOT IN [x IN [92, 90] | x + $$.player.age] \
 YIELD follow._dst AS id, follow.degree AS degree;
+-------------+--------+
| id | degree |
+-------------+--------+
| "player101" | 95 |
+-------------+--------+
| "player102" | 90 |
+-------------+--------+

nebula> MATCH p = (n:player{name:"Tim Duncan"})-[:follow]->(m) \
 RETURN [n IN nodes(p) | n.age + 100] AS r;
+------------+
| r |
+------------+
| [142, 136] |
+------------+
| [142, 133] |
+------------+

4.2.6 Lists

- 56/287 - 2021 Vesoft Inc.

OpenCypher compatibility

A composite data type (i.e., set, map, and list) CAN NOT be stored as properties for vertices or edges.

Use the range() function to return the range of a list.

In openCypher, out-of-bound single elements returns null . However, in nGQL, out-of-bound single elements returns

OUT_OF_RANGE .

nebula> RETURN size([1,2,3]);
+---------------+
| size([1,2,3]) |
+---------------+
| 3 |
+---------------+

•

•

nebula> RETURN range(0,5)[0..3];
[ERROR (-7)]: SyntaxError: syntax error near `3]'

•

nebula> RETURN range(0,5)[-12];
+-------------------+
| range(0,5)[-(12)] |
+-------------------+
| OUT_OF_RANGE |
+-------------------+

Last update: March 16, 2021

4.2.6 Lists

- 57/287 - 2021 Vesoft Inc.

4.2.7 Sets

Set is a composite data type.

OpenCypher compatibility

Set is not a data type in openCypher. The behavior of set in nGQL is not determined yet.

Last update: March 16, 2021

4.2.7 Sets

- 58/287 - 2021 Vesoft Inc.

4.2.8 Maps

Map is a composite data type. A composite data type cannot be stored as properties. Maps are unordered collections of key-value

pairs. In maps, the key is a string. The value can have any data type. You can get the map element by using map['key'] .

Literal maps

OpenCypher compatibility

A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

Map projection is not supported.

nebula> YIELD {key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}
+---+
| {key:Value,listKey:[{inner:Map1},{inner:Map2}]} |
+---+
| {key: "Value", listKey: [{inner: "Map1"}, {inner: "Map2"}]} |
+---+

•

•

Last update: March 16, 2021

4.2.8 Maps

- 59/287 - 2021 Vesoft Inc.

4.2.9 Type Conversion/Type coercions

Converting an expression of a given type to another type is known as type conversion.

Legacy version compatibility

NGQL 1.0 adopted the C -style of type conversion (implicitly or explicitly). (type_name)expression . For example, The results of

YIELD (int)(TRUE) is 1 . But it is error-prone to users who are not familiar with C language.

NGQL 2.0 chooses the openCypher way of type coercions.

Type coercions functions

Examples

•

•

Function Description

toBoolean() Converts a string value to a boolean value.

toFloat() Converts an integer or string value to a floating point number.

toInteger() Converts a floating point or string value to an integer value.

type() Returns the string representation of the relationship type.

nebula> UNWIND [true, false, 'true', 'false', NULL] AS b RETURN toBoolean(b) AS b
+----------+
| b |
+----------+
| true |
+----------+
| false |
+----------+
| true |
+----------+
| false |
+----------+
| __NULL__ |
+----------+

nebula> RETURN toFloat(1), toFloat('1.3'), toFloat('1e3'), toFloat('not a number')
+------------+----------------+----------------+-------------------------+
| toFloat(1) | toFloat("1.3") | toFloat("1e3") | toFloat("not a number") |
+------------+----------------+----------------+-------------------------+
| 1.0 | 1.3 | 1000.0 | __NULL__ |
+------------+----------------+----------------+-------------------------+

nebula> RETURN toInteger(1), toInteger('1'), toInteger('1e3'), toInteger('not a number')
+--------------+----------------+------------------+---------------------------+
| toInteger(1) | toInteger("1") | toInteger("1e3") | toInteger("not a number") |
+--------------+----------------+------------------+---------------------------+
| 1 | 1 | 1000 | __NULL__ |
+--------------+----------------+------------------+---------------------------+

nebula> MATCH (a:player)-[e]-() RETURN type(e)
+----------+
| type(e) |
+----------+
| "follow" |
+----------+
| "follow" |

nebula> MATCH (a:player {name: "Tim Duncan"}) WHERE toInteger(id(a)) == 100 RETURN a
+--+
| a |
+--+
| ("100" :player{age: 42, name: "Tim Duncan"}) |
+--+

nebula> MATCH (n:player) WITH n LIMIT toInteger(ceil(1.8)) RETURN count(*) AS count
+-------+
| count |
+-------+
| 2 |
+-------+

4.2.9 Type Conversion/Type coercions

- 60/287 - 2021 Vesoft Inc.

Last update: March 25, 2021

4.2.9 Type Conversion/Type coercions

- 61/287 - 2021 Vesoft Inc.

4.3 Variables and composite queries

4.3.1 Composite queries (clause structure)

Composite queries put data from different queries together. They then use filters, group-bys, or sorting before returning the

combined return results. A composite query retrieves multiple levels of related information on existing queries and presents data

as a single return result.

Nebula Graph supports three methods to compose queries (or sub-queries):

(OpenCypher style) Clauses are chained together, and they feed intermediate result sets between each other.

(nGQL extension) More than one queries can be batched together, separated by semicolons (;). The result of the last query is

returned as the result of the batch.

(nGQL extension) Queries can be piped together by using the pipe operator (|). The result of the previous query can be

used as the input of the next query.

OpenCypher compatibility

In a composite query, choose the openCypher-style or nGQL-extension. NOT BOTH.

For example, if you're in the openCypher way (MATCH , RETURN , WITH , etc), don't introduce any pipe or semicolons to combine the

sub-clauses.

If you're in the nGQL-extension way (FETCH , GO , LOOKUP , etc), you must use pipe or semicolons to combine the sub-clauses.

Further more, don't put together openCypher and nGQL-extension clauses in one statement. E.g., This statement is undefined:

MATCH ... | GO ... | YIELD

Composite queries are not transactional queries (as in SQL/Cypher)

For example, a query composed of three sub-queries: A B C , A | B | C or A; B; C . In that A is a read operation, B is a

computation operation, and C is a write operation. If any part fails in the execution, the whole result is undefined. There is no

rollback. What is written depends on the query executor.

NOTE: openCypher has no requirement of transaction .

Examples

OpenCypher style

Semicolon queries

Pipe queries

•

•

•

•

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \
 WITH nodes(p) AS n \
 UNWIND n AS n1 \
 RETURN DISTINCT n1;

•

nebula> SHOW TAGS; SHOW EDGES; // Only edges are shown.

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42); \
INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36); \
INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);
// Multiple vertices are inserted in a composite statement.

•

nebula> GO FROM "player100" OVER follow YIELD follow._dst AS id | \
 GO FROM $-.id OVER serve YIELD $$.team.name AS Team, \
 $^.player.name AS Player;
 +---------+-------------+
 | Team | Player |
 +---------+-------------+

4.3 Variables and composite queries

- 62/287 - 2021 Vesoft Inc.

 | Nuggets | Tony Parker |
 +---------+-------------+

Last update: February 24, 2021

4.3.1 Composite queries (clause structure)

- 63/287 - 2021 Vesoft Inc.

4.3.2 User-defined variables

User-defined variables allows passing the result of one statement to another.

OpenCypher variables

In openCypher, when you refer to a variable of vertex, edge or path, you need to name it first. The name you give to the pattern is

a variable. For example:

The user-defined variable in the preceding query is v .

nGQL extensions

User-defined variables are written as $var_name . The var_name consists of letter, number or underline characters. Any other

characters are not permitted.

User-defined variables can only be used in one execution. For example, you can use user-defined variables in composite queries

separated by semicolon ; or pipe | . Details about composite queries, see Composite queries.

NOTE: A user-defined variable is valid only at the current session and execution.

A user-defined variable in one statement CANNOT be used in either other clients or other executions. The statement that defines

the user-defined variable and the statement that uses it must be submitted together. When this session ends, the user-defined

variable is automatically expired.

NOTE: User-defined variables are case-sensitive.

Example

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;
+--+
| v |
+--+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+--+

nebula> $var = GO FROM "player100" OVER follow YIELD follow._dst AS id; \
GO FROM $var.id OVER serve YIELD $$.team.name AS Team, \
$^.player.name AS Player;
+---------+-------------+
| Team | Player |
+---------+-------------+
| Nuggets | Tony Parker |
+---------+-------------+

Last update: May 20, 2021

4.3.2 User-defined variables

- 64/287 - 2021 Vesoft Inc.

4.3.3 Property reference

This page applies to nGQL extensions only.

You can refer to the properties of a vertex or an edge in WHERE or YIELD syntax.

Property reference for vertex

FOR SOURCE VERTEX

$^ is used to get the property of the source vertex, tag_name is the tag of the vertex, and prop_name specifies the property name.

FOR DESTINATION VERTEX

$$ is used to get the property of the destination vertex, tag_name is the tag of the vertex, and prop_name specifies the property

name.

Property reference for edge

FOR PROPERTY

Use the following syntax to get the property of an edge.

edge_type is the edge type of the edge, and prop_name specifies the property name.

FOR BUILT-IN PROPERTIES

There are four built-in properties in each edge:

_src : source vertex ID of the edge

_dst : destination vertex ID of the edge

_type : edge type

_rank : the rank value for the edge

You can use _src and _dst to get the starting and ending vertices' ID, and they are very commonly used to show a graph path.

Examples

The preceding query returns the name property of the source vertex and the age property of the destination vertex.

The preceding query returns the degree property of the edge.

$^.tag_name.prop_name

$$.tag_name.prop_name

edge_type.prop_name

•

•

•

•

nebula> GO FROM "player100" OVER follow YIELD $^.player.name AS startName, $$.player.age AS endAge;
+--------------+--------+
| startName | endAge |
+--------------+--------+
| "Tim Duncan" | 36 |
+--------------+--------+
| "Tim Duncan" | 33 |
+--------------+--------+

nebula> GO FROM "player100" OVER follow YIELD follow.degree;
+---------------+
| follow.degree |
+---------------+
| 95 |
+---------------+
| 90 |
+---------------+

4.3.3 Property reference

- 65/287 - 2021 Vesoft Inc.

The preceding query returns all the neighbors of vertex "player100" over the follow edges, by referencing follow._src as the

source vertex ID (which is "player100") and follow._dst as the destination vertex ID.

nebula> GO FROM "player100" OVER follow YIELD follow._src, follow._dst, follow._type, follow._rank;
+-------------+-------------+--------------+--------------+
| follow._src | follow._dst | follow._type | follow._rank |
+-------------+-------------+--------------+--------------+
| "player100" | "player101" | 136 | 0 |
+-------------+-------------+--------------+--------------+
| "player100" | "player102" | 136 | 0 |
+-------------+-------------+--------------+--------------+

Last update: March 23, 2021

4.3.3 Property reference

- 66/287 - 2021 Vesoft Inc.

4.4 Operators

4.4.1 Comparison operators

Comparison operations result in a value of true and false.

NOTE: Comparability between values of different types is often undefined. The result could be NULL or others.

OpenCypher compatibility: Comparing with NULL is different from openCypher. The behavior may change. IS [NOT] NULL is

often used with OPTIONAL MATCH . But OPTIONAL MATCH is not support in nGQL.

==

Equal. String comparisons are case-sensitive. Values of different types are not equal.

NOTE: The equality operator is == in nGQL and is = in openCypher.

>

Greater than:

Name Description

= Assign a value

/ Division operator

== Equal operator

!= , <> Not equal operator

< Less than operator

<= Less than or equal operator

- Minus operator

% Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

IS NULL NULL check

IS NOT NULL not NULL check

•

nebula> RETURN 'A' == 'a', toUpper('A') == toUpper('a'), toLower('A') == toLower('a')
+------------+------------------------------+------------------------------+
| ("A"=="a") | (toUpper("A")==toUpper("a")) | (toLower("A")==toLower("a")) |
+------------+------------------------------+------------------------------+
| false | true | true |
+------------+------------------------------+------------------------------+

nebula> RETURN '2' == 2, toInteger('2') == 2;
+----------+---------------------+
| ("2"==2) | (toInteger("2")==2) |
+----------+---------------------+
| false | true |
+----------+---------------------+

•

nebula> RETURN 3 > 2;
+-------+
| (3>2) |
+-------+
| true |
+-------+

4.4 Operators

- 67/287 - 2021 Vesoft Inc.

>=

Greater than or equal to:

<

Less than:

<=

Less than or equal to:

!=

Not equal:

IS [NOT] NULL

nebula> WITH 4 AS one, 3 AS two RETURN one > two AS result;
+--------+
| result |
+--------+
| true |
+--------+

•

nebula> RETURN 2 >= "2", 2 >= 2
+----------+--------+
| (2>="2") | (2>=2) |
+----------+--------+
| __NULL__ | true |
+----------+--------+

•

nebula> YIELD 2.0 < 1.9;
+---------+
| (2<1.9) |
+---------+
| false |
+---------+

•

nebula> YIELD 0.11 <= 0.11;
+--------------+
| (0.11<=0.11) |
+--------------+
| true |
+--------------+

•

nebula> YIELD 1 != '1';
+--------+
| (1!=1) |
+--------+
| true |
+--------+

•

nebula> RETURN null IS NULL AS value1, null == null AS value2, null != null AS value3
+--------+----------+----------+
| value1 | value2 | value3 |
+--------+----------+----------+
| true | __NULL__ | __NULL__ |
+--------+----------+----------+

nebula> RETURN length(NULL), size(NULL), count(NULL), NULL IS NULL, NULL IS NOT NULL, sin(NULL), NULL + NULL, [1, NULL] IS NULL
+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+
| length(NULL) | size(NULL) | COUNT(NULL) | NULL IS NULL | NULL IS NOT NULL | sin(NULL) | (NULL+NULL) | [1,NULL] IS NULL |
+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+
| BAD_TYPE | __NULL__ | 0 | true | false | BAD_TYPE | __NULL__ | false |
+--------------+------------+-------------+--------------+------------------+-----------+-------------+------------------+

nebula> WITH {name: null} AS map RETURN map.name IS NOT NULL
+----------------------+
| map.name IS NOT NULL |
+----------------------+
| false |
+----------------------+

nebula> WITH {name: 'Mats', name2: 'Pontus'} AS map1, \
 {name: null} AS map2, {notName: 0, notName2: null } AS map3 \
 RETURN map1.name IS NULL, map2.name IS NOT NULL, map3.name IS NULL
+-------------------+-----------------------+-------------------+
| map1.name IS NULL | map2.name IS NOT NULL | map3.name IS NULL |
+-------------------+-----------------------+-------------------+
| false | false | true |
+-------------------+-----------------------+-------------------+

4.4.1 Comparison operators

- 68/287 - 2021 Vesoft Inc.

nebula> MATCH (n:player) RETURN n.age IS NULL, n.name IS NOT NULL, n.empty IS NULL
+---------------+--------------------+-----------------+
| n.age IS NULL | n.name IS NOT NULL | n.empty IS NULL |
+---------------+--------------------+-----------------+
| false | true | true |
+---------------+--------------------+-----------------+
| false | true | true |
+---------------+--------------------+-----------------+
| false | true | true |
+---------------+--------------------+-----------------+
...

Last update: March 25, 2021

4.4.1 Comparison operators

- 69/287 - 2021 Vesoft Inc.

4.4.2 Boolean operators

For the precedence of the operators, refer to Operator Precedence.

For the logical operations with NULL, refer to NULL.

Legacy version compatibility

In Nebula Graph 1.0, non-zero numbers are evaluated to true like c-language.

In Nebula Graph 2.0, non-zero numbers can't be converted to boolean values.

Name Description

AND Logical AND

NOT Logical NOT

OR Logical OR

XOR Logical XOR

•

•

Last update: March 25, 2021

4.4.2 Boolean operators

- 70/287 - 2021 Vesoft Inc.

4.4.3 Pipe operator

OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax

One major difference between nGQL and SQL is how sub-queries are composed.

In SQL, to form a statement, sub-queries are nested (embedded). In nGQL the shell style PIPE (|) is introduced.

Examples

If there is no YIELD clause to define the output, the destination vertex ID is returned by default. If a YIELD clause is applied, the

output is defined by the YIELD clause.

You must define aliases in the YIELD clause for the reference operator $- to use, just like $-.dstid in the preceding example.

nebula> GO FROM "player100" OVER follow \
YIELD follow._dst AS dstid, $$.player.name AS Name |\
GO FROM $-.dstid OVER follow;

+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+

Last update: March 23, 2021

4.4.3 Pipe operator

- 71/287 - 2021 Vesoft Inc.

4.4.4 Reference operators

NGQL provides reference operators to represent a property in a WHERE or YIELD clause, or the output of the statement before the

pipe symbol in a composite query.

OpenCypher compatibility

This page applies to nGQL extensions only.

Reference operator List

Examples

The following example returns the age of the source vertex and the destination vertex.

The following example returns the name and team of the players that "player100" follows.

Reference

operator

Description

$^ Refers to a source vertex property. For more information, see Property reference.

$$ Refers to a destination vertex property. For more information, see Property reference.

$- Refers to the output of the statement before the pipe symbol in a composite query. For more

information, see Pipe.

nebula> GO FROM "player100" OVER follow \
 YIELD $^.player.age AS SrcAge, $$.player.age AS DestAge;
+--------+---------+
| SrcAge | DestAge |
+--------+---------+
| 42 | 36 |
+--------+---------+
| 42 | 41 |
+--------+---------+

nebula> GO FROM "player100" OVER follow \
 YIELD follow._dst AS id | \
 GO FROM $-.id OVER serve \
 YIELD $^.player.name AS Player, $$.team.name AS Team;
+-----------------+-----------+
| Player | Team |
+-----------------+-----------+
| "Tony Parker" | "Spurs" |
+-----------------+-----------+
| "Tony Parker" | "Hornets" |
+-----------------+-----------+
| "Manu Ginobili" | "Spurs" |
+-----------------+-----------+

Last update: March 23, 2021

4.4.4 Reference operators

- 72/287 - 2021 Vesoft Inc.

4.4.5 Set operations

OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax

This document descriptions the set operations, including UNION , UNION ALL , INTERSECT , and MINUS . To combine multiple queries,

use the set operators.

All set operators have equal precedence. If a nGQL statement contains multiple set operators, Nebula Graph evaluates them from

the left to right unless parentheses explicitly specify another order.

To use the set operators, always match the return results of the GO clause with the same number and data type.

UNION, UNION DISTINCT, and UNION ALL

Operator UNION DISTINCT (or by short UNION) returns the union of two sets A and B without the duplicate elements.

Operator UNION ALL returns the union of two sets A and B with duplicated elements.

The <left> and <right> must have the same number of columns and data types. Different data types are converted according to

the Type Conversion.

EXAMPLE

The following statement

returns the neighbors' id of vertex "player102" and "player100 (along with edge follow) without duplication.

While

returns all the neighbors of vertex "player102" and "player100 , with all possible duplications.

UNION can also work with the YIELD statement. For example, let's suppose the results of the following two queries.

<left> UNION [DISTINCT | ALL] <right> [UNION [DISTINCT | ALL] <right> ...]

nebula> GO FROM "player102" OVER follow \
 UNION \
 GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+
| "player102" |
+-------------+

nebula> GO FROM "player102" OVER follow \
 UNION ALL \
 GO FROM "player100" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+
| "player101" |
+-------------+
| "player102" |
+-------------+

nebula> GO FROM "player102" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age; -- query 1

+-------------+--------+-----+
| id | Degree | Age |
+-------------+--------+-----+
| "player101" | 75 | 36 | -- line 1
+-------------+--------+-----+

4.4.5 Set operations

- 73/287 - 2021 Vesoft Inc.

And the following statement

returns the follows:

The DISTINCT check duplication by all the columns for every line. So line 1 and line 2 are different.

INTERSECT

Operator INTERSECT returns the intersection of two sets A and B (denoted by A ⋂ B).

Similar to UNION , the <left> and <right> must have the same number of columns and data types. Only the INTERSECT columns of

<left> and <right> are returned.

For example, the following query

returns

MINUS

Operator MINUS returns the subtraction (or difference) of two sets A and B (denoted by A - B). Always pay attention to the order

of the <left> and <right> . The set A - B consists of elements that are in A but not in B.

For example, the following query

returns

nebula> GO FROM "player100" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age; -- query 2

+-------------+--------+-----+
| id | Degree | Age |
+-------------+--------+-----+
| "player101" | 96 | 36 | -- line 2
+-------------+--------+-----+
| "player102" | 90 | 33 | -- line 3
+-------------+--------+-----+

nebula> GO FROM "player102" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age \
 UNION /* DISTINCT */ \
 GO FROM "player100" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age;

+-------------+--------+-----+
| id | Degree | Age |
+-------------+--------+-----+
| "player101" | 75 | 36 | -- line 1
+-------------+--------+-----+
| "player101" | 96 | 36 | -- line 2
+-------------+--------+-----+
| "player102" | 90 | 33 | -- line 3
+-------------+--------+-----+

<left> INTERSECT <right>

nebula> GO FROM "player102" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age \
INTERSECT \
GO FROM "player100" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age;

Empty set (time spent 5194/6264 us)

<left> MINUS <right>

nebula> GO FROM "player100" OVER follow \
MINUS \
GO FROM "player102" OVER follow;

+-------------+
| follow._dst |
+-------------+
| "player102" |
+-------------+

4.4.5 Set operations

- 74/287 - 2021 Vesoft Inc.

If you reverse the MINUS order, the query

returns

Precedence of the SET Operations and Pipe

Please note that when a query contains pipe | and set operations, pipe takes precedence. Refer to the Pipe Doc for details.

Query GO FROM 1 UNION GO FROM 2 | GO FROM 3 is the same as query GO FROM 1 UNION (GO FROM 2 | GO FROM 3) .

For example:

The statements in the red bar are executed first. And then the statement in the green box is executed.

In the above query, the parentheses change the execution priority, and the statements within the parentheses take the

precedence.

nebula> GO FROM "player102" OVER follow \
MINUS \
GO FROM "player100" OVER follow;

Empty set (time spent 2243/3259 us)

nebula> GO FROM "player102" OVER follow YIELD follow._dst AS play_dst \
UNION \
GO FROM "team200" OVER serve REVERSELY YIELD serve._dst AS play_dst \
| GO FROM $-.play_dst OVER follow YIELD follow._dst AS play_dst;

+-------------+
| play_dst |
+-------------+
| "player101" |
+-------------+
| "player102" |
+-------------+

nebula> (GO FROM "player102" OVER follow YIELD follow._dst AS play_dst \
UNION \
GO FROM "team200" OVER serve REVERSELY YIELD serve._dst AS play_dst) \
| GO FROM $-.play_dst OVER follow YIELD follow._dst AS play_dst;

Last update: March 17, 2021

4.4.5 Set operations

- 75/287 - 2021 Vesoft Inc.

4.4.6 String operators

NOTE: All the string matchings are case-sensitive.

Examples

concatenation (+)

CONTAINS

The CONTAINS operator requires string type in both left and right side.

IN

(NOT) STARTS WITH

Name Description

+ concatenating strings

CONTAINS Perform case-sensitive inclusion searching in strings

(NOT) IN Whether a value is within a set of values

(NOT) STARTS WITH Perform case-sensitive matching on the beginning of a string

(NOT) ENDS WITH Perform case-sensitive matching on the ending of a string

Regular expressions Perform regular expression matching on a string

•

nebula> RETURN 'a' + 'b';
+-------+
| (a+b) |
+-------+
| "ab" |
+-------+
nebula> UNWIND 'a' AS a UNWIND 'b' AS b RETURN a + b;
+-------+
| (a+b) |
+-------+
| "ab" |
+-------+

•

nebula> MATCH (s:player)-[e:serve]->(t:team) WHERE id(s) == "player101" \
 AND t.name CONTAINS "ets" RETURN s.name, e.start_year, e.end_year, t.name;
+---------------+--------------+------------+-----------+
| s.name | e.start_year | e.end_year | t.name |
+---------------+--------------+------------+-----------+
| "Tony Parker" | 2018 | 2019 | "Hornets" |
+---------------+--------------+------------+-----------+

nebula> GO FROM "player101" OVER serve WHERE (STRING)serve.start_year CONTAINS "19" AND \
 $^.player.name CONTAINS "ny" \
 YIELD $^.player.name, serve.start_year, serve.end_year, $$.team.name;
+----------------+------------------+----------------+--------------+
| $^.player.name | serve.start_year | serve.end_year | $$.team.name |
+----------------+------------------+----------------+--------------+
| "Tony Parker" | 1999 | 2018 | "Spurs" |
+----------------+------------------+----------------+--------------+

nebula> GO FROM "player101" OVER serve WHERE !($$.team.name CONTAINS "ets") \
 YIELD $^.player.name, serve.start_year, serve.end_year, $$.team.name;
+----------------+------------------+----------------+--------------+
| $^.player.name | serve.start_year | serve.end_year | $$.team.name |
+----------------+------------------+----------------+--------------+
| "Tony Parker" | 1999 | 2018 | "Spurs" |
+----------------+------------------+----------------+--------------+

•

nebula> RETURN 1 IN [1,2,3], "Yao" IN ["Yi", "Tim", "Kobe"], NULL in ["Yi", "Tim", "Kobe"]
+----------------+--------------------------------+-------------------------------+
| (1 IN [1,2,3]) | ("Yao" IN ["Yi","Tim","Kobe"]) | (NULL IN ["Yi","Tim","Kobe"]) |
+----------------+--------------------------------+-------------------------------+
| true | false | false |
+----------------+--------------------------------+-------------------------------+

•

4.4.6 String operators

- 76/287 - 2021 Vesoft Inc.

(NOT) ENDS WITH

Regular expressions

Nebula Graph supports filtering by using regular expressions. The regular expression syntax is inherited from std::regex . You

can match on regular expressions by using =~ 'regexp' . For example:

NOTE: Regular expressions CAN NOT work with nGQL-extensions (GO/FETCH clause will return syntax error). Use it in

openCypher only (e.g., in MATCH-WHERE clause).

nebula> RETURN 'apple' STARTS WITH 'app', 'apple' STARTS WITH 'a', 'apple' STARTS WITH toUpper('a')
+-----------------------------+---------------------------+------------------------------------+
| ("apple" STARTS WITH "app") | ("apple" STARTS WITH "a") | ("apple" STARTS WITH toUpper("a")) |
+-----------------------------+---------------------------+------------------------------------+
| true | true | false |
+-----------------------------+---------------------------+------------------------------------+

nebula> RETURN 'apple' STARTS WITH 'b','apple' NOT STARTS WITH 'app'
+---------------------------+---------------------------------+
| ("apple" STARTS WITH "b") | ("apple" NOT STARTS WITH "app") |
+---------------------------+---------------------------------+
| false | false |
+---------------------------+---------------------------------+

•

nebula> RETURN 'apple' ENDS WITH 'app', 'apple' ENDS WITH 'e', 'apple' ENDS WITH 'E', 'apple' ENDS WITH 'b'
+---------------------------+-------------------------+-------------------------+-------------------------+
| ("apple" ENDS WITH "app") | ("apple" ENDS WITH "e") | ("apple" ENDS WITH "E") | ("apple" ENDS WITH "b") |
+---------------------------+-------------------------+-------------------------+-------------------------+
| false | true | false | false |
+---------------------------+-------------------------+-------------------------+-------------------------+

•

nebula> RETURN "384748.39" =~ "\\d+(\\.\\d{2})?";
+----------------------------+
| (384748.39=~\d+(\.\d{2})?) |
+----------------------------+
| true |
+----------------------------+

nebula> MATCH (v:player) WHERE v.name =~ 'Tony.*' RETURN v.name;
+---------------+
| v.name |
+---------------+
| "Tony Parker" |
+---------------+

Last update: March 23, 2021

4.4.6 String operators

- 77/287 - 2021 Vesoft Inc.

4.4.7 List operators

List operators are:

concatenating lists: +

checking if an element exists in a list: IN

accessing an element(s) in a list using the subscript operator: []

Examples

•

•

•

nebula> YIELD [1,2,3,4,5]+[6,7] AS myList
+-----------------------+
| myList |
+-----------------------+
| [1, 2, 3, 4, 5, 6, 7] |
+-----------------------+

nebula> RETURN size([NULL, 1, 2])
+------------------+
| size([NULL,1,2]) |
+------------------+
| 3 |
+------------------+

nebula> RETURN NULL IN [NULL, 1]
+--------------------+
| (NULL IN [NULL,1]) |
+--------------------+
| true |
+--------------------+

nebula> WITH [2, 3, 4, 5] AS numberlist \
 UNWIND numberlist AS number \
 WITH number \
 WHERE number IN [2, 3, 8] \
 RETURN number
+--------+
| number |
+--------+
| 2 |
+--------+
| 3 |
+--------+

Last update: March 17, 2021

4.4.7 List operators

- 78/287 - 2021 Vesoft Inc.

4.4.8 Operator precedence

The following list shows the precedence of nGQL operators in descending order. Operators that are shown together on a line

have the same precedence.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to right, with the exception

that assignments evaluate right to left.

The precedence of operators determines the order of evaluation of terms in an expression. To override this order and group

terms explicitly, use parentheses.

Examples

OpenCypher compatibility

In openCypher, comparisons can be chained arbitrarily, e.g., x < y <= z is equivalent to x < y AND y <= z in openCypher. But in

nGQL, it is equivalent to (x < y) <= z , which is a boolean (x < y) compare again an integer (z). And the result is NULL.

- (negative number)
!, NOT
*, /, %
-, +
== , >=, >, <=, <, <>, !=
AND
OR, XOR
= (assignment)

nebula> RETURN 2+3*5;
+-----------+
| (2+(3*5)) |
+-----------+
| 17 |
+-----------+

nebula> RETURN (2+3)*5;
+-----------+
| ((2+3)*5) |
+-----------+
| 25 |
+-----------+

Last update: March 17, 2021

4.4.8 Operator precedence

- 79/287 - 2021 Vesoft Inc.

4.5 Functions and expressions

4.5 Functions and expressions

- 80/287 - 2021 Vesoft Inc.

4.5.1 Built-in math functions

Nebula Graph supports the following built-in math functions:

4.5.1 Built-in math functions

- 81/287 - 2021 Vesoft Inc.

Function Description

double abs(double x) Returns absolute value of the argument.

double floor(double x) Returns the largest integer value smaller than or equal to the argument. (Rounds down)

double ceil(double x) Returns the smallest integer greater than or equal to the argument. (Rounds up)

double round(double

x)

Returns the integer value nearest to the argument. Returns a number farther away from 0 if the

argument is in the middle.

double sqrt(double x) Returns the square root of the argument.

double cbrt(double x) Returns the cubic root of the argument.

double hypot(double x,

double y)

Returns the hypotenuse of a right-angled triangle.

double pow(double x,

double y)

Returns the result of x raised by the y th power.

double exp(double x) Returns the value of e raised to the x power.

double exp2(double x) Returns 2 raised to the argument.

double log(double x) Returns natural logarithm of the argument.

double log2(double x) Returns the base-2 logarithm of the argument.

double log10(double x) Returns the base-10 logarithm of the argument.

double sin(double x) Returns sine of the argument.

double asin(double x) Returns inverse sine of the argument.

double cos(double x) Returns cosine of the argument.

double acos(double x) Returns inverse cosine of the argument.

double tan(double x) Returns tangent of the argument.

double atan(double x) Returns inverse tangent the argument.

double rand() Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.[0,1).

int rand32(int min, int

max)

Returns a random 32-bit integer in [min, max). If you set only one argument, it is parsed as max

and min is default to 0 . If you set no argument, the system returns a random signed 32-bit

integer.

int rand64(int min, int

max)

Returns a random 64-bit integer in [min, max). If you set only one argument, it is parsed as max

and min is default to 0 . If you set no argument, the system returns a random signed 64-bit

integer.

collect() Puts all the collected values to a list.

avg() Returns the average value of the argument.

count() Returns the number of records.

max() Returns the maximum value.

min() Returns the minimum value.

std() Returns the population standard deviation.

sum() Returns the sum value.

bit_and() Bitwise AND.

bit_or() Bitwise OR.

4.5.1 Built-in math functions

- 82/287 - 2021 Vesoft Inc.

NOTE: If the argument is set to NULL , the output is undefined.

Function Description

bit_xor() Bitwise exclusive OR (XOR).

int size() Returns the number of elements in a list or a map.

int range(int start, int

end, int step)

Returns a list of integers from start (inclusive) to end (inclusive) in the specified steps. step is

optional and default to 1.

int sign(double x) Returns the signum of the given number: 0 if the number is 0, -1 for any negative number, and 1

for any positive number.

double e() Returns the base of the natural logarithm, e (2.718281828459045).

double pi() Returns the mathematical constant pi (3.141592653589793).

double radians() Converts degrees to radians. radians(180) returns 3.141592653589793.

Last update: April 14, 2021

4.5.1 Built-in math functions

- 83/287 - 2021 Vesoft Inc.

4.5.2 Built-in string functions

Nebula Graph supports the following built-in string functions:

NOTE: If the argument is NULL , the return is undefined.

Explanations for the return of substr() and substring()

pos uses a 0-based index.

If pos is 0, the whole string a is returned.

If pos is greater than the maximum string index, an empty string is returned.

If pos is a negative number, BAD_DATA is returned.

If count is omitted, the function returns the substring starting at the position given by pos and extending to the end of

string a .

Using NULL as any of the argument of substr() causes an issue.

Function Description

int strcasecmp(string a, string b) Compares strings without case sensitivity, when a = b, Returns 0, when a > b Returnsed

value is greater than 0, otherwise less than 0.

string lower(string a) Returns the argument in lowercase.

string toLower(string a) The same as lower().

string upper(string a) Returns the argument in uppercase.

string toUpper(string a) The same as upper().

int length(string a) Returns the length of given string in bytes.

string trim(string a) Removes leading and trailing spaces.

string ltrim(string a) Removes leading spaces.

string rtrim(string a) Removes trailing spaces.

string left(string a, int count) Returns the substring in [1, count], if length a is less than count, Returns a.

string right(string a, int count) Returns the substring in [size - count + 1, size], if length a is less than count, Returns a.

string lpad(string a, int size,

string letters)

Left-pads a string with another string to a certain length.

string rpad(string a, int size,

string letters)

Reft-pads a string with another string to a certain length.

string substr(string a, int pos, int

count)

Returns a substring from a string, starting at the specified position pos , extract count

characters.

string substring(string a, int pos,

int count)

The same as substr().

string reverse(string) Returns the reverse of a string.

string replace(string a, string b,

string c)

Replaces string b in string a with string c.

list split(string a, string b) Splits string a at string b and returns a list of strings.

string toString() Takes in any data type and converts it into a string.

int hash() Takes in any data type and encodes it into an integer value.

•

•

•

•

•

•

4.5.2 Built-in string functions

- 84/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/878

If count is 0, an empty string is returned.

OpenCypher Compatibility:

In openCypher, if a is null , null is returned.

In openCypher, if pos is 0, the returned substring starts from the first character, and extend to count characters.

In openCypher, if either pos or count is null or a negative integer, an error is raised.

•

•

•

•

Last update: March 26, 2021

4.5.2 Built-in string functions

- 85/287 - 2021 Vesoft Inc.

4.5.3 Built-in date and time functions

Nebula Graph supports the following built-in date and time functions:

The date(), time(), and datetime() functions accept three kind of parameters, namely empty, string, and map.

Examples

OpenCypher compatibility

Time in openCypher is measured in milliseconds.

Time in nGQL is measured in seconds. The milliseconds are displayed in 000 .

Function Description

int now() Return the current date and time of the system time zone.

date date() Return the current UTC date based on the current system.

time time() Return the current UTC calendar time of the current time zone.

datetime datetime() Return the current UTC datetime based on the current time.

> RETURN now(), date(), time(), datetime();
+------------+------------+--------------+-------------------------+
| now() | date() | time() | datetime() |
+------------+------------+--------------+-------------------------+
| 1611907165 | 2021-01-29 | 07:59:22.000 | 2021-01-29T07:59:22.000 |
+------------+------------+--------------+-------------------------+

•

•

Last update: March 29, 2021

4.5.3 Built-in date and time functions

- 86/287 - 2021 Vesoft Inc.

4.5.4 Schema functions

Nebula Graph supports the following built-in schema functions:

Examples

Function Description

id(vertex) Returns the id of a vertex. The data type of the result is the same as the vertex ID.

list tags(vertex) Returns the tags of a vertex.

list labels(vertex) Returns the tags of a vertex.

map properties(vertex_or_edge) Takes in a vertex or an edge and returns its properties.

string type(edge) Returns the edge type of an edge.

vertex startNode(path) Takes in an edge or a path and returns its source vertex ID.

string endNode(path) Takes in an edge or a path and returns its destination vertex ID.

int rank(edge) Returns the rank value of an edge.

nebula> MATCH (a:player) WHERE id(a) == "player100" RETURN tags(a), labels(a), properties(a)
+------------+------------+-------------------------------+
| tags(a) | labels(a) | properties(a) |
+------------+------------+-------------------------------+
| ["player"] | ["player"] | {age: 42, name: "Tim Duncan"} |
+------------+------------+-------------------------------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) RETURN type(r), rank(r)
+---------+---------+
| type(r) | rank(r) |
+---------+---------+
| "serve" | 0 |
+---------+---------+

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) RETURN startNode(p), endNode(p)
+--+----------------------------------+
| startNode(p) | endNode(p) |
+--+----------------------------------+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("team204" :team{name: "Spurs"}) |
+--+----------------------------------+

Last update: March 25, 2021

4.5.4 Schema functions

- 87/287 - 2021 Vesoft Inc.

4.5.5 CASE expressions

The CASE expression uses conditions to filter the result of an nGQL query statement. It is usually used in the YIELD or RETURN

clause. nGQL provides two forms of CASE expressions just like openCypher: the simple form and the generic form.

The CASE expression goes through conditions and returns a result when the first condition is met. Then the CASE expression

stops reading the conditions and returns the result. If no conditions are met, it returns the result in the ELSE clause. If there is

no ELSE clause and no conditions are met, it returns NULL .

The following graph is used for the examples in this topic.

The simple form of CASE expressions

SYNTAX

4.5.5 CASE expressions

- 88/287 - 2021 Vesoft Inc.

CAUTION: Always remember to end a CASE expression with END .

EXAMPLES

The generic form of CASE expressions

SYNTAX

EXAMPLES

CASE <comparer>
WHEN <value> THEN <result>
[WHEN ...]
[ELSE <default>]
END

Parameters Description

comparer A value or a valid expression that outputs a value. This value is used to compare with value .

value It will be compared with comparer . If they match, then this condition is met.

result It is returned by the CASE expression if value matches comparer .

default It is returned by the CASE expression if no conditions are met.

nebula> RETURN \
 CASE 2+3 \
 WHEN 4 THEN 0 \
 WHEN 5 THEN 1 \
 ELSE -1 \
 END \
 AS result;
+--------+
| result |
+--------+
| 1 |
+--------+

nebula> GO FROM "player100" OVER follow \
 YIELD $$.player.name AS Name, \
 CASE $$.player.age > 35 \
 WHEN true THEN "Yes" \
 WHEN false THEN "No" \
 ELSE "Nah" \
 END \
 AS Age_above_35;
+---------------------+--------------+
| Name | Age_above_35 |
+---------------------+--------------+
| "Tony Parker" | "Yes" |
+---------------------+--------------+
| "LaMarcus Aldridge" | "No" |
+---------------------+--------------+

CASE
WHEN <condition> THEN <result>
[WHEN ...]
[ELSE <default>]
END

Parameters Description

condition If condition is evaluated as true, result is returned by the CASE expression.

result It is returned by the CASE expression if condition is evaluated as true.

default It is returned by the CASE expression if no conditions are met.

nebula> YIELD \
 CASE WHEN 4 > 5 THEN 0 \
 WHEN 3+4==7 THEN 1 \
 ELSE 2 \
 END \
 AS result;
+--------+
| result |
+--------+

4.5.5 CASE expressions

- 89/287 - 2021 Vesoft Inc.

Differences between the simple form and the generic form

To avoid the misuse of the simple form and the generic form, it is important to understand their differences. The following

example can help explain them.

The preceding GO query is intended to output "Yes" when the player age is above 35. However, in this example, when the player

age is 36, the actual output is not as expected: It is "No" instead of "Yes".

This is because the query uses the CASE expression in the simple form, and a comparison between the values of $$.player.age

and $$.player.age > 35 is made. When the player age is 36:

The value of $$.player.age is 36 . It is an integer.

$$.player.age > 35 is evaluated to true . It is a boolean.

The values of $$.player.age and $$.player.age > 35 do not match. This condition is not met and "No" is returned.

| 1 |
+--------+

nebula> MATCH (v:player) WHERE v.age > 30 \
 RETURN v.name AS Name, \
 CASE \
 WHEN v.name STARTS WITH "T" THEN "Yes" \
 ELSE "No" \
 END \
 AS Starts_with_T;
+---------------------+---------------+
| Name | Starts_with_T |
+---------------------+---------------+
| "Tim" | "Yes" |
+---------------------+---------------+
| "LaMarcus Aldridge" | "No" |
+---------------------+---------------+
| "Tony Parker" | "Yes" |
+---------------------+---------------+

nebula> GO FROM "player100" OVER follow \
 YIELD $$.player.name AS Name, $$.player.age AS Age, \
 CASE $$.player.age \
 WHEN $$.player.age > 35 THEN "Yes" \
 ELSE "No" \
 END \
 AS Age_above_35;
+---------------------+-----+--------------+
| Name | Age | Age_above_35 |
+---------------------+-----+--------------+
| "Tony Parker" | 36 | "No" |
+---------------------+-----+--------------+
| "LaMarcus Aldridge" | 33 | "No" |
+---------------------+-----+--------------+

•

•

Last update: March 17, 2021

4.5.5 CASE expressions

- 90/287 - 2021 Vesoft Inc.

4.5.6 List functions

NOTE: If the parameter is NULL , the output is undefined.

Examples

Function Description

keys(expr) Returns a list containing the string representations for all the property names of a vertex, edge,

or map.

labels(vertex) Returns the tags of a vertex.

nodes(path) Returns a list containing all the nodes in a path.

range(start, end [,

step])

A list of Integer elements.

relationships(path) Returns a list containing all the relationships in a path.

reverse(list) returns a list in which the order of all elements in the original list have been reversed.

tail(list) returns all the elements, excluding the first one.

head(list) Returns the first element of a list.

last(list) Returns the last element of a list.

coalesce(list) Returns the first not null value in a list.

reduce() See reduce() function.

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids RETURN reverse(ids), tail(ids), head(ids), last(ids), coalesce(ids)
+-----------------------------------+-------------------------+-----------+-----------+---------------+
| reverse(ids) | tail(ids) | head(ids) | last(ids) | coalesce(ids) |
+-----------------------------------+-------------------------+-----------+-----------+---------------+
| [487, 521, "abc", 4923, __NULL__] | [4923, "abc", 521, 487] | __NULL__ | 487 | 4923 |
+-----------------------------------+-------------------------+-----------+-----------+---------------+

nebula> MATCH (a:player)-[r]->() WHERE id(a) == "player100" RETURN labels(a), keys(r)
+------------+----------------------------+
| labels(a) | keys(r) |
+------------+----------------------------+
| ["player"] | ["degree"] |
+------------+----------------------------+
| ["player"] | ["degree"] |
+------------+----------------------------+
| ["player"] | ["end_year", "start_year"] |
+------------+----------------------------+

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) WHERE a.name == "Tim Duncan" AND c.name == "Spurs" RETURN nodes(p)
+---+
| nodes(p) |
+---+
| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}), ("team204" :team{name: "Spurs"})] |
+---+
| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player125" :player{age: 41, name: "Manu Ginobili"}), ("team204" :team{name: "Spurs"})] |
+---+

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) WHERE a.name == "Tim Duncan" AND c.name == "Spurs" RETURN relationships(p)
+---+
| relationships(p) |
+---+
| [[:follow "player100"->"player101" @0 {degree: 95}], [:serve "player101"->"team204" @0 {end_year: 2018, start_year: 1999}]] |
+---+
| [[:follow "player100"->"player125" @0 {degree: 95}], [:serve "player125"->"team204" @0 {end_year: 2018, start_year: 2002}]] |
+---+

Last update: March 17, 2021

4.5.6 List functions

- 91/287 - 2021 Vesoft Inc.

4.5.7 The count() function

The count() function calculates the number of the specified values or rows.

(nGQL-extension) You can use count() and GROUP BY together to group and count the number of specific values. Use YIELD

to return.

(OpenCypher style) You can use count() and RETURN . GROUP BY is not necessary.

Syntax

count(*) returns the number of rows (including NULL).

count(expr) return non-NULL values return by an expression.

count() and size() are different.

EXAMPLES

The statement in the preceding example searches for:

People whom player101 follows.

People who follow player101 .

And retrieves two columns:

$-.Name , the names of the people.

COUNT(*) , how many times the names show up.

Because there are no duplicate names in the basketballplayer dataset, the number 2 in the result shows that the person in that

row and player101 have followed each other.

•

•

count({expr | *})

•

•

•

nebula> WITH [NULL, 1, 1, 2, 2] As a UNWIND a AS b RETURN count(b), count(*), count(DISTINCT b)
+----------+----------+-------------------+
| COUNT(b) | COUNT(*) | COUNT(distinct b) |
+----------+----------+-------------------+
| 4 | 5 | 2 |
+----------+----------+-------------------+

nebula> GO FROM "player101" OVER follow BIDIRECT YIELD $$.player.name AS Name | \
 GROUP BY $-.Name YIELD $-.Name, count(*);
+---------------------+----------+
| $-.Name | COUNT(*) |
+---------------------+----------+
| "Dejounte Murray" | 1 |
+---------------------+----------+
| "LaMarcus Aldridge" | 2 |
+---------------------+----------+
| "Tim Duncan" | 2 |
+---------------------+----------+
| "Marco Belinelli" | 1 |
+---------------------+----------+
| "Manu Ginobili" | 1 |
+---------------------+----------+
| "Boris Diaw" | 1 |
+---------------------+----------+

•

•

•

•

nebula> LOOKUP ON player YIELD player.age As playerage \|
 GROUP BY $-.playerage YIELD $-.playerage as age, count(*) AS number | ORDER BY number DESC, age DESC
+-----+--------+
| age | number |
+-----+--------+
| 34 | 4 |
+-----+--------+
| 33 | 4 |
+-----+--------+
| 30 | 4 |
+-----+--------+
| 29 | 4 |
+-----+--------+
| 38 | 3 |
+-----+--------+
...

4.5.7 The count() function

- 92/287 - 2021 Vesoft Inc.

The two statements in the preceding examples retrieves the age distribution of the players in the dataset.

count(NULL)

nebula> MATCH (n:player) RETURN n.age as age, count(*) as number ORDER BY number DESC, age DESC
+-----+--------+
| age | number |
+-----+--------+
| 34 | 4 |
+-----+--------+
| 33 | 4 |
+-----+--------+
| 30 | 4 |
+-----+--------+
| 29 | 4 |
+-----+--------+
| 38 | 3 |
+-----+--------+

nebula> MATCH (v:player{name:"Tim Duncan"}) -- (v2) RETURN count(DISTINCT v2)
+--------------------+
| COUNT(distinct v2) |
+--------------------+
| 11 |
+--------------------+
nebula> MATCH (n:player {name : "Tim Duncan"})-[]->(friend:player)-[]->(fof:player) RETURN count(fof), count(DISTINCT fof)
+------------+---------------------+
| COUNT(fof) | COUNT(distinct fof) |
+------------+---------------------+
| 4 | 3 |
+------------+---------------------+

nebula> RETURN count(NULL), size(NULL)
+-------------+------------+
| COUNT(NULL) | size(NULL) |
+-------------+------------+
| 0 | __NULL__ |
+-------------+------------+

Last update: April 13, 2021

4.5.7 The count() function

- 93/287 - 2021 Vesoft Inc.

4.5.8 collect()

collect() returns a list containing the values returned by an expression. Using this function aggregates data by amalgamating

multiple records or values into a single list.

collect() is an aggregation function. Like GROUP BY in SQL.

Examples

This example works like GROUP BY .

You can sort reversely, limit output rows to 3, and collect the output into a list.

This example aggregates all players' names by their ages.

nebula> UNWIND [1, 2, 1] AS a RETURN a;
+---+
| a |
+---+
| 1 |
+---+
| 2 |
+---+
| 1 |
+---+
nebula> UNWIND [1, 2, 1] AS a RETURN collect(a);
+------------+
| COLLECT(a) |
+------------+
| [1, 2, 1] |
+------------+
nebula> UNWIND [1, 2, 1] AS a RETURN a, collect(a), size(collect(a))
+---+------------+------------------+
| a | COLLECT(a) | size(COLLECT(a)) |
+---+------------+------------------+
| 2 | [2] | 1 |
+---+------------+------------------+
| 1 | [1, 1] | 2 |
+---+------------+------------------+

nebula> UNWIND ["c", "b", "a", "d"] AS p \
 WITH p AS q \
 ORDER BY q DESC LIMIT 3 \
 RETURN collect(q);
+-----------------+
| COLLECT(q) |
+-----------------+
| ["d", "c", "b"] |
+-----------------+
nebula> WITH [1, 1, 2, 2] AS coll \
 UNWIND coll AS x \
 WITH DISTINCT x \
 RETURN collect(x) AS ss
+--------+
| ss |
+--------+
| [1, 2] |
+--------+

nebula> MATCH (n:player) RETURN collect(n.age);
+---+
| COLLECT(n.age) |
--+
| [32, 32, 34, 29, 41, 40, 33, 25, 40, 37, ...
...
nebula> MATCH (n:player) RETURN n.age AS age, collect(n.name);
...
+-----+--+
| 27 | ["Cory Joseph"] |
+-----+--+
| 28 | ["Damian Lillard", "Paul George", "Ricky Rubio"] |
+-----+--+
| 29 | ["Dejounte Murray", "James Harden", "Klay Thompson", "Jonathon Simmons"] |
+-----+--+
...

Last update: June 11, 2021

4.5.8 collect()

- 94/287 - 2021 Vesoft Inc.

4.5.9 reduce() function

OpenCypher Compatibility

In openCypher, the function reduce() is not defined. nGQL implements reduce() function as the Cypher way.

Syntax

reduce() returns the value resulting from the application of an expression on each successive element in a list in conjunction

with the result of the computation thus far. This function will iterate through each element e in the given list, run the expression

on e  — taking into account the current partial result — and store the new partial result in the accumulator. This function is

analogous to the fold or reduce method in functional languages such as Lisp and Scala.

Arguments:

Returns:

The type of the value returned depends on the arguments provided, along with the semantics of expression.

Example

reduce(accumulator = initial, variable IN list | expression)

•

Name Description

accumulator A variable that will hold the result and the partial results as the list is iterated.

initial An expression that runs once to give a starting value to the accumulator.

list An expression that returns a list.

variable The closure will have a variable introduced in its context. We decide here which variable to use.

expression This expression will run once per value in the list, and produce the result value.

•

nebula> RETURN reduce(totalNum = 10, n IN range(1, 3) | totalNum + n) AS r;
+----+
| r |
+----+
| 16 |
+----+

nebula> RETURN reduce(totalNum = -4 * 5, n IN [1, 2] | totalNum + n * 2) AS r;
+-----+
| r |
+-----+
| -14 |
+-----+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \
 RETURN nodes(p)[0].age AS src1, \
 nodes(p)[1].age AS dst2, \
 reduce(totalAge = 100, n IN nodes(p) | totalAge + n.age) AS sum
+------+------+-----+
| src1 | dst2 | sum |
+------+------+-----+
| 34 | 31 | 165 |
+------+------+-----+
| 34 | 29 | 163 |
+------+------+-----+
| 34 | 33 | 167 |
+------+------+-----+
| 34 | 26 | 160 |
+------+------+-----+
| 34 | 34 | 168 |
+------+------+-----+
| 34 | 37 | 171 |
+------+------+-----+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" | GO FROM $-.VertexID over follow WHERE follow.degree != reduce(totalNum = 5, n IN range(1, 3) |
$$.player.age + totalNum + n) YIELD $$.player.name AS id, $$.player.age AS age, follow.degree AS degree
+---------------------+-----+--------+
| id | age | degree |

4.5.9 reduce() function

- 95/287 - 2021 Vesoft Inc.

+---------------------+-----+--------+
| "Tim Duncan" | 42 | 95 |
+---------------------+-----+--------+
| "LaMarcus Aldridge" | 33 | 90 |
+---------------------+-----+--------+
| "Manu Ginobili" | 41 | 95 |
+---------------------+-----+--------+

Last update: March 17, 2021

4.5.9 reduce() function

- 96/287 - 2021 Vesoft Inc.

4.5.10 Hash

The hash() function returns the hash value of the argument. The argument can be a number, a string, a list, a boolean, null, or

an expression that evaluates to a value of the preceding data types.

The source code of the hash() function (MurmurHash2), seed (0xc70f6907UL), and other parameters can be found in

MurmurHahs2.h .

NOTE: Roughly, The chance of collision is about 1/10 in the case of 1 billion vertices. The number of edges is irrelevant to the

collision possibility.

For Java, call like follows.

Legacy version compatibility

In nGQL 1.0, when nGQL does not support string VIDs, a common practice is to hash the strings first and then use the values as

VIDs. But in nGQL 2.0, both string VIDs and integer VIDs are supported, you don't have to use hash() to make VIDs.

Hash a number

Hash a string

Hash a list

Hash a boolean

Hash NULL

MurmurHash2.hash64("to_be_hashed".getBytes(),"to_be_hashed".getBytes().length, 0xc70f6907)

nebula> YIELD hash(-123);
+--------------+
| hash(-(123)) |
+--------------+
| -123 |
+--------------+

nebula> YIELD hash("to_be_hashed");
+----------------------+
| hash(to_be_hashed) |
+----------------------+
| -1098333533029391540 |
+----------------------+

nebula> YIELD hash([1,2,3]);
+----------------+
| hash([1,2,3]) |
+----------------+
| 11093822460243 |
+----------------+

nebula> YIELD hash(true);
+------------+
| hash(true) |
+------------+
| 1 |
+------------+

nebula> YIELD hash(false);
+-------------+
| hash(false) |
+-------------+
| 0 |
+-------------+

nebula> YIELD hash(NULL);
+------------+

4.5.10 Hash

- 97/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula-common/blob/master/src/common/base/MurmurHash2.h

Hash an expression

| hash(NULL) |
+------------+
| -1 |
+------------+

nebula> YIELD hash(toLower("HELLO NEBULA"));
+-------------------------------+
| hash(toLower("HELLO NEBULA")) |
+-------------------------------+
| -8481157362655072082 |
+-------------------------------+

Last update: April 1, 2021

4.5.10 Hash

- 98/287 - 2021 Vesoft Inc.

4.5.11 Predicate functions

Predicate functions return true or false. They are most commonly used in WHERE .

NOTE: NULL is returned if the list is NULL or all of its elements are NULL.

OpenCypher compatibility

In openCypher, only function exists() is defined and specified. The other functions are implement-dependent.

Syntax

Examples

Functions Description

exists() returns true if the specified property exists in the vertex, edge or map.

any() returns true if the predicate holds for at least one element in the given list.

all() returns true if the predicate holds for all elements in the given list.

none() returns true if the predicate holds for no element in the given list.

single() returns true if the predicate holds for exactly one of the elements in the given list.

<predicate>(<variable> IN <list> WHERE <condition>)

nebula> RETURN any(n IN [1, 2, 3, 4, 5, NULL] WHERE n > 2) AS r
+------+
| r |
+------+
| true |
+------+
nebula> RETURN single(n IN range(1, 5) WHERE n == 3) AS r
+------+
| r |
+------+
| true |
+------+
nebula> RETURN none(n IN range(1, 3) WHERE n == 0) AS r
+------+
| r |
+------+
| true |
+------+
nebula> WITH [1, 2, 3, 4, 5, NULL] AS a RETURN any(n IN a WHERE n > 2)
+-------------------------+
| any(n IN a WHERE (n>2)) |
+-------------------------+
| true |
+-------------------------+

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \
 RETURN nodes(p)[0].name AS n1, nodes(p)[1].name AS n2, \
 all(n IN nodes(p) WHERE n.name NOT STARTS WITH "D") AS b
+----------------+-------------------+-------+
| n1 | n2 | b |
+----------------+-------------------+-------+
| "LeBron James" | "Danny Green" | false |
+----------------+-------------------+-------+
| "LeBron James" | "Dejounte Murray" | false |
+----------------+-------------------+-------+
| "LeBron James" | "Chris Paul" | true |
+----------------+-------------------+-------+
| "LeBron James" | "Kyrie Irving" | true |
+----------------+-------------------+-------+
| "LeBron James" | "Carmelo Anthony" | true |
+----------------+-------------------+-------+
| "LeBron James" | "Dwyane Wade" | false |
+----------------+-------------------+-------+
nebula> MATCH p = (n:player{name:"LeBron James"})-[:follow]->(m) \
 RETURN single(n IN nodes(p) WHERE n.age > 40) AS b
+------+
| b |
+------+

4.5.11 Predicate functions

- 99/287 - 2021 Vesoft Inc.

| true |
+------+
nebula> MATCH (n:player) RETURN exists(n.id), n IS NOT NULL
+--------------+---------------+
| exists(n.id) | n IS NOT NULL |
+--------------+---------------+
| false | true |
+--------------+---------------+
...

Last update: March 19, 2021

4.5.11 Predicate functions

- 100/287 - 2021 Vesoft Inc.

4.5.12 User-defined functions

OpenCypher compatibility

User-defined functions are not yet supported nor designed in Nebula Graph 2.x.

Last update: March 17, 2021

4.5.12 User-defined functions

- 101/287 - 2021 Vesoft Inc.

4.6 General queries statements

4.6.1 MATCH

The MATCH statement provides the searching ability based on pattern matching.

A MATCH statement defines a search pattern and uses it to match data stored in Nebula Graph and to retrieve them in the form

defined in the RETURN clause. A WHERE clause is often used together with the pattern as a filter to the search result.

The examples in this topic use the basketballplayer dataset as the sample dataset.

Syntax

The syntax of MATCH is relatively more flexible compared with that of other query statements such as GO or LOOKUP . But generally,

it can be summarized as follows.

The workflow of MATCH

The MATCH statement uses a native index to locate a source vertex. The vertex can be in any position in a pattern. In other

words, in a valid MATCH statement, there must be an indexed property or tag, or a specific VID. For how to index a

property, see Create native index.

NOTE: The native index for VID is created by default, so you don't need to create an extra index if you want to match on VID.

The MATCH statement searches through the pattern to match edges and other vertices.

The MATCH statement retrieves data according to the RETURN clause.

OpenCypher compatibility: For now, nGQL DOES NOT support scanning all vertices and edges with MATCH . For example,

MATCH (v) RETURN v .

Use patterns in MATCH statements

Make sure there is at least one index for the MATCH statement to use. If you want to create an index, but there are already

vertices or edges related to the tag, edge type, or property that you want to create the index for, you have to rebuild the index

after creation to make it take effect on existing vertices or edges.

CAUTION: Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The

performance reduction can be as much as 90% or even more. DO NOT use indexes in production environments unless you are

fully aware of their influences on your service.

MATCH <pattern> [<WHERE clause>] RETURN <output>

1.

2.

3.

nebula> CREATE TAG INDEX name ON player(name(20)); // Create an index on the name property.
Execution succeeded (time spent 2957/3986 us)

nebula> REBUILD TAG INDEX name; // Rebuild the index.
+------------+
| New Job Id |
+------------+
| 121 |
+------------+
Got 1 rows (time spent 2676/3990 us)

nebula> SHOW JOB 121; // Make sure the rebuild job succeeded.
+----------------+---------------------+------------+------------+------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+---------------------+------------+------------+------------+
| 121 | "REBUILD_TAG_INDEX" | "FINISHED" | 1607073046 | 1607073046 |
+----------------+---------------------+------------+------------+------------+
| 0 | "storaged2" | "FINISHED" | 1607073046 | 1607073046 |
+----------------+---------------------+------------+------------+------------+
| 1 | "storaged0" | "FINISHED" | 1607073046 | 1607073046 |
+----------------+---------------------+------------+------------+------------+
| 2 | "storaged1" | "FINISHED" | 1607073046 | 1607073046 |
+----------------+---------------------+------------+------------+------------+
Got 4 rows (time spent 1186/2998 us)

4.6 General queries statements

- 102/287 - 2021 Vesoft Inc.

MATCH A VERTEX

You can use a user-defined variable in a pair of parentheses to represent a vertex in a pattern. For example: (v) .

MATCH ON TAG

To match on a tag, make sure there is an applicable tag index. For how to create a tag index, see Create tag indexes.

NOTE: Tag indexes are different from property indexes. If there is an index for a property of a tag, but no index for the tag, you

cannot match on the tag.

A vertex tag is specified with :<tag_name> in a pattern.

MATCH ON VERTEX PROPERTY

Tag properties are specified with {<prop_name>: <prop_value>} in a pattern after a tag.

The following example uses the name property to match a vertex.

The WHERE clause can do the same thing:

OpenCypher compatibility

In nGQL, == is the equality operator and = is the assignment operator (as in C++ or Java).

In openCypher 9, = is the equality operator.

MATCH ON VID

You can use the VID to match a vertex. The id() function can retrieve the VID of a vertex.

To match on multiple VIDs, use WHERE id(v) IN [vid_list] .

nebula> MATCH (v:player) RETURN v
+---+
| v |
+---+
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+---+
| ("player106" :player{age: 25, name: "Kyle Anderson"}) |
+---+
| ("player115" :player{age: 40, name: "Kobe Bryant"}) |
+---+
...

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;
+--+
| v |
+--+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+--+

nebula> MATCH (v:player) WHERE v.name == "Tim Duncan" RETURN v;
+--+
| v |
+--+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+--+

•

•

nebula> MATCH (v) WHERE id(v) == 'player101' RETURN v;
+---+
| v |
+---+
| (player101) player.name:Tony Parker,player.age:36 |
+---+
Got 1 rows (time spent 1710/2406 us)

4.6.1 MATCH

- 103/287 - 2021 Vesoft Inc.

MATCH CONNECTED VERTICES

You can use the -- symbol to represent edges of both directions and match vertices connected by these edges.

Legacy version compatibility:

In nGQL 1.x, the -- symbol is used for inline comments.

Starting from nGQL 2.0, the -- symbol represents an incoming or outgoing edge.

And you can add a > or < to the -- symbol to specify the direction of an edge.

In the preceding example, --> represents an edge that starts from v and points to v2 . To v , this is an outgoing edge, and to v2

this is an incoming edge.

To extend the pattern, add more edges and vertices.

If you don't need to refer to a vertex, you can omit the variable representing it in the parentheses.

nebula> MATCH (v:player { name: 'Tim Duncan' })--(v2) \
 WHERE id(v2) IN ["player101", "player102"] RETURN v2;
+---+
| v2 |
+---+
| ("player101" :player{name: "Tony Parker", age: 36}) |
+---+
| ("player102" :player{name: "LaMarcus Aldridge", age: 33}) |
+---+
| ("player101" :player{name: "Tony Parker", age: 36}) |
+---+
Got 3 rows (time spent 3107/3683 us)

•

•

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) RETURN v2.name AS Name;
+---------------------+
| Name |
+---------------------+
| "Tony Parker" |
+---------------------+
| "LaMarcus Aldridge" |
+---------------------+
| "Marco Belinelli" |
+---------------------+
| "Danny Green" |
+---------------------+
| "Aron Baynes" |
+---------------------+
...
Got 13 rows (time spent 6029/8976 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2) RETURN v2.name AS Name;
+-----------------+
| Name |
+-----------------+
| "Spurs" |
+-----------------+
| "Tony Parker" |
+-----------------+
| "Manu Ginobili" |
+-----------------+
Got 3 rows (time spent 2897/5993 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2)<--(v3) RETURN v3.name AS Name;
+---------------------+
| Name |
+---------------------+
| "Tony Parker" |
+---------------------+
| "Tiago Splitter" |
+---------------------+
| "Dejounte Murray" |
+---------------------+
| "Tony Parker" |
+---------------------+
| "LaMarcus Aldridge" |
+---------------------+
...

nebula> MATCH (v:player{name:"Tim Duncan"})-->()<--(v3) RETURN v3.name AS Name;
+---------------------+
| Name |
+---------------------+
| "Tony Parker" |
+---------------------+

4.6.1 MATCH

- 104/287 - 2021 Vesoft Inc.

MATCH PATHS

Connected vertices and edges form a path. You can use a user-defined variable as follows to name a path.

OpenCypher compatibility: In nGQL, the @ symbol represents the rank of an edge, but openCypher has no such a concept.

MATCH EDGES

Besides using -- , --> , or <-- to indicate a nameless edge, you can use a variable in a pair of square brackets to represent a

named edge. For example: -[e]- .

MATCH ON EDGE TYPES AND PROPERTIES

Just like tags, edge types are specified with :<edge_type> . For example: -[e:serve]- .

And edge type properties are specified with {<prop_name>: <prop_value>} after the :<edge_type> . For example:

[e:follow{likeness:95}] .

MATCH ON MULTIPLE EDGE TYPES

The | symbol can help matching on multiple edge types. For example: [e:follow|:serve] .

| "LaMarcus Aldridge" |
+---------------------+
| "Rudy Gay" |
+---------------------+
| "Danny Green" |
+---------------------+
| "Kyle Anderson" |
+---------------------+
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) RETURN p;
+---+
| p |
+---+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})> |
+---+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})> |
+---+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})> |
+---+
Got 3 rows (time spent 3717/4573 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]-(v2) RETURN e;
+---+
| e |
+---+
| [:follow "player101"->"player100" @0 {degree: 95}] |
+---+
| [:follow "player102"->"player100" @0 {degree: 75}] |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
...

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:serve]-(v2) RETURN e;
+---+
| e |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
Got 1 rows (time spent 5041/5630 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow{degree:95}]->(v2) RETURN e;
+--+
| e |
+--+
| [:follow "player100"->"player101" @0 {degree: 95}] |
+--+
| [:follow "player100"->"player125" @0 {degree: 95}] |
+--+
Got 2 rows (time spent 6080/6728 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow|:serve]->(v2) RETURN e;
+---+
| e |
+---+
| [:follow "player100"->"player101" @0 {degree: 95}] |
+---+
| [:follow "player100"->"player125" @0 {degree: 95}] |

4.6.1 MATCH

- 105/287 - 2021 Vesoft Inc.

MATCH MULTIPLE EDGES

You can expand a pattern to match multiple edges in a path.

MATCH FIXED-LENGTH PATHS

To match a fixed-length path, use the :<edge_type>*<hop> pattern. hop must be a non-negative integer.

If hop is 0, the pattern matches the source vertex on the path.

MATCH VARIABLE-LENGTH PATHS

You can use the :<edge_type>*[minHop]..<maxHop> pattern to match variable-length paths.

OpenCypher compatibility

In nGQL, maxHop is required. And .. cannot be omitted after minHop .

In openCypher, maxHop is optional and default to infinity. When no bounds are given, .. can be omitted.

+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
Got 3 rows (time spent 4264/4976 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[]->(v2)<-[e:serve]-(v3) RETURN v2, v3;
+------------------------------------+---+
| v2 | v3 |
+------------------------------------+---+
| ("player204" :team{name: "Spurs"}) | ("player101" :player{name: "Tony Parker", age: 36}) |
+------------------------------------+---+
| ("player204" :team{name: "Spurs"}) | ("player102" :player{name: "LaMarcus Aldridge", age: 33}) |
+------------------------------------+---+
| ("player204" :team{name: "Spurs"}) | ("player103" :player{age: 32, name: "Rudy Gay"}) |
+------------------------------------+---+
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) RETURN DISTINCT v2 AS Friends;
+---+
| Friends |
+---+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+---+
| ("player102" :player{name: "LaMarcus Aldridge", age: 33}) |
+---+
| ("player125" :player{name: "Manu Ginobili", age: 41}) |
+---+
Got 3 rows (time spent 4863/5591 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) -[*0]-> (v2) RETURN v2;
+--+
| v2 |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+
Got 1 rows (time spent 2785/3377 us)

Parameter Description

minHop Optional. Represents the minimum length of the path. minHop must be a non-negative integer. The default

value is 1.

maxHop Required. Represents the maximum length of the path. maxHop must be a non-negative integer. It has no

default value.

•

•

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2) \
 RETURN v2 AS Friends;
+---+
| Friends |
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+---+
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
+---+
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+---+
Got 4 rows (time spent 6166/6887 us)

4.6.1 MATCH

- 106/287 - 2021 Vesoft Inc.

You can use the DISTINCT keyword to aggregate duplicate results.

If minHop is 0, the pattern matches the source vertex. Compared to the preceding statement, the following statement uses 0 as

the minHop , so in the following result set "Tim Duncan" is counted one more time than it is in the preceding result set because it is

the source vertex.

MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

You can specify multiple edge types in a fixed-length or variable-length pattern. In this case, hop , minHop , and maxHop take effect

on all edge types.

Common retrieving operations

This section shows how to retrieve commonly used items with MATCH statements.

RETRIEVE VERTEX OR EDGE INFORMATION

Use RETURN {<vertex_name> | <edge_name>} to retrieve all the information of a vertex or an edge.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2:player) \
 RETURN DISTINCT v2 AS Friends, count(v2);
+---+-----------+
| Friends | COUNT(v2) |
+---+-----------+
| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |
+---+-----------+
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |
+---+-----------+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | 4 |
+---+-----------+
| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |
+---+-----------+
Got 4 rows (time spent 5502/6556 us)

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*0..3]->(v2:player) \
 RETURN DISTINCT v2 AS Friends, count(v2);
+---+-----------+
| Friends | COUNT(v2) |
+---+-----------+
| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |
+---+-----------+
| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |
+---+-----------+
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |
+---+-----------+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | 5 |
+---+-----------+
Got 4 rows (time spent 5553/6275 us)

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow|serve*2]->(v2) \
 RETURN DISTINCT v2;
+---+
| v2 |
+---+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+---+
| ("player102" :player{name: "LaMarcus Aldridge", age: 33}) |
+---+
| ("player125" :player{name: "Manu Ginobili", age: 41}) |
+---+
| ("player204" :team{name: "Spurs"}) |
+---+
| ("player215" :team{name: "Hornets"}) |
+---+
Got 5 rows (time spent 3834/4571 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;
+--+
| v |
+--+
| ("player100" :player{name: "Tim Duncan", age: 42}) |
+--+
Got 1 rows (time spent 1863/2545 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) RETURN e;
+---+
| e |
+---+
| [:follow "player100"->"player101" @0 {degree: 95}] |
+---+
| [:follow "player100"->"player125" @0 {degree: 95}] |

4.6.1 MATCH

- 107/287 - 2021 Vesoft Inc.

RETRIEVE VIDS

Use the id() function to retrieve VIDs.

RETRIEVE TAGS

Use the labels() function to retrieve the list of tags on a vertex.

To retrieve the nth element in the labels(v) list, use labels(v)[n-1] . The following example shows how to use labels(v)[0] to

retrieve the first tag in the list.

RETRIEVE A SINGLE PROPERTY ON A VERTEX OR AN EDGE

Use RETURN {<vertex_name> | <edge_name>}.<property> to retrieve a single property.

Use AS to specify an alias for a property.

RETRIEVE ALL PROPERTIES ON A VERTEX OR AN EDGE

Use the properties() function to retrieve all properties on a vertex or an edge.

+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
Got 3 rows (time spent 3139/3773 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN id(v);
+-------------+
| id(v) |
+-------------+
| "player100" |
+-------------+
Got 1 rows (time spent 2070/2747 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN labels(v);
+------------+
| labels(v) |
+------------+
| ["player"] |
+------------+
Got 1 rows (time spent 2198/2941 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN labels(v)[0];
+--------------+
| labels(v)[0] |
+--------------+
| "player" |
+--------------+
Got 1 rows (time spent 2609/3481 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v.age;
+-------+
| v.age |
+-------+
| 42 |
+-------+
Got 1 rows (time spent 2261/2973 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v.age AS Age;
+-----+
| Age |
+-----+
| 42 |
+-----+
Got 1 rows (time spent 1762/2321 us)

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) RETURN properties(v2);
+------------------------------------+
| properties(v2) |
+------------------------------------+
| {"name":"Spurs"} |
+------------------------------------+
| {"name":"Tony Parker", "age":36} |
+------------------------------------+
| {"age":41, "name":"Manu Ginobili"} |
+------------------------------------+
Got 3 rows (time spent 2943/3541 us)

4.6.1 MATCH

- 108/287 - 2021 Vesoft Inc.

RETRIEVE EDGE TYPES

Use the type() function to retrieve the types of the matched edges.

RETRIEVE PATHS

Use RETURN <path_name> to retrieve all the information of the matched paths.

RETRIEVE VERTICES IN A PATH

Use the nodes() function to retrieve all vertices in a path.

RETRIEVE EDGES IN A PATH

Use the relationships() function to retrieve all edges in a path.

RETRIEVE PATH LENGTH

Use the length() function to retrieve the length of a path.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e]->() RETURN DISTINCT type(e);
+----------+
| type(e) |
+----------+
| "follow" |
+----------+
| "serve" |
+----------+
Got 3 rows (time spent 3776/4660 us)

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*3]->() RETURN p;
+---+
| p |
+---+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2019, start_year: 2015}]->("team204" :team{name: "Spurs"})> |
+---+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2015, start_year: 2006}]->("team203" :team{name: "Trail Blazers"})> |
+---+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:follow@0 {degree: 75}]->("player101" :player{age: 36, name: "Tony Parker"})> |
+---+
...

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) RETURN nodes(p);
+---+
| nodes(p) |
+---+
| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player204" :team{name: "Spurs"})] |
+---+
| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player101" :player{name: "Tony Parker", age: 36})] |
+---+
| [("player100" :star{} :player{age: 42, name: "Tim Duncan"}), ("player125" :player{name: "Manu Ginobili", age: 41})] |
+---+
Got 3 rows (time spent 2529/3128 us)

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) RETURN relationships(p);
+---+
| relationships(p) |
+---+
| [[:follow "player100"->"player101" @0 {degree: 95}]] |
+---+
| [[:follow "player100"->"player125" @0 {degree: 95}]] |
+---+
| [[:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}]] |
+---+
Got 3 rows (time spent 2715/3363 us)

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*..2]->(v2) \
 RETURN p AS Paths, length(p) AS Length;
+--+--------+
| Paths | Length |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:serve@0 {end_year:
2018, start_year: 2002}]->("team204" :team{name: "Spurs"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:follow@0 {degree:
90}]->("player100" :player{age: 42, name: "Tim Duncan"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year:
2019, start_year: 2018}]->("team215" :team{name: "Hornets"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@0 {end_year:

4.6.1 MATCH

- 109/287 - 2021 Vesoft Inc.

2018, start_year: 1999}]->("team204" :team{name: "Spurs"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]-
>("player125" :player{age: 41, name: "Manu Ginobili"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@0 {degree: 95}]-
>("player100" :player{age: 42, name: "Tim Duncan"})> | 2 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@0 {end_year: 2016, start_year: 1997}]->("team204" :team{name:
"Spurs"})> | 1 |
+--+--------+
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu
Ginobili"})> | 1 |
+--+--------+

Last update: April 13, 2021

4.6.1 MATCH

- 110/287 - 2021 Vesoft Inc.

4.6.2 LOOKUP

OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax

The LOOKUP statement retrieves data based on indexes.

You can use LOOKUP for the following purposes:

Search for the specific data based on conditions defined by the WHERE clause.

List vertices with a tag: retrieve the VID of all vertices with a tag.

List edges with an edge type: retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges with an edge

type.

Count the number of vertices or edges with a tag or an edge type.

Prerequisites

Before using the LOOKUP statement, make sure that relative indexes are created. For how to create indexes, see CREATE INDEX.

Syntax

The WHERE clause filters data with the specified conditions. Both AND and OR are supported between different expressions.

For more information, see WHERE.

The YIELD clause specifies the results to be returned and the format of the results.

If there is a WHERE clause but no YIELD clause:

The Vertex ID is returned when LOOKUP a tag.

The source vertex ID, destination vertex ID, and rank of the edge is returned when LOOKUP an edge type.

Limitations of using WHERE in LOOKUP

The WHERE clause in a LOOKUP statement does not support the following operations:

$- and $^ .

In relational expressions, expressions with field names on both sides of the operator are not supported, such as

tagName.prop1> tagName.prop2 .

Nested AliasProp expressions in operation expressions and function expressions are not supported.

Range scan is not supported in the string-type index.

The OR and XOR operations are not supported.

Retrieve Vertices

The following example returns vertices whose name is Tony Parker and tagged with player.

•

•

•

•

LOOKUP ON {<vertex_tag> | <edge_type>} [WHERE <expression> [AND <expression> ...]] [YIELD <return_list>]

<return_list>
 <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...]

•

•

•

•

•

•

•

•

•

•

nebula> CREATE TAG INDEX index_player ON player(name(30), age);

nebula> REBUILD TAG INDEX index_player;
+------------+
| New Job Id |
+------------+

4.6.2 LOOKUP

- 111/287 - 2021 Vesoft Inc.

Retrieve Edges

The following example returns edges whose degree is 90 and the edge type is follow .

List vertices or edges with a tag or an edge type

To list vertices or edges with a tag or an edge type, at least one index must exist on the tag or the edge type, or its property.

For example, if there is a player tag with a name property and an age property, to retrieve the VID of all vertices tagged with

player , there has to be an index on the player tag itself, the name property, or the age property.

The following example shows how to retrieve the VID of all vertices tagged with player .

| 15 |
+------------+

nebula> LOOKUP ON player WHERE player.name == "Tony Parker";
============
| VertexID |
============
101

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
 YIELD player.name, player.age;
=======================================
| VertexID | player.name | player.age |
=======================================
| 101 | Tony Parker | 36 |

nebula> LOOKUP ON player WHERE player.name == "Kobe Bryant" YIELD player.name AS name \
 | GO FROM $-.VertexID OVER serve \
 YIELD $-.name, serve.start_year, serve.end_year, $$.team.name;
==
| $-.name | serve.start_year | serve.end_year | $$.team.name |
==
| Kobe Bryant | 1996 | 2016 | Lakers |
--

nebula> CREATE EDGE INDEX index_follow ON follow(degree);

nebula> REBUILD EDGE INDEX index_follow;
+------------+
| New Job Id |
+------------+
| 62 |
+------------+

nebula> LOOKUP ON follow WHERE follow.degree == 90;
=============================
| SrcVID | DstVID | Ranking |
=============================
| 100 | 106 | 0 |

nebula> LOOKUP ON follow WHERE follow.degree == 90 YIELD follow.degree;
===
| SrcVID | DstVID | Ranking | follow.degree |
===
| 100 | 106 | 0 | 90 |

nebula> LOOKUP ON follow WHERE follow.degree == 60 YIELD follow.degree AS Degree \
 | GO FROM $-.DstVID OVER serve \
 YIELD $-.DstVID, serve.start_year, serve.end_year, $$.team.name;
==
| $-.DstVID | serve.start_year | serve.end_year | $$.team.name |
==
| 105 | 2010 | 2018 | Spurs |
--
| 105 | 2009 | 2010 | Cavaliers |
--
| 105 | 2018 | 2019 | Raptors |
--

nebula> CREATE TAG player(name string,age int);
Execution succeeded (time spent 3235/3865 us)

nebula> CREATE TAG INDEX player_index on player();
Execution succeeded (time spent 3486/4124 us)

nebula> REBUILD TAG INDEX player_index;
+------------+

4.6.2 LOOKUP

- 112/287 - 2021 Vesoft Inc.

The following example shows how to retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges of the like

edge type.

Count the numbers of vertices or edges

The following example shows how to count the number of vertices tagged with player and edges of the like edge type.

FAQ

ERROR CODE 411

Error code 411 shows there is no valid index for the current WHERE filter. Nebula Graph uses the left matching mode to select

indexes. That is, columns in the WHERE filter must be in the first N columns of the index. For example:

| New Job Id |
+------------+
| 66 |
+------------+

nebula> INSERT VERTEX player(name,age) VALUES "player100":("Tim Duncan", 42), "player101":("Tony Parker", 36);
Execution succeeded (time spent 1695/2268 us)

nebula> LOOKUP ON player;
+-------------+
| _vid |
+-------------+
| "player100" |
+-------------+
| "player101" |
+-------------+
Got 2 rows (time spent 1514/2070 us)

nebula)> CREATE EDGE like(likeness int);
Execution succeeded (time spent 3710/4483 us)

nebula)> CREATE EDGE INDEX like_index on like();
Execution succeeded (time spent 3422/4026 us)

nebula> REBUILD EDGE INDEX like_index;
+------------+
| New Job Id |
+------------+
| 88 |
+------------+

nebula)> INSERT EDGE like(likeness) values "player100"->"player101":(95);
Execution succeeded (time spent 1638/2351 us)

nebula)> LOOKUP ON like;
+-------------+----------+-------------+
| _src | _ranking | _dst |
+-------------+----------+-------------+
| "player100" | 0 | "player101" |
+-------------+----------+-------------+
Got 1 rows (time spent 1163/1748 us)

nebula> LOOKUP ON player | YIELD COUNT(*) AS Player_Number;
+---------------+
| Player_Number |
+---------------+
| 2 |
+---------------+
Got 1 rows (time spent 1158/1864 us)

nebula> LOOKUP ON like | YIELD COUNT(*) AS Like_Number;
+-------------+
| Like_Number |
+-------------+
| 1 |
+-------------+
Got 1 rows (time spent 1190/1970 us)

[ERROR (-8)]: Unknown error(411):

nebula> CREATE TAG INDEX example_index ON TAG t(p1, p2, p3); -- Create an index for the first 3 properties of tag t
nebula> LOOKUP ON t WHERE p2 == 1 and p3 == 1; -- Not supported
nebula> LOOKUP ON t WHERE p1 == 1; -- Supported
nebula> LOOKUP ON t WHERE p1 == 1 and p2 == 1; -- Supported
nebula> LOOKUP ON t WHERE p1 == 1 and p2 == 1 and p3 == 1; -- Supported

4.6.2 LOOKUP

- 113/287 - 2021 Vesoft Inc.

NO VALID INDEX FOUND

If your query filter contains a string type field, Nebula Graph selects the index that matches all the fields. For example:

No valid index found

nebula> CREATE TAG t1 (c1 string, c2 int);
nebula> CREATE TAG INDEX i1 ON t1 (c1, c2);
nebula> LOOKUP ON t1 WHERE t1.c1 == "a"; -- Index i1 is invalid
nebula> LOOKUP ON t1 WHERE t1.c1 == "a" and t1.c2 == 1; -- Index i1 is valid

Last update: March 26, 2021

4.6.2 LOOKUP

- 114/287 - 2021 Vesoft Inc.

4.6.3 GO

OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax

GO traverses in a graph with specified filters and returns results.

<N> STEPS specifies the hop number. If not specified, the default value for N is one. When N is zero, Nebula Graph does not

traverse any edges and returns nothing.

M TO N STEPS traverses from M to N hops. When M is zero, the output is the same as that of M is one. That is, the output of

GO 0 TO 2 and GO 1 TO 2 are the same.

<vertex_list> is a list of vertex IDs separated by commas, or a special place holder $-.id . For more information, see Pipe.

<edge_type_list> is a list of edge types which the traversal can go through.

REVERSELY | BIDIRECT defines the direction of the query. By default, GO statements searches for outgoing edges. If REVERSELY

is set, GO searches for incoming edges. If BIDIRECT is set, GO searches for edges of both directions.

WHERE <expression> specifies the traversal filters. You can use WHERE for the source vertices, the edges, and the destination

vertices. You can use WHERE together with AND , OR , and NOT . For more information, see WHERE.

NOTE: There are some restrictions for the WHERE clause when you traverse along with multiple edge types. For example,

WHERE edge1.prop1 > edge2.prop2 is not supported.

YIELD [DISTINCT] <return_list> specifies the desired output. For more information, see YIELD. When not specified, the

destination vertex IDs are returned by default.

ORDER BY sorts the outputs with the specified orders. For more information, see ORDER BY.

NOTE: When the sorting method is not specified, the output orders can be different for the same query.

LIMIT limits the row numbers for the output. For more information, see LIMIT.

GROUP BY groups outputs into subgroups based on values of the specified properties. For more information, see GROUP BY.

Examples

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [{REVERSELY | BIDIRECT}]
[WHERE <expression> [{AND | OR} expression ...])]
[YIELD [DISTINCT] <return_list>]
[| ORDER BY <expression> [{ASC | DESC}]]
[| LIMIT [<offset_value>,] <number_rows>]

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [{REVERSELY | BIDIRECT}]
[WHERE <conditions>]
[| GROUP BY {col_name | expr | position} YIELD <col_name>]

<vertex_list> ::=
 <vid> [, <vid> ...]

<edge_type_list> ::=
 edge_type [, edge_type ...]
 | *

<return_list> ::=
 <col_name> [AS <col_alias>] [, <col_name> [AS <col_alias>] ...]

•

•

•

•

•

•

•

•

•

•

// Returns teams that player 102 serves.
nebula> GO FROM "player102" OVER serve;
+------------+
| serve._dst |
+------------+
| "team203" |
+------------+
| "team204" |
+------------+

4.6.3 GO

- 115/287 - 2021 Vesoft Inc.

Nebula Graph displays different properties by columns. If there is no value for a property, the output is __EMPTY__ .

// Returns the 2 hop friends of the player 102.
nebula> GO 2 STEPS FROM "player102" OVER follow;
+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+
| "player125" |
+-------------+
...

// Adds a filter for the traversal then duplicates the output.
nebula> GO FROM "player100", "player102" OVER serve \
WHERE serve.start_year > 1995 \
YIELD DISTINCT $$.team.name AS team_name, serve.start_year AS start_year, $^.player.name AS player_name;
+-----------------+------------+---------------------+
| team_name | start_year | player_name |
+-----------------+------------+---------------------+
| "Spurs" | 1997 | "Tim Duncan" |
+-----------------+------------+---------------------+
| "Trail Blazers" | 2006 | "LaMarcus Aldridge" |
+-----------------+------------+---------------------+
| "Spurs" | 2015 | "LaMarcus Aldridge" |
+-----------------+------------+---------------------+

// Traverses along with multiple edge types.
nebula> GO FROM "player100" OVER follow, serve YIELD follow.degree, serve.start_year;
+---------------+------------------+
| follow.degree | serve.start_year |
+---------------+------------------+
| 95 | __EMPTY__ |
+---------------+------------------+
| 95 | __EMPTY__ |
+---------------+------------------+
| __EMPTY__ | 1997 |
+---------------+------------------+

// Returns player 100.
nebula> GO FROM "player100" OVER follow REVERSELY YIELD follow._dst AS destination;
+-------------+
| destination |
+-------------+
| "player101" |
+-------------+
| "player102" |
+-------------+
...

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v)<-[e:follow]- (v2) WHERE id(v) == 'player100' RETURN id(v2) AS destination;
+-------------+
| destination |
+-------------+
| "player101" |
+-------------+
| "player102" |
+-------------+
...

// Finds player 100's friends and the teams that they serve.
nebula> GO FROM "player100" OVER follow REVERSELY \
YIELD follow._dst AS id | \
GO FROM $-.id OVER serve \
WHERE $^.player.age > 20 \
YIELD $^.player.name AS FriendOf, $$.team.name AS Team;
+---------------------+-----------------+
| FriendOf | Team |
+---------------------+-----------------+
| "Tony Parker" | "Spurs" |
+---------------------+-----------------+
| "Tony Parker" | "Hornets" |
+---------------------+-----------------+
...

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v)<-[e:follow]- (v2)-[e2:serve]->(v3) WHERE id(v) == 'player100' RETURN v2.name AS FriendOf, v3.name AS Team;
+---------------------+-----------------+
| FriendOf | Team |
+---------------------+-----------------+
| "Tony Parker" | "Spurs" |
+---------------------+-----------------+
| "Tony Parker" | "Hornets" |
+---------------------+-----------------+
...

4.6.3 GO

- 116/287 - 2021 Vesoft Inc.

nebula> GO FROM "player102" OVER follow BIDIRECT YIELD follow._dst AS both;
+-------------+
| both |
+-------------+
| "player100" |
+-------------+
| "player101" |
+-------------+
...

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v) -[e:follow]-(v2) WHERE id(v)== "player102" RETURN id(v2) AS both;
+-------------+
| both |
+-------------+
| "player101" |
+-------------+
| "player103" |
+-------------+
...

nebula> GO 1 TO 2 STEPS FROM "player100" OVER follow YIELD follow._dst AS destination;
+-------------+
| destination |
+-------------+
| "player101" |
+-------------+
| "player125" |
+-------------+
...

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v) -[e:follow*1..2]->(v2) WHERE id(v) == "player100" RETURN id(v2) AS destination;
+-------------+
| destination |
+-------------+
| "player100" |
+-------------+
| "player102" |
+-------------+

nebula> GO 2 STEPS FROM "player100" OVER follow \
YIELD follow._src AS src, follow._dst AS dst, $$.player.age AS age \
| GROUP BY $-.dst YIELD $-.dst AS dst, collect_set($-.src) AS src, collect($-.age) AS age
+-------------+----------------------------+----------+
| dst | src | age |
+-------------+----------------------------+----------+
| "player125" | ["player101"] | [41] |
+-------------+----------------------------+----------+
| "player100" | ["player125", "player101"] | [42, 42] |
+-------------+----------------------------+----------+
| "player102" | ["player101"] | [33] |
+-------------+----------------------------+----------+

nebula> $a = GO FROM "player100" OVER follow YIELD follow._src AS src, follow._dst AS dst; \
GO 2 STEPS FROM $a.dst OVER follow YIELD $a.src AS src, $a.dst, follow._src, follow._dst \
| ORDER BY $-.src | OFFSET 1 LIMIT 2;
+-------------+-------------+-------------+-------------+
| src | $a.dst | follow._src | follow._dst |
+-------------+-------------+-------------+-------------+
| "player100" | "player125" | "player100" | "player101" |
+-------------+-------------+-------------+-------------+
| "player100" | "player101" | "player100" | "player125" |
+-------------+-------------+-------------+-------------+

Last update: April 1, 2021

4.6.3 GO

- 117/287 - 2021 Vesoft Inc.

4.6.4 FETCH

The FETCH statement retrieves the properties of the specified vertices or edges.

OpenCypher Compatibility

This topic applies to nGQL extensions only.

Fetch vertex properties

SYNTAX

The descriptions of the fields are as follows.

FETCH VERTEX PROPERTIES BY ONE TAG

Specify a tag in the FETCH statement to fetch the vertex properties by that tag.

FETCH SPECIFIC PROPERTIES OF A VERTEX

Use a YIELD clause to specify the properties to be returned.

FETCH PROPERTIES OF MULTIPLE VERTICES

Specify multiple VIDs (vertex IDs) to fetch properties of multiple vertices. Separate the VIDs with commas.

FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
[YIELD <output>]

Field Description

tag_name The name of the tag.

* Represents all the tags in the current graph space.

vid The vertex ID.

output Specifies the information to be returned. For more information, see YIELD . If there is no YIELD clause, FETCH

returns all the matched information.

nebula> FETCH PROP ON player "player100";
+--+
| vertices_ |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+
Got 1 rows (time spent 913/1629 us)

nebula> FETCH PROP ON player "player100" \
 YIELD player.name;
+-------------+--------------+
| VertexID | player.name |
+-------------+--------------+
| "player100" | "Tim Duncan" |
+-------------+--------------+
Got 1 rows (time spent 2933/5931 us)

nebula> FETCH PROP ON player "player101", "player102", "player103";
+---+
| vertices_ |
+---+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+---+
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+---+
| ("player103" :player{age: 32, name: "Rudy Gay"}) |
+---+
Got 3 rows (time spent 1786/3135 us)

4.6.4 FETCH

- 118/287 - 2021 Vesoft Inc.

FETCH VERTEX PROPERTIES BY MULTIPLE TAGS

Specify multiple tags in the FETCH statement to fetch the vertex properties by the tags. Separate the tags with commas.

You can combine multiple tags with multiple VIDs in a FETCH statement.

FETCH VERTEX PROPERTIES BY ALL TAGS

Set an asterisk symbol (*) to fetch properties by all tags in the current graph space.

Fetch edge properties

SYNTAX

The descriptions of the fields are as follows.

FETCH ALL PROPERTIES OF AN EDGE

The following statement fetches all the properties of the serve edge that connects vertex "player100" and vertex "team204" .

// Create a new tag t1.
nebula> CREATE TAG t1(a string, b int);
Execution succeeded (time spent 4153/5296 us)

// Attach t1 to vertex "player100".
nebula> INSERT VERTEX t1(a, b) VALUE "player100":("Hello", 100);
Execution succeeded (time spent 1703/2321 us)

// Fetch the properties of vertex "player100" by the tags player and t1.
nebula> FETCH PROP ON player, t1 "player100";
+--+
| vertices_ |
+--+
| ("player100" :t1{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
+--+
Got 1 rows (time spent 1788/2560 us)

nebula> FETCH PROP ON player, t1 "player100", "player103";
+--+
| vertices_ |
+--+
| ("player100" :t1{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
+--+
| ("player103" :player{age: 32, name: "Rudy Gay"}) |
+--+
Got 2 rows (time spent 2971/3748 us)

nebula> FETCH PROP ON * "player100", "player106", "team200";
+--+
| vertices_ |
+--+
| ("player106" :player{age: 25, name: "Kyle Anderson"}) |
+--+
| ("team200" :team{name: "Warriors"}) |
+--+
| ("player100" :t1{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
+--+
Got 3 rows (time spent 2620/4863 us)

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]
[YIELD <output>]

Field Description

edge_type The name of the edge type.

src_vid The VID of the source vertex. It specifies the start of an edge.

dst_vid The VID of the destination vertex. It specifies the end of an edge.

rank The rank of the edge. It is optional and defaults to 0. It distinguishes an edge from other edges with the

same edge type, source vertex, and destination vertex.

output Specifies the information to be returned. For more information, see YIELD . If there is no YIELD clause, FETCH

returns all the matched information.

4.6.4 FETCH

- 119/287 - 2021 Vesoft Inc.

FETCH SPECIFIC PROPERTIES OF AN EDGE

Use a YIELD clause to fetch specific properties of an edge.

FETCH PROPERTIES OF MULTIPLE EDGES

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to fetch properties of multiple edges. Separate the edge

patterns with commas.

Fetch properties based on edge rank

If there are multiple edges that have different ranks but the same edge type, source vertex, destination vertex, specify the rank

to fetch the properties on the correct edge.

Use FETCH in composite queries

A common way to use FETCH is to combine it with nGQL extensions such as GO. The following statement returns the degree

values of outgoing follow edges that start from vertex "player101" .

nebula> FETCH PROP ON serve "player100" -> "team204";
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
Got 1 rows (time spent 1048/1632 us)

nebula> FETCH PROP ON serve "player100" -> "team204" YIELD serve.start_year;
+-------------+------------+-------------+------------------+
| serve._src | serve._dst | serve._rank | serve.start_year |
+-------------+------------+-------------+------------------+
| "player100" | "team204" | 0 | 1997 |
+-------------+------------+-------------+------------------+
Got 1 rows (time spent 1834/2863 us)

nebula> FETCH PROP ON serve "player100" -> "team204", "player133" -> "team202";
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
| [:serve "player133"->"team202" @0 {end_year: 2011, start_year: 2002}] |
+---+
Got 2 rows (time spent 1466/2441 us)

// Insert edges with different ranks and property values.
nebula> insert edge serve(start_year,end_year) \
 values "player100"->"team204"@1:(1998, 2017);
Execution succeeded (time spent 1679/3192 us)

nebula> insert edge serve(start_year,end_year) \
 values "player100"->"team204"@2:(1990, 2018);
Execution succeeded (time spent 1091/1608 us)

// By default, FETCH returns the edge with rank 0.
nebula> FETCH PROP ON serve "player100" -> "team204";
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
+---+
Got 1 rows (time spent 2031/2739 us)

// To fetch on an edge with rank other than 0, set its rank in FETCH.
nebula> FETCH PROP ON serve "player100" -> "team204"@1;
+---+
| edges_ |
+---+
| [:serve "player100"->"team204" @1 {end_year: 2017, start_year: 1998}] |
+---+
Got 1 rows (time spent 1049/1711 us)

nebula> GO FROM "player101" OVER follow \
 YIELD follow._src AS s, follow._dst AS d | \
 FETCH PROP ON follow $-.s -> $-.d \
 YIELD follow.degree;
+-------------+-------------+--------------+---------------+
| follow._src | follow._dst | follow._rank | follow.degree |
+-------------+-------------+--------------+---------------+

4.6.4 FETCH

- 120/287 - 2021 Vesoft Inc.

Or you can use user-defined variables to construct similar queries.

For more information about composite queries, see Composite queries (clause structure).

| "player101" | "player100" | 0 | 95 |
+-------------+-------------+--------------+---------------+
| "player101" | "player102" | 0 | 90 |
+-------------+-------------+--------------+---------------+
| "player101" | "player125" | 0 | 95 |
+-------------+-------------+--------------+---------------+
Got 3 rows (time spent 3047/3880 us)

nebula> $var = GO FROM "player101" OVER follow \
 YIELD follow._src AS s, follow._dst AS d; \
 FETCH PROP ON follow $var.s -> $var.d \
 YIELD follow.degree;
+-------------+-------------+--------------+---------------+
| follow._src | follow._dst | follow._rank | follow.degree |
+-------------+-------------+--------------+---------------+
| "player101" | "player100" | 0 | 95 |
+-------------+-------------+--------------+---------------+
| "player101" | "player102" | 0 | 90 |
+-------------+-------------+--------------+---------------+
| "player101" | "player125" | 0 | 95 |
+-------------+-------------+--------------+---------------+
Got 3 rows (time spent 1891/2509 us)

Last update: March 29, 2021

4.6.4 FETCH

- 121/287 - 2021 Vesoft Inc.

4.6.5 UNWIND

The UNWIND statement splits a list into separated rows.

UNWIND can function as an individual statement or a clause in a statement.

Syntax

Split a list

The following example splits the list [1,2,3] into three rows.

Return a list with distinct items

Use UNWIND and WITH DISTINCT together to return a list with distinct items.

EXAMPLE 1

The following statement:

Splits the list [1,1,2,2,3,3] into rows.

Removes duplicated rows.

Sorts the rows.

Transforms the rows to a list.

Example 2

The following statement:

Outputs the vertices on the matched path into a list.

Splits the list into rows.

Removes duplicated rows.

Transforms the rows to a list.

UNWIND <list> AS <alias> <RETURN clause>

nebula) [basketballplayer]> UNWIND [1,2,3] AS n RETURN n;
+---+
| n |
+---+
| 1 |
+---+
| 2 |
+---+
| 3 |
+---+
Got 3 rows (time spent 806/2126 us)

1.

2.

3.

4.

nebula> WITH [1,1,2,2,3,3] AS n \
 UNWIND n AS r \
 WITH DISTINCT r AS r \
 ORDER BY r \
 RETURN collect(r);
+------------+
| COLLECT(r) |
+------------+
| [1, 2, 3] |
+------------+
Got 1 rows (time spent 307/1043 us)

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--(v2) \
 WITH nodes(p) AS n \
 UNWIND n AS r \
 WITH DISTINCT r AS r \
 RETURN collect(r);
+--+

4.6.5 UNWIND

- 122/287 - 2021 Vesoft Inc.

| COLLECT(r) |
+--+
| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player101" :player{age: 36, name: "Tony Parker"}),
("team204" :team{name: "Spurs"}), ("player102" :player{age: 33, name: "LaMarcus Aldridge"}),
("player125" :player{age: 41, name: "Manu Ginobili"}), ("player104" :player{age: 32, name: "Marco Belinelli"}),
("player144" :player{age: 47, name: "Shaquile O'Neal"}), ("player105" :player{age: 31, name: "Danny Green"}),
("player113" :player{age: 29, name: "Dejounte Murray"}), ("player107" :player{age: 32, name: "Aron Baynes"}),
("player109" :player{age: 34, name: "Tiago Splitter"}), ("player108" :player{age: 36, name: "Boris Diaw"})] |
+--+
Got 1 rows (time spent 6157/6833 us)

Last update: April 13, 2021

4.6.5 UNWIND

- 123/287 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW CHARSET

The SHOW CHARSET statement shows the available character sets.

Currently available types are utf8 and utf8mb4. The default charset type is utf8. Nebula Graph extends the uft8 to support four-

byte characters. Therefore utf8 and utf8mb4 are equivalent.

SYNTAX

EXAMPLE

The output of SHOW CHARSET is explained as follows:

SHOW CHARSET

nebula> SHOW CHARSET;
+---------+-----------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------+-------------------+--------+
| "utf8" | "UTF-8 Unicode" | "utf8_bin" | 4 |
+---------+-----------------+-------------------+--------+
Got 1 rows (time spent 527/1269 us)

Column Description

Charset The character set name.

Description A description of the character set.

Default collation The default collation for the character set.

Maxlen The maximum number of bytes required to store one character.

Last update: December 31, 2020

4.6.6 SHOW

- 124/287 - 2021 Vesoft Inc.

SHOW COLLATION

The SHOW COLLATION statement shows the collations supported by Nebula Graph.

Currently available types are: utf8_bin, utf8_general_ci, utf8mb4_bin, and utf8mb4_general_ci. When the character set is utf8,

the default collate is utf8_bin; when the character set is utf8mb4, the default collate is utf8mb4_bin. Both utf8_general_ci and

utf8mb4_general_ci are case-insensitive.

SYNTAX

EXAMPLE

The output of SHOW CHARSET is described as follows:

SHOW COLLATION

nebula> SHOW COLLATION;
+------------+---------+
| Collation | Charset |
+------------+---------+
| "utf8_bin" | "utf8" |
+------------+---------+
Got 1 rows (time spent 413/1034 us)

Column Description

Collation The collation name.

Charset The name of the character set with which the collation is associated.

Last update: December 31, 2020

4.6.6 SHOW

- 125/287 - 2021 Vesoft Inc.

SHOW CREATE SPACE

The SHOW CREATE SPACE statement shows the basic information of the specified graph space, such as the nGQL for creating the

graph space, the partition number, the replica number.

For details about the graph space information, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW CREATE SPACE <space_name>

nebula> SHOW CREATE SPACE basketballplayer;
+--------------------
+---+
| Space | Create
Space |
+--------------------
+---+
| "basketballplayer" | "CREATE SPACE `basketballplayer` (partition_num = 10, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type =
FIXED_STRING(32))" |
+--------------------
+---+
Got 1 rows (time spent 1747/2562 us)

Last update: April 13, 2021

4.6.6 SHOW

- 126/287 - 2021 Vesoft Inc.

SHOW CREATE TAG/EDGE

The SHOW CREATE TAG or SHOW CREATE EDGE statement shows the basic information of the specified tag or edge type.

For details about the tag or edge type information, see CREATE TAG and CREATE EDGE.

SYNTAX

EXAMPLE

SHOW CREATE {TAG <tag_name> | EDGE <edge_name>}

nebula> SHOW CREATE TAG player;
+----------+-----------------------------------+
| Tag | Create Tag |
+----------+-----------------------------------+
"player"	"CREATE TAG `player` (
	`name` string NULL,
	`age` int64 NULL
) ttl_duration = 0, ttl_col = ""
+----------+-----------------------------------+

Last update: March 29, 2021

4.6.6 SHOW

- 127/287 - 2021 Vesoft Inc.

SHOW HOSTS

The SHOW HOSTS statement lists graph/storage/meta hosts registered by the Meta Service.

SYNTAX

EXAMPLE

SHOW HOSTS [GRAPH/STORAGE/META]

nebula> SHOW HOSTS;
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
| "storaged0" | 9779 | "ONLINE" | 8 | "docs:5, basketballplayer:3" | "docs:5, basketballplayer:3" |
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
| "storaged1" | 9779 | "ONLINE" | 9 | "basketballplayer:4, docs:5" | "docs:5, -basketballplayer:4"|
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
| "storaged2" | 9779 | "ONLINE" | 8 | "basketballplayer:3, docs:5" | "docs:5, basketballplayer:3" |
+-------------+-------+----------+--------------+----------------------------------+------------------------------+
Got 3 rows (time spent 866/1411 us)

nebula> SHOW HOSTS GRAPH;
+-------------+------+----------+---------+--------------+
| Host | Port | Status | Role | Git Info Sha |
+-------------+------+----------+---------+--------------+
| "12.16.2.3" | 9669 | "ONLINE" | "GRAPH" | "761f22b" |

nebula> SHOW HOSTS STORAGE;
+-------------+------+----------+-----------+--------------+
| Host | Port | Status | Role | Git Info Sha |
+-------------+------+----------+-----------+--------------+
| "12.16.2.3" | 9779 | "ONLINE" | "STORAGE" | "761f22b" |

nebula> SHOW HOSTS META;
+-------------+------+----------+--------+--------------+
| Host | Port | Status | Role | Git Info Sha |
+-------------+------+----------+--------+--------------+
| "12.16.2.3" | 9559 | "ONLINE" | "META" | "761f22b" |

Last update: April 13, 2021

4.6.6 SHOW

- 128/287 - 2021 Vesoft Inc.

SHOW INDEX STATUS

The SHOW INDEX STATUS statement shows the status of jobs that rebuild native indexes. You can find out whether a native index is

successfully rebuilt or not.

SYNTAX

EXAMPLE

RELATED TOPICS

Job manager and the JOB statements

REBUILD NATIVE INDEX

SHOW {TAG | EDGE} INDEX STATUS

nebula> SHOW TAG INDEX STATUS;
+----------------+--------------+
| Name | Index Status |
+----------------+--------------+
| "like_index_0" | "FINISHED" |
+----------------+--------------+
| "like1" | "FINISHED" |
+----------------+--------------+
Got 2 rows (time spent 1456/2122 us)

•

•

Last update: January 22, 2021

4.6.6 SHOW

- 129/287 - 2021 Vesoft Inc.

SHOW INDEXES

The SHOW INDEXES statement shows the names of existing native indexes.

SYNTAX

EXAMPLE

SHOW {TAG | EDGE} INDEXES

nebula> SHOW TAG INDEXES;
+------------------+
| Names |
+------------------+
| "play_age_0" |
+------------------+
| "player_index_0" |
+------------------+
| "player_index_1" |
+------------------+
| "star" |
+------------------+
Got 4 rows (time spent 1450/2087 us)

Last update: December 31, 2020

4.6.6 SHOW

- 130/287 - 2021 Vesoft Inc.

SHOW PARTS

The SHOW PARTS statement shows the information of a specified partition or all partitions in a graph space.

SYNTAX

EXAMPLES

Show the information of all partitions:

Show the information of partition 1:

SHOW PARTS [<part_id>]

nebula> SHOW PARTS;
+--------------+-------------------+-------------------+-------+
| Partition ID | Leader | Peers | Losts |
+--------------+-------------------+-------------------+-------+
| 1 | "storaged1:44500" | "storaged1:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 2 | "storaged2:44500" | "storaged2:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 3 | "storaged0:44500" | "storaged0:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 4 | "storaged1:44500" | "storaged1:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 5 | "storaged2:44500" | "storaged2:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 6 | "storaged0:44500" | "storaged0:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 7 | "storaged1:44500" | "storaged1:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 8 | "storaged2:44500" | "storaged2:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 9 | "storaged0:44500" | "storaged0:44500" | "" |
+--------------+-------------------+-------------------+-------+
| 10 | "storaged1:44500" | "storaged1:44500" | "" |
+--------------+-------------------+-------------------+-------+
Got 10 rows (time spent 2317/3512 us)

nebula> SHOW PARTS 1;
+--------------+-------------------+-------------------+-------+
| Partition ID | Leader | Peers | Losts |
+--------------+-------------------+-------------------+-------+
| 1 | "storaged1:44500" | "storaged1:44500" | "" |
+--------------+-------------------+-------------------+-------+
Got 1 rows (time spent 1055/1678 us)

Last update: December 31, 2020

4.6.6 SHOW

- 131/287 - 2021 Vesoft Inc.

SHOW ROLES

The SHOW ROLES statement shows the roles that are assigned to a user account.

The return message differs according to the role of the user who is running this statement:

If the user is a GOD or ADMIN and is granted access to the specified graph space, Nebula Graph shows all roles in this graph

space except for GOD .

If the user is a DBA , USER , or GUEST and is granted access to the specified graph space, Nebula Graph shows the user's own

role in this graph space.

If the user doesn't have a role, PermissionError is returned.

For more information about user roles, see Roles and privileges.

SYNTAX

EXAMPLE

•

•

•

SHOW ROLES IN <space_name>

nebula> SHOW ROLES in basketballplayer;
+---------+-----------+
| Account | Role Type |
+---------+-----------+
| "user1" | "ADMIN" |
+---------+-----------+
Got 1 rows (time spent 789/1594 us)

Last update: April 13, 2021

4.6.6 SHOW

- 132/287 - 2021 Vesoft Inc.

SHOW SNAPSHOTS

The SHOW SNAPSHOTS statement shows all the snapshots.

For how to create a snapshot and backup data, see Snapshot.

ROLE REQUIREMENT

Only the root user who has the GOD role can use this statement.

SYNTAX

EXAMPLE

SHOW SNAPSHOTS

nebula> SHOW SNAPSHOTS;
+--------------------------------+---------+---+
| Name | Status | Hosts |
+--------------------------------+---------+---+
| "SNAPSHOT_2020_12_16_11_13_55" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |
+--------------------------------+---------+---+
| "SNAPSHOT_2020_12_16_11_14_10" | "VALID" | "storaged0:9779, storaged1:9779, storaged2:9779" |
+--------------------------------+---------+---+
Got 2 rows (time spent 762/1434 us)

Last update: March 25, 2021

4.6.6 SHOW

- 133/287 - 2021 Vesoft Inc.

SHOW SPACES

The SHOW SPACES statement shows the graph spaces in Nebula Graph.

For how to create a graph space, see CREATE SPACE.

SYNTAX

EXAMPLE

SHOW SPACES

nebula> SHOW SPACES;
+---------------------+
| Name |
+---------------------+
| "docs" |
+---------------------+
| "basketballplayer" |
+---------------------+
Got 2 rows (time spent 968/1893 us)

Last update: April 13, 2021

4.6.6 SHOW

- 134/287 - 2021 Vesoft Inc.

SHOW STATS

The SHOW STATS statement shows the statistics of the graph space collected by the latest STATS job.

The statistics list the following information:

The number of vertices and edges in the graph space

The number of vertices with each tag

The number of edges of each edge type

PREREQUISITES

You have successfully run the SUBMIT JOB STATS statement in the graph space you want to collect statistics. For more information,

see SUBMIT JOB STATS.

NOTE: The result of the SHOW STATS statement is based on the last executed SUBMIT JOB STATS statement. If you want to update

the result, run SUBMIT JOB STATS again.

SYNTAX

EXAMPLE

•

•

•

SHOW STATS

nebula> USE basketballplayer;
Execution succeeded (time spent 1075/1646 us)

--Start a `STATS` job.
nebula> SUBMIT JOB STATS;
+------------+
| New Job Id |
+------------+
| 98 |
+------------+
Got 1 rows (time spent 2058/2609 us)

--Make sure the job is finished.
nebula> SHOW JOB 98;
+----------------+---------------+------------+------------+------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+---------------+------------+------------+------------+
| 98 | "STATS" | "FINISHED" | 1606552675 | 1606552675 |
+----------------+---------------+------------+------------+------------+
| 0 | "storaged2" | "FINISHED" | 1606552675 | 1606552675 |
+----------------+---------------+------------+------------+------------+
| 1 | "storaged0" | "FINISHED" | 1606552675 | 1606552675 |
+----------------+---------------+------------+------------+------------+
| 2 | "storaged1" | "FINISHED" | 1606552675 | 1606552675 |
+----------------+---------------+------------+------------+------------+
Got 4 rows (time spent 1233/1924 us)

--Check the statistics.
nebula> SHOW STATS;
+---------+------------+-------+
| Type | Name | Count |
+---------+------------+-------+
| "Tag" | "player" | 51 |
+---------+------------+-------+
| "Tag" | "team" | 30 |
+---------+------------+-------+
| "Edge" | "like" | 81 |
+---------+------------+-------+
| "Edge" | "serve" | 152 |
+---------+------------+-------+
| "Space" | "vertices" | 81 |
+---------+------------+-------+
| "Space" | "edges" | 233 |
+---------+------------+-------+
Got 6 rows (time spent 996/1637 us)

Last update: April 13, 2021

4.6.6 SHOW

- 135/287 - 2021 Vesoft Inc.

SHOW TAGS/EDGES

The SHOW TAGS or SHOW EDGES statement shows all tags or edge types in the current graph space.

SYNTAX

EXAMPLES

Show tags:

Show edge typesFF
1A

SHOW {TAGS | EDGES}

nebula> SHOW TAGS;
+----------+
| Name |
+----------+
| "player" |
+----------+
| "star" |
+----------+
| "team" |
+----------+
Got 3 rows (time spent 1461/2114 us)

nebula> SHOW EDGES;
+---------+
| Name |
+---------+
| "like" |
+---------+
| "serve" |
+---------+
Got 2 rows (time spent 1039/1687 us)

Last update: December 31, 2020

4.6.6 SHOW

- 136/287 - 2021 Vesoft Inc.

SHOW USERS

The SHOW USERS statement shows the user information.

ROLE REQUIREMENT

Only the root user who has the GOD role can use this statement.

SYNTAX

EXAMPLE

SHOW USERS

nebula> SHOW USERS;
+---------+
| Account |
+---------+
| "root" |
+---------+
| "user1" |
+---------+
Got 2 rows (time spent 964/1691 us)

Last update: December 31, 2020

4.6.6 SHOW

- 137/287 - 2021 Vesoft Inc.

4.7 Clauses and options

4.7.1 GROUP BY

OpenCypher Compatibility

This page applies to nGQL extensions only.

Use GROUP BY in nGQL-extensions ONLY to aggregate data.

OpenCypher uses the count() function to aggregate data.

Syntax

The GROUP BY clause groups the rows with the same value into summary rows. Then operations such as counting, sorting, and

calculation can be applied.

GROUP BY works after the pipe symbol and before a YIELD clause.

aggregation_function can be avg(), sum(), max(), min(), count(), collect(), std() .

Examples

The following statement finds all the vertices connected directly to vertex "player100" , groups the result set by player names,

and counts the times that the names show up in the result set.

nebula> MATCH (v:player)<-[:follow]-(:player) RETURN v.name AS Name, count(*) as cnt ORDER BY cnt DESC
+----------------------+--------------+
| Name | Follower_Num |
+----------------------+--------------+
| "Tim Duncan" | 10 |
+----------------------+--------------+
| "LeBron James" | 6 |
+----------------------+--------------+
| "Tony Parker" | 5 |
+----------------------+--------------+
| "Manu Ginobili" | 4 |
+----------------------+--------------+
| "Chris Paul" | 4 |
+----------------------+--------------+
| "Tracy McGrady" | 3 |
+----------------------+--------------+
| "Dwyane Wade" | 3 |
+----------------------+--------------+
...

| GROUP BY <var> YIELD <var>, <aggregation_function(var)>

•

nebula> GO FROM "player100" \
 OVER follow BIDIRECT \
 YIELD $$.player.name as Name | \
 GROUP BY $-.Name \
 YIELD $-.Name as Player, count(*) AS Name_Count;
+---------------------+------------+
| Player | Name_Count |
+---------------------+------------+
| "Tiago Splitter" | 1 |
+---------------------+------------+
| "Aron Baynes" | 1 |
+---------------------+------------+
| "Boris Diaw" | 1 |
+---------------------+------------+
| "Manu Ginobili" | 2 |
+---------------------+------------+
| "Dejounte Murray" | 1 |
+---------------------+------------+
| "Danny Green" | 1 |
+---------------------+------------+
| "Tony Parker" | 2 |
+---------------------+------------+
| "Shaquille O'Neal" | 1 |
+---------------------+------------+
| "LaMarcus Aldridge" | 1 |
+---------------------+------------+

4.7 Clauses and options

- 138/287 - 2021 Vesoft Inc.

Group and calculate with functions

The following statement finds all the players followed by "player100" , returns these players as player and the property of the

follow edge as degree . These players are grouped and the sum of their degree values is returned.

For more information about functions, see Functions.

| "Marco Belinelli" | 1 |
+---------------------+------------+
Got 10 rows (time spent 3527/4423 us)

nebula> GO FROM "player100" OVER follow YIELD follow._src AS player, follow.degree AS degree | GROUP BY $-.player YIELD sum($-.degree);
+----------------+
| sum($-.degree) |
+----------------+
| 190 |
+----------------+
Got 1 rows (time spent 2851/3624 us)

Last update: March 25, 2021

4.7.1 GROUP BY

- 139/287 - 2021 Vesoft Inc.

4.7.2 LIMIT AND SKIP

The LIMIT clause constrains the number of rows in the output.

The Syntax in openCypher and nGQL-extension are different.

NGQL-extension: A pipe | must be used. And an offset can be ignored.

OpenCypher style: No pipes are permitted. Use Skip to indicate offset.

NOTE: When using LIMIT (in either syntax above), it is important to use an ORDER BY clause that constrains the output into a

unique order. Otherwise, you will get an unpredictable subset of the output.

nGQL-extension syntax

In nGQL-extension, LIMIT works the same as in SQL , and must be used with pipe | . The LIMIT clause accepts one or two

arguments. The values of both arguments must be non-negative integers.

var: The columns or calculations that you wish to sort.

number_rows: It constrains the number of rows to return. For example, LIMIT 10 would return the first 10 rows.

offset_value(Optional): It defines from which row to start including the rows in the output. The offset starts from zero.

EXAMPLES

OpenCypher Syntax

Either offset or number_rows can accept an expression, which value must be a non-negative integer.

NOTE: Fraction expressions composed of two integers are automatically floored to integers. For example, 8/6 is floored to 1.

EXAMPLES

Return a specific number of rows. To return the top N rows from the result, use LIMIT <N> as follows:

•

•

YIELD <var>
[| LIMIT [<offset_value>,] <number_rows>]

•

•

•

nebula> GO FROM "player100" OVER follow REVERSELY YIELD $$.player.name AS Friend, $$.player.age AS Age | ORDER BY Age,Friend | LIMIT 1, 3;
+-------------------+-----+
| Friend | Age |
+-------------------+-----+
| "Danny Green" | 31 |
+-------------------+-----+
| "Aron Baynes" | 32 |
+-------------------+-----+
| "Marco Belinelli" | 32 |
+-------------------+-----+

RETURN <var>
[SKIP <offset>]
[LIMIT <number_rows>]

Parameter Description

offset Optional. It specifies the number of rows to be skipped. The offset starts from zero.

number_rows It specifies the number of rows to be returned. It can be a non-negative integer or an expression that

outputs a non-negative integer.

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
 ORDER BY Age LIMIT 5;
+-------------------------+-----+
| Name | Age |
+-------------------------+-----+
| "Luka Doncic" | 20 |
+-------------------------+-----+
| "Ben Simmons" | 22 |
+-------------------------+-----+

4.7.2 LIMIT AND SKIP

- 140/287 - 2021 Vesoft Inc.

SKIP-SYNTAX

You can use SKIP <N> to skip the top N rows from the result and return the rest of the result.

You can use SKIP and LIMIT together to return the middle N rows.

| "Kristaps Porzingis" | 23 |
+-------------------------+-----+
| "Giannis Antetokounmpo" | 24 |
+-------------------------+-----+
| "Kyle Anderson" | 25 |
+-------------------------+-----+
nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
 ORDER BY Age LIMIT rand32(5);
+-------------------------+-----+
| Name | Age |
+-------------------------+-----+
| "Luka Doncic" | 20 |
+-------------------------+-----+
| "Ben Simmons" | 22 |
+-------------------------+-----+
| "Kristaps Porzingis" | 23 |
+-------------------------+-----+
| "Giannis Antetokounmpo" | 24 |
+-------------------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC SKIP 1;
+-----------------+-----+
| Name | Age |
+-----------------+-----+
| "Manu Ginobili" | 41 |
+-----------------+-----+
| "Tony Parker" | 36 |
+-----------------+-----+
nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC SKIP 1+1;
+---------------+-----+
| Name | Age |
+---------------+-----+
| "Tony Parker" | 36 |
+---------------+-----+

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC SKIP 1 LIMIT 1;
+-----------------+-----+
| Name | Age |
+-----------------+-----+
| "Manu Ginobili" | 41 |
+-----------------+-----+

Last update: March 29, 2021

4.7.2 LIMIT AND SKIP

- 141/287 - 2021 Vesoft Inc.

4.7.3 ORDER BY

The ORDER BY clause specifies the order of the rows in the output.

NGQL-extension: You must use a pipe (|) and an ORDER BY clause after YIELD clause.

OpenCypher style: no pipe is permitted. ORDER BY follows a RETURN clause.

There are two order options:

ASC : Ascending. ASC is the default order.

DESC : Descending.

An order option takes effect only when the expression before it is used for sorting the results.

nGQL-extension Syntax

EXAMPLES

OpenCypher Syntax

An order option takes effect only when the expression before it is used for sorting the results.

EXAMPLES

•

•

•

•

<YIELD clause>
ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...]

nebula> FETCH PROP ON player "player100", "player101", "player102", "player103" YIELD player.age AS age, player.name AS name \
| ORDER BY age ASC, name DESC;
+-------------+-----+---------------------+
| VertexID | age | name |
+-------------+-----+---------------------+
| "player103" | 32 | "Rudy Gay" |
+-------------+-----+---------------------+
| "player102" | 33 | "LaMarcus Aldridge" |
+-------------+-----+---------------------+
| "player101" | 36 | "Tony Parker" |
+-------------+-----+---------------------+
| "player100" | 42 | "Tim Duncan" |
+-------------+-----+---------------------+

<RETURN clause>
ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...]

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age ORDER BY Name DESC;
+-----------------+-----+
| Name | Age |
+-----------------+-----+
| "Yao Ming" | 38 |
+-----------------+-----+
| "Vince Carter" | 42 |
+-----------------+-----+
| "Tracy McGrady" | 39 |
+-----------------+-----+
| "Tony Parker" | 36 |
+-----------------+-----+
| "Tim Duncan" | 42 |
+-----------------+-----+
...

nebula> MATCH (v:player) RETURN v.age AS Age, v.name AS Name ORDER BY Age DESC, Name ASC
+-----+-------------------+
| Age | Name |
+-----+-------------------+
| 47 | "Shaquille O'Neal" |
+-----+-------------------+
| 46 | "Grant Hill" |
+-----+-------------------+
| 45 | "Jason Kidd" |
+-----+-------------------+
| 45 | "Steve Nash" |
+-----+-------------------+
...

4.7.3 ORDER BY

- 142/287 - 2021 Vesoft Inc.

In the preceding example, nGQL sorts the rows by Age first. If multiple people are of the same age, nGQL sorts them by Name .

Order by NULL values

nGQL lists NULL values at the end of the output for ascending sorting, and at the start for descending sorting.

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age;
+-----------------+----------+
| Name | Age |
+-----------------+----------+
| "Tony Parker" | 36 |
+-----------------+----------+
| "Manu Ginobili" | 41 |
+-----------------+----------+
| "Spurs" | __NULL__ |
+-----------------+----------+
Got 3 rows (time spent 3089/3719 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
 RETURN v2.name AS Name, v2.age AS Age \
 ORDER BY Age DESC;
+-----------------+----------+
| Name | Age |
+-----------------+----------+
| "Spurs" | __NULL__ |
+-----------------+----------+
| "Manu Ginobili" | 41 |
+-----------------+----------+
| "Tony Parker" | 36 |
+-----------------+----------+
Got 3 rows (time spent 2851/3360 us)

Last update: March 29, 2021

4.7.3 ORDER BY

- 143/287 - 2021 Vesoft Inc.

4.7.4 RETURN

RETURN defines the output of an nGQL query. To return multiple fields, separate them with commas.

RETURN can lead a clause or a statement:

A RETURN clause works in openCypher statements in nGQL, such as MATCH or UNWIND .

A RETURN statement works independently to output the result of an expression.

OpenCypher compatibility

This topic applies to the openCypher syntax in nGQL only. For nGQL extensions, use YIELD .

RETURN does not support the following openCypher features yet.

Return variables with uncommon characters, for example:

Set a pattern in the RETURN clause and return all elements that this pattern matches, for example:

NGQL compatibility

In nGQL 1.0, RETURN works with nGQL extensions with the syntax RETURN <var_ref> IF <var_ref> IS NOT NULL .

In nGQL 2.0, RETURN does not work with nGQL extensions.

Return vertices

Set a vertex in the RETURN clause to return it.

Return edges

Set an edge in the RETURN clause to return it.

•

•

•

MATCH (`non-english_characters`:player) \
RETURN `non-english_characters`;

•

MATCH (v:player) \
RETURN (v)-[e]->(v2);

•

•

nebula> MATCH (v:player) \
 RETURN v;
+---+
| v |
+---+
| ("player104" :player{age: 32, name: "Marco Belinelli"}) |
+---+
| ("player107" :player{age: 32, name: "Aron Baynes"}) |
+---+
| ("player116" :player{age: 34, name: "LeBron James"}) |
+---+
| ("player120" :player{age: 29, name: "James Harden"}) |
+---+
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
+---+
...
Got 51 rows (time spent 7322/8244 us)

nebula> MATCH (v:player)-[e]->() \
 RETURN e;
+--+
| e |
+--+
| [:follow "player104"->"player100" @0 {degree: 55}] |
+--+
| [:follow "player104"->"player101" @0 {degree: 50}] |
+--+
| [:follow "player104"->"player105" @0 {degree: 60}] |
+--+
| [:serve "player104"->"team200" @0 {end_year: 2009, start_year: 2007}] |
+--+

4.7.4 RETURN

- 144/287 - 2021 Vesoft Inc.

Return properties

To return a vertex or edge property, use the {<vertex_name>|<edge_name>}.<property> syntax.

Return all elements

To return all the elements matched on a pattern, use an asterisk (*).

Rename a field

Use the AS <alias> syntax to rename a field in the output.

| [:serve "player104"->"team208" @0 {end_year: 2016, start_year: 2015}] |
+--+
...
Got 233 rows (time spent 14013/16136 us)

nebula> MATCH (v:player) \
 RETURN v.name, v.age \
 LIMIT 3;
+-------------------+-------+
| v.name | v.age |
+-------------------+-------+
| "Rajon Rondo" | 33 |
+-------------------+-------+
| "Rudy Gay" | 32 |
+-------------------+-------+
| "Dejounte Murray" | 29 |
+-------------------+-------+
Got 3 rows (time spent 2663/3260 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) \
 RETURN *;
+--+
| v |
+--+
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
+--+
Got 1 rows (time spent 3332/3954 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
 RETURN *;
+--+---
+---+
| v | e |
v2 |
+--+---
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player101" @0 {degree: 95}] | ("player101" :player{age: 36,
name: "Tony Parker"}) |
+--+---
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player125" @0 {degree: 95}] | ("player125" :player{age: 41,
name: "Manu Ginobili"}) |
+--+---
+---+
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] | ("team204" :team{name:
"Spurs"}) |
+--+---
+---+
Got 3 rows (time spent 3957/4696 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[:serve]->(v2) \
 RETURN v2.name AS Team;
+---------+
| Team |
+---------+
| "Spurs" |
+---------+
Got 1 rows (time spent 2370/3017 us)

nebula> RETURN "Amber" AS Name;
+---------+
| Name |
+---------+
| "Amber" |
+---------+
Got 1 rows (time spent 380/1097 us)

4.7.4 RETURN

- 145/287 - 2021 Vesoft Inc.

Return a non-existing property

If a property matched does not exist, NULL is returned.

Return expression results

To return the results of expressions such as literals, functions, or predicates, set them in a RETURN clause.

Return unique fields

Use DISTINCT to remove duplicate fields in the result set.

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
 RETURN v2.name, type(e), v2.age;
+-----------------+----------+----------+
| v2.name | type(e) | v2.age |
+-----------------+----------+----------+
| "Tony Parker" | "follow" | 36 |
+-----------------+----------+----------+
| "Manu Ginobili" | "follow" | 41 |
+-----------------+----------+----------+
| "Spurs" | "serve" | __NULL__ |
+-----------------+----------+----------+
Got 3 rows (time spent 2976/3658 us)

nebula> MATCH (v:player{name:"Tony Parker"})-->(v2:player) \
 RETURN DISTINCT v2.name, "Hello"+" graphs!", v2.age > 35;
+---------------------+------------------+-------------+
| v2.name | (Hello+ graphs!) | (v2.age>35) |
+---------------------+------------------+-------------+
| "Tim Duncan" | "Hello graphs!" | true |
+---------------------+------------------+-------------+
| "LaMarcus Aldridge" | "Hello graphs!" | false |
+---------------------+------------------+-------------+
| "Manu Ginobili" | "Hello graphs!" | true |
+---------------------+------------------+-------------+
Got 3 rows (time spent 2645/3237 us)

nebula> RETURN 1+1;
+-------+
| (1+1) |
+-------+
| 2 |
+-------+
Got 1 rows (time spent 319/1238 us)

nebula> RETURN 3 > 1;
+-------+
| (3>1) |
+-------+
| true |
+-------+
Got 1 rows (time spent 205/751 us)

RETURN 1+1, rand32(1, 5);
+-------+-------------+
| (1+1) | rand32(1,5) |
+-------+-------------+
| 2 | 1 |
+-------+-------------+
Got 1 rows (time spent 258/1098 us)

// Before using DISTINCT
nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \
 RETURN v2.name, v2.age;
+---------------------+--------+
| v2.name | v2.age |
+---------------------+--------+
| "Tim Duncan" | 42 |
+---------------------+--------+
| "LaMarcus Aldridge" | 33 |
+---------------------+--------+
| "Marco Belinelli" | 32 |
+---------------------+--------+
| "Boris Diaw" | 36 |
+---------------------+--------+
| "Dejounte Murray" | 29 |
+---------------------+--------+
| "Tim Duncan" | 42 |
+---------------------+--------+
| "LaMarcus Aldridge" | 33 |
+---------------------+--------+
| "Manu Ginobili" | 41 |
+---------------------+--------+
Got 8 rows (time spent 3273/3893 us)

4.7.4 RETURN

- 146/287 - 2021 Vesoft Inc.

// After using DISTINCT
MATCH (v:player{name:"Tony Parker"})--(v2:player) RETURN DISTINCT v2.name, v2.age;
+---------------------+--------+
| v2.name | v2.age |
+---------------------+--------+
| "Tim Duncan" | 42 |
+---------------------+--------+
| "LaMarcus Aldridge" | 33 |
+---------------------+--------+
| "Marco Belinelli" | 32 |
+---------------------+--------+
| "Boris Diaw" | 36 |
+---------------------+--------+
| "Dejounte Murray" | 29 |
+---------------------+--------+
| "Manu Ginobili" | 41 |
+---------------------+--------+
Got 6 rows (time spent 3314/3897 us)

Last update: March 4, 2021

4.7.4 RETURN

- 147/287 - 2021 Vesoft Inc.

4.7.5 TTL

TTL indicates time to live. Use the TTL options to specify a timeout for a property. Once timed out, the property expires.

OpenCypher Compatibility

This topic applies to nGQL extensions only.

Precautions

You CANNOT modify a property with TTL options on it.

TTL options and indexes CANNOT coexist on a tag or an edge type. Not even if you try to set them on different properties.

Data expiration and deletion

VERTEX PROPERTY EXPIRATION

Vertex property expiration has the following impact.

If a vertex has only one tag, once a property of the vertex expires, the vertex expires.

If a vertex has multiple tags, once a property of the vertex expires, properties bound to the same tag with the expired

property also expires, but the vertex does not expire and other properties of it remain untouched.

EDGE PROPERTY EXPIRATION

Since an edge can have only one edge type, once an edge property expires, the edge expires.

DATA DELETION

The expired data are still stored on the disk, but queries will filter them out.

Nebula Graph automatically deletes the expired data and reclaims the disk space during the next compaction.

NOTE: If TTL is disabled, the corresponding data deleted after the last compaction can be queried again.

TTL options

The nGQL TTL feature has the following options.

Use TTL options

You must use the TTL options together to set a valid timeout on a property.

SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS

If a tag or an edge type is already created, to set a timeout on a property bound to the tag or edge type, use ALTER to update the

tag or edge type.

•

•

•

•

Option Description

ttl_col Specifies the property to set a timeout on. The data type of the property must be int or timestamp.

ttl_duration Specifies the timeout adds-on value in seconds. The value must be a non-negative int64 number. A property

expires if the sum of its value and the ttl_duration value is smaller than the current timestamp. If the

ttl_duration value is 0, the property never expires.

// Create a tag.
nebula> CREATE TAG t1 (a timestamp);
Execution succeeded (time spent 4172/5377 us)

// Use ALTER to update the tag and set the TTL options.
nebula> ALTER TAG t1 ttl_col = "a", ttl_duration = 5;

4.7.5 TTL

- 148/287 - 2021 Vesoft Inc.

SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

Use TTL options in the CREATE statement to set a timeout when creating a tag or an edge type. For more information, see

CREATE TAG or CREATE EDGE.

Remove a timeout

To disable TTL and remove the timeout on a property, use the following approaches.

Set ttl_col to an empty string.

Drop the property with the timeout.

Set ttl_duration to 0. This operation keeps the TTL options and prevents the property from expiring.

CAUTION: Even when ttl_duration is 0, you CANNOT alter the property because it still has TTL options.

Execution succeeded (time spent 2975/3700 us)

// Insert a vertex with tag t1. The vertex expires 5 seconds after the insertion.
nebula> INSERT VERTEX t1(a) values "101":(now());
Execution succeeded (time spent 1902/2642 us)

// Create a tag and set the TTL options.
nebula> CREATE TAG t2(a int, b int, c string) ttl_duration= 100, ttl_col = "a";
Execution succeeded (time spent 3173/3753 us)

// Insert a vertex with tag t2.
// The timeout timestamp is 1612778164774 (1612778164674 + 100).
nebula> INSERT VERTEX t2(a, b, c) values "102":(1612778164674, 30, "Hello");
Execution succeeded (time spent 1254/1921 us)

•

nebula> ALTER TAG t1 ttl_col = "";

•

nebula> ALTER TAG t1 DROP (a);

•

nebula> ALTER TAG t1 ttl_duration = 0;

Last update: April 1, 2021

4.7.5 TTL

- 149/287 - 2021 Vesoft Inc.

4.7.6 WHERE

The WHERE clause filters the outputs by conditions.

WHERE works in the following queries:

nGQL extensions such as GO and LOOKUP .

OpenCypher syntax such as MATCH and WITH .

OpenCypher compatibility

Using patterns in WHERE is not supported (TODO: planning), for example WHERE (v)-->(v2) .

Filtering on edge rank is a native nGQL feature. It only applies to nGQL extensions such as GO and LOOKUP because the

concept edge rank does not exist in openCypher.

Basic usage

DEFINE CONDITIONS WITH BOOLEAN OPERATORS

Use the boolean operators NOT , AND , OR , and XOR to define conditions in WHERE clauses. For the precedence of the operators, see

Precedence.

•

•

•

•

nebula> MATCH (v:player) \
 WHERE v.name == "Tim Duncan" \
 XOR (v.age < 30 AND v.name == "Yao Ming") \
 OR NOT (v.name == "Yao Ming" OR v.name == "Tim Duncan") \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
| "Marco Belinelli" | 32 |
+-------------------------+-------+
| "Aron Baynes" | 32 |
+-------------------------+-------+
| "LeBron James" | 34 |
+-------------------------+-------+
| "James Harden" | 29 |
+-------------------------+-------+
| "Manu Ginobili" | 41 |
+-------------------------+-------+
...
Got 50 rows (time spent 6152/6994 us)

nebula> GO FROM "player100" \
 OVER follow \
 WHERE follow.degree > 90 \
 OR $$.player.age != 33 \
 AND $$.player.name != "Tony Parker";
+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+
| "player125" |
+-------------+
Got 2 rows (time spent 3198/3877 us)

4.7.6 WHERE

- 150/287 - 2021 Vesoft Inc.

FILTER ON PROPERTIES

Use vertex or edge properties to define conditions in WHERE clauses.

Filter on a vertex property:

Filter on an edge property:

FILTER ON DYNAMICALLY-CALCULATED PROPERTY

FILTER ON THE EXISTENCE OF A PROPERTY

•

nebula> MATCH (v:player)-[e]->(v2) \
 WHERE v2.age < 25 \
 RETURN v2.name, v2.age;
+----------------------+--------+
| v2.name | v2.age |
+----------------------+--------+
| "Luka Doncic" | 20 |
+----------------------+--------+
| "Kristaps Porzingis" | 23 |
+----------------------+--------+
| "Ben Simmons" | 22 |
+----------------------+--------+
Got 3 rows (time spent 7382/8080 us)

nebula> GO FROM "player100" \
 OVER follow \
 WHERE $^.player.age >= 42;
+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+
| "player125" |
+-------------+
Got 2 rows (time spent 1051/1668 us)

•

nebula> MATCH (v:player)-[e]->() \
 WHERE e.start_year < 2000 \
 RETURN DISTINCT v.name, v.age;
+--------------------+-------+
| v.name | v.age |
+--------------------+-------+
| "Shaquille O'Neal" | 47 |
+--------------------+-------+
| "Steve Nash" | 45 |
+--------------------+-------+
| "Ray Allen" | 43 |
+--------------------+-------+
| "Grant Hill" | 46 |
+--------------------+-------+
| "Tony Parker" | 36 |
+--------------------+-------+
...
Got 11 rows (time spent 7585/8154 us)

nebula> GO FROM "player100" \
 OVER follow \
 WHERE follow.degree > 90;
+-------------+
| follow._dst |
+-------------+
| "player101" |
+-------------+
| "player125" |
+-------------+
Got 2 rows (time spent 2815/3571 us)

nebula> MATCH (v:player) \
 WHERE v[toLower("AGE")] < 21 \
 RETURN v.name, v.age;
+---------------+-------+
| v.name | v.age |
+---------------+-------+
| "Luka Doncic" | 20 |
+---------------+-------+

nebula> MATCH (v:player) \
 WHERE exists(v.age) \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
| "Boris Diaw" | 36 |
+-------------------------+-------+

4.7.6 WHERE

- 151/287 - 2021 Vesoft Inc.

FILTER ON EDGE RANK

In nGQL, if a group of edges has the same source vertex, destination vertex, and properties, the only thing that distinguishes

them is the rank. Use rank conditions in WHERE to filter such edges.

The following example creates a group of edges. The differences among the edges are their ranks and properties. Then the

example uses a GO statement with a WHERE clause to filter the edges on ranks.

Filter on strings

Use STARTS WITH , ENDS WITH , or CONTAINS in WHERE to match a specific part of a string. String matching is case-sensitive.

MATCH THE BEGINNING OF A STRING

Use STARTS WITH "T" to match a player name that starts with T .

If you use STARTS WITH "t" in the preceding statement, an empty set is returned because no name in the dataset starts with the

lowercase t .

MATCH THE ENDING OF A STRING

Use ENDS WITH "r" to match a player name that ends with r .

| "DeAndre Jordan" | 30 |
+-------------------------+-------+

nebula> CREATE SPACE test;
nebula> USE test;
nebula> CREATE EDGE e1(p1 int);
nebula> CREATE TAG person(p1 int);
nebula> INSERT VERTEX person(p1) VALUES "1":(1);
nebula> INSERT VERTEX person(p1) VALUES "2":(2);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@0:(10);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@1:(11);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@2:(12);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@3:(13);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@4:(14);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@5:(15);
nebula> INSERT EDGE e1(p1) VALUES "1"->"2"@6:(16);

// The return messages of the preceding statements are omitted in this example.

nebula> GO FROM "1" \
 OVER e1 \
 WHERE e1._rank>2 \
 YIELD e1._src, e1._dst, e1._rank AS Rank, e1.p1 | \
 ORDER BY Rank DESC;
====================================
| e1._src | e1._dst | Rank | e1.p1 |
====================================
| 1 | 2 | 6 | 16 |

| 1 | 2 | 5 | 15 |

| 1 | 2 | 4 | 14 |

| 1 | 2 | 3 | 13 |

nebula> MATCH (v:player) \
 WHERE v.name STARTS WITH "T" \
 RETURN v.name, v.age;
+------------------+-------+
| v.name | v.age |
+------------------+-------+
| "Tracy McGrady" | 39 |
+------------------+-------+
| "Tony Parker" | 36 |
+------------------+-------+
| "Tim Duncan" | 42 |
+------------------+-------+
| "Tiago Splitter" | 34 |
+------------------+-------+
Got 4 rows (time spent 5575/7203 us)

nebula> MATCH (v:player) \
 WHERE v.name STARTS WITH "t" \
 RETURN v.name, v.age;
Empty set (time spent 5080/6474 us)

4.7.6 WHERE

- 152/287 - 2021 Vesoft Inc.

MATCH ANY PART OF A STRING

Use CONTAINS "Pa" to match a player name that contains Pa .

NEGATIVE STRING MATCHING

Use the boolean operator NOT to negate a string matching condition.

Filter on lists

MATCH VALUES IN A LIST

Use the IN operator to check if a value is in a specific list.

nebula> MATCH (v:player) \
 WHERE v.name ENDS WITH "r" \
 RETURN v.name, v.age;
+------------------+-------+
| v.name | v.age |
+------------------+-------+
| "Vince Carter" | 42 |
+------------------+-------+
| "Tony Parker" | 36 |
+------------------+-------+
| "Tiago Splitter" | 34 |
+------------------+-------+
Got 3 rows (time spent 4934/5832 us)

nebula> MATCH (v:player) \
 WHERE v.name CONTAINS "Pa" \
 RETURN v.name, v.age;
+---------------+-------+
| v.name | v.age |
+---------------+-------+
| "Paul George" | 28 |
+---------------+-------+
| "Tony Parker" | 36 |
+---------------+-------+
| "Paul Gasol" | 38 |
+---------------+-------+
| "Chris Paul" | 33 |
+---------------+-------+
Got 4 rows (time spent 3265/4113 us)

nebula> MATCH (v:player) \
 WHERE NOT v.name ENDS WITH "R" \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
| "Rajon Rondo" | 33 |
+-------------------------+-------+
| "Rudy Gay" | 32 |
+-------------------------+-------+
| "Dejounte Murray" | 29 |
+-------------------------+-------+
| "Chris Paul" | 33 |
+-------------------------+-------+
| "Carmelo Anthony" | 34 |
+-------------------------+-------+
...
Got 51 rows (time spent 2622/3463 us)

nebula> MATCH (v:player) \
 WHERE v.age IN range(20,25) \
 RETURN v.name, v.age;
+-------------------------+-------+
| v.name | v.age |
+-------------------------+-------+
| "Ben Simmons" | 22 |
+-------------------------+-------+
| "Kristaps Porzingis" | 23 |
+-------------------------+-------+
| "Luka Doncic" | 20 |
+-------------------------+-------+
| "Kyle Anderson" | 25 |
+-------------------------+-------+
| "Giannis Antetokounmpo" | 24 |
+-------------------------+-------+
| "Joel Embiid" | 25 |
+-------------------------+-------+
Got 6 rows (time spent 5815/7220 us)

4.7.6 WHERE

- 153/287 - 2021 Vesoft Inc.

MATCH VALUES NOT IN A LIST

Use NOT before IN to rule out the values in a list.

nebula> MATCH (v:player) \
 WHERE v.age NOT IN range(20,25) \
 RETURN v.name AS Name, v.age AS Age \
 ORDER BY Age;
+---------------------+-----+
| Name | Age |
+---------------------+-----+
| "Kyrie Irving" | 26 |
+---------------------+-----+
| "Cory Joseph" | 27 |
+---------------------+-----+
| "Damian Lillard" | 28 |
+---------------------+-----+
| "Paul George" | 28 |
+---------------------+-----+
| "Ricky Rubio" | 28 |
+---------------------+-----+
...
Got 45 rows (time spent 2954/3725 us)

Last update: April 1, 2021

4.7.6 WHERE

- 154/287 - 2021 Vesoft Inc.

4.7.7 YIELD

YIELD defines the output of an nGQL query.

YIELD can lead a clause or a statement:

A YIELD clause works in nGQL statements such as GO , FETCH , or LOOKUP .

A YIELD statement works in a composite query or independently.

OpenCypher Compatibility

This topic applies to nGQL extensions only. For the openCypher syntax, use RETURN .

YIELD has different functions in openCypher and nGQL.

In openCypher, YIELD is used in the CALL[…YIELD] clause to specify the output of the procedure call.

NOTE: NGQL does not support CALL[…YIELD] yet.

In nGQL, YIELD works like RETURN in openCypher.

YIELD clauses

SYNTAX

The syntax is described as follows.

USE A YIELD CLAUSE IN A STATEMENT

Use YIELD with GO :

•

•

•

•

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]

Keyword/Field Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

•

nebula> GO FROM "player100" OVER follow \
 YIELD $$.player.name AS Friend, $$.player.age AS Age;
+-----------------+-----+
| Friend | Age |
+-----------------+-----+
| "Tony Parker" | 36 |
+-----------------+-----+
| "Manu Ginobili" | 41 |

4.7.7 YIELD

- 155/287 - 2021 Vesoft Inc.

Use YIELD with FETCH :

Use YIELD with LOOKUP :

YIELD Statements

SYNTAX

The syntax is described as follows.

USE A YIELD STATEMENT IN A COMPOSITE QUERY

In a composite query, a YIELD statement accepts, filters, and reforms the result set of the preceding statement, and then outputs

it.

The following query finds the players that "player100" follows and calculates their average age.

The following query finds the players that "player101" follows and the follow degrees are greater than 90.

+-----------------+-----+
Got 2 rows (time spent 3378/4030 us)

•

nebula> FETCH PROP ON player "player100" \
 YIELD player.name;
+-------------+--------------+
| VertexID | player.name |
+-------------+--------------+
| "player100" | "Tim Duncan" |
+-------------+--------------+
Got 1 rows (time spent 2933/5931 us)

•

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
 YIELD player.name, player.age;
=======================================
| VertexID | player.name | player.age |
=======================================
| 101 | Tony Parker | 36 |

Got 1 rows (time spent 2963/3778 us)

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]
[WHERE <conditions>]

Field Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col . It is set after the keyword AS and will be a column name in the output.

conditions Conditions set in a WHERE clause to filter the output. For more information, see WHERE .

nebula> GO FROM "player100" OVER follow \
 YIELD follow._dst AS ID | \
 FETCH PROP ON player $-.ID \
 YIELD player.age AS Age | \
 YIELD AVG($-.Age) as Avg_age, count(*)as Num_friends;
+---------+-------------+
| Avg_age | Num_friends |
+---------+-------------+
| 38.5 | 2 |
+---------+-------------+
Got 1 rows (time spent 1846/2426 us)

nebula> $var1 = GO FROM "player101" OVER follow \
 YIELD follow.degree AS Degree, follow._dst as ID; \
 YIELD $var1.ID AS ID \
 WHERE $var1.Degree > 90;
+-------------+
| ID |
+-------------+
| "player100" |
+-------------+
| "player125" |
+-------------+
Got 2 rows (time spent 891/1411 us)

4.7.7 YIELD

- 156/287 - 2021 Vesoft Inc.

USE A STANDALONE YIELD STATEMENT

A YIELD statement can calculate a valid expression and output the result.

nebula> YIELD rand32(1, 6);
+-------------+
| rand32(1,6) |
+-------------+
| 3 |
+-------------+
Got 1 rows (time spent 144/615 us)

nebula> YIELD "Hel" + "\tlo" AS string1, ", World!" AS string2;
+-------------+------------+
| string1 | string2 |
+-------------+------------+
| "Hel lo" | ", World!" |
+-------------+------------+
Got 1 rows (time spent 154/692 us)

nebula> YIELD hash("Tim") % 100;
+-----------------+
| (hash(Tim)%100) |
+-----------------+
| 42 |
+-----------------+
Got 1 rows (time spent 164/820 us)

nebula> YIELD \
 CASE 2+3 \
 WHEN 4 THEN 0 \
 WHEN 5 THEN 1 \
 ELSE -1 \
 END \
 AS result;
+--------+
| result |
+--------+
| 1 |
+--------+
Got 1 rows (time spent 204/935 us)

Last update: March 29, 2021

4.7.7 YIELD

- 157/287 - 2021 Vesoft Inc.

4.7.8 WITH

OpenCypher compatibility

The WITH clause can take the output from a query part, process it, and pass it to the next query part as the input.

WITH has a similar function with the pipe symbol in nGQL-extension, but they work in different ways.

WITH only works in the openCypher syntax, such as in MATCH or UNWIND .

In the nGQL-extensions such as GO or FETCH , use pipe symbols (|) instead.

DON'T: Don't use pipe symbols in the openCypher syntax or use WITH in the nGQL extensions.

Combine statements and form a composite query

Use a WITH clause to combine statements and transfer the output of a statement as the input of another statement.

EXAMPLE 1

The following statement:

Matches a path.

Outputs all the vertices on the path to a list with the nodes() function.

Unwinds the list into rows.

Removes duplicated vertices and returns a set of distinct vertices.

EXAMPLE 2

The following statement:

Matches a vertex with the VID "player100".

Outputs all the tags of the vertex into a list with the labels() function.

Unwinds the list into rows.

Returns the rows.

1.

2.

3.

4.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \
 WITH nodes(p) AS n \
 UNWIND n AS n1 \
 RETURN DISTINCT n1;
+--+
| n1 |
+--+
| ("player100" :star{} :person{} :player{age: 42, name: "Tim Duncan"}) |
+--+
| ("player101" :player{age: 36, name: "Tony Parker"}) |
+--+
| ("team204" :team{name: "Spurs"}) |
+--+
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
+--+
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
+--+
| ("player104" :player{age: 32, name: "Marco Belinelli"}) |
+--+
| ("player144" :player{age: 47, name: "Shaquile O'Neal"}) |
+--+
| ("player105" :player{age: 31, name: "Danny Green"}) |
+--+
| ("player113" :player{age: 29, name: "Dejounte Murray"}) |
+--+
| ("player107" :player{age: 32, name: "Aron Baynes"}) |
+--+
| ("player109" :player{age: 34, name: "Tiago Splitter"}) |
+--+
| ("player108" :player{age: 36, name: "Boris Diaw"}) |
+--+
Got 12 rows (time spent 3795/4487 us)

1.

2.

3.

4.

nebula> MATCH (v) \
 WHERE id(v)=="player100" \

4.7.8 WITH

- 158/287 - 2021 Vesoft Inc.

Filter aggregated queries

WITH can work as a filter in the middle of an aggregated query.

Process the output before using collect() on it

Use a WITH clause to sort and limit the output before using collect() to transform the output into a list.

Use with RETURN

Set a alias using a WITH clause, and then output the result through a RETURN clause.

 WITH labels(v) AS tags_unf \
 UNWIND tags_unf AS tags_f \
 RETURN tags_f;
+----------+
| tags_f |
+----------+
| "star" |
+----------+
| "player" |
+----------+
| "person" |
+----------+
Got 3 rows (time spent 1709/2495 us)

nebula> MATCH (v:player)-->(v2:player) \
 WITH DISTINCT v2 AS v2, v2.age AS Age \
 ORDER BY Age \
 WHERE Age<25 \
 RETURN v2.name AS Name, Age;
+----------------------+-----+
| Name | Age |
+----------------------+-----+
| "Luka Doncic" | 20 |
+----------------------+-----+
| "Ben Simmons" | 22 |
+----------------------+-----+
| "Kristaps Porzingis" | 23 |
+----------------------+-----+
Got 3 rows (time spent 7444/8467 us)

nebula> MATCH (v:player) \
 WITH v.name AS Name \
 ORDER BY Name DESC \
 LIMIT 3 \
 RETURN collect(Name);
+---+
| COLLECT(Name) |
+---+
| ["Yao Ming", "Vince Carter", "Tracy McGrady"] |
+---+
Got 1 rows (time spent 3498/4222 us)

nebula> WITH [1, 2, 3] AS list RETURN 3 IN list AS r;
+------+
| r |
+------+
| true |
+------+

nebula> WITH 4 AS one, 3 AS two RETURN one > two AS result;
+--------+
| result |
+--------+
| true |
+--------+

Last update: May 7, 2021

4.7.8 WITH

- 159/287 - 2021 Vesoft Inc.

4.8 Space statements

4.8.1 CREATE SPACE

The CREATE SPACE statement creates a new graph space with the given name. A SPACE is a region that provides physically isolated

graphs in Nebula Graph. An error occurs if a graph space with the same name exists if you did not specify IF NOT EXISTS .

IF NOT EXISTS

You can use the IF NOT EXISTS keywords when creating graph spaces. These keywords automatically detect if the related graph

space exists. If it does not exist, a new one is created. Otherwise, no graph space is created.

NOTE: The graph space existence detection here only compares the graph space name (excluding properties).

Graph space name

The graph_space_name uniquely identifies a graph space in a Nebula Graph instance.

Customized graph space options

You can set four optional options for a new graph space:

partition_num

Specifies the number of partitions in each replica. The suggested number is five times the number of the hard disks in the

cluster. For example, if you have 3 hard disks in the cluster, we recommend that you set 15 partitions.

replica_factor

Specifies the number of replicas in the cluster. The default replica factor is 1. The suggested number is 3 in a production

environment and 1 in a test environment. Always set the replica to an odd number for the need of quorum-based voting.

NOTICE: If the replica number is set to one, you won't be able to use the BALANCE statements to load balance or scale out the

Nebula Graph Storage Service.

vid_type

Specifies the data type of VIDs in a graph space. Available values are FIXED_STRING(N) and INT64 , where N represents the

maximum length of the VIDs and it must be a positive integer. The default value is FIXED_STRING(8) .

If you set a VID length greater than N , Nebula Graph throws an error. To set the integer VID for vertices, set vid_type to

INT64 .

If no option is given, Nebula Graph creates the graph space with the default options.

Example

Implementation of the operation

Trying to use a newly created graph space may fail because the creation is implemented asynchronously.

CREATE SPACE [IF NOT EXISTS] <graph_space_name>
 [(partition_num = <partition_number>,
 replica_factor = <replica_number>,
 vid_type = {FIXED_STRING(<N>) | INT64})];

•

•

•

nebula> CREATE SPACE my_space_1; -- create a graph space with default options
nebula> CREATE SPACE my_space_2(partition_num=10); -- create a graph space with customized partition number
nebula> CREATE SPACE my_space_3(replica_factor=1); -- create a graph space with customized replica factor
nebula> CREATE SPACE my_space_4(vid_type = FIXED_STRING(30)); -- create a graph space with customized VID maximum length

4.8 Space statements

- 160/287 - 2021 Vesoft Inc.

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take one of the

following approaches:

Find the new graph space in the result of SHOW SPACES or DESCRIBE SPACE . If you can't, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

Check partition distribution

On some large clusters, the partition distribution is possibly unbalanced because of the different startup times. You can run the

command to do a check of the machine distribution.

To balance the request loads, use the following command.

•

•

nebula> SHOW HOSTS;
+-----------+-------+--------+--------------+----------------------------------+-----------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-----------+-------+--------+--------------+----------------------------------+-----------------------------+
| storaged0 | 9779 | ONLINE | 1 | basketballplayer:5 | basketballplayer:5 |
+-----------+-------+--------+--------------+----------------------------------+-----------------------------+
| storaged1 | 9779 | ONLINE | 2 | test:1, basketballplayer:5 | basketballplayer:5, test:1 |
+-----------+-------+--------+--------------+----------------------------------+-----------------------------+
| storaged2 | 9779 | ONLINE | 1 | basketballplayer:5 | basketballplayer:5 |
+-----------+-------+--------+--------------+----------------------------------+-----------------------------+

nebula> BALANCE LEADER;

Last update: April 13, 2021

4.8.1 CREATE SPACE

- 161/287 - 2021 Vesoft Inc.

4.8.2 USE

The USE statement specifies a graph space as the current working space for subsequent queries. To manage multiple graph

spaces, use the USE statement. The USE statement requires some privilege.

The graph space remains the same unless another USE statement is executed.

NOTE: You can't use two spaces in one statement.

Different from SQL or Fabric Cypher, making a graph space as the working graph space prevents you from accessing other

spaces. The only way to traverse in a new graph space is to switch by the USE statement.

Graph spaces are FULLY ISOLATED from each other. Unlike Fabric Cypher, you can only use one graph space at a time in Nebula

Graph. But in Fabric Cypher, you can use two (graph) spaces in one statement.

USE <graph_space_name>

nebula> USE space1;
-- Traverse in graph space1.
nebula> GO FROM 1 OVER edge1;
nebula> USE space2;
-- Traverse in graph space2. These vertices and edges have no relevance with space1.
nebula> GO FROM 2 OVER edge2;
-- Now you are back to space1. Hereafter, you can not read any data from space2.
nebula> USE space1;

Last update: March 24, 2021

4.8.2 USE

- 162/287 - 2021 Vesoft Inc.

4.8.3 SHOW SPACES

The SHOW SPACES statement lists the all the graph spaces in a Nebula Graph instance.

For example:

To create graph spaces, see Create Space document.

SHOW SPACES

nebula> SHOW SPACES;
+---------------------+
| Name |
+---------------------+
| "basketballplayer" |
+---------------------+

Last update: April 13, 2021

4.8.3 SHOW SPACES

- 163/287 - 2021 Vesoft Inc.

4.8.4 DESCRIBE SPACE

The DESCRIBE SPACE statement returns information about a graph space.

The DESCRIBE SPACE statement is different from the SHOW SPACES statement. For details about SHOW SPACES , see SHOW SPACES.

You can use DESC instead of DESCRIBE for short.

Example

Get information about a graph space.

DESC[RIBE] SPACE <graph_space_name>

nebula> DESCRIBE SPACE basketballplayer;
+----+--------------------+------------------+----------------+---------+------------+--------------------+-------------+-----------+
| ID | Name | Partition Number | Replica Factor | Charset | Collate | Vid Type | Atomic Edge | Group |
+----+--------------------+------------------+----------------+---------+------------+--------------------+-------------+-----------+
| 1 | "basketballplayer" | 10 | 1 | "utf8" | "utf8_bin" | "FIXED_STRING(32)" | "false" | "default" |
+----+--------------------+------------------+----------------+---------+------------+--------------------+-------------+-----------+

Last update: April 13, 2021

4.8.4 DESCRIBE SPACE

- 164/287 - 2021 Vesoft Inc.

4.8.5 DROP SPACE

The DROP SPACE statement deletes everything in the related graph space.

You must have the DROP privilege for the related graph space.

You can use the IF EXISTS keywords when dropping spaces. These keywords automatically detects if the related graph space

exists. If it exists, it is deleted. Otherwise, no graph space is deleted.

Other graph spaces stay unchanged.

The DROP SPACE statement does not immediately remove all the files and directories from disk. Use another space , and submit

job compact .

NOTE: Be very careful with this statement.

DROP SPACE [IF EXISTS] <graph_space_name>

Last update: March 26, 2021

4.8.5 DROP SPACE

- 165/287 - 2021 Vesoft Inc.

4.9 Tag statements

4.9.1 CREATE TAG

CREATE TAG creates a tag with the given name in a graph space. You must have the CREATE privilege for the graph space. To

create a tag in a specific graph space, you must use the graph space first.

OpenCypher compatibility

Tags in nGQL are similar with labels in openCypher. But they are also quite different. For example, the ways to create them are

different.

In openCypher, labels are created together with nodes by CREATE statements.

In nGQL, tags are created separately by CREATE TAG statements. Tags in nGQL are more like tables in MySQL.

Syntax

Tag name

IF NOT EXISTS : Creating an existent tag results in an error. You can use the IF NOT EXISTS option to conditionally create the

tag and avoid the error.

NOTE: The tag existence detection here compares only the tag names (excluding properties). - tag_name : The tag name

must be unique in a graph space. Once the tag name is set, it can not be altered. The rules for permitted tag names are

the same as those for graph space names. For prohibited names, see Keywords and reserved words.

PROPERTY NAMES AND DATA TYPES

prop_name

prop_name is the name of the property. It must be unique for each tag.

data_type

data_type shows the data type of each property. For a full description of the property data types, see Data types.

NULL | NOT NULL

Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT

Specifies a default value for a property. The default value can be a literal value or an expression supported by Nebula Graph.

If no value is specified, the default value is used when inserting a new vertex.

TIME-TO-LIVE (TTL)

TTL_DURATION

•

•

CREATE TAG [IF NOT EXISTS] <tag_name>
 ([<create_definition>, ...])
 [tag_options]

<create_definition> ::=
 <prop_name> <data_type> [NULL | NOT NULL]

<tag_options> ::=
 <option> [, <option> ...]

<option> ::=
 TTL_DURATION [=] <ttl_duration>
 | TTL_COL [=] <prop_name>
 | DEFAULT <default_value>

•

•

•

•

•

•

4.9 Tag statements

- 166/287 - 2021 Vesoft Inc.

Specifies the life cycle for the data. Data that exceeds the specified TTL expires. The expiration threshold is the TTL_COL

value plus the TTL_DURATION . The default value of TTL_DURATION is zero. It means the data never expires.

TTL_COL

The data type of prop_name must be either int or timestamp .

single TTL definition

Only one TTL_COL field can be specified in a tag.

For more information on TTL, see TTL options.

EXAMPLES

Implementation of the operation

Trying to insert vertices with a newly created tag may fail, because the creation of the tag is implemented asynchronously.

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take one of the

following approaches:

Find the new tag in the result of SHOW TAGS . If you can't, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

nebula> CREATE TAG player(name string, age int);

// Create a tag with no properties.
nebula> CREATE TAG no_property();

// Create a tag with a default value.
nebula> CREATE TAG player_with_default(name string, age int DEFAULT 20);

// Time interval is 100s, starting from the create_time field
nebula> CREATE TAG woman(name string, age int, \
 married bool, salary double, create_time timestamp) \
 TTL_DURATION = 100, TTL_COL = "create_time";

// Data expires after TTL_DURATION
nebula> CREATE TAG icec_ream(made timestamp, temperature int) \
 TTL_DURATION = 100, TTL_COL = "made";

•

•

Last update: April 13, 2021

4.9.1 CREATE TAG

- 167/287 - 2021 Vesoft Inc.

4.9.2 DROP TAG

DROP TAG drops a tag with the given name in a graph space. You must have the DROP privilege for the graph space. To drop a tag

in a specific graph space, you must use the graph space first.

NOTE: Before you drop a tag, make sure that the tag does not have any indexes. Otherwise, a conflict error ([ERROR (-8)]:

Conflict!) is returned. To remove an index, see DROP INDEX.

A vertex can have one or more tags.

When a vertex has only one tag, after you drop it, the vertex CANNOT be accessible. But its edges are available. The vertex

is deleted in the next compaction.

When a vertex has multiple tags, after you drop one of them, the vertex is still accessible. But all the properties defined by

this dropped tag are not accessible.

This operation only deletes the Schema data. All the files and directories in the disk are NOT deleted directly. Data is deleted in

the next compaction.

Tag name

IF EXISTS : Dropping a non-existent tag results in an error. You can use the IF EXISTS option to conditionally drop the tag

and avoid the error.

NOTE: The tag existence detection here compares only the tag names (excluding properties).

tag_name : Specifies the tag name that you want to drop. You can drop only one tag in one statement.

Example

DROP TAG [IF EXISTS] <tag_name>

•

•

•

•

nebula> CREATE TAG test(p1 string, p2 int);

nebula> DROP TAG test;

Last update: March 31, 2021

4.9.2 DROP TAG

- 168/287 - 2021 Vesoft Inc.

4.9.3 ALTER TAG

ALTER TAG alters the structure of a tag with the given name in a graph space. You must have the ALTER privilege for the graph

space. To alter a tag in a specific graph space, you must use the graph space first.

You can add or drop properties, change the data type of an existing property. You can also set TTL (Time-To-Live) for a property,

or change the TTL duration. TTL_COL only supports the properties whose values are of the INT or the TIMESTAMP type.

Before you alter properties for a tag, make sure that the properties are not indexed. If the properties contain any indexes, a

conflict error occurs when you alter them.

For information about index, see Index.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER statement, separated by commas.

Tag name

tag_name : Specifies the tag name that you want to alter. You can alter only one tag in one statement. Before you alter a tag,

make sure that the tag exists in the graph space. If the tag does not exist, an error occurs when you alter it.

Example

Implementation of the operation

Nebula Graph implements the alteration asynchronously in the next heartbeat cycle. Before the process finishes, the alteration

does not take effect. To make sure the alteration is successful, take the following approaches:

Use DESCRIBE TAG to confirm that the tag information is updated. If it is not, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

ALTER TAG <tag_name>
 <alter_definition> [, alter_definition] ...]
 [ttl_definition [, ttl_definition] ...]

alter_definition:
| ADD (prop_name data_type)
| DROP (prop_name)
| CHANGE (prop_name data_type)

ttl_definition:
 TTL_DURATION = ttl_duration, TTL_COL = prop_name

•

nebula> CREATE TAG t1 (p1 string, p2 int);
nebula> ALTER TAG t1 ADD (p3 int, p4 string);
nebula> ALTER TAG t1 TTL_DURATION = 2, TTL_COL = "p2";

•

•

Last update: March 19, 2021

4.9.3 ALTER TAG

- 169/287 - 2021 Vesoft Inc.

4.9.4 SHOW TAGS

SHOW TAGS shows all tags in the current graph space. You do not need any privileges for the graph space to run this statement.

But the returned results are different based on role privileges. To show tags in a specific graph space, you must use the graph

space first.

Examples

SHOW TAGS

nebula> SHOW TAGS;
+----------+
| Name |
+----------+
| "player" |
+----------+
| "team" |
+----------+
Got 2 rows (time spent 1461/2114 us)

Last update: March 19, 2021

4.9.4 SHOW TAGS

- 170/287 - 2021 Vesoft Inc.

4.9.5 DESCRIBE TAG

DESCRIBE TAG returns information about a tag with the given name in a graph space. You must have the read Schema privilege for

the graph space. To describe a tag in a specific graph space, you must use the graph space first. You can use DESC instead of

DESCRIBE for short.

DESCRIBE TAG is different from SHOW TAGS . For details about SHOW TAGS , see SHOW TAGS.

Example

Get information about a tag named player .

DESC[RIBE] TAG <tag_name>

nebula> DESCRIBE TAG player;

+--------+----------+-------+-----------+
| Field | Type | Null | Default |
+--------+----------+-------+-----------+
| "name" | "string" | "YES" | __EMPTY__ |
+--------+----------+-------+-----------+
| "age" | "int64" | "YES" | __EMPTY__ |
+--------+----------+-------+-----------+

Last update: March 19, 2021

4.9.5 DESCRIBE TAG

- 171/287 - 2021 Vesoft Inc.

4.10 Edge type statements

4.10.1 CREATE EDGE

CREATE EDGE creates an edge type with the given name in a graph space. You must have the CREATE privilege for the graph space.

To create an edge type in a specific graph space, you must use the graph space first.

OpenCypher compatibility

Edge types in nGQL are similar to labels/relationship types in openCypher. But they are also quite different. For example, the

ways to create them are different.

In openCypher, relationship types are created together with relationships by CREATE statements.

In nGQL, edge types are created separately by CREATE EDGE statements. Edge types in nGQL are more like tables in MySQL.

Syntax

Edge type name

IF NOT EXISTS : Creating an existent edge type causes an error. You can use the IF NOT EXISTS option to conditionally create

the edge type and avoid the error.

NOTE: The edge type existence detection here compares only the edge type names (excluding properties). -

edge_type_name : The edge type name must be unique in a graph space. Once the edge type name is set, it can not be

altered. The rules for permitted edge type names are the same as those for graph space names. For prohibited names, see

Keywords and reserved words.

PROPERTY NAMES AND DATA TYPES

prop_name

prop_name is the name of the property. It must be unique for each edge type.

data_type

data_type shows the data type of each property. For a full description of the property data types, see Data types.

NULL | NOT NULL

Specifies if the property supports NULL | NOT NULL . The default value is NULL .

DEFAULT

Specifies a default value for a property. The default value can be a literal value or an expression supported by Nebula Graph.

If no value is specified, the default value is used when inserting a new vertex.

TIME-TO-LIVE (TTL)

TTL_DURATION

•

•

CREATE EDGE [IF NOT EXISTS] <edge_type_name>
 ([<create_definition>, ...])
 [edge_type_options]

<create_definition> ::=
 <prop_name> <data_type>

<edge_type_options> ::=
 <option> [, <option> ...]

<option> ::=
 TTL_DURATION [=] <ttl_duration>
 | TTL_COL [=] <prop_name>
 | DEFAULT <default_value>

•

•

•

•

•

•

4.10 Edge type statements

- 172/287 - 2021 Vesoft Inc.

Specifies the life cycle for the data. Data that exceeds the specified TTL expires. The expiration threshold is the TTL_COL

value plus the TTL_DURATION . The default value of TTL_DURATION is 0 . It means the data never expires.

TTL_COL

The data type of prop_name must be either int or timestamp .

single TTL definition

Only one TTL_COL field can be specified in an edge type.

For more information about TTL, see TTL options.

EXAMPLES

Implementation of the operation

Trying to insert edges of a newly created edge type may fail, because the creation of the edge type is implemented

asynchronously.

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take the following

approaches:

Find the new edge type in the result of SHOW EDGES . If you can't, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

•

•

nebula> CREATE EDGE follow(degree int);

// Create an edge type with no properties.
nebula> CREATE EDGE no_property();

// Create an edge type with a default value.
nebula> CREATE EDGE follow_with_default(degree int DEFAULT 20);

// Time interval is 100s, starting from the p2 field
// Data expires after TTL_DURATION
nebula> CREATE EDGE e1(p1 string, p2 int, \
 p3 timestamp) \
 TTL_DURATION = 100, TTL_COL = "p2";

•

•

Last update: April 13, 2021

4.10.1 CREATE EDGE

- 173/287 - 2021 Vesoft Inc.

4.10.2 DROP EDGE

DROP EDGE drops an edge type with the given name in a graph space. You must have the DROP privilege for the graph space. To

drop an edge type in a specific graph space, you must use the graph space first.

NOTE: Before you drop an edge type, make sure that the edge type does not have any indexes. Otherwise, a conflict error

([ERROR (-8)]: Conflict!) is returned. To remove an index, see DROP INDEX.

An edge can have only one edge type. After you drop it, the edge CANNOT be accessible. The edge is deleted in the next

compaction.

Edge type name

IF EXISTS : Dropping a non-existent edge type causes an error. You can use the IF EXISTS option to conditionally drop the

edge type and avoid the error.

NOTE: The edge type existence detection here compares only the edge type names (excluding properties).

edge_type_name : Specifies the edge type name that you want to drop. You can drop only one edge type in one statement.

Example

DROP EDGE [IF EXISTS] <edge_type_name>

•

•

nebula> CREATE EDGE e1(p1 string, p2 int);

nebula> DROP EDGE e1;

Last update: March 31, 2021

4.10.2 DROP EDGE

- 174/287 - 2021 Vesoft Inc.

4.10.3 ALTER EDGE

ALTER EDGE alters the structure of an edge type with the given name in a graph space. You must have the ALTER privilege for the

graph space. To alter an edge type in a specific graph space, you must use the graph space first.

You can add or drop properties, change the data type of an existing property. You can also set TTL (Time-To-Live) for a property,

or change the TTL duration. TTL_COL only supports INT or TIMESTAMP type properties.

Before you alter properties for an edge type, make sure that the properties are not indexed. If the properties contain any

indexes, a conflict error occurs when you alter them.

For information about index, see Index.

Multiple ADD , DROP , and CHANGE clauses are permitted in a single ALTER statement, separated by commas.

Edge type name

edge_type_name specifies the edge type name that you want to alter. You can alter only one edge type in one statement. Before you

alter an edge type, make sure that the edge type exists in the graph space. If the edge type does not exist, an error occurs when

you alter it.

Example

Implementation of the operation

Nebula Graph implements the alteration asynchronously in the next heartbeat cycle. Before the process finishes, the alteration

does not take effect. To make sure the alteration is successful, take the following approaches:

Use DESCRIBE EDGE to confirm that the edge information is updated. If it is not, wait a few seconds and try again.

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

ALTER EDGE <edge_type_name>
 <alter_definition> [, alter_definition] ...]
 [ttl_definition [, ttl_definition] ...]

alter_definition:
| ADD (prop_name data_type)
| DROP (prop_name)
| CHANGE (prop_name data_type)

ttl_definition:
 TTL_DURATION = ttl_duration, TTL_COL = prop_name

nebula> CREATE EDGE e1(p1 string, p2 int);
nebula> ALTER EDGE e1 ADD (p3 int, p4 string);
nebula> ALTER EDGE e1 TTL_DURATION = 2, TTL_COL = "p2";

•

•

Last update: March 19, 2021

4.10.3 ALTER EDGE

- 175/287 - 2021 Vesoft Inc.

4.10.4 SHOW EDGES

SHOW EDGES shows all edge types in the current graph space. You do not need any privileges for the graph space to run this

statement. But the returned results are different based on role privileges. To show edge types in a specific graph space, you must

use the graph space first.

Examples

SHOW EDGES

nebula> SHOW EDGES;
+----------+
| Name |
+----------+
| "follow" |
+----------+
| "serve" |
+----------+
Got 2 rows (time spent 1039/1687 us)

Last update: March 19, 2021

4.10.4 SHOW EDGES

- 176/287 - 2021 Vesoft Inc.

4.10.5 DESCRIBE EDGE

DESCRIBE EDGE returns information about an edge type with the given name in a graph space. You must have the read Schema

privilege for the graph space. To describe an edge type in a specific graph space, you must use the graph space first. You can use

DESC instead of DESCRIBE for short.

DESCRIBE EDGE is different from SHOW EDGE . For details about SHOW EDGE , see SHOW EDGE.

Example

Get information about an edge type named follow .

DESC[RIBE] EDGE <edge_type_name>

nebula> DESCRIBE EDGE follow;

+----------+---------+-------+-----------+
| Field | Type | Null | Default |
+----------+---------+-------+-----------+
| "degree" | "int64" | "YES" | __EMPTY__ |
+----------+---------+-------+-----------+

Last update: March 19, 2021

4.10.5 DESCRIBE EDGE

- 177/287 - 2021 Vesoft Inc.

4.11 Vertex statements

4.11.1 INSERT VERTEX

The INSERT VERTEX statement inserts one or more vertices into a graph space in Nebula Graph.

When inserting a vertex with a VID that already exists, INSERT VERTEX overrides the vertex.

Syntax

tag_name denotes the tag (vertex type), which must be created before INSERT VERTEX .

prop_name_list contains the names of the properties on the tag.

VID is the vertex ID. In Nebula Graph 2.X, string and integer VID types are supported. The VID type is set when a graph

space is created. For detail information on the maximum VID length, see CREATE SPACE.

prop_value_list must provide the property values according to the prop_name_list . If the property values do not match the

data type in the tag, an error is returned. When the NOT NULL constraint is set for a given property, an error is returned if no

property is given. When the default value for a property is NULL , you can omit to specify the property value. For details, see

CREATE TAG.

Examples

A vertex can be inserted/written multiple times. Only the last written values can be read.

INSERT VERTEX <tag_name> (<prop_name_list>) [, <tag_name> (<prop_name_list>), ...]
 {VALUES | VALUE} VID: (<prop_value_list>[, <prop_value_list>])

prop_name_list:
 [prop_name [, prop_name] ...]

prop_value_list:
 [prop_value [, prop_value] ...]

•

•

•

•

nebula> CREATE TAG t1(); -- Create tag t1 with no property
nebula> INSERT VERTEX t1() VALUE "10":(); -- Insert vertex "10" with no property

nebula> CREATE TAG t2 (name string, age int); -- Create tag t2 with two properties
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n1", 12); -- Insert vertex "11" with two properties
nebula> INSERT VERTEX t2 (name, age) VALUES "12":("n1", "a13"); -- Failed. "a13" is not int
nebula> INSERT VERTEX t2 (name, age) VALUES "13":("n3", 12), "14":("n4", 8); -- Insert two vertices

nebula> CREATE TAG t3(p1 int);
nebula> CREATE TAG t4(p2 string);
nebula> INSERT VERTEX t3 (p1), t4(p2) VALUES "21": (321, "hello"); -- Insert vertex "21" with two tags.

// Insert vertex "11" with the new values.
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n2", 13);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n3", 14);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n4", 15);

// Only the last version can be read
nebula> FETCH PROP ON t2 "11";
+---------------------------------+
| vertices_ |
+---------------------------------+
| ("11" :t2{age: 15, name: "n4"}) |
+---------------------------------+

nebula> CREATE TAG t5(p1 fixed_string(5) NOT NULL, p2 int, p3 int DEFAULT NULL);
nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "001":("Abe", 2, 3);
nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "002":(NULL, 4, 5);
[ERROR (-8)]: Storage Error: The not null field cannot be null.
nebula> INSERT VERTEX t5(p1, p2) VALUES "003":("cd", 5);

// The value for p3 is the default NULL.
nebula> FETCH PROP ON t5 "003";
+--+
| vertices_ |
+--+
| ("003" :t5{p1: "cd", p2: 5, p3: __NULL__}) |

4.11 Vertex statements

- 178/287 - 2021 Vesoft Inc.

+--+
nebula> INSERT VERTEX t5(p1, p2) VALUES "004":("shalalalala", 4);

// The allowed maximum length for property p1 is 5.
nebula> FETCH PROP on t5 "004";
+---+
| vertices_ |
+---+
| ("004" :t5{p1: "shala", p2: 4, p3: __NULL__}) |
+---+

Last update: April 13, 2021

4.11.1 INSERT VERTEX

- 179/287 - 2021 Vesoft Inc.

4.11.2 DELETE VERTEX

Use DELETE VERTEX to delete vertices and the related incoming and outgoing edges of the vertices. The DELETE VERTEX statement

deletes one vertex or multiple vertices at a time. You can use DELETE VERTEX together with pipe. For more information about pipe,

see Pipe operator.

Examples

This query deletes the vertex whose ID is "team1".

This query shows that you can use DELETE VERTEX together with pipe.

Nebula Graph traverses the incoming and outgoing edges related to the vertices and deletes them all. Then Nebula Graph

deletes information related to the vertices.

NOTE: Atomic operation is not guaranteed during the entire process for now, so please retry when a failure occurs.

DELETE VERTEX <vid> [, <vid> ...]

nebula> DELETE VERTEX "team1";

nebula> GO FROM "player100" OVER serve YIELD serve._dst AS id | DELETE VERTEX $-.id;

Last update: February 4, 2021

4.11.2 DELETE VERTEX

- 180/287 - 2021 Vesoft Inc.

4.11.3 UPDATE VERTEX

Use UPDATE VERTEX to update properties on a vertex. The UPDATE VERTEX statement only updates one tag of a vertex at a time.

Nebula Graph supports compare-and-set (CAS) operation.

NOTE: WHEN and YIELD are optional.

vid is the ID of the vertex to be updated.

update_columns is the properties of the vertex to be updated. For example, tag1.col1 = $^.tag2.col2 + 1 means to update

tag1.col1 to tag2.col2+1 .

NOTE: $^ indicates the vertex to be updated.

condition is some constraints. Only when the constraints are met, UPDATE is executed successfully. condition supports

expression operations.

columns is the columns to be returned. YIELD returns the latest updated values.

Consider the following example:

UPDATE VERTEX <vid> SET <update_columns>
[WHEN <condition>] [YIELD <columns>]

•

•

•

•

nebula> UPDATE VERTEX "player100" \
 SET player.age = $^.player.age + 1 \
 WHEN $^.player.name == "Tim Duncan" \
 YIELD $^.player.name AS name, $^.player.age AS age;
+--------------+-----+
| name | age |
+--------------+-----+
| "Tim Duncan" | 43 |
+--------------+-----+

Last update: March 16, 2021

4.11.3 UPDATE VERTEX

- 181/287 - 2021 Vesoft Inc.

4.11.4 UPSERT VERTEX

vid is the ID of the vertex to be updated.

update_columns is the properties of the vertex to be updated. For example, tag1.col1 = $^.tag2.col2 + 1 means to update

tag1.col1 to tag2.col2+1 .

NOTE: $^ indicates the vertex to be updated.

condition is some constraints. Only when the conditions are met, UPSERT is executed successfully. condition supports

expression operations.

columns is the columns to be returned, YIELD returns the latest updated values.

UPSERT is a combination of UPDATE and INSERT . Use UPSERT VERTEX to update properties on a vertex if it exists or insert a new

vertex if it does not exist. The UPDATE VERTEX statement only updates one tag of a vertex at a time.

The performance of UPSERT is much lower than that of INSERT , because UPSERT is a read-modify-write serialization operation at

the partition level.

DON'T: DO NOT use UPSERT for scenarios with highly concurrent writes.

If the vertex does not exist, a new vertex is created no matter whether the condition in the WHEN clause is met or not. The

property columns not specified by the SET statement use the default values of the columns. If there are no default values, an

error is returned.

If the vertex exists and the WHEN condition is met, the vertex is updated.

If the vertex exists and the WHEN condition is not met, Nebula Graph does nothing.

Consider the following example:

If the vertex "player123" does not exist and the default value of age is NULL , the player.age of vertex "player123" is NULL . If

player.age has a default value, the player.age of vertex "player123" is the default value plus one.

UPSERT VERTEX <vid> SET <update_columns> [WHEN <condition>] [YIELD <columns>]

•

•

•

•

•

•

•

nebula> INSERT VERTEX player(name, age) VALUES "player111":("Ben Simmons", 22); -- Insert a new vertex.
nebula> UPSERT VERTEX "player111" SET player.name = "Dwight Howard", player.age = $^.player.age + 11 WHEN $^.player.name == "Ben Simmons" AND $^.player.age >
20 YIELD $^.player.name AS Name, $^.player.age AS Age; -- Do an upsert operation on the vertex.

+-----------------+-----+
| Name | Age |
+-----------------+-----+
| "Dwight Howard" | 33 |
+-----------------+-----+

// An empty set is returned. Because vertex "player123" does not exist.
nebula> FETCH PROP ON * "player123";
Empty set (Time spent: 3.069/4.382 ms)
nebula> UPSERT VERTEX "player123" SET player.age = $^.player.age + 1;

nebula> CREATE TAG person(followers int, age int DEFAULT 0); -- Create example tag person

nebula> UPSERT VERTEX "300" SET person.followers = $^.person.age + 1, person.age = 8; -- the number of followers is 1, age is 8

nebula> UPSERT VERTEX "300" SET person.age = 8, person.followers = $^.person.age + 1; -- the number of followers is 9, age is 8

Last update: February 4, 2021

4.11.4 UPSERT VERTEX

- 182/287 - 2021 Vesoft Inc.

4.12 Edge statements

4.12.1 INSERT EDGE

The INSERT EDGE statement inserts an edge from a source vertex (given by src_vid) to a destination vertex (given by dst_vid) with

a specific rank.

When inserting an edge that already exists, INSERT VERTEX overrides the edge.

Syntax

<edge_type> denotes the edge type, which must be created before INSERT EDGE . Only one edge type can be specified in this

statement.

<prop_name_list> is the property name list in the given <edge_type> .

<prop_value_list> must provide the value list according to <prop_name_list> . If the property values do not match the data

type in the edge type, an error is returned. When the NOT NULL constraint is set for a given property, an error is returned if

no property is given. When the default value for a property is NULL , you can omit to specify the property value.

rank is optional. It specifies the edge rank of the same edge type. If not specified, the default value is 0. You can insert many

edges with the same edge type for two vertices by using different rank values.

OpenCypher compatibility: OpenCypher has no such a concept as rank.

Examples

An edge can be inserted/written multiple times. Only the last written values can be read.

INSERT EDGE <edge_type> (<prop_name_list>) {VALUES | VALUE}
<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)
[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>), ...]

<prop_name_list> ::=
 [<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=
 [<prop_value> [, <prop_value>] ...]

•

•

•

•

nebula> CREATE EDGE e1(); -- create edge type t1 with empty property
nebula> INSERT EDGE e1 () VALUES "10"->"11":(); -- insert an edge from vertex "10" to vertex "11" with empty property
nebula> INSERT EDGE e1 () VALUES "10"->"11"@1:(); -- insert an edge from vertex "10" to vertex "11" with empty property, the edge rank is 1

nebula> CREATE EDGE e2 (name string, age int); -- create edge type e2 with two properties
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 1); -- insert edge from "11" to "13" with two properties
nebula> INSERT EDGE e2 (name, age) VALUES \
"12"->"13":("n1", 1), "13"->"14":("n2", 2); -- insert two edges
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", "a13"); -- ERROR. "a13" is not int

-- insert edge with the new values.
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 12);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 13);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 14);

// Only the last write can be read
nebula> FETCH PROP ON e2 "11"->"13";
+---+
| edges_ |
+---+
| [:e2 "11"->"13" @0 {age: 14, name: "n1"}] |
+---+

Last update: April 13, 2021

4.12 Edge statements

- 183/287 - 2021 Vesoft Inc.

4.12.2 DELETE EDGE

Use DELETE EDGE to delete edges. The DELETE EDGE statement deletes one edge or multiple edges at a time. You can use DELETE

EDGE together with pipe. For more information about pipe, see Pipe operator.

Examples

This query deletes the serve edge from "player100" to "team200" , of which the rank value is 0.

This query shows that you can use DELETE EDGE together with pipe. This query first traverses all the follow edges with different

rank values from "player100" to "team200" then deletes them.

To delete all the outgoing edges for a vertex, delete the vertex. For more information, see DELETE VERTEX.

NOTE: Atomic operation is not guaranteed during the entire process for now, so please retry when a failure occurs.

DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <edge_type> <src_vid> -> <dst_vid>[@<rank>] ...]

nebula> DELETE EDGE serve "player100" -> "team200"@0;

nebula> GO FROM "player100" OVER follow WHERE follow._dst == "team200" YIELD follow._src AS src, follow._dst AS dst, follow._rank AS rank | \
DELETE EDGE follow $-.src->$-.dst @ $-.rank;

Last update: November 24, 2020

4.12.2 DELETE EDGE

- 184/287 - 2021 Vesoft Inc.

4.12.3 UPDATE EDGE

Use UPDATE EDGE to update properties on an edge. The UPDATE EDGE statement only updates one edge at a time.

Nebula Graph supports compare-and-set (CAS).

NOTE: WHEN and YIELD are optional.

update_properties is the properties of the edge to be updated. For example, e1.col1 = $^.e1.col2 + 1 means to update

e1.col1 to e1.col2+1 .

NOTE: $^ indicates the edge to be updated.

condition is some constraints. Only when the condition is met, UPDATE is executed successfully. condition supports

expression operations.

properties is the properties to be returned, YIELD returns the latest updated values.

Consider the following example:

UPDATE EDGE <src_vid> -> <dest_vid> [@<rank>] OF <edge_type> SET <update_properties> [WHEN <condition>] [YIELD <properties>]

•

•

•

nebula> UPDATE EDGE "player100" -> "team204"@0 \
 OF serve \
 SET start_year = start_year + 1;

Last update: March 16, 2021

4.12.3 UPDATE EDGE

- 185/287 - 2021 Vesoft Inc.

4.12.4 UPSERT EDGE

update_properties is the properties of the edge to be updated. For example, e1.col1 = $^.e1.col2 + 1 means to update

e1.col1 to e1.col2+1 .

NOTE: $^ indicates the edge to be updated.

condition is some constraints. Only when the condition is met, UPSERT is executed successfully. condition supports

expression operations.

properties specifies the properties to be returned, YIELD returns the latest updated values.

UPSERT is a combination of UPDATE and INSERT . Use UPSERT EDGE to update properties on an edge if it exists or insert a new edge

if it does not exist. The UPDATE EDGE statement updates only one edge at a time.

The performance of UPSERT is much lower than that of INSERT , because UPSERT is a read-modify-write serialization operation at

the partition level.

DON'T: DO NOT use UPSERT for scenarios with highly concurrent writes.

If the edge does not exist, a new edge is created no matter whether the condition in the WHEN clause is met or not. The

properties not specified by the SET statement use the default property values. If there are no default values, an error is

returned.

If the edge exists and the WHEN condition is met, the edge is updated.

If the edge exists and the WHEN condition is not met, Nebula Graph does nothing.

Consider the following example:

UPSERT EDGE <src_vid> -> <dst_vid> [@rank] OF <edge_type> SET <update_properties> [WHEN <condition>] [YIELD <properties>]

•

•

•

•

•

•

//Insert a new edge.
nebula> INSERT EDGE serve(start_year, end_year) VALUES "player100" -> "team200":(1997, 2016); --

nebula> UPSERT EDGE "player100" -> "team200" OF serve SET start_year = serve.start_year + 2 WHEN serve.end_year == 2016 YIELD serve.start_year AS Start,
serve.end_year AS End;
+-------+------+
| Start | End |
+-------+------+
| 1999 | 2016 |
+-------+------+

nebula> FETCH PROP ON serve "player100" -> "team200";
+---+
| edges_ |
+---+
| [:serve "player100"->"team200" @0 {end_year: 2016, start_year: 1999}] |
+---+

Last update: January 26, 2021

4.12.4 UPSERT EDGE

- 186/287 - 2021 Vesoft Inc.

4.13 Native index statements

4.13.1 CREATE INDEX

Use CREATE INDEX to add native indexes for existing tags, edge types or properties.

NOTE: For how to create text-based indexes, see Deploy full-text index.

Most graph queries start the traversal from a list of vertices or edges that are identified by their properties. Indexes make these

global retrieval operations efficient on large graphs.

Prerequisites

Before you create an index, make sure that the relative tag or edge type is created. For how to create tags or edge types, see

CREATE TAG and CREATE EDGE.

Must-read for using index

Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance

reduction can be as much as 90% or even more. DO NOT use indexes in production environments unless you are fully aware of

their influences on your service.

If you must use indexes, we suggest that you:

Import data into Nebula Graph.

Create indexes.

Rebuild the indexes.

The preceding workflow minimizes the negative influences of using indexes.

Syntax

index_name : The name of the index. It must be unique in a graph space. A recommended way of naming is

i_tagName_propName .

IF NOT EXISTS : Creating an existent index results in an error. You can use the IF NOT EXISTS option to conditionally create

the index and avoid the error.

prop_name_list :

To index a variable string property, you must use the prop_name(length) syntax to specify an index length.

NOTE: Long indexes decrease the scan performance of the Storage Service and use more memory. We suggest that

you set the indexing length the same as that of the longest string to be indexed. The longest indexing length is 255.

Strings longer than 255 are truncated.

To index a fixed-length string property, you must use the prop_name syntax, and the index length is the string length you

set.

To index a tag or an edge type, ignore the prop_name_list in the parentheses.

DON'T: DO NOT index a tag or an edge type if you have indexed any properties in the tag or edge type.

1.

2.

3.

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name> ON {<tag_name> | <edge_name>} ([prop_name_list])

•

•

•

•

•

•

4.13 Native index statements

- 187/287 - 2021 Vesoft Inc.

Implementation of the operation

Nebula Graph implements the creation of the index asynchronously in the next heartbeat cycle. To make sure the creation is

successful, take one of the following approaches:

Find the new index in the result of SHOW TAG/EDGE INDEXES .

Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the [configuration files] for all services.

Create tag/edge type indexes

The following statement creates an index on the player tag.

The following statement creates indexes on the edge type like .

After indexing a tag or an edge type, you can use the LOOKUP statement to retrieve the VID of all vertices with the tag, or the

source vertex ID, destination vertex ID, and ranks of all edges with the edge type. For more information, see List vertices or

edges with a tag or an edge type.

Create single-property indexes

The preceding statement creates an index for the name property on all vertices carrying the player tag. This statement creates

an index using the first 10 characters of the name property.

The preceding statement creates an index for the degree property on all edges carrying the follow edge type.

Create composite property indexes

An index on multiple properties is called a composite index.

NOTE: Creating index across multiple tags is not supported.

Consider the following example:

This statement creates a composite index for the name and age property on all vertices carrying the player tag.

Using index

After the index is created and data is inserted, you can use the LOOKUP statement to query the data.

You do not need to specify which indexes to use in a query, Nebula Graph figures that out by itself.

•

•

nebula> CREATE TAG INDEX player_index on player();

nebula> CREATE EDGE INDEX like_index on like();

nebula> CREATE TAG INDEX player_index_0 on player(name(10));

nebula> CREATE TAG var_string(p1 string);
nebula> CREATE TAG INDEX var ON var_string(p1(10));

nebula> CREATE TAG fix_string(p1 FIXED_STRING(10));
nebula> CREATE TAG INDEX fix ON fix_string(p1);

nebula> CREATE EDGE INDEX follow_index_0 on follow(degree);

nebula> CREATE TAG INDEX player_index_1 on player(name(10), age);

Last update: April 13, 2021

4.13.1 CREATE INDEX

- 188/287 - 2021 Vesoft Inc.

4.13.2 Show INDEXES

Use SHOW INDEXES to list the defined tag or edge type indexes names.

Example

SHOW {TAG | EDGE} INDEXES

nebula> SHOW TAG INDEXES;
+------------------+
| Names |
+------------------+
| "fix" |
+------------------+
| "player_index_0" |
+------------------+
| "player_index_1" |
+------------------+
| "var" |
+------------------+

nebula> SHOW EDGE INDEXES;
+------------------+
| Names |
+------------------+
| "follow_index_0" |
+------------------+

Last update: December 16, 2020

4.13.2 Show INDEXES

- 189/287 - 2021 Vesoft Inc.

4.13.3 SHOW CREATE INDEX

SHOW CREATE INDEX shows the statement that an index was created with. You can find the detailed information of the index, such

as the property that the index is created for.

Syntax

Examples

You can run SHOW TAG INDEXES to list all tag indexes, and then use SHOW CREATE TAG INDEX to show how a tag index was created.

Edge indexes can be queried through a similar approach:

SHOW CREATE {TAG | EDGE} INDEX <index_name>;

nebula> SHOW TAG INDEXES;
+------------------+
| Names |
+------------------+
| "player_index_0" |
+------------------+
| "player_index_1" |
+------------------+

nebula> SHOW CREATE TAG INDEX player_index_1;
+------------------+--+
| Tag Index Name | Create Tag Index |
+------------------+--+
"player_index_1"	"CREATE TAG INDEX `player_index_1` ON `player` (
	`name(20)`
)"
+------------------+--+

nebula> SHOW EDGE INDEXES;
+----------------+
| Names |
+----------------+
| "index_follow" |
+----------------+

nebula> SHOW CREATE EDGE INDEX index index_follow;
+-----------------+---+
| Edge Index Name | Create Edge Index |
+-----------------+---+
"index_follow"	"CREATE EDGE INDEX `index_follow` ON `follow` (
	`degree`
)"
+-----------------+---+

Last update: March 29, 2021

4.13.3 SHOW CREATE INDEX

- 190/287 - 2021 Vesoft Inc.

4.13.4 DESCRIBE INDEX

Use DESCRIBE INDEX to get information about the index. DESCRIBE INDEX returns the following columns:

Field

The property name. - Type

The property type.

Example

DESCRIBE {TAG | EDGE} INDEX <index_name>

•

nebula> DESCRIBE TAG INDEX player_index_0;
+--------+--------------------+
| Field | Type |
+--------+--------------------+
| "name" | "fixed_string(30)" |
+--------+--------------------+

nebula> DESCRIBE TAG INDEX player_index_1;
+--------+--------------------+
| Field | Type |
+--------+--------------------+
| "name" | "fixed_string(10)" |
+--------+--------------------+
| "age" | "int64" |
+--------+--------------------+

Last update: December 16, 2020

4.13.4 DESCRIBE INDEX

- 191/287 - 2021 Vesoft Inc.

4.13.5 REBUILD INDEX

Use REBUILD INDEX to rebuild the created tag or edge type index. For details on how to create an index, see CREATE INDEX.

Multiple indexes are permitted in a single REBUILD statement, separated by commas. When the index name is not specified, all

tag or edge indexes are rebuilt.

If the index is created before data insertion, there is no need to rebuild the index. If data is updated or newly inserted before the

index creation, you need to rebuild the indexes to make sure that the indexes contain the previously added data.

NOTE: During the rebuilding, all queries skip the index and perform sequential scans. This means that the return results can

be different because not all the data is indexed during rebuilding.

After rebuilding is complete, you can use the SHOW {TAG | EDGE} INDEX STATUS command to check if the index is successfully

rebuilt. For details on index status, see SHOW INDEX STATUS.

Example

Nebula Graph creates a job to rebuild the index. The job ID is displayed in the preceding return message. To check if the

rebuilding process is complete, use the SHOW JOB <job_id> statement. For more information, see SHOW JOB.

Legacy version compatibility

In Nebula Graph 2.x, the OFFLINE options is no longer needed and not supported.

REBUILD {TAG | EDGE} INDEX [<index_name_list>]

<index_name_list>::=
 [index_name [, index_name] ...]

nebula> CREATE TAG person(name string, age int, gender string, email string);
Execution succeeded (Time spent: 10.051/11.397 ms)

nebula> CREATE TAG INDEX single_person_index ON person(name(10));
Execution succeeded (Time spent: 2.168/3.379 ms)

nebula> REBUILD TAG INDEX single_person_index;
+------------+
| New Job Id |
+------------+
| 66 |
+------------+

nebula> SHOW TAG INDEX STATUS;

Last update: March 25, 2021

4.13.5 REBUILD INDEX

- 192/287 - 2021 Vesoft Inc.

4.13.6 SHOW INDEX STATUS

SHOW INDEX STATUS returns the created tag or edge type index status. For details on how to create index, see CREATE INDEX.

SHOW INDEX STATUS returns the following fields:

Name

The index name.

Index Status

Index Status includes QUEUE , RUNNING , FINISHED , FAILED , STOPPED , INVALID .

Example

SHOW {TAG | EDGE} INDEX STATUS

•

•

nebula> SHOW TAG INDEX STATUS;
+----------------------+--------------+
| Name | Index Status |
+----------------------+--------------+
| "player_index_0" | "FINISHED" |
+----------------------+--------------+
| "player_index_1" | "FINISHED" |
+----------------------+--------------+

Last update: December 16, 2020

4.13.6 SHOW INDEX STATUS

- 193/287 - 2021 Vesoft Inc.

4.13.7 DROP INDEX

The DROP INDEX statement removes an existing index from the current graph space. Removing a nonexistent index results in an

error. You can use the IF EXISTS option to conditionally drop the index and avoid the error. To run this statement you need some

privilege. For information about the built-in roles in Nebula Graph, see Built-in roles.

Example

This query drops a tag index names player_index_0 .

DROP {TAG | EDGE} INDEX [IF EXISTS] <index_name>

nebula> DROP TAG INDEX player_index_0;

Last update: March 19, 2021

4.13.7 DROP INDEX

- 194/287 - 2021 Vesoft Inc.

4.14 Full-text index statements

4.14.1 Index overview

Indexes are built to fast process graph queries. Nebula Graph supports two kinds of indexes: native indexes and full-text indexes.

This topic introduces the index types and helps choose the right index.

Native indexes

Native indexes allow querying data based on a given property. There are two kinds of native indexes: tag index and edge type

index. Native indexes must be updated manually. You can use the REBUILD INDEX statement to update native indexes. Native

indexes support indexing multiple properties on a tag or an edge type (composite indexes), but do not support indexing across

multiple tags or edge types.

You can do partial match search by using composite indexes. Use composite indexes only for partial match searches when the

declared fields in the composite index are used from left to right. For more information, see LOOKUP FAQ.

String operators like CONTAINS and STARTS WITH are not allowed in native index searching. Use full-text indexes to do fuzzy

search.

OPERATIONS ON NATIVE INDEXES

You can do the following operations against native indexes:

Create index

Show index

Describe index

Rebuild index

Show index status

Drop index

Query index

Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property. Full-text indexes allow indexing

just one property. Only strings within a specified length (no longer than 256 bytes) are indexed. Full-text indexes do not support

logical operations such as AND , OR and NOT . To do complete text match, use native indexes.

OPERATIONS ON FULL-TEXT INDEXES

Before doing any operations on full-text indexes, please mak sure that you deploy full-text indexes. Details on full-text indexes

deployment, see Deploy Elasticsearch and Deploy Listener. At this time, full-text indexes are created automatically on the

Elasticsearch cluster. And rebuilding or altering full-text indexes are not supported. To drop full-text indexes, you need to drop

them on the Elasticsearch cluster manually. To query full-text indexes, see Search with full-text indexes.

Null values

Indexes do not support indexing null values at this time.

Range queries

In addition to querying single results from native indexes, you can also do range queries. Not all the native indexes support

range queries. You can only do range search for numeric, date, and time type properties.

•

•

•

•

•

•

•

4.14 Full-text index statements

- 195/287 - 2021 Vesoft Inc.

Last update: December 16, 2020

4.14.1 Index overview

- 196/287 - 2021 Vesoft Inc.

4.14.2 Full-text index restrictions

This document holds the restrictions for full-text indexes. Please read the restrictions very carefully before using the full-text

indexes. For now, full-text search has the following limitations:

The maximum indexing string length is 256 bytes. The part of data that exceeds 256 bytes will not be indexed.

Full-text index can not be applied to more than one property at a time (similar to a composite index).

The WHERE clause in full-text search statement LOOKUP does not support logical expressions AND and OR .

Full-text index can not be applied to multiple tags search.

Sorting for the returned results of the full-text search is not supported. Data is returned in the order of data insertion.

Full-text index can not search the null properties.

Rebuilding or altering Elasticsearch indexes is not supported at this time.

Pipe is not supported in the LOOKUP statement, excluding the examples in our document.

Full-text search only works on single terms.

Full-text indexes are not deleted together with the graph space.

Make sure that you start the Elasticsearch cluster and Nebula Graph at the same time. If not, the data writing on the

Elasticsearch cluster can be incomplete.

Do not contain ' or \ in the vertex or edge values. If not, a error is caused in the Elasticsearch cluster storage.

It may take a while for Elasticsearch to create indexes. If Nebula Graph warns no index is found, wait for the index to take

effect.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Last update: May 6, 2021

4.14.2 Full-text index restrictions

- 197/287 - 2021 Vesoft Inc.

4.14.3 Deploy full-text index

Nebula Graph full-text indexes are powered by Elasticsearch. This means that you can use Elasticsearch full-text query language

to retrieve what you want. Full-text indexes are managed through built-in procedures. They can be created only for variable

STRING and FIXED_STRING properties when the listener cluster and the Elasticsearch cluster are deployed.

Before you start

Before you start using the full-text index, please make sure that you know the restrictions.

Deploy Elasticsearch cluster

To deploy an Elasticsearch cluster, see the Elasticsearch documentation.

When the Elasticsearch cluster is started, add the template file for the Nebula Graph full-text index. Take the following sample

template for example:

Make sure that you specify the following fields in strict accordance with the preceding template format:

You can configure the Elasticsearch to meet your business needs. To customize the Elasticsearch, see Elasticsearch Document.

Sign in to the text search clients

When the Elasticsearch cluster is deployed, use the SIGN IN statement to sign in to the Elasticsearch clients. Multiple

elastic_ip:port pairs are separated with commas. You must use the IPs and the port number in the configuration file for the

Elasticsearch. For example:

Elasticsearch does not have username or password by default. If you configured a username and password, you need to specify in

the SIGN IN statement.

Show text search clients

Use the SHOW TEXT SEARCH CLIENTS statement to list the text search clients. For example:

{
 "template": "nebula*",
 "settings": {
 "index": {
 "number_of_shards": 3,
 "number_of_replicas": 1
 }
 },
 "mappings": {
 "properties" : {
 "tag_id" : { "type" : "long" },
 "column_id" : { "type" : "text" },
 "value" :{ "type" : "keyword"}
 }
 }
}

"template": "nebula*"
"tag_id" : { "type" : "long" },
"column_id" : { "type" : "text" },
"value" :{ "type" : "keyword"}

SIGN IN TEXT SERVICE [(<elastic_ip:port> [,<username>, <password>]), (<elastic_ip:port>), ...]

nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200);

SHOW TEXT SEARCH CLIENTS

nebula> SHOW TEXT SEARCH CLIENTS;
+-------------+------+
| Host | Port |
+-------------+------+

4.14.3 Deploy full-text index

- 198/287 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html

Sign out to the text search clients

Use the SIGN OUT TEXT SERVICE to sign out all the text search clients. For example:

| "127.0.0.1" | 9200 |
+-------------+------+
| "127.0.0.1" | 9200 |
+-------------+------+
| "127.0.0.1" | 9200 |
+-------------+------+

SIGN OUT TEXT SERVICE

nebula> SIGN OUT TEXT SERVICE;

Last update: December 17, 2020

4.14.3 Deploy full-text index

- 199/287 - 2021 Vesoft Inc.

4.14.4 Deploy Raft Listener for Nebula Storage service

Full-Text index data is written to the Elasticsearch cluster asynchronously. The Raft Listener (hereinafter shortened as Listener)

is a separate process that fetches data from the Storage Service and writes them into the Elasticsearch cluster.

Prerequisites

You have read and fully understand the restrictions for using Full-Text indexes.

You have deployed a Nebula Graph cluster.

You have prepared at least one extra Storage Server. To use the Full-Text search, you must run one or more Storage Server

as the Raft Listener.

Precautions

The Storage Service that you want to run as a Listener must have the same or later version with all the other Nebula Graph

services in the cluster.

For now, you can only add Listeners to a graph space once and for all. Trying to add listeners to a graph space that already

has a listener will fail. To add multiple listeners, set them in one statement.

Step 1: Prepare the configuration file for the Listeners

You have to prepare a Listener configuration file on the machine that you want to deploy the Listeners. The file name must be

nebula-storaged-listener.conf . A template is provided for your reference.

NOTE: Use real IP addresses in the configuration file instead of domain names or loopback IP addresses such as 127.0.0.1 .

Step 2: Start the Listeners

Run the following command to start the Listeners.

${listener_config_path} is the path where you store the Listener configuration file.

Step 3: Add Listeners to Nebula Graph

Connect to Nebula Graph and run USE <space> to enter the graph space that you want to create Full-Text indexes for. Then run

the following statement to add the Listener into Nebula Graph.

NOTE: You must use real IPs for the listeners.

Multiple listener_ip:port pairs are separated with commas. For example:

Show Listeners

Run the SHOW LISTENER statement to list the Listeners.

For example:

•

•

•

•

•

./bin/nebula-storaged --flagfile ${listener_config_path}/nebula-storaged-listener.conf

ADD LISTENER ELASTICSEARCH <listener_ip:port> [,<listener_ip:port>, ...]

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:46780,192.168.8.6:46780;

nebula> SHOW LISTENER;
+--------+-----------------+-----------------------+----------+
| PartId | Type | Host | Status |
+--------+-----------------+-----------------------+----------+

4.14.4 Deploy Raft Listener for Nebula Storage service

- 200/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-storage/blob/master/conf/nebula-storaged-listener.conf.production

Remove Listeners

Run the REMOVE LISTENER ELASTICSEARCH statement to remove all the Elasticsearch Listeners for a graph space.

For example:

What to do next

After deploying the Elasticsearch cluster and the Listeners, Full-Text indexes are created automatically on the Elasticsearch

cluster. You can do Full-Text search now. For more information, see Full-Text search.

| 1 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |
+--------+-----------------+-----------------------+----------+
| 2 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |
+--------+-----------------+-----------------------+----------+
| 3 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |
+--------+-----------------+-----------------------+----------+

nebula> REMOVE LISTENER ELASTICSEARCH;

Last update: April 1, 2021

4.14.4 Deploy Raft Listener for Nebula Storage service

- 201/287 - 2021 Vesoft Inc.

4.14.5 Full-text search

PREFIX(schema_name.prop_name, prefix_string, row_limit, timeout)

WILDCARD(schema_name.prop_name, wildcard_string, row_limit, timeout)

REGEXP(schema_name.prop_name, regexp_string, row_limit, timeout)

FUZZY(schema_name.prop_name, fuzzy_string, fuzziness, operator, row_limit, timeout)

fuzziness (optional): Maximum edit distance allowed for matching. The default value is AUTO . For other valid values and

more information, see Elasticsearch document.

operator (optional): Boolean logic used to interpret text. Valid values are OR (default) and AND .

row_limit (optional): Specifies the number of rows to return. The default value is 100.

timeout (optional): Specifies the timeout time. The default value is 200ms.

Use the LOOKUP ON statement to do full-text search. The search string is specified in the WHERE clause. Before doing a full-text

search, make sure that you deployed a Elasticsearch cluster and a Listener cluster. For more information, see Deploy

Elasticsearch and Deploy Listener.

Before you start

Before you start using the full-text index, please make sure that you know the restrictions.

Natural language full-text search

A natural language search interprets the search string as a phrase in natural human language. The search is case-insensitive.

Examples

LOOKUP ON {<tag> | <edge_type>} WHERE <expression> [YIELD <return_list>]

<expression> ::=
 PREFIX | WILDCARD | REGEXP | FUZZY

<return_list>
 <prop_name> [AS <prop_alias>] [, <prop_name> [AS <prop_alias>] ...]

•

•

•

•

•

•

•

•

nebula> CREATE SPACE basketballplayer (partition_num=3,replica_factor=1, vid_type=fixed_string(30));
nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200);
nebula> USE basketballplayer;
nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:46780;
nebula> CREATE TAG player(name string, age int);
nebula> CREATE TAG INDEX name ON player(name(20));
nebula> INSERT VERTEX player(name, age) VALUES \
 "Russell Westbrook": ("Russell Westbrook", 30), \
 "Chris Paul": ("Chris Paul", 33),\
 "Boris Diaw": ("Boris Diaw", 36),\
 "David West": ("David West", 38),\
 "Danny Green": ("Danny Green", 31),\
 "Tim Duncan": ("Tim Duncan", 42),\
 "James Harden": ("James Harden", 29),\
 "Tony Parker": ("Tony Parker", 36),\
 "Aron Baynes": ("Aron Baynes", 32),\
 "Ben Simmons": ("Ben Simmons", 22),\
 "Blake Griffin": ("Blake Griffin", 30);

nebula> LOOKUP ON player WHERE PREFIX(player.name, "B");
+-----------------+
| _vid |
+-----------------+
| "Boris Diaw" |
+-----------------+
| "Ben Simmons" |
+-----------------+
| "Blake Griffin" |
+-----------------+

nebula> LOOKUP ON player WHERE WILDCARD(player.name, "*ri*") YIELD player.name, player.age;
+-----------------+-----------------+-----+
| _vid | name | age |
+-----------------+-----------------+-----+
| "Chris Paul" | "Chris Paul" | 33 |

4.14.5 Full-text search

- 202/287 - 2021 Vesoft Inc.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/common-options.html#fuzziness

+-----------------+-----------------+-----+
| "Boris Diaw" | "Boris Diaw" | 36 |
+-----------------+-----------------+-----+
| "Blake Griffin" | "Blake Griffin" | 30 |
+-----------------+-----------------+-----+

nebula> LOOKUP ON player WHERE WILDCARD(player.name, "*ri*") | YIELD count(*);
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+

nebula> LOOKUP ON player WHERE REGEXP(player.name, "R.*") YIELD player.name, player.age;
+---------------------+---------------------+-----+
| _vid | name | age |
+---------------------+---------------------+-----+
| "Russell Westbrook" | "Russell Westbrook" | 30 |
+---------------------+---------------------+-----+

nebula> LOOKUP ON player WHERE REGEXP(player.name, ".*");
+---------------------+
| _vid |
+---------------------+
| "Danny Green" |
+---------------------+
| "David West" |
+---------------------+
| "Russell Westbrook" |
+---------------------+
...

nebula> LOOKUP ON player WHERE FUZZY(player.name, "Tim Dunncan", AUTO, OR) YIELD player.name;
+--------------+--------------+
| _vid | name |
+--------------+--------------+
| "Tim Duncan" | "Tim Duncan" |
+--------------+--------------+

Last update: April 13, 2021

4.14.5 Full-text search

- 203/287 - 2021 Vesoft Inc.

4.15 Subgraph and path

4.15.1 GET SUBGRAPH

The GET SUBGRAPH statement retrieves information of vertices and edges reachable from the start vertices over the specified types

of edges.

Syntax

When the traversal direction is not specified, both the incoming and outgoing edges are returned.

Examples

The following graph is used as the sample.

GET SUBGRAPH [<step_count> STEPS] FROM {<vid>, <vid>...}
[IN <edge_type>, <edge_type>...]
[OUT <edge_type>, <edge_type>...]
[BOTH <edge_type>, <edge_type>...]

Clause Description

STEPS Specifies the steps to go from the start vertices. A step_count must be a non-negative integer. Its default value

is 1. When <step_count> is specified to N , the Nebula Graph returns zero to N steps subgraph.

FROM Specifies the start vertices.

IN Gets the subgraphs from the start vertices over the specified incoming edges (edges pointing to the start

vertices).

OUT Gets the subgraphs from the start vertices over the specified outgoing edges (edges pointing out from the start

vertices).

BOTH Gets the subgraphs from the start vertices over the specified types of edges, both incoming and outgoing.

4.15 Subgraph and path

- 204/287 - 2021 Vesoft Inc.

Go one step from the vertex with VID "player100" over all types of edges and get the subgraph.

The returned subgraph is as follows.

•

nebula> GET SUBGRAPH 1 STEPS FROM "player100";
+--
+--+
| _vertices |
_edges |
+--
+--+
| [(player100) player.name:Tim,player.age:42] | [player100-[follow]-
>player101@0 degree:96,player100-[follow]->player102@0 degree:90,player100-[serve]->team200@0 end_year:2016,start_year:1997] |
+--
+--+
| [(player101) player.age:36,player.name:Tony Parker,(player102) player.age:33,player.name:LaMarcus Aldridge,(team200) team.name:Warriors] | [player102-
[follow]->player101@0 degree:75] |
+--
+--+
Got 2 rows (time spent 6289/7423 us)

4.15.1 GET SUBGRAPH

- 205/287 - 2021 Vesoft Inc.

Go one step from the vertex with VID "player100" over incoming follow edges and get the subgraph.

There is no incoming follow edge to "player100", so no vertex or edge is returned.

Go one step from the vertex "player100" over outgoing serve edges and get the subgraph.

The returned subgraph is as follows.

•

nebula> GET SUBGRAPH 1 STEPS FROM "player100" IN follow;
+-----------+--------+
| _vertices | _edges |
+-----------+--------+
| [] | [] |
+-----------+--------+
| [] | [] |
+-----------+--------+
Got 2 rows (time spent 2292/3091 us)

•

nebula> GET SUBGRAPH 1 STEPS FROM "player100" OUT serve;
+---+--+
| _vertices | _edges |
+---+--+
| [(player100) player.age:42,player.name:Tim] | [player100-[serve]->team200@0 start_year:1997,end_year:2016] |
+---+--+
| [(team200) team.name:Warriors] | [] |
+---+--+
Got 2 rows (time spent 2107/2547 us)

4.15.1 GET SUBGRAPH

- 206/287 - 2021 Vesoft Inc.

Last update: April 15, 2021

4.15.1 GET SUBGRAPH

- 207/287 - 2021 Vesoft Inc.

4.15.2 FIND PATH

The FIND PATH statement finds the paths between the selected source vertices and destination vertices.

SHORTEST finds the shortest path.

ALL finds all the paths.

<vertex_id_list> is a list of vertex IDs separated with commas (,). It supports $- and $var .

<edge_type_list> is a list of edge types separated with commas (,). * is all edge types.

<N> is the hop number. The default value is 5.

<M> specifies the maximum number of rows to return.

Limitations

When a list of source and/or destination vertex IDs are specified, the paths between any source vertices and the destination

vertices is returned.

There can be cycles when searching all paths.

FIND PATH does not support filtering with WHERE clauses.

FIND PATH does not support specifying a direction.

FIND PATH is a single-thread procedure, so it uses much memory.

If NOLOOP is not used, FIND PATH can retrieve paths containing cycles. If NOLOOP is used, FIND PATH can retrieve paths without

cycles.

Examples

In Nebula Console, a path is shown as vertex_id <edge_name, rank> vertex_id .

FIND { SHORTEST | ALL | NOLOOP } PATH FROM <vertex_id_list> TO <vertex_id_list>
OVER <edge_type_list> [REVERSELY | BIDIRECT] [UPTO <N> STEPS] [| ORDER BY $-.path] [| LIMIT <M>]

<vertex_id_list> ::=
 [vertex_id [, vertex_id] ...]

•

•

•

•

•

•

•

•

•

•

•

•

nebula> FIND SHORTEST PATH FROM "player102" TO "team201" OVER *;
+--+
| path |
+--+
| ("player102")-[:follow@0]->("player101")-[:serve@0]->("team201") |
+--+

nebula> FIND SHORTEST PATH FROM "team200" TO "player100" OVER * REVERSELY;
+---------------------------------------+
| path |
+---------------------------------------+
| ("team200")<-[:serve@0]-("player100") |
+---------------------------------------+

nebula> FIND ALL PATH FROM "player100" TO "team200" OVER *;
+---------------------------------------+
| path |
+---------------------------------------+
| ("player100")-[:serve@0]->("team200") |
+---------------------------------------+

nebula> FIND NOLOOP PATH FROM "player100" TO "team200" OVER *;
+---------------------------------------+
| path |
+---------------------------------------+
| ("player100")-[:serve@0]->("team200") |
+---------------------------------------+

Last update: April 1, 2021

4.15.2 FIND PATH

- 208/287 - 2021 Vesoft Inc.

4.16 Query tuning statements

4.16.1 EXPLAIN and PROFILE

EXPLAIN helps output the execution plan of an nGQL statement without executing the statement. PROFILE executes the statement,

then outputs the execution plan as well as the execution profile. You can optimize the queries for better performance with the

execution plan and profile.

Execution Plan

The execution plan is determined by the execution planner in the Nebula Graph query engine.

The execution planner processes the parsed nGQL statements into actions. An action is the smallest unit that can be executed. A

typical action fetches all neighbors of a given vertex, gets the properties of an edge, or filters vertices or edges based on the

given conditions. Each action is assigned to an operator that performs the action.

For example, a SHOW TAGS statement is processed into two actions and assigned to a Start operator and a ShowTags operator,

while a more complex GO statement may be processed into more than 10 actions and assigned to 10 operators.

Syntax

EXPLAIN

PROFILE

Output formats

The output of an EXPLAIN or a PROFILE statement has two formats, the default "row" format and the "dot" format. You can use the

format option to modify the output format. Omitting the format option indicates using the default "row" format.

•

EXPLAIN [format="row" | "dot"] <your_nGQL_statement>

•

PROFILE [format="row" | "dot"] <your_nGQL_statement>

4.16 Query tuning statements

- 209/287 - 2021 Vesoft Inc.

Format "row"

The "row" format outputs the return message in a table as follows.

EXPLAIN :

PROFILE :

The descriptions of the columns are as follows:

Format "dot"

You can use the format="dot" option to output the return message in the DOT language, and then use Graphviz to generate a

graph of the plan.

NOTE: Graphviz is open source graph visualization software.

Graphviz provides an online tool for previewing DOT language files and exporting them to other formats such as SVG or JSON.

For more information, see Graphviz Online.

•

nebula> EXPLAIN format="row" SHOW TAGS;
Execution succeeded (time spent 104/705 us)
Execution Plan
+----+----------+--------------+----------------+---+
| id | name | dependencies | profiling data | operator info |
+----+----------+--------------+----------------+---+
| 0 | ShowTags | 2 | | outputVar: [{"colNames":[],"name":"__ShowTags_0","type":"DATASET"}] |
| | | | | inputVar: |
+----+----------+--------------+----------------+---+
| 2 | Start | | | outputVar: [{"colNames":[],"name":"__Start_2","type":"DATASET"}] |
+----+----------+--------------+----------------+---+

•

nebula> PROFILE format="row" SHOW TAGS;
+--------+
| Name |
+--------+
| player |
+--------+
| team |
+--------+
Got 2 rows (time spent 2038/2728 us)

Execution Plan

+----+----------+--------------+--
+---+
| id | name | dependencies | profiling data | operator
info |
+----+----------+--------------+--
+---+
| 0 | ShowTags | 2 | ver: 0, rows: 1, execTime: 79us, totalTime: 1692us | outputVar: [{"colNames":
[],"name":"__ShowTags_0","type":"DATASET"}] |
| | | | |
inputVar: |
+----+----------+--------------+--
+---+
| 2 | Start | | ver: 0, rows: 0, execTime: 1us, totalTime: 57us | outputVar: [{"colNames":
[],"name":"__Start_2","type":"DATASET"}] |
+----+----------+--------------+--
+---+

Column Description

id Indicates the ID of the operator.

name Indicates the name of the operator.

dependencies Shows the ID of the operator that the current operator depends on.

profiling

data

Shows the execution profile. ver is the version of the operator, which you can use to identify loops; rows

shows the number of rows to be output by the operator; execTime shows the execution time only; totalTime

contains the execution time and the system scheduling and queueing time.

operator info Shows the detailed information of the operator.

nebula> EXPLAIN format="dot" SHOW TAGS;
Execution succeeded (time spent 161/665 us)
Execution Plan

4.16.1 EXPLAIN and PROFILE

- 210/287 - 2021 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

Transformed into a Graphviz graph, it is as follows:

--- -------------
 plan
--- -------------
 digraph exec_plan {
 rankdir=LR;
 "ShowTags_0"[label="ShowTags_0|outputVar: \[\{\"colNames\":\[\],\"name\":\"__ShowTags_0\",\"type\":\"DATASET\"\}\]\l|inputVar:\l", shape=Mrecord];
 "Start_2"->"ShowTags_0";
 "Start_2"[label="Start_2|outputVar: \[\{\"colNames\":\[\],\"name\":\"__Start_2\",\"type\":\"DATASET\"\}\]\l|inputVar: \l", shape=Mrecord];
 }
--- -------------

Last update: February 4, 2021

4.16.1 EXPLAIN and PROFILE

- 211/287 - 2021 Vesoft Inc.

4.17 Operation and maintenance statements

4.17.1 BALANCE syntax

The BALANCE statements support the load balancing operations of the Nebula Graph Storage services. For more information about

storage load balancing and examples for using the BALANCE statements, see Storage load balance.

The BALANCE statements are listed as follows.

Syntax Description

BALANCE DATA Starts a task to balance the distribution of storage partitions in a Nebula Graph cluster.

BALANCE DATA <balance_id> Shows the status of the balance task.

BALANCE DATA STOP Stops the BALANCE DATA task.

BALANCE DATA REMOVE <host_list> Scales in the Nebula Graph cluster and detaches specific storage hosts.

BALANCE LEADER Balances the distribution of storage raft leaders in a Nebula Graph cluster.

Last update: March 5, 2021

4.17 Operation and maintenance statements

- 212/287 - 2021 Vesoft Inc.

4.17.2 Job manager and the JOB statements

The long-term tasks running by the Storage Service are called jobs. For example, there are jobs for COMPACT , FLUSH , and STATS .

These jobs can be time-consuming if the data size in the graph space is large. The job manager helps you run, show, stop, and

recover the jobs.

SUBMIT JOB COMPACT

The SUBMIT JOB COMPACT statement triggers the long-term RocksDB compact operation.

For more information about compact configuration, see Storage Service configuration.

SUBMIT JOB FLUSH

The SUBMIT JOB FLUSH statement writes the RocksDB memfile in memory to the hard disk.

SUBMIT JOB STATS

The SUBMIT JOB STATS statement starts a job that makes the statistics of the current graph space. Once this job succeeds, you can

use the SHOW STATS statement to list the statistics. For more information, see SHOW STATS.

NOTE: If the data stored in the graph space changes, in order to get the latest statistics, you have to run SUBMIT JOB STATS

again.

SHOW JOB

The Meta Service parses a SUBMIT JOB request into tasks and assigns them to the nebula-storaged processes. The SHOW JOB

<job_id> statement shows the information about a specific job and all its tasks.

The job ID is created when you run the SUBMIT JOB statement.

nebula> SUBMIT JOB COMPACT;
+------------+
| New Job Id |
+------------+
| 40 |
+------------+

nebula> SUBMIT JOB FLUSH;
+------------+
| New Job Id |
+------------+
| 96 |
+------------+

nebula> SUBMIT JOB STATS;
+------------+
| New Job Id |
+------------+
| 97 |
+------------+

nebula> SHOW JOB 96;
+----------------+---------------+------------+-------------------------+-------------------------+
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
+----------------+---------------+------------+-------------------------+-------------------------+
| 96 | "FLUSH" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
+----------------+---------------+------------+-------------------------+-------------------------+
| 0 | "storaged2" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
+----------------+---------------+-------------------------+------------+-------------------------+
| 1 | "storaged0" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
+----------------+---------------+------------+-------------------------+-------------------------+
| 2 | "storaged1" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
+----------------+---------------+------------+-------------------------+-------------------------+

4.17.2 Job manager and the JOB statements

- 213/287 - 2021 Vesoft Inc.

The description of the return message is as follows.

JOB STATUS

The description of the job status is as follows.

Status switching is described as follows.

SHOW JOBS

The SHOW JOBS statement lists all the unexpired jobs. The default job expiration interval is one week. You can change it by

modifying the job_expired_secs parameter of the Meta Service. For how to modify job_expired_secs , see Meta Service

configuration.

STOP JOB

The STOP JOB statement stops jobs that are not finished.

Column Description

Job Id(TaskId) The first row shows the job ID, and the other rows show the task IDs.

Command(Dest) The first row shows the command executed, and the other rows show on which storaged processes the

task is running.

Status Shows the status of the job or task. For more information about job status, see Job status.

Start Time Shows a timestamp indicating the time when the job or task enters the RUNNING phase.

Stop Time Shows a timestamp indicating the time when the job or task gets FINISHED , FAILED , or STOPPED .

Status Description

QUEUE The job or task is waiting in a queue. The Start Time is empty in this phase.

RUNNING The job or task is running. The Start Time shows the beginning of this phase.

FINISHED The job or task is successfully finished. The Stop Time shows the time when the job or task enters this

phase.

FAILED The job or task failed. The Stop Time shows the time when the job or task enters this phase.

STOPPED The job or task is stopped without running. The Stop Time shows the time when the job or task enters this

phase.

REMOVED The job or task is removed.

Queue -- running -- finished -- removed
 \ \ /
 \ \ -- failed -- /
 \ \ /
 \ ---------- stopped -/

nebula> SHOW JOBS;
+--------+----------------------+------------+-------------------------+-------------------------+
| Job Id | Command | Status | Start Time | Stop Time |
+--------+----------------------+------------+-------------------------+-------------------------+
| 97 | "STATS" | "FINISHED" | 2020-11-28T14:48:52.000 | 2020-11-28T14:48:52.000 |
+--------+----------------------+------------+-------------------------+-------------------------+
| 96 | "FLUSH" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
+--------+----------------------+------------+-------------------------+-------------------------+
| 95 | "STATS" | "FINISHED" | 2020-11-28T13:02:11.000 | 2020-11-28T13:02:11.000 |
+--------+----------------------+------------+-------------------------+-------------------------+
| 86 | "REBUILD_EDGE_INDEX" | "FINISHED" | 2020-11-26T13:38:24.000 | 2020-11-26T13:38:24.000 |
+--------+----------------------+------------+-------------------------+-------------------------+

4.17.2 Job manager and the JOB statements

- 214/287 - 2021 Vesoft Inc.

RECOVER JOB

The RECOVER JOB statement re-executes the failed jobs and returns the number of recovered jobs.

FAQ

HOW TO TROUBLESHOOT JOB PROBLEMS

The SUBMIT JOB operations use the HTTP port. Please check if the HTTP ports on the machines where the Storage Service is

running are working well. You can use the following command to debug.

nebula> STOP JOB 22;
+---------------+
| Result |
+---------------+
| "Job stopped" |
+---------------+

nebula> RECOVER JOB;
+-------------------+
| Recovered job num |
+-------------------+
| 5 job recovered |
+-------------------+

curl "http://{storaged-ip}:19779/admin?space={space_name}&op=compact"

Last update: April 1, 2021

4.17.2 Job manager and the JOB statements

- 215/287 - 2021 Vesoft Inc.

4.18 Appendix

4.18.1 Comments

Legacy version compatibility

In Nebula Graph 1.0, four comment styles: # , -- , // , /* */ .

In Nebula Graph 2.0, -- represents an edge, and can not be used as comments.

Examples

The backslash \ in a line indicates a line break.

OpenCypher Compatibility

You must add a \ at the end of every line, even in multi-line comments * *\ .

•

•

nebula> # Do nothing this line
nebula> RETURN 1+1; # This comment continues to the end of line
nebula> RETURN 1+1; // This comment continues to the end of line
nebula> RETURN 1 /* This is an in-line comment */ + 1 == 2;
nebula> RETURN 11 + \
/* Multiple-line comment \
Use backslash as line break. \
*/ 12;

/* The openCypher style:
The following comment
spans more than
one line */
MATCH (n:label)
RETURN n

/* The ngql style: \
The following comment \
spans more than \
one line */ \
MATCH (n:tag) \
RETURN n

Last update: March 29, 2021

4.18 Appendix

- 216/287 - 2021 Vesoft Inc.

4.18.2 Identifer Case Sensitivity

Identifiers are Case-Sensitive

The following statements would not work because they refer to two different spaces, i.e. my_space and MY_SPACE :

Keywords and Reserved Words are Case-Insensitive

The following statements are equivalent:

nebula> CREATE SPACE my_space;
nebula> use MY_SPACE;
[ERROR (-8)]: SpaceNotFound:
my_space and MY_SPACE are two different spaces

nebula> show spaces; # show and spaces are keywords.
nebula> SHOW SPACES;
nebula> SHOW spaces;
nebula> show SPACES;

Last update: March 29, 2021

4.18.2 Identifer Case Sensitivity

- 217/287 - 2021 Vesoft Inc.

4.18.3 Keywords and Reserved Words

Keywords have significance in nGQL. Certain keywords are reserved and require special treatment for use as identifiers.

Non-reserved keywords are permitted as identifiers without quoting. Non-reserved keywords are case-insensitive. To use

reserved keywords as identifiers, quote them with back quotes such as `AND`.

TAG is a reserved keyword. To use TAG as an identifier, you must quote it with a backtick. SPACE is a non-reserved keyword. You

can use SPACE as an identifier without quoting it.

NOTE: There is a small pitfall when you use the non-reserved keyword. Unquoted non-reserved keyword will be converted to

lower-case words. For example, SPACE or Space will become space .

Reserved Words

The following list shows reserved words in nGQL.

nebula> CREATE TAG TAG(name string);
[ERROR (-7)]: SyntaxError: syntax error near `TAG'

// SPACE is an unreserved keyword.
nebula> CREATE TAG SPACE(name string);
Execution succeeded

// TAG is a reserved keyword here.
nebula> CREATE TAG `TAG` (name string);
Execution succeeded

ADD
ALTER
AND
AS
ASC
BALANCE
BOOL
BY
CASE
CHANGE
COMPACT
CREATE
DATE
DATETIME
DELETE
DESC
DESCRIBE
DISTINCT
DOUBLE
DOWNLOAD
DROP
EDGE
EDGES
EXISTS
EXPLAIN
FETCH
FIND
FIXED_STRING
FLOAT
FLUSH
FORMAT
FROM
GET
GO
GRANT
IF
IN
INDEX
INDEXES
INGEST
INSERT
INT
INT16
INT32
INT64
INT8
INTERSECT
IS
LIMIT
LOOKUP
MATCH
MINUS
NO

4.18.3 Keywords and Reserved Words

- 218/287 - 2021 Vesoft Inc.

Non-Reserved Keywords

NOT
NULL
OF
OFFSET
ON
OR
ORDER
OVER
OVERWRITE
PROFILE
PROP
REBUILD
RECOVER
REMOVE
RETURN
REVERSELY
REVOKE
SET
SHOW
STEP
STEPS
STOP
STRING
SUBMIT
TAG
TAGS
TIME
TIMESTAMP
TO
UNION
UPDATE
UPSERT
UPTO
USE
VERTEX
WHEN
WHERE
WITH
XOR
YIELD

ACCOUNT
ADMIN
ALL
ANY
ATOMIC_EDGE
AUTO
AVG
BIDIRECT
BIT_AND
BIT_OR
BIT_XOR
BOTH
CHARSET
CLIENTS
COLLATE
COLLATION
COLLECT
COLLECT_SET
CONFIGS
CONTAINS
COUNT
COUNT_DISTINCT
DATA
DBA
DEFAULT
ELASTICSEARCH
ELSE
END
ENDS
FALSE
FORCE
FUZZY
GOD
GRAPH
GROUP
GROUPS
GUEST
HDFS
HOST
HOSTS
INTO
JOB
JOBS
LEADER
LISTENER
MAX
META
MIN

4.18.3 Keywords and Reserved Words

- 219/287 - 2021 Vesoft Inc.

NOLOOP
NONE
OPTIONAL
OUT
PART
PARTITION_NUM
PARTS
PASSWORD
PATH
PLAN
PREFIX
REGEXP
REPLICA_FACTOR
RESET
ROLE
ROLES
SEARCH
SERVICE
SHORTEST
SIGN
SINGLE
SKIP
SNAPSHOT
SNAPSHOTS
SPACE
SPACES
STARTS
STATS
STATUS
STD
STORAGE
SUBGRAPH
SUM
TEXT
TEXT_SEARCH
THEN
TRUE
TTL_COL
TTL_DURATION
UNWIND
USER
USERS
UUID
VALUE
VALUES
VID_TYPE
WILDCARD
ZONE
ZONES

Last update: April 13, 2021

4.18.3 Keywords and Reserved Words

- 220/287 - 2021 Vesoft Inc.

4.18.4 Vertex identifier and partition ID

VID

VID is short for vertex identifier.

In Nebula Graph, vertices are identified with vertex identifiers (i.e. VID s). The VID can be an int64 or a fixed length string. When

inserting a vertex, you must specify a VID for it.

You can also call hash() to generate an int64 VID if the graph has less than one billion vertices.

VID must be unique in a graph space.

That is, in the same graph space, two vertices that have the same VID are considered as the same vertex.

In addition, one VID can have multiple TAG s. E.g., One person (VID) can have two roles (tags).

Two VID s in two different graph spaces are totally independent of each other.

Partition ID

When inserting into Nebula Graph, vertices and edges are distributed across different partitions. And the partitions are located

on different machines. If you want certain vertices to locate on the same partition (i.e., on the same machine), you can control

the generation of the VID s by using the following formula / code.

Roughly say, after hashing a fixed string to int64, (the hashing of int64 is the number itself), do modulo and then plus one.

In the preceding formula,

% is the modulo operation.

numParts is the number of partition for the graph space where the VID is located, namely the value of partition_num in the

CREATE SPACE statement.

pId is the ID for the partition where the VID is located.

For example, if there are 100 partitions, the vertices with VID 1, 101, 1001 will be stored on the same partition.

But, the mapping between the partition ID and the machine address is random. Therefore, you can't assume that any two

partitions are located on the same machine.

 // If the length of the id is 8, we will treat it as int64_t to be compatible
 // with the version 1.0
 uint64_t vid = 0;
 if (id.size() == 8) {
 memcpy(static_cast<void*>(&vid), id.data(), 8);
 } else {
 MurmurHash2 hash;
 vid = hash(id.data());
 }
 PartitionID pId = vid % numParts + 1;

pId = vid % numParts + 1;

•

•

•

Last update: March 29, 2021

4.18.4 Vertex identifier and partition ID

- 221/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/clients/meta/MetaClient.cpp

5. Deployment and installation

5.1 Prepare resources for compiling, installing, and running Nebula Graph

This topic describes the requirements and suggestions for compiling and installing Nebula Graph, as well as how to estimate the

resource you need to reserve for running a Nebula Graph cluster.

5.1.1 Reading guide

If you are reading this topic with the questions listed below, click them to jump to their answers.

What do I need to compile Nebula Graph?

What do I need to run Nebula Graph in a test environment?

What do I need to run Nebula Graph in a production environment?

How much memory and disk space do I need to reserve for my Nebula Graph cluster?

5.1.2 Requirements for compiling the Nebula Graph source code

Hardware requirements for compiling Nebula Graph

Supported operating systems for compiling Nebula Graph

For now, we can only compile Nebula Graph in the Linux system. We recommend that you use any Linux system with kernel

version 2.6.32 or above.

•

•

•

•

Item Requirement

CPU architecture x86_64

Memory 4 GB

Disk 10 GB, SSD

5. Deployment and installation

- 222/287 - 2021 Vesoft Inc.

Software requirements for compiling Nebula Graph

You must have the correct version of the software listed below to compile Nebula Graph. If they are not as required or you are

not sure, follow the steps in Prepare software for compiling Nebula Graph to get them ready.

Other third-party software will be automatically downloaded and installed to the build directory at the configure (cmake) stage.

Software Version Note

glibc 2.12 or above You can run ldd --version to check the glibc version.

make Any stable version -

m4 Any stable version -

git Any stable version -

wget Any stable version -

unzip Any stable version -

xz Any stable version -

readline-devel Any stable version -

ncurses-devel Any stable version -

zlid-devel Any stable version -

gcc 7.1.0 or above You can run gcc -v to check the gcc version.

gcc-c++ Any stable version -

cmake 3.5.0 or above You can run cmake --version to check the cmake version.

gettext Any stable version -

curl Any stable version -

redhat-lsb-core Any stable version -

libstdc++-static Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

libasan Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

5.1.2 Requirements for compiling the Nebula Graph source code

- 223/287 - 2021 Vesoft Inc.

Prepare software for compiling Nebula Graph

This section guides you through the downloading and installation of software required for compiling Nebula Graph.

5.1.2 Requirements for compiling the Nebula Graph source code

- 224/287 - 2021 Vesoft Inc.

Install dependencies.

For CentOS, RedHat, and Fedora users, run the following commands.

For Debian and Ubuntu users, run the following commands.

Check if the GCC and cmake on your host are in the right version. See Software requirements for compiling Nebula Graph for

the required versions.

If your GCC and CMake are in the right version, then you are all set. If they are not, follow the sub-steps as follows.

1. Clone the nebula-common repository to your host.

2. Make nebula-common the current working directory.

3. Run the following commands to install and enable CMake and GCC.

1.

•

```bash
$ yum update
$ yum install -y make \
                 m4 \
                 git \
                 wget \
                 unzip \
                 xz \
                 readline-devel \
                 ncurses-devel \
                 zlib-devel \
                 gcc \
                 gcc-c++ \
                 cmake \
                 gettext \
                 curl \
                 redhat-lsb-core
// For CentOS 8+, RedHat 8+, and Fedora, install libstdc++-static, libasan as well
$ yum install -y libstdc++-static libasan
```

•

```bash
$ apt-get update
$ apt-get install -y make \
                     m4 \
                     git \
                     wget \
                     unzip \
                     xz-utils \
                     curl \
                     lsb-core \
                     build-essential \
                     libreadline-dev \
                     ncurses-dev \
                     cmake \
                     gettext
```

2.

$ g++ --version
$ cmake --version

  ```bash
  $ git clone https://github.com/vesoft-inc/nebula-common.git
  ```

 The source code of Nebula Graph versions such as v2.0.0 is stored in particular branches. You can use the `--branch` or `-b` option to specify the
branch to be cloned. For example, for 2.0.0, run the following command.

  ```bash
  $ git clone --branch v2.0.0 https://github.com/vesoft-inc/nebula-common.git
  ```

  ```bash
  $ cd nebula-common
  ```

  ```bash
  // Install CMake.
  $ ./third-party/install-cmake.sh cmake-install

  // Enable CMake
  $ source cmake-install/bin/enable-cmake.sh

  // Install GCC. Installing GCC to /opt requires root privilege, you can change it to other locations.
  $ sudo ./third-party/install-gcc.sh --prefix=/opt

  // Enable GCC.

5.1.2 Requirements for compiling the Nebula Graph source code

- 225/287 - 2021 Vesoft Inc.



5.1.3 Requirements and suggestions for installing Nebula Graph in test environments

Hardware requirements for test environments

Supported operating systems for test environments

For now, we can only install Nebula Graph in the Linux system. To install Nebula Graph in a test environment, we recommend

that you use any Linux system with kernel version 3.9 or above.

Suggested service architecture for test environments

For example, for a single-machine environment, you can deploy 1 metad, 1 storaged, and 1 graphd processes in the machine.

For a more common environment, such as a cluster of 3 machines (named as A, B, and C), you can deploy Nebula Graph as

follows:

5.1.4 Requirements and suggestions for installing Nebula Graph in production environments

Hardware requirements for production environments

Supported operating systems for production environments

For now, we can only install Nebula Graph in the Linux system. To install Nebula Graph in a production environment, we

recommend that you use any Linux system with kernel version 3.9 or above.

  $ source /opt/vesoft/toolset/gcc/7.5.0/enable
  ```

Item Requirement

CPU architecture x86_64

Number of CPU core 4

Memory 8 GB

Disk 100 GB, SSD

Process Suggested number

metad (the metadata service process) 1

storaged (the storage service process) 1 or more

graphd (the query engine service process) 1 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B None 1 1

C None 1 1

Item Requirement

CPU architecture x86_64

Number of CPU core 48

Memory 96 GB

Disk 2 * 900 GB, NVMe SSD

5.1.3 Requirements and suggestions for installing Nebula Graph in test environments

- 226/287 - 2021 Vesoft Inc.

You can adjust some of the kernel parameters to better accommodate the need for running Nebula Graph. For more information,

see kernel configuration.

Suggested service architecture for production environments

Each metad process automatically creates and maintains a copy of the metadata. Usually, you only need 3 metad processes. The

number of storaged processes does not affect the number of graph space copies.

You can deploy multiple processes on a single machine. For example, on a cluster of 5 machines (named as A, B, C, D, and E), you

can deploy Nebula Graph as follows:

WARNING: Do not deploy a cluster across IDCs.

Process Suggested number

metad (the metadata service process) 3

storaged (the storage service process) 3 or more

graphd (the query engine service process) 3 or more

Machine name Number of metad Number of storaged Number of graphd

A 1 1 1

B 1 1 1

C 1 1 1

D None 1 1

E None 1 1

5.1.4 Requirements and suggestions for installing Nebula Graph in production environments

- 227/287 - 2021 Vesoft Inc.

5.1.5 Capacity requirements for running a Nebula Graph cluster

You can estimate the memory, disk space, and partition number needed for a Nebula Graph cluster of 3 replicas as follows.

Question 1: Why do we multiply the disk space and memory by 120%?

Answer: The extra 20% is for buffer.

Question 2: How to get the number of RocksDB instances?

Answer: Each directory in the --data_path item in the etc/nebula-storaged.conf file corresponds to a RocksDB instance.

Count the number of directories to get the RocksDB instance number.

NOTE: You can decrease the memory size occupied by the bloom filter by adding --enable_partitioned_index_filter=true

in etc/nebula-storaged.conf . But it may decrease the read performance in some random-seek cases.

5.1.6 About storage devices

Nebula Graph is designed and implemented for NVMe SSD. All default parameters are optimized for the SSD devices.

Due to the poor IOPS capability and long random seek latency, HDD is not recommended. You may encounter many problems

when using HDD.

And remote storage devices, such as NAS or SAN, are not recommended/tested as well.

Use local SSD device.

Resource Unit How to estimate Description

Disk space

for a

cluster

Bytes the_sum_of_edge_number_and_vertex_number *

average_bytes_of_attributes * 6 * 120%

-

Memory for

a cluster

Bytes [the_sum_of_edge_number_and_vertex_number * 15 +

the_number_of_RocksDB_instances *

(write_buffer_size * max_write_buffer_number) +

rocksdb_block_cache] * 120%

write_buffer_size and

max_write_buffer_number are RocksDB

parameters, for more information, see

MemTable. For details about

rocksdb_block_cache , see Memory

usage in RocksDB.

Number of

partitions

for a graph

space

- the_number_of_disks_in_the_cluster *

disk_partition_num_multiplier

disk_partition_num_multiplier is an

integer between 2 and 10 (both

including). It's value depends on the

disk performance. Use 2 for HDD.

•

•

Last update: April 9, 2021

5.1.5 Capacity requirements for running a Nebula Graph cluster

- 228/287 - 2021 Vesoft Inc.

https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache

5.2 Compile and install Nebula Graph

5.2.1 Install Nebula Graph by compiling the source code

Installing Nebula Graph from the source code allows you to customize the compiling and installation settings and test the latest

features.

Prerequisites

You have prepared the necessary resources described in Prepare resources for compiling, installing, and running Nebula

Graph.

You can access the Internet from the host you plan to install Nebula Graph.

The console is not complied or packaged with Nebula Graph server binaries. You can install nebula-console by yourself.

How to install

Use Git to clone the source code of Nebula Graph to your host.

To install the latest developing version, run the following command to download the source code from the master branch.

To install a specific release version, use the --branch option to specify the correct branch. For example, to install 2.0.0, run

the following command.

Make the nebula-graph directory the current working directory.

Create a build directory and make it the current working directory.

Generate the Makefile with CMake.

NOTE:

The installation path is /user/local/nebula by default. To customize it, add the -DCMAKE_INSTALL_PREFIX=/your/install/path/

CMake variable in the following command.

For more information about CMake variables, see CMake variables.

If you are installing the latest developing version and has cloned the master branch in step 1, run the following command.

If you are installing a specific release version and has cloned the corresponding branch in step 1, use the -

DNEBULA_COMMON_REPO_TAG and -DNEBULA_STORAGE_REPO_TAG options to specify the correct branches of the nebula-common and

nebula-storage repositories. For example, to install release version 2.0.0, run the following command.

Compile Nebula Graph.

To speed up the compiling, use the -j option to set a concurrent number N . It should be min(MEM/2, CPU) , where MEM is the

memory size in GB, and CPU is the core number.

•

•

•

1.

•

$ git clone https://github.com/vesoft-inc/nebula-graph.git

•

$ git clone --branch v2.0.0 https://github.com/vesoft-inc/nebula-graph.git

2.

$ cd nebula-graph

3.

$ mkdir build && cd build

4.

•

•

•

$ cmake -DENABLE_BUILD_STORAGE=on -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release ..

•

$ cmake -DENABLE_BUILD_STORAGE=on -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release \
-DNEBULA_COMMON_REPO_TAG=v2.0.0 -DNEBULA_STORAGE_REPO_TAG=v2.0.0 ..

5.

$ make -j{N} # E.g., make -j4

5.2 Compile and install Nebula Graph

- 229/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-common
https://github.com/vesoft-inc/nebula-storage

This step will take about 20 minutes on a VM with four cores of Intel(R) Xeon(R) Platinum 8260M CPU @ 2.30GHz .

Install Nebula Graph.

[Optional] Update the source code of the master branch. (It changes frequently.)

1. In the nebula-graph/ directory, you can use git pull upstream master to update the source code.

2. In nebula-graph/modules/common/ and nebula-graph/modules/storage/ , run git pull upstream master separately.

3. In nebula-graph/build/ , make and make install[-all] again.

CMake variables

Usage of CMake variables:

The following CMake variables can be used at the configure (cmake) stage to adjust the compiling settings.

ENABLE_BUILD_STORAGE

Starting from the 2.0 pre-release, Nebula Graph uses two separated github repositories of compute and storage. The

ENABLE_BUILD_STORAGE variable is set to OFF by default so that the storage service is not installed together with the graph service.

If you are deploying Nebula Graph on a single host for testing, you can set ENABLE_BUILD_STORAGE to ON to download and install

the storage service automatically.

CMAKE_INSTALL_PREFIX

CMAKE_INSTALL_PREFIX specifies the path where the service modules, scripts, configuration files are installed. The default path is /

usr/local/nebula .

ENABLE_WERROR

ENABLE_WERROR is ON by default and it makes all warnings into errors. You can set it to OFF if needed.

ENABLE_TESTING

ENABLE_TESTING is ON by default and unit tests are built with the Nebula Graph services. If you just need the service modules, set

it to OFF .

ENABLE_ASAN

ENABLE_ASAN is OFF by default and the building of ASan (AddressSanitizer), a memory error detector, is disabled. To enable it, set

ENABLE_ASAN to ON . This variable is intended for Nebula Graph developers.

CMAKE_BUILD_TYPE

Nebula Graph supports the following building types:

Debug , the default value of CMAKE_BUILD_TYPE , indicates building Nebula Graph with the debug info but not the optimization

options.

Release , indicates building Nebula Graph with the optimization options but not the debug info.

RelWithDebInfo , indicates building Nebula Graph with the optimization options and the debug info.

MinSizeRel , indicates building Nebula Graph with the optimization options for controlling the code size but not the debug

info.

CMAKE_C_COMPILER/CMAKE_CXX_COMPILER

Usually, CMake locates and uses a C/C++ compiler installed in the host automatically. But if your compiler is not installed at the

standard path, or if you want to use a different one, run the command as follows to specify the installation path of the target

compiler:

6.

$ sudo make install-all

7.

$ cmake -D<variable>=<value> ...

•

•

•

•

5.2.1 Install Nebula Graph by compiling the source code

- 230/287 - 2021 Vesoft Inc.

ENABLE_CCACHE

ENABLE_CCACHE is ON by default and ccache is used to speed up the compiling of Nebula Graph.

To disable ccache , set ENABLE_CCACHE to OFF . On some platforms, the ccache installation hooks up or precedes the compiler. In

such a case, you have to set an environment variable export CCACHE_DISABLE=true or add a line disable=true in ~/.ccache/

ccache.conf as well.

For more information, see the ccache official documentation.

NEBULA_THIRDPARTY_ROOT

NEBULA_THIRDPARTY_ROOT specifies the path where the third party software is installed. By default it is /opt/vesoft/third-party .

$ cmake -DCMAKE_C_COMPILER=<path_to_gcc/bin/gcc> -DCMAKE_CXX_COMPILER=<path_to_gcc/bin/g++> ..
$ cmake -DCMAKE_C_COMPILER=<path_to_clang/bin/clang> -DCMAKE_CXX_COMPILER=<path_to_clang/bin/clang++> ..

Last update: March 31, 2021

5.2.1 Install Nebula Graph by compiling the source code

- 231/287 - 2021 Vesoft Inc.

https://ccache.dev/manual/3.7.6.html

5.2.2 Install Nebula Graph with RPM or DEB package

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install Nebula Graph with the

RPM or DEB package.

Prerequisites

Prepare the right resources.

NOTE: The console is not complied or packaged with Nebula Graph server binaries. You can install nebula-console by yourself.

Steps

DOWNLOAD THE PACKAGE FROM CLOUD SERVICE

Download the release version.

URLFF
1A

For example, download release package 2.0.0 for Centos 7.5 FF
1A

download release package 2.0.0 for Ubuntu 1804 FF
1A

•

//Centos 6
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu1804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.el7.x86_64.rpm.sha256sum.txt

5.2.2 Install Nebula Graph with RPM or DEB package

- 232/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console

Download the nightly version.

DON'T: Nightly versions are usually used to test new features. Don't use it for production.

URLFF
1A

For example, download the Centos 7.5 package developed and built in 2021.03.28 FF
1A

For example, download the Ubuntu 1804 package developed and built in 2021.03.28 FF
1A

OR, DOWNLOAD THE PACKAGE FROM GITHUB.

Download the release version.

+ On the Nebula Graph Releases page, find the required version and click Assets.

wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.ubuntu1804.amd64.deb.sha256sum.txt

•

//Centos 6
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu1804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm.sha256sum.txt

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb.sha256sum.txt

•

5.2.2 Install Nebula Graph with RPM or DEB package

- 233/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/releases

+ In the Assets area, click the package to download it.

Download the nightly version.

DON'T: Nightly versions are usually used to test new features. Don't use it for production.

+ On the Nebula Graph package page, click the latest package on the top of the package list.

+ In the Artifacts area, click the package to download it.

Install Nebula Graph

Use the following syntax to install with an RPM package.

Use the following syntax to install with a DEB package.

NOTE: The default installation path is /usr/local/nebula/ .

•

•

sudo rpm -ivh --prefix=<installation_path> <package_name>

•

sudo dpkg -i --instdir==<installation_path> <package_name>

Last update: March 31, 2021

5.2.2 Install Nebula Graph with RPM or DEB package

- 234/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/actions/workflows/package.yaml

5.3 Deploy Nebula Graph cluster

This topic describes how to manually deploy a Nebula Graph cluster.

NOTE: For now, Nebula Graph does not have an official deployment tool.

5.3.1 Prerequisites

Prepare hardware for deploying the cluster.

5.3.2 Step 1: Install Nebula Graph

Install Nebula Graph on each machine in the cluster. Available approaches of installation are as follows.

Install Nebula Graph with RPM or DEB package

Install Nebula Graph by compiling the source code

5.3.3 Step 2: Modify the configurations

To deploy Nebula Graph according to your requirements, you have to modify the configuration files. All the configuration files for

Nebula Graph, including nebula-graphd.conf , nebula-metad.conf , and nebula-storaged.conf , are stored in the etc directory in the

installation path.

You only need to modify the configuration for the corresponding service on the machines. For example, modify

nebula-graphd.conf on the machines where you want to deploy the Graph Service.

For how to prepare the configuration files, see:

Meta Service configurations

Graph Service configurations

Storage Service configurations

5.3.4 Step 3: Start the cluster

Start the corresponding service on each machine. The command to start the Nebula Graph services is as follows.

/usr/local/nebula is the default installation path for Nebula Graph. Use the actual path if you have customized the path.

For more information about how to start and stop the services, see Manage Nebula Graph services.

5.3.5 Connect to the cluster

Connect to the Graph Service with a Nebula Graph client, such as Nebula Console. For more information, see Connect to Nebula

Graph.

5.3.6 Check the cluster status

After connecting to the Nebula Graph cluster, run SHOW HOSTS to check the cluster status.

•

•

•

•

•

sudo /usr/local/nebula/scripts/nebula.service start <metad|graphd|storaged|all>

Last update: March 16, 2021

5.3 Deploy Nebula Graph cluster

- 235/287 - 2021 Vesoft Inc.

5.4 Upgrade Nebula Graph to v2.0.0

This topic describes how to upgrade Nebula Graph to v2.0.0.

5.4.1 Limitations

Rolling Upgrade is not supported. You must stop the Nebula Graph services before the upgrade.

There is no upgrade script. You have to manually upgrade each server in the cluster.

Supported versions:

From Nebula Graph v1.2.0 to Nebula Graph v2.0.0.

From Nebula Graph v2.0.0-RC1 to Nebula Graph 2.0.0.

This topic does not apply to scenarios where Nebula Graph is deployed with Docker, including Docker Swarm, Docker

Compose, and Kubernetes.

You must upgrade the old Nebula Graph services on the same machines they are deployed. DO NOT change the IP

addresses, configuration files of the machines, and DO NOT change the cluster topology.

The hard disk space of each machine should be three times as much as the space taken by the original data directories.

Known issues that could cause data loss are listed on GitHub known issues. The issues are all related to altering schema or

default values.

To connect to Nebula Graph 2.0.0, you must upgrade all the Nebula Graph clients. The communication protocols of the old

versions and the latest versions are not compatible.

The upgrade takes about 30 minutes in this test environment.

DO NOT use soft links to switch the data directories.

You must have the sudo privileges to complete the steps in this topic.

5.4.2 Installation paths

Old installation path

By default, old versions of Nebula Graph are installed in /usr/local/nebula/ , hereinafter referred to as ${nebula-old} . The

default configuration file path is ${nebula-old}/etc/ .

The data of the old Nebula Graph are stored by the Storage Service and the Meta Service. You can find the data paths as follows.

Storage data path is defined by the --data_path option in the ${nebula-old}/etc/nebula-storaged.conf file. The default path is

data/storage .

Meta data path is defined by the --data_path option in the ${nebula-old}/etc/nebula-metad.conf file. The default path is

data/meta .

NOTE: The actual paths in your environment may be different from those described in this topic. You can run the Linux

command ps -ef | grep nebula to locate them.

New installation path

${nebula-new} represents the installation path of the new Nebula Graph version. An example for ${nebula-new} is /usr/local/

nebula-new/ .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4 Upgrade Nebula Graph to v2.0.0

- 236/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/releases/tag/v1.2.0
https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0-rc1
https://github.com/vesoft-inc/nebula-graph/issues/857

5.4.3 Steps

Stop all client connections. You can run the following commands on each Graph server to turn off the Graph Service and avoid

dirty write.

Run the following commands to stop all services of the old version Nebula Graph.

The Storage Service needs about 1 minute to flush data. Wait 1 minute and then run ps -ef | grep nebula to check and make

sure that all the Nebula Graph services are stopped.

NOTE: If the services are not fully stopped in 20 minutes, stop upgrading and go to the Nebula Graph community for help.

Install the new version of Nebula Graph on each machine. * To install with RPM/DEB packages, run the following command. For

detailed steps, see Install Nebula Graph with RPM or DEB package.

* To install with the source code, follow the substeps. For detailed steps, see Install Nebula Graph by compiling the source code

1. Clone the source code.

Copy the configuration files from the old path to the new path.

Follow the substeps to prepare the Meta servers (usually 3 of them in a cluster).

NOTE: You must make sure that this step is applied on every Meta server.

1. Locate the old Meta data path and copy the data files to the new path.

2. Modify the new Meta configuration files:

[Optional] Add the following parameters in the Meta configuration files if you need them.

* --null_type=false : Disables the support for using NULL as schema properties after the upgrade. The default value is true .

When set to false , you must specify a default value when altering tags or edge types, otherwise, data reading fails. * --

string_index_limit=32 : Specifies the index length for string values as 32. The default length is 64.

Prepare the Storage configuration files on each Storage server.

1.

> ${nebula-old}/scripts/nebula.service stop graphd
[INFO] Stopping nebula-graphd...
[INFO] Done

2.

> ${nebula-old}/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...
[INFO] Done
[INFO] Stopping nebula-graphd...
[INFO] Done
[INFO] Stopping nebula-storaged...
[INFO] Done

3.

  ```bash
  > sudo rpm --force -i --prefix=${nebula-new}  ${nebula-package-name.rpm} # for CentOS/RedHat
  > sudo dpkg -i --instdir==${nebula-new} ${nebula-package-name.deb} # for Ubuntu
  ```

  ```bash
  > git clone --branch v2.0.0 https://github.com/vesoft-inc/nebula-graph.git
  ```

2. Configure CMake.

  ```bash
  > cmake -DCMAKE_INSTALL_PREFIX=${nebula-new} -DENABLE_BUILD_STORAGE=on -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release -DNEBULA_COMMON_REPO_TAG=v2.0.0  -
DNEBULA_STORAGE_REPO_TAG=v2.0.0 .. 
  ```

4.

> cp -rf ${nebula-old}/etc ${nebula-new}/

5.

 ```bash
 > mkdir -p ${nebula-new}/data/meta/
 > cp -r ${nebula-old}/data/meta/* ${nebula-new}/data/meta/
 ```

  ```bash
  > vim ${nebula-new}/nebula-metad.conf
  ```

6.

5.4.3 Steps

- 237/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

* If the old Storage data path is not the default setting --data_path=data/storage , Modify the Storage configuration file and

change the value of --data_path as the new data path.

* Create the new Storage data directories.

Start the new Meta Service.

1. Run the following command on each Meta server.

2. Check if every nebula-metad process is started normally.

3. Check if there is any error information in the Meta logs in ${nebula-new}/logs . If any nebula-metad process cannot start

normally, stop upgrading, start the Nebula Graph services from the old directories, and take the error logs to the Nebula Graph

community for help.

Run the following commands to upgrade the Storage data format.

The parameters are described as follows. * --src_db_path : Specifies the absolute path of the OLD Storage data directories.

Separate multiple paths with commas, without spaces. * --dst_db_path : Specifies the absolute path of the NEW Storage data

directories. Separate multiple paths with commas, without spaces. The paths must correspond to the paths set in --src_db_path

one by one.

DON'T: Don't mix up the preceding two parameters, otherwise, the old data will be damaged during the upgrade. * --

upgrade_meta_server : Specifies the addresses of the new Meta servers that you started in step 7. * --upgrade_version : If the

old Nebula Graph version is v1.2.0, set the parameter value to 1 . If the old version is v2.0.0-RC1, set the value to 2. DON'T:

Don't set the value to other numbers.

Example of upgrading from v1.2.0:

Example of upgrading from v2.0.0-RC1:

  ```bash
  > vim ${nebula-new}/nebula-storaged.conf
  ```

  ```bash
  > mkdir -p ${nebula-new}/data/storage/
  ```

 > **NOTE:** If the `--data_path` default value has been modified, create the Storage data directories according to the modification.

7.

  ```bash
  $ sudo ${nebula-new}/scripts/nebula.service start metad
  [INFO] Starting nebula-metad...
  [INFO] Done
  ```

  ```bash
  $ ps -ef |grep nebula-metad
  ```

8.

$ sudo ${nebula-new}/bin/db_upgrader \
--src_db_path=<old_storage_directory_path> \
--dst_db_path=<new_storage_directory_path> \
--upgrade_meta_server=<meta_server_ip1>:<port1>[,<meta_server_ip2>:<port2>,...] \
--upgrade_version=<old_nebula_version> \

$ sudo /usr/local/nebula_new/bin/db_upgrader \
--src_db_path=/usr/local/nebula/data/storage/data1/,/usr/local/nebula/data/storage/data2/ \
--dst_db_path=/usr/local/nebula_new/data/storage/data1/,/usr/local/nebula_new/data/storage/data2/\
--upgrade_meta_server=192.168.8.14:45500,192.168.8.15:45500,192.168.8.16:45500 \
--upgrade_version=1

$ sudo /usr/local/nebula_new/bin/db_upgrader \
--src_db_path=/usr/local/nebula/data/storage/ \
--dst_db_path=/usr/local/nebula_new/data/storage/ \
--upgrade_meta_server=192.168.8.14:9559,192.168.8.15:9559,192.168.8.16:9559 \
--upgrade_version=2

5.4.3 Steps

- 238/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/

NOTE: Make sure that all the Storage servers have finished the upgrade. If anything goes wrong:

Stop upgrading.

Stop all the Meta servers.

Start the Nebula Graph services from the old directories.

Go to the Nebula Graph community for help.

Start the new Storage Service on each Storage server.

NOTE: If this step goes wrong on any server:

Stop upgrading.

Stop all the Meta servers and Storage servers.

Start the Nebula Graph services from the old directories.

Take the logs in ${nebula-new}/logs/ to the Nebula Graph community for help.

Start the new Graph Service on each Graph server.

NOTE: If this step goes wrong on any server:

Stop upgrading.

Stop all the Meta servers, Storage servers, and Graph servers.

Start the Nebula Graph services from the old directories.

Take the logs in ${nebula-new}/logs/ to the Nebula Graph community for help.

Connect to Nebula Graph with the new version (v2.0.0 or later) of Nebula Console. Verify if the Nebula Graph services are

available and if the data can be accessed normally.

The command for connection, including the IP address and port of the Graph Service, is the same as the old one.

The following statements may help in this step.

DON'T: Don't use Nebula Console versions prior to v2.0.0.

Upgrade other Nebula Graph clients.

You must upgrade all other clients to corresponding v2.0.0 versions. The clients include but are not limited to the following

ones. Find the v2.0.0 branch for each client.

* studio * python * java * go * c++ * flink-connector * spark-util * benchmark

NOTE:

Communication protocols of the v2.0.0 versions are not compatible with that of the historical versions. To upgrade the

clients, you must compile the v2.0.0 source code of the clients or download corresponding binaries.

Tip for maintenance: The data path after the upgrade is ${nebula-new}/ . Modify relative paths for hard disk monitor

systems or log ELK.

5.4.4 Upgrade failure and rollback

If the upgrade fails, stop all Nebula Graph services of the new version, and start the services of the old version.

All Nebula Graph clients in use must be switched to the old version.

a.

b.

c.

d.

9.

$ sudo ${nebula-new}/scripts/nebula.service start storaged
$ sudo ${nebula-new}/scripts/nebula.service status storaged

a.

b.

c.

d.

10.

$ sudo ${nebula-new}/scripts/nebula.service start graphd
$ sudo ${nebula-new}/scripts/nebula.service status graphd

a.

b.

c.

d.

11.

nebula> SHOW HOSTS;
nebula> SHOW SPACES;
nebula> USE <space_name>
nebula> SHOW PARTS;
nebula> SUBMIT JOB STATS;
nebula> SHOW STATS;

12.

•

•

5.4.4 Upgrade failure and rollback

- 239/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-docker-compose
https://github.com/vesoft-inc/nebula-python
https://github.com/vesoft-inc/nebula-java
https://github.com/vesoft-inc/nebula-go
https://github.com/vesoft-inc/nebula-cpp
https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-spark-utils
https://github.com/vesoft-inc/nebula-bench

5.4.5 Appendix 1: Test Environment

The test environment for this topic is as follows:

Machine specifications: 32 CPU cores, 62 GB memory, and SSD.

Data size: 100 GB of Nebula Graph 1.2.0 LDBC test data, with 1 graph space, 24 partitions, and 92 GB of data directory size.

Concurrent configuration:

The upgrade cost 21 minutes in all, including 21 minutes of compaction.

5.4.6 Appendix 2: Nebula Graph V2.0.0 code address and commit ID

5.4.7 FAQ

Can I write through the client during the upgrade?

A: No. The state of the data written during this process is undefined.

Can I upgrade other old versions except for v1.2.0 or v2.0.0-RC1 to v2.0.0?

A: Upgrading from other old versions is not tested. Theoretically, versions between v1.0.0 and v1.2.0 could adopt the upgrade

approach for v1.2.0. V2.x nightly versions cannot apply the solutions in this topic.

How to upgrade clients after the server upgrade?

A: See step 12 in this topic.

How to upgrade if a machine has only the Graph Service, but not the Storage Service?

A: Upgrade the Graph Service with the corresponding binary or rpm package.

How to resolve the error Permission denied?

A: Try again with the sudo privileges.

Is there any change in gflags?

A: Yes. For more information, see known gflags changes.

What are the differences between deleting data then installing the new version and upgrading according to this topic?

A: The default configurations for v2.x and v1.x are different, including the ports used. The upgrade solution keeps the old

configurations, and the delete-and-install solution uses the new configurations.

•

•

•

Parameter Default value Applied value in the Tests

--max_concurrent 5 5

--max_concurrent_parts 10 24

--write_batch_num 100 100

Code address Commit ID

Graph Service 7923a45

Storage and Meta Services 761f22b

Common b2512aa

5.4.5 Appendix 1: Test Environment

- 240/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-storage/tree/v2.0.0
https://github.com/vesoft-inc/nebula-common/tree/v2.0.0
https://github.com/vesoft-inc/nebula-graph/issues/858

Is there a tool or solution for verifying data consistency after the upgrade?

A: No.

Last update: March 24, 2021

5.4.7 FAQ

- 241/287 - 2021 Vesoft Inc.

6. Configurations and logs

6.1 Configurations

6.1.1 Configurations

This document gives some introduction to configurations in Nebula Graph.

For the path and usage of local configuration files for Nebula Graph services, see:

Meta configuration

Graph configuration

Storage configuration

Get configurations

Most configurations are gflags. You can get all the gflags and the explanations by the following command.

For example:

Besides, you can get the values of running flags by curl -ing from the services.

For example:

Modify configurations

We suggest that you change configurations from local configure files. To change configurations from local files, follow these

steps:

Add --local_config=true to each configuration file. The configuration files are stored in /usr/local/nebula/etc/ by default. If

you have customized your Nebula Graph installation directory, the path to your configuration files is $pwd/nebula/etc/ .

Save your modification to the files.

Restart the Nebula Graph services.

NOTE: Remember to add --local_config=true to each configuration file. To make your modifications take effect, restart all the

Nebula Graph services.

Legacy version compatibility

The curl commands and parameters in Nebula Graph v2.x. are different from Nebula Graph v1.x. Those curl commands in v1.x

are deprecated now.

•

•

•

<binary> --help

$./nebula-metad --help
$./nebula-graphd --help
$./nebula-storaged --help
$./nebula-console --help

$ curl 127.0.0.1:19559/flags # From Meta
$ curl 127.0.0.1:19669/flags # From Graph
$ curl 127.0.0.1:19779/flags # From Storage

1.

2.

3.

Last update: April 13, 2021

6. Configurations and logs

- 242/287 - 2021 Vesoft Inc.

6.1.2 Meta Service configuration

Nebula Graph provides two initial configuration files for the Meta Service: nebula-metad.conf.default and nebula-

metad.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

How to use the configuration files

The Meta Service gets its configuration from the nebula-metad.conf file. You have to remove the suffix .default or .production

from an initial configuration file for the Meta Service to apply the configuration defined in it.

If you have modified the configuration in the file and want new configuration to take effect, add --local_conf=true at the top of

the file. Otherwise, Nebula Graph reads the cached configuration.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses the default value.

NOTE: The default value of a parameter in Nebula Graph may be different from the predefined value in the .default and

.production files.

The predefined parameters in nebula-metad.conf.default and nebula-metad.conf.production are different. And not all parameters

are predefined. This topic uses the parameters in nebula-metad.conf.default .

Nebula Graph provides two initial configuration files for the Meta Service: nebula-metad.conf.default and nebula-

metad.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

Basic configurations

NOTE:

While inserting time-type property values except timestamps, Nebula Graph transforms them to a UTC time according to

the time zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL

queries are all UTC time.

timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph

processes still uses the default time zone of the host, such as the log printing time.

Name Predefine

Value

Descriptions

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

metad.pid

File to host the process ID.

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default value is

UTC+00:00:00 . For the format of the parameter value, see Specifying the Time Zone

with TZ. For example, --timezone_name=CST-8 represents the GMT+8 time zone.

•

•

6.1.2 Meta Service configuration

- 243/287 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Networking configurations

NOTE: We recommend that you use the real IP address in your configuration because sometimes 127.0.0.1 can not be parsed

correctly.

Storage configurations

Name Predefine

Value

Descriptions

log_dir logs Directory to the Meta Service log. We recommend that you put logs on a different

hard disk from the data_path .

minloglevel 0 Specifies the minimum log level. Available values are 0 (INFO), 1 (WARNING), 2

(ERROR), and 3 (FATAL). We suggest that you set minloglevel to 0 for debugging

and 1 for production. When you set it to 4 , Nebula Graph does not print any logs.

v 0 Specifies the verbose log level. Available values are 0-4. The larger the value, the

more verbose the log.

logbufsecs 0 Specifies the maximum time to buffer the logs. The configuration is measured in

seconds.

stdout_log_file metad-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file metad-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minimum level to copy the log messages to stderr.

Name Predefine

Value

Descriptions

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Separate

multiple addresses with commas.

local_ip 127.0.0.1 Specifies the local IP for the Meta Service.

port 9559 Specifies RPC daemon listening port. The external port for the Meta

Service is predefined to 9559 . The internal port is predefined to port + 1 ,

i.e., 9560 . Nebula Graph uses the internal port for multi-replica

interactions.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19559 Specifies the port for the HTTP service.

ws_h2_port 19560 Specifies the port for the HTTP2 service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval in seconds. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise

Nebula Graph CANNOT work normally.

Name Predefine Value Descriptions

data_path data/meta (i.e. /usr/local/nebula/data/meta/) Directory for cluster metadata persistence

6.1.2 Meta Service configuration

- 244/287 - 2021 Vesoft Inc.

Misc configurations

RocksDB options

Name Predefine

Value

Descriptions

default_parts_num 100 Specifies the default partition number when you create a new graph

space.

default_replica_factor 1 Specifies the default replica factor number when you create a new graph

space.

Name Predefine

Value

Descriptions

rocksdb_wal_sync true Enable or disable RocksDB WAL synchronization. Available values are true

(enable) and false (disable).

Last update: April 13, 2021

6.1.2 Meta Service configuration

- 245/287 - 2021 Vesoft Inc.

6.1.3 Graph Service configuration

Nebula Graph provides two initial configuration files for the Graph Service: nebula-graphd.conf.default and nebula-

graphd.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

How to use the configuration files

The Graph Service gets its configuration from the nebula-graphd.conf file. You have to remove the suffix .default or .production

from an initial configuration file for the Graph Service to apply the configuration defined in it.

If you have modified the configuration in the file and want new configuration to take effect, add --local_conf=true at the top of

the file. Otherwise, Nebula Graph reads the cached configuration.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses its default value.

NOTE: The default value of a parameter in Nebula Graph may be different from the predefined value in the .default and

.production files.

The predefined parameters in nebula-graphd.conf.default and nebula-graphd.conf.production are different. And not all parameters

are predefined. This topic uses the parameters in nebula-graphd.conf.default .

Basic configurations

NOTE:

While inserting time-type property values except timestamps, Nebula Graph transforms them to a UTC time according to

the time zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL

queries are all UTC time.

timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph

processes still uses the default time zone of the host, such as the log printing time.

Name Predefine

Value

Descriptions

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

graphd.pid

File to host the process ID.

enable_optimizer true When set to true , the optimizer is enabled.

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default value is

UTC+00:00:00 . For the format of the parameter value, see Specifying the Time Zone

with TZ. For example, --timezone_name=CST-8 represents the GMT+8 time zone.

•

•

6.1.3 Graph Service configuration

- 246/287 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Name Predefine

Value

Descriptions

log_dir logs Directory to the Graph Service log. We recommend that you put logs on a different

hard disk from the data_path .

minloglevel 0 Specifies the minimum log level. Available values are 0 (INFO), 1 (WARNING), 2

(ERROR), and 3 (FATAL). We suggest that you set minloglevel to 0 for debugging

and 1 for production. When you set it to 4 , Nebula Graph does not print any logs.

v 0 Specifies the verbose log level. Available values are 0-4. The larger the value, the

more verbose the log.

logbufsecs 0 Specifies the maximum time to buffer the logs. The configuration is measured in

seconds.

redirect_stdout true When set to true , stdout and stderr are redirected.

stdout_log_file graphd-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file graphd-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minimum level to copy the log messages to stderr.

6.1.3 Graph Service configuration

- 247/287 - 2021 Vesoft Inc.

Networking configurations

NOTE: We recommend that you use the real IP address in your configuration because sometimes 127.0.0.1 can not be parsed

correctly.

Charset and collate configurations

Name Predefine

Value

Descriptions

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Separate

multiple addresses with commas.

local_ip 127.0.0.1 Specifies the local IP for the Graph Service.

listen_netdev any Specifies the network device to listen on.

port 9669 Specifies RPC daemon listening port. The external port for the Graph

Service is 9669 .

reuse_port false When set to false , the SO_REUSEPORT is closed.

listen_backlog 1024 Specifies the backlog for the listen socket. You must modify this

configuration together with the net.core.somaxconn .

client_idle_timeout_secs 0 Specifies the time to close an idle connection. This configuration is

measured in seconds.

session_idle_timeout_secs 0 Specifies the time to expire an idle session. This configuration is

measured in seconds.

num_accept_threads 1 Specifies the thread number to accept incoming connections.

num_netio_threads 0 Specifies the networking IO threads number. 0 is the number of CPU

cores.

num_worker_threads 0 Specifies the thread number to execute user queries. 0 is the number of

CPU cores.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19669 Specifies the port for the HTTP service.

ws_h2_port 19670 Specifies the port for the HTTP2 service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval in seconds. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise

Nebula Graph CANNOT work normally.

storage_client_timeout_ms - Specifies the RPC connection timeout threshold between the Graph

Service and the Storage Service. This parameter is not predefined in the

initial configuration files. You can manually set it if you need it. The

system default value is 60000 ms.

Name Predefine Value Descriptions

default_charset utf8 Specifies the default charset when you create a new graph space.

default_collate utf8_bin Specifies the default collate when you create a new graph space.

6.1.3 Graph Service configuration

- 248/287 - 2021 Vesoft Inc.

Authorization and authentication configurations

If you have set enable_authorize to true , you can only log in with the root account. For example:

If you have set enable_authorize to false , you can log in with any account and password. For example:

Name Predefine

Value

Descriptions

enable_authorize false When set to false , the system authentication is not enabled. For more

information, see Authentication.

auth_type password Specifies the login method. Available values are password , ldap , and cloud .

/usr/local/nebula/bin/nebula -u root -p nebula --addr=127.0.0.1 --port=9669

/usr/local/nebula/bin/nebula -u any -p 123 --addr=127.0.0.1 --port=9669

Last update: April 13, 2021

6.1.3 Graph Service configuration

- 249/287 - 2021 Vesoft Inc.

6.1.4 Storage Service configurations

Nebula Graph provides two initial configuration files for the Storage Service: nebula-storaged.conf.default and nebula-

storaged.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

NOTE: Raft Listener is different from the Storage Service. For more information, see Raft Listener.

How to use the configuration files

The Storage Service gets its configuration from the nebula-storaged.conf file. You have to remove the suffix .default or

.production from an initial configuration file for the Storage Service to apply the configuration defined in it.

If you have modified the configuration in the file and want the new configuration to take effect, add --local_conf=true at the top

of the file. Otherwise, Nebula Graph reads the cached configuration.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses its default value.

NOTE: The default value of a parameter in Nebula Graph may be different from the predefined value in the .default and

.production files.

The predefined parameter in nebula-storaged.conf.default and nebula-storaged.conf.production are different. And not all

parameters are predefined. This topic uses the parameters in nebula-storaged.conf.default .

Basic configurations

NOTE:

While inserting time-type property values except timestamps, Nebula Graph transforms them to a UTC time according to

the time zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL

queries are all UTC time.

timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph

processes still uses the default time zone of the host, such as the log printing time.

Name Predefine

Value

Descriptions

daemonize true When set to true , the process is a daemon process.

pid_file pids/nebula-

storaged.pid

File to host the process ID.

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default value is

UTC+00:00:00 . For the format of the parameter value, see Specifying the Time Zone

with TZ. For example, --timezone_name=CST-8 represents the GMT+8 time zone.

•

•

6.1.4 Storage Service configurations

- 250/287 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Networking configurations

NOTE: We recommend that you use the real IP address in your configuration because sometimes 127.0.0.1 can not be parsed

correctly.

Name Predefine

Value

Descriptions

log_dir logs Directory to the Storage Service log. We recommend that you put logs on a different

hard disk from the data_path .

minloglevel 0 Specifies the minimum log level. Available values are 0-3. 0 , 1 , 2 , and 3 are INFO ,

WARNING , ERROR , and FATAL . We suggest that you set minloglevel to 0 for debug, 1

for production. When you set it to 4 , Nebula Graph does not print any logs.

v 0 Specifies the verbose log level. Available values are 0-4. The larger the value, the

more verbose the log.

logbufsecs 0 Specifies the maximum time to buffer the logs. The configuration is measured in

seconds.

redirect_stdout true When set to true , stdout and stderr are redirected.

stdout_log_file storaged-

stdout.log

Specifies the filename for the stdout log.

stderr_log_file storaged-

stderr.log

Specifies the filename for the stderr log.

stderrthreshold 2 Specifies the minimum level to copy the log messages to stderr. Available values are

0-3. 0 , 1 , 2 , and 3 are INFO , WARNING , ERROR , and FATAL .

Name Predefine

Value

Descriptions

meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Separate

multiple addresses with commas.

local_ip 127.0.0.1 Specifies the local IP for the Storage Service.

port 9779 Specifies RPC daemon listening port. The external port for Storage Service

is predefined to 9779 . The internal ports are predefined to port -2 , port

-1 , and port + 1 , i.e., 9777 , 9778 , and 9780 . Nebula Graph uses the

internal ports for multi-replica interactions.

ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.

ws_http_port 19779 Specifies the port for the HTTP service.

ws_h2_port 19780 Specifies the port for the HTTP2 service.

heartbeat_interval_secs 10 Specifies the default heartbeat interval in seconds. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise

Nebula Graph CANNOT work normally.

6.1.4 Storage Service configurations

- 251/287 - 2021 Vesoft Inc.

Raft configurations

Disk configurations

RocksDB options

The format of the RocksDB options is {"<option_name>":"<option_value>"} . Multiple options are separated with commas.

Name Predefine

Value

Descriptions

raft_heartbeat_interval_secs 30 Specifies the timeout for the Raft election. The configuration is

measured in seconds.

raft_rpc_timeout_ms 500 Specifies the timeout for the Raft RPC. The configuration is measured

in milliseconds.

wal_ttl 14400 Specifies the recycle RAFT wal time. The configuration is measured

in seconds.

Name Predefine Value Descriptions

data_path data/storage Specifies the root data path. Separate multiple paths with commas.

rocksdb_batch_size 4096 Specifies the block cache for a batch operation. The configuration is measured in

bytes.

rocksdb_block_cache 4 Specifies the block cache for BlockBasedTable. The configuration is measured in

megabytes.

engine_type rocksdb Specifies the engine type.

rocksdb_compression lz4 Specifies the compression algorithm for RocksDB. Available values are

lz4 , lz4hc , zlib , bzip2 , and zstd .

rocksdb_compression_per_level \ Specifies compression for each level.

enable_rocksdb_statistics false When set to false , RocksDB statistics is disabled.

rocksdb_stats_level kExceptHistogramOrTimers Specifies the stats level for RocksDB. Available values are kExceptHistogramOrTimers

kExceptTimers , kExceptDetailedTimers , kExceptTimeForMutex , and kAll .

enable_rocksdb_prefix_filtering false When set to true , the prefix bloom filter for RocksDB is enabled. Enabling prefix

bloom filter reduces memory usage.

rocksdb_filtering_prefix_length 12 Specifies the prefix length for each key. Available values are 12 and 16

Name Predefine Value Descriptions

rocksdb_db_options {} Specifies the RocksDB options.

rocksdb_column_family_options {"write_buffer_size":"67108864",

"max_write_buffer_number":"4",

"max_bytes_for_level_base":"268435456"}

Specifies the RocksDB column family

options.

rocksdb_block_based_table_options {"block_size":"8192"} Specifies the RocksDB block based table

options.

6.1.4 Storage Service configurations

- 252/287 - 2021 Vesoft Inc.

Available rocksdb_db_options and rocksdb_column_family_options are listed as follows.

rocksdb_db_options

rocksdb_column_family_options

For more information about RocksDB configuration, see RocksDB official documentation30
02

For super-Large vertices

For super vertex with a large number of edges, currently there are two truncation strategies:

Truncate directly. Set the enable_reservoir_sampling parameter to false . A certain number of edges specified in the

Max_edge_returned_per_vertex parameter are truncated by default.

Truncate with the reservoir sampling algorithm. Based on the algorithm, a certain number of edges specified in the

Max_edge_returned_per_vertex parameter are truncated with equal probability from the total n edges. Equal probability sampling

is useful in some business scenarios. However, the performance is affected compared to direct truncation due to the probability

calculation.

Storage configuration for large dataset

When you have a large dataset (in the RocksDB directory) and your memory is tight, we suggest that you set the

enable_partitioned_index_filter parameter to true . For example, 100 vertices + 100 edges require 300 key-values. Each key

takes 10bit in memory. Then you can calculate your own memory usage.

•

max_total_wal_size
delete_obsolete_files_period_micros
max_background_jobs
stats_dump_period_sec
compaction_readahead_size
writable_file_max_buffer_size
bytes_per_sync
wal_bytes_per_sync
delayed_write_rate
avoid_flush_during_shutdown
max_open_files
stats_persist_period_sec
stats_history_buffer_size
strict_bytes_per_sync
enable_rocksdb_prefix_filtering
enable_rocksdb_whole_key_filtering
rocksdb_filtering_prefix_length
num_compaction_threads
rate_limit

•

write_buffer_size
max_write_buffer_number
level0_file_num_compaction_trigger
level0_slowdown_writes_trigger
level0_stop_writes_trigger
target_file_size_base
target_file_size_multiplier
max_bytes_for_level_base
max_bytes_for_level_multiplier
disable_auto_compactions

1.

2.

Last update: April 13, 2021

6.1.4 Storage Service configurations

- 253/287 - 2021 Vesoft Inc.

https://rocksdb.org/

6.1.5 Kernel configurations

This document gives some introductions to the Kernel configurations in Nebula Graph.

ulimit

ULIMIT -C

ulimit -c limits the size of the core dumps. We recommend that you set it to unlimited . The command is:

ULIMIT -N

ulimit -n limits the number of open files. We recommend that you set it to more than 100,000. For example:

Memory

VM.SWAPPINESS

vm.swappiness is the percentage of the free memory before starting swap. The greater the value, the more likely the swap occurs.

We recommend that you set it to 0. When set to 0, the page cache is removed first. Note that when vm.swappiness is 0, it does not

mean that there is no swap.

VM.MIN_FREE_KBYTES

vm.min_free_kbytes is used to force the Linux VM to keep a minimum number of kilobytes free. If you have a large system

memory, we recommend that you increase this value. For example, if your physical memory 128GB, set it to 5GB. If the value is

not big enough, the system cannot apply for enough continuous physical memory.

VM.MAX_MAP_COUNT

vm.max_map_count limits the maximum number of vma (virtual memory area) for a process. The default value is 65530 . It is enough

for most applications. If your memory application fails because the memory consumption is large, increase the vm.max_map_count

value.

VM.OVERCOMMIT_MEMORY

vm.overcommit_memory contains a flag that enables memory overcommitment. We recommend that you set the default value 0 or 1.

DO NOT set it to 2.

VM.DIRTY_*

These values control the aggressiveness of the dirty page cache for the system. For write-intensive scenarios, you can make

adjustments based on your needs (throughput priority or delay priority). We recommend that you use the system default value.

TRANSPARENT HUGE PAGE

For better delay performance, you must delete the transparent huge pages (THP). The options are /sys/kernel/mm/

transparent_hugepage/enabled and /sys/kernel/mm/transparent_hugepage/defrag . For example:

Networking

NET.IPV4.TCP_SLOW_START_AFTER_IDLE

The default value for this parameter is 1 . If set, the congestion window is timed out after an idle period. We recommend that you

set it to 0, especially for long fat links (high latency and large bandwidth).

ulimit -c unlimited

ulimit -n 130000

echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag
swapoff -a && swapon -a

6.1.5 Kernel configurations

- 254/287 - 2021 Vesoft Inc.

NET.CORE.SOMAXCONN

net.core.somaxconn is the maximum number of the backlogged sockets. The default value is 128 . For scenarios with a large

number of burst connections, we recommend that you set it to greater than 1024 .

NET.IPV4.TCP_MAX_SYN_BACKLOG

The maximum number of remembered connection requests. The setting rule for this parameter is the same as that of

net.core.somaxconn .

NET.CORE.NETDEV_MAX_BACKLOG

It determines the maximum number of packets. We recommend that you increase it to greater than 10,000, especially for 10G

network adapters. The default value is 1000 .

NET.IPV4.TCP_KEEPALIVE_*

Keep alive parameters for the TCP connections. For applications that use a 4-layer transparent load balancer, if the idle

connection is disconnected unexpectedly, decrease tcp_keepalive_time and tcp_keepalive_intvl .

NET.IPV4.TCP_RMEM/WMEM

The minimum, default, and maximum size of the TCP socket receive buffer. For long fat links, we recommend that you increase

the default value to bandwidth * RTT.

SCHEDULER

For SSD devices, we recommend that you set /sys/block/DEV_NAME/queue/scheduler to noop or none.

Other parameters

KERNEL.CORE_PATTERN

we recommend that you set it to core and set kernel.core_uses_pid to 1.

Parameter usage guide

SYSCTL

sysctl conf_name checks the current parameter value.

sysctl -w conf_name=value modifies the parameter value. And your modification takes effect immediately.

sysctl -p loads parameter values ​​from related configuration files.

INTRODUCTION TO ULIMIT

ulimit sets the resource threshold for the current shell session. Please note that:

Changes made by the ulimit command are valid only for the current session (and child processes).

ulimit cannot adjust the (soft) threshold of a resource to a value greater than the current hard value.

Ordinary users cannot adjust the hard threshold (even by using sudo) through this command.

To modify on the system level, or adjust the hard threshold, edit the /etc/security/limits.conf file. But this method needs to

re-log in to take effect.

PRLIMIT

prlimit gets and sets process resource limits. You can modify the hard threshold by using it and the sudo command. Together

with the sudo command, the hard threshold can be modified. For example, prlimit --nofile = 130000 --pid = $$ adjusts the

maximum number of open files permitted by the current process to 14000 . And the modification takes effect immediately. Note

that this command is only available in RedHat 7u or later OS versions.

•

•

•

•

•

•

•

Last update: February 8, 2021

6.1.5 Kernel configurations

- 255/287 - 2021 Vesoft Inc.

6.2 Log management

6.2.1 Logs

Nebula Graph uses glog to print logs, uses gflag to control the severity level of the log, and provides an HTTP interface to

dynamically change the log level at runtime to facilitate tracking.

Log Directory

The default log directory is /usr/local/nebula/logs/ .

NOTE: If you deleted the log directory during runtime, the runtime log would not continue to be printed. However, this

operation will not affect the services. Restart the services to recover the logs.

Parameter Description

TWO MOST COMMONLY USED FLAGS IN GLOG

minloglevel: The scale of minloglevel is 0-4. The numbers of severity levels INFO(DEBUG), WARNING, ERROR, and FATAL

are 0, 1, 2, and 3, respectively. Usually specified as 0 for debug, 1 for production. If you set the minloglevel to 4, no logs are

printed.

v: The scale of v is 0-3. When the value is set to 0, you can further set the severity level of the debug log. The greater the

value is, the more detailed the log is.

CONFIGURATION FILES

The default severity level for the metad, graphd, and storaged logs can be found in the configuration files (usually in /usr/local/

nebula/etc/).

Check and Change the Severity Levels Dynamically

Check all the flag values (log values included) of the current gflags with the following command. Not all flags are listed because

changing some flags can be dangerous. Read the response explanation and the source code before you change these not

documented parameters. To get all the available flags for a process, use this command:

In the command:

ws_ip is the IP address for the HTTP service, which can be found in the configuration files above. The default value is

127.0.0.1 .

ws_port is the port for the HTTP service, the default values for metad , storaged , and graphd are 19559 , 19779 , and 19669 ,

respectively.

NOTE: If you changed the runtime log level, then restart the services, the log level changes to the configuration file

specifications. For more information, see Storage Service configurations.

For example, check the minloglevel for the storaged service:

To change the log level for a process, use these commands. For example, you can change the log severity level the the most

detailed.

•

•

> curl ${ws_ip}:${ws_port}/flags

•

•

> curl 127.0.0.1:19559/flags | grep minloglevel

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19779/flags" # storaged
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19669/flags" # graphd
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19559/flags" # metad

6.2 Log management

- 256/287 - 2021 Vesoft Inc.

https://github.com/google/glog
https://gflags.github.io/gflags/

To change the severity of the storage log, replace the port in the preceding command with storage port.

NOTE: Nebula Graph only supports modifying the graph and storage log severity by using the console. And the severity level of

meta logs can only be modified with the curl command.

Close all logs print (FATAL only) with the following command.

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":3,"v":0}' "127.0.0.1:19779/flags" # storaged
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":3,"v":0}' "127.0.0.1:19669/flags" # graphd
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":3,"v":0}' "127.0.0.1:19559/flags" # metad

Last update: March 25, 2021

6.2.1 Logs

- 257/287 - 2021 Vesoft Inc.

7. Monitor and metrics

7.1 Query Nebula Graph metrics

Nebula Graph supports querying the monitoring metrics through HTTP ports.

7.1.1 Metrics

Each metric of Nebula Graph consists of three fields: name, type, and time range. The fields are separated by periods, for

example, num_queries.sum.600 . The detailed description is as follows.

Different Nebula Graph services (Graph, Storage, or Meta) support different metrics, for more information, see Metric list

(TODO: doc).

7.1.2 Query metrics over HTTP

Syntax

NOTE: If Nebula Graph is deployed with Docker Compose, run docker-compose ps to check the ports that are mapped from the

service ports inside of the container and then query through them.

Example

Query a single metric

Query the query number in the last 10 minutes in the Graph Service.

Field Example Description

Metric

name

num_queries Indicates the function of the metric.

Metric

type

sum Indicates how the metrics are collected. Supported types are SUM, COUNT, AVG, RATE,

and the P-th sample quantiles such as P75, P95, P99, and P99.9.

Time

range

600 The time range in seconds for the metric collection. Supported values are 5, 60, 600, and

3600, representing the last 5 seconds, 1 minute, 10 minutes, and 1 hour.

$ curl -G "http://<ip>:<port>/stats?stats=<metric_name_list>[&format=json]"

Parameter Description

ip The IP address of the server. You can find it in the configuration file in the installation directory.

port The HTTP port of the server. You can find it in the configuration file in the installation directory. The

default ports are 19559 (Meta), 19669 (Graph), and 19779 (Storage).

metric_name_list The metrics names. Multiple metrics are separated by commas (,).

&format=json Optional. Returns the result in the JSON format.

•

7. Monitor and metrics

- 258/287 - 2021 Vesoft Inc.

Query multiple metrics

Query the following metrics together: * The average heartbeat latency in the last 1 minute. * The average latency of the

slowest 1% heartbeats, i.e., the P99 heartbeats, in the last 10 minutes.

Return a JSON result.

Query the number of new vertices in the Storage Service in the last 10 minutes and return the result in the JSON format.

Query all metrics in a service.

If no metric is specified in the query, Nebula Graph returns all metrics in the service.

$ curl -G "http://192.168.8.40:19669/stats?stats=num_queries.sum.600"
num_queries.sum.600=400

•

$ curl -G "http://192.168.8.40:19559/stats?stats=heartbeat_latency_us.avg.60,heartbeat_latency_us.p99.600"
heartbeat_latency_us.avg.60=281
heartbeat_latency_us.p99.600=985

•

$ curl -G "http://192.168.8.40:19779/stats?stats=num_add_vertices.sum.600&format=json"
[{"value":1,"name":"num_add_vertices.sum.600"}]

•

$ curl -G "http://192.168.8.40:19559/stats"
heartbeat_latency_us.avg.5=304
heartbeat_latency_us.avg.60=308
heartbeat_latency_us.avg.600=299
heartbeat_latency_us.avg.3600=285
heartbeat_latency_us.p75.5=652
heartbeat_latency_us.p75.60=669
heartbeat_latency_us.p75.600=651
heartbeat_latency_us.p75.3600=642
heartbeat_latency_us.p95.5=930
heartbeat_latency_us.p95.60=963
heartbeat_latency_us.p95.600=933
heartbeat_latency_us.p95.3600=929
heartbeat_latency_us.p99.5=986
heartbeat_latency_us.p99.60=1409
heartbeat_latency_us.p99.600=989
heartbeat_latency_us.p99.3600=986
num_heartbeats.rate.5=0
num_heartbeats.rate.60=0
num_heartbeats.rate.600=0
num_heartbeats.rate.3600=0
num_heartbeats.sum.5=2
num_heartbeats.sum.60=40
num_heartbeats.sum.600=394
num_heartbeats.sum.3600=2364

Last update: March 17, 2021

7.1.2 Query metrics over HTTP

- 259/287 - 2021 Vesoft Inc.

8. Data security

8.1 Authentication and authorization

8.1.1 Authentication

Nebula Graph replies on local authentication or LDAP authentication to implement access control.

Nebula Graph creates a session when a client connects to it. The session stores information about the connection, including the

user information.

By default, authentication is disabled and Nebula Graph allows connections with any username and password. If the

authentication system is enabled, Nebula Graph checks a session according to the authentication configuration, and decides

whether the session should be allowed or denied.

Local authentication

Local authentication indicates that usernames and passwords are stored locally on the server, with the passwords encrypted.

ENABLE LOCAL AUTHENTICATION

In the /usr/local/nebula/etc/nebula-graphd.conf file, set --enable_authorize=true and save the modification.

NOTE: /usr/local/nebula/ is the default installation path for Nebula Graph. If you have changed it, use the actual path.

Restart the Nebula Graph services. For how to restart, see Manage Nebula Graph services.

NOTE: You can use the username root and password nebula to log into Nebula Graph after enabling local authentication. This

account has the build-in God role. For more information about roles, see Roles and privileges.

LDAP authentication

Lightweight Directory Access Protocol (LDAP), is a lightweight client-server protocol for accessing directories and building a

centralized account management system.

LDAP authentication and local authentication can be enabled at the same time, but LDAP authentication has a higher priority. If

the local authentication server and the LDAP server both have the information of user Amber , Nebula Graph reads from the LDAP

server first.

ENABLE LDAP AUTHENTICATION

The Nebula Graph Enterprise Edition supports LDAP authentication. For how to enable LDAP, see Authenticate with an LDAP

server (TODO: doc).

1.

2.

Last update: March 16, 2021

8. Data security

- 260/287 - 2021 Vesoft Inc.

8.1.2 User management

This topic describes how to manage users and roles.

By default, Nebula Graph allows connections with any username and password. After enabling authentication, only valid users

can connect to Nebula Graph and access the resources according to the user roles.

CREATE USER

The root user with the GOD role can run CREATE USER to create a new user.

Syntax

Example

GRANT ROLE

Users with the GOD role or the ADMIN role can run GRANT ROLE to assign a built-in role in a graph space to a user. For more

information about Nebula Graph built-in roles, see Roles and privileges

NOTE: If the target user is connected to Nebula Graph when running GRANT ROLE , the new role takes effect when the user logs

out and logs in again.

Syntax

Example

REVOKE ROLE

Users with the GOD role or the ADMIN role can run REVOKE ROLE to revoke a user's role in a graph space.

NOTE: If the target user is connected to Nebula Graph when running REVOKE ROLE , the old role still takes effect until the user

logs out.

Syntax

Example

CHANGE PASSWORD

With the correct username and password, users can run CHANGE PASSWORD to set a new password for a user.

Syntax

Example

•

CREATE USER [IF NOT EXISTS] <user_name> [WITH PASSWORD '<password>'];

•

nebula> CREATE USER user1 WITH PASSWORD 'nebula';

•

GRANT ROLE <role_type> ON <space_name> TO <user_name>;

•

nebula> GRANT ROLE USER ON basketballplayer TO user1;

•

REVOKE ROLE <role_type> ON <space_name> FROM <user_name>;

•

nebula> REVOKE ROLE USER ON basketballplayer FROM user1;

•

CHANGE PASSWORD <user_name> FROM '<old_password>' TO '<new_password>';

•

nebula> CHANGE PASSWORD user1 FROM 'nebula' TO 'nebula123';

8.1.2 User management

- 261/287 - 2021 Vesoft Inc.

ALTER USER

The root user with the GOD role can run ALTER USER to set a new password for a user.

Syntax

Example

DROP USER

The root user with the GOD role can run DROP USER to remove a user.

NOTE: Removing a user does not close the user's current session, and the user role still takes effect in the session until the

session is closed.

Syntax

Example

SHOW USERS

The root user with the GOD role can run SHOW USERS to list all the users.

Syntax

Example

•

ALTER USER <user_name> WITH PASSWORD '<password>';

•

nebula> ALTER USER user1 WITH PASSWORD 'nebula';

•

DROP USER [IF EXISTS] <user_name>;

•

nebula> DROP USER user1;

•

SHOW USERS;

•

nebula> SHOW USERS;
+-----------+
| Account |
+-----------+
| "test1" |
+-----------+
| "test2" |
+-----------+
| "test3" |
+-----------+

Last update: April 13, 2021

8.1.2 User management

- 262/287 - 2021 Vesoft Inc.

8.1.3 Roles and privileges

A role is a collection of privileges. You can assign a role to a user for access control.

Built-in roles

Nebula Graph does not support custom roles, but it has multiple built-in roles:

GOD

GOD is the original role with all privileges not limited to graph spaces. It is similar to root in Linux and administrator in

Windows.

When the Meta Service is initialized, the one and only GOD role user root is automatically created with the password

nebula .

CAUTION: Modify the password for root as soon as possible for security.

The default username root is immutable.

If authentication is disabled, you can use any username and password to connect to Nebula Graph. This user is regarded

as the GOD role.

ADMIN

An ADMIN role can read and write both the Schema and the data in a specific graph space.

An ADMIN role of a graph space can grant DBA, USER, and GUEST roles in the graph space to other users.

DBA

A DBA role can read and write both the Schema and the data in a specific graph space.

A DBA role of a graph space CANNOT grant roles to other users.

USER

A USER role can read and write data in a specific graph space.

The Schema information is read-only to the USER roles in a graph space.

GUEST

A GUEST role can only read the Schema and the data in a specific graph space.

NOTE: A user can have only one role in a graph space.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

8.1.3 Roles and privileges

- 263/287 - 2021 Vesoft Inc.

Role privileges and allowed nGQL

The privileges of roles and the nGQL statements that each role can use are listed as follows.

NOTE:

The results of SHOW operations are limited to the role of a user. For example, all users can run SHOW SPACES , but the results

only include the graph spaces that the users have privileges.

Only the GOD role can run SHOW USERS and SHOW SNAPSHOTS .

Privilege God Admin DBA User Guest Allowed nGQL

Read

space

Y Y Y Y Y USE , DESCRIBE SPACE

Write

space

Y CREATE SPACE , DROP SPACE , CREATE SNAPSHOT , DROP

SNAPSHOT , BALANCE , ADMIN , CONFIG , INGEST , DOWNLOAD

Read

schema

Y Y Y Y Y DESCRIBE TAG , DESCRIBE EDGE , DESCRIBE TAG INDEX ,

DESCRIBE EDGE INDEX

Write

schema

Y Y Y CREATE TAG , ALTER TAG , CREATE EDGE , ALTER EDGE ,

DROP TAG , DROP EDGE , CREATE TAG INDEX , CREATE EDGE

INDEX , DROP TAG INDEX , DROP EDGE INDEX

Write user Y CREATE USER , DROP USER , ALTER USER

Write role Y Y GRANT , REVOKE

Read data Y Y Y Y Y GO , SET , PIPE , MATCH , ASSIGNMENT , LOOKUP , YIELD ,

ORDER BY , FETCH VERTICES , Find , FETCH EDGES , FIND

PATH , LIMIT , GROUP BY , RETURN

Write data Y Y Y Y BUILD TAG INDEX , BUILD EDGE INDEX , INSERT VERTEX ,

UPDATE VERTEX , INSERT EDGE , UPDATE EDGE , DELETE

VERTEX , DELETE EDGES

Show

operations

Y Y Y Y Y SHOW , CHANGE PASSWORD

•

•

Last update: March 29, 2021

8.1.3 Roles and privileges

- 264/287 - 2021 Vesoft Inc.

8.2 Backup & Restore

8.2.1 What is Backup & Restore

Backup & Restore (BR in short) is a Command-Line Interface (CLI) tool for you to back up data of graph spaces of Nebula Graph

and to restore data from the backup files.

Features

Supports storing backup files in local disks (SSD or HDD), Alibaba Cloud OSS, and Amazon S3.

Supports backing up data of one or multiple graph spaces.

Limitations

Supports Nebula Graph v2.0.0-RC and later versions only.

Supports full backup, but not incremental backup.

Supports restoration of data on clusters of the same topologies only, which means both clusters must have exactly the same

number of hosts.

SSH login is required for backup and restoration.

Does not support the Nebula Graph services deployed with Docker Compose.

During the backup process, both DDL and DML statements in the specified graph spaces are blocked. We recommend that

you do the operation within the low peak period of the business, for example, from 2:00 AM to 5:00 AM.

The restoration process is performed OFFLINE.

Implementation

You can use the BR to do these:

Backing up a cluster and storing its data in a local or cloud storage system.

Restoring data to a cluster from a local or cloud storage system.

This section introduces how backup and restoration are implemented in the BR.

•

•

•

•

•

•

•

•

•

•

•

8.2 Backup & Restore

- 265/287 - 2021 Vesoft Inc.

BACKUP

To back up data, the BR sends a backup request to the leader metad process to trigger the backup process as follows:

The SSH login from the BR machine to the meta and the storage servers is verified. Besides, if a remote storage system such as

Amazon S3 or Alibaba Cloud OSS is necessary, their client installation and configuration are verified.

The BR sends a request to create backup files.

The leader metad process is locked.

NOTE: From now on, you cannot run any DDL statement of nGQL until Step 9.

The leader metad process blocks writing to the specified graph spaces.

NOTE: From now on, you cannot run any DML statement of nGQL in the specified graph spaces until Step 7. But this process

has no effect on the DQL statements in these graph spaces, and you can do whatever you want in other graph spaces.

The leader metad process sends a request to the storaged processes for the snapshot file names.

The leader metad process scans local RocksDB files and output SST files.

The leader metad process cancels blocking writing to the specified graph spaces.

NOTE: From now on, you can run DML statements in the specified graph spaces.

The leader metad process sends responses to the BR with the metadata including:

the thrift format, partition information of the graph spaces, and the Raft log commit ID of each partition, and

the snapshot information including the catalog of the snapshots of each storaged process, their SST file names of the meta

server, and the backup file names.

The leader metad process is unlocked. > NOTE: From now on, you can run any DDL statement in the specified graph spaces.

The account on the BR machine logs on via SSH to the meta server where the leader locates and to all the storage servers, and

backs up files.

If Amazon S3 or Alibaba Cloud OSS is used, the BR calls commands to upload the files to the cloud storage system. > NOTE:

This step causes massive disk reads. We recommend that a 10 Gigabit Network is applied. If a networking error occurs during

this step, the backup process fails and you must do the backup operation again. For now, the backup process cannot be

resumed from the broken point.

The BR sends a request to clean the snapshots from meta server and storage servers, and the backup process is done.

This figure shows how the backup is implemented.

1.

2.

3.

4.

5.

6.

7.

8.

•

•

9.

10.

11.

12.

8.2.1 What is Backup & Restore

- 266/287 - 2021 Vesoft Inc.

When backup files are generated, the file names are generated automatically. A folder name is in the format of

BACKUP_YY_MM_DD_HH_mm_SS , of which,

BACKUP indicates the files are backup files.

YY_MM_DD_HH_mm_SS indicates the timestamp when the files are generated.

RESTORE

CAUTION: During the restoration process, the data on the target cluster is removed and then is replaced with the data from

the backup files. If necessary, back up the data on the target cluster.

The restoration process is implemented as follows:

The SSH login from the BR to the meta and the storage servers is verified. Besides, if a cloud storage system such as Amazon

S3 or Alibaba Cloud OSS is necessary, their client installation and configuration are verified.

The BR downloads the metadata (but not data) of the backup files from the remote storage system or other external storage

systems.

The BR verifies the topology of the clusters.

The BR stops the Meta Service and the Storage Service remotely.

The account on the BR machine logs on via SSH to the meta and storage servers to remove the existing data files.

When data files are removed, the account on the BR machine logs on via SSH to the meta and storage servers and downloads

the backup files from the cloud storage system or other external storage systems.

When the backup files are downloaded, the BR starts the Meta Service.

The BR calls the br restore command to change the partition information of the specified metad processes.

The BR starts the Storage Service, and the restoration process is done.

This figure shows how the restoration process is implemented.

•

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

8.2.1 What is Backup & Restore

- 267/287 - 2021 Vesoft Inc.

How to use

To use the BR, follow these steps:

Compile BR.

Use BR to back up data.

Use BR to restore data from backup files.

1.

2.

3.

Last update: January 5, 2021

8.2.1 What is Backup & Restore

- 268/287 - 2021 Vesoft Inc.

8.2.2 Compile BR

For now, the BR is not provided as a package. You can compile the BR.

NOTE: If you want to store the backup files locally, we recommend that you compile the BR on one meta server of the target

Nebula Graph cluster where you will perform data restoration. For more information, see Restore data from backup files.

Prerequisites

To compile the BR, do a check of these:

Go 1.14 or a later version is installed.

make is installed.

Procedure

To compile the BR, follow these steps:

Clone the nebula-storage repository to your machine.

Change to the br diretory.

Compile the BR.

When the BR is compiled successfully, you can find the br binary file under the nebula-storage/util/br/bin/ directory.

•

•

1.

git clone https://github.com/vesoft-inc/nebula-storage.git

2.

cd nebula-storage/util/br

3.

make build && make test

Last update: January 5, 2021

8.2.2 Compile BR

- 269/287 - 2021 Vesoft Inc.

https://github.com/golang/go

8.2.3 Use BR to back up data

After the BR is compiled, you can back up data of specified graph spaces. This article introduces how to use the BR to back up

data.

Prerequisites

To back up data with the BR, do a check of these:

The BR is compiled. For more information, see Compile BR.

NOTE: If you want to store the backup files locally, we recommend that you compile the BR on one meta server of the

target Nebula Graph cluster where you will perform data restoration. For more information, see Restore data from backup

files.

The Nebula Graph services are running and we recommend that the backup is performed when the application request

traffic is very low.

Get the names of the specified graph spaces. In this example, basketballplayer is used.

Get the Nebula Graph installation directory. In this example, /usr/local/nebula/ is used.

From the nebula-metad.conf and nebula-storaged.conf files, get the IP addresses and ports of the meta and the storage

servers. Both files are in the <nebula_installation_path>/nebula/etc directory. In this example,

For the meta server: 192.168.8.161:9559

For the storage server: 192.168.8.161:9779

NOTE: Make sure that the actual IP addresses instead of 127.0.0.1 are used in the configuration files.

Your account on the BR machine can log on via SSH to the meta and the storage servers without a password. Here is a

configuration reference. In this example, such an account named nebula on the BR machine is used.

If you use Amazon S3 or Alibaba Cloud OSS to store the backup files, make sure that the S3 CLI client or ossutil is installed

and configured on the meta servers, the storage servers, and the BR machine. For more information, see Amazon S3 CLI

Documentation and Alibaba Cloud ossutil Documentation.

NOTE: Run ln -s /<ossutil_tool_installation_path>/<ossutil64 or ossutil> /usr/local/bin/ossutil to make the ossutil

command effective.

If you store the backup files locally, create a directory with the same absolute path on the meta and the storage servers and

the BR machine for the backup files and get the absolute path. In this example, /home/user/backup/ is used.

NOTE: In the production environment, we recommend that you mount Network File System (NFS) storage to the meta

and the storage servers and the BR machine for local backup, or use S3 or OSS for remote backup. When you restore the

data from local files, you must manually move these backup files to a specified directory, which causes redundant data and

troubles. For more information, see Restore data from backup files.

•

•

•

•

•

•

•

•

•

•

8.2.3 Use BR to back up data

- 270/287 - 2021 Vesoft Inc.

http://alexander.holbreich.org/ssh-tunnel-without-password/
https://docs.amazonaws.cn/en_us/cli/latest/userguide/cli-services-s3.html
https://docs.amazonaws.cn/en_us/cli/latest/userguide/cli-services-s3.html
https://www.alibabacloud.com/help/doc-detail/120075.htm#concept-303829

Procedure

To back up data of the specified graph spaces:

8.2.3 Use BR to back up data

- 271/287 - 2021 Vesoft Inc.

Edit the configuration file as follows. You can find an example configuration in the nebula-storage/util/br/ directory.

Run the command to change to the nebula-storage/util/br/bin/ directory.

Run the command to back up data.

In this command:

backup full : Backs up data.

--config "/absolute/path/to/the/backup/configuration/file.yaml" : Sets the absolute path of the configuration file.

NOTE: During the backup process, if the leader changes, an error occurs. You can clean the temporary files with the br

cleanup command as in Step 4, and then run the br backup command again.

When the backup is successful, you can find a backup folder with a name in the BACKUP_YY_MM_DD_HH_mm_SS format in the backup

store directory on the BR machine and all the servers of the cluster. In this example, in the /home/user/backup/ directory, you

can find a folder named BACKUP_2020_11_30_20_47_44 . All these backup files on all the machines are required for data restoration.

(Optional) By default, all the snapshots will be deleted when the backup is done. If errors occur during the deletion of these

files, run this command to delete them.

1.

meta_nodes:
 - # Set the IP address and the port of one meta server
 addrs: "192.168.8.161:9559"
 # Set the absolute path of the Nebula Graph installation directory
 root: "/usr/local/nebula/"
 # Set the absolute path of the data directory of this metad process
 data: "/usr/local/nebula/data/meta"
 # Set the account of the BR machine that is authorized to log on to the meta server via SSH without a password
 user: "nebula"
 #- # If more than one metad process runs, refer to the preceding configuration to add more
 # addrs: "192.168.8.161:9559"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/meta"
 # user: "nebula"
 #- addrs: "192.168.8.161:9559"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/meta"
 # user: "nebula"

storage_nodes:
 - # Set the IP address and the port of one storage server
 addrs: "192.168.8.161:9779"
 # Set the absolute path of the Nebula Graph installation directory
 root: "/usr/local/nebula/"
 # Set the absolute path of the data directory of the storaged process
 data: "/usr/local/nebula/data/storage"
 # Set the account on the BR machine that is authorized to log on to the storage server via SSH without a password
 user: "nebula"
 #- If more than one storaged processes run, refer to the preceding configuration to add more
 # addrs: "192.168.8.161:9779"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/storage"
 # user: "nebula"
 #- addrs: "192.168.8.161:9779"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/storage"
 # user: "nebula"

 # Set the store directory for the backup files.
 # If the backup files are stored locally, set
 backend: "local:///absolute/path/to/the/store/directory"
 # If Alibaba Cloud OSS is used, set
 # backend: "oss://nebulabackup"
 # If Amazon S3 is used, set
 # backend: "s3://nebulabackup"

 # Set the graph spaces to be backed up.
 # If more than one graph spaces are necessary, set
 # space_names: ["space_name1", "space_name2", ..., "space_name"]
space_name: ["basketballplayer"]

2.

cd nebula-storage/util/util/br/bin/

3.

./br backup full --config "/absolute/path/to/the/backup/configuration/file.yaml"

•

•

4.

./br cleanup --backup_name [backup file name] --meta 192.168.8.161:9559

8.2.3 Use BR to back up data

- 272/287 - 2021 Vesoft Inc.

In this command: - cleanup : Deletes all the temporary files on the meta and the storage servers. - --backup_name

BACKUP_YY_MM_DD_HH_mm_SS : Sets a backup folder name, indicating the command is run to delete the temporary files that were

generated when this backup folder was generated. - --meta <IP address:port> : Sets the IP address and the port of a meta

server.

Next to do

After the backup files are generated, you can use the BR to restore them for Nebula Graph. For more information, see Use BR to

restore data.

Last update: April 13, 2021

8.2.3 Use BR to back up data

- 273/287 - 2021 Vesoft Inc.

8.2.4 Use BR to restore data

If you use the BR to back up data, you can use it to restore the data to Nebula Graph. This article introduces how to use the BR

to restore data from backup files.

NOTE: The restoration process is performed OFFLINE.

CAUTION: During the restoration process, the data on the target Nebula Graph cluster is removed and then is replaced with

the data from the backup files. If necessary, back up the data on the target cluster.

Prerequisites

To restore data with the BR, do a check of these:

The BR is compiled. For more information, see Compile BR.

No application is connected to the target Nebula Graph cluster.

Make sure that the target and the source Nebula Graph clusters have the same topology, which means that they have

exactly the same number of hosts.

Get the backup folder names to do the restoration. In this example, BACKUP_2020_12_21_01_17_53 is used.

From the nebula-metad.conf and nebula-storaged.conf files, get the IP addresses and ports of the meta and the storage

servers. Both files are in the <nebula_installation_path>/nebula/etc directory. In this example,

For the meta server: 192.168.8.161:9559

For the storage server: 192.168.8.161:9779

NOTE: Make sure that the actual IP addresses instead of 127.0.0.1 are used in the configuration file.

Your account on the BR machine can log on to the meta and the storage servers via SSH without a password. Here is a

configuration reference. This account must have the write permission to the installation directory of Nebula Graph. In this

example, such an account named nebula on the BR machine is used.

If the backup files are stored on Alibaba Cloud OSS or Amazon S3, make sure that the S3 CLI client or ossutil is installed

and configured on the meta servers, the storage servers, and the BR machine. For more information, see Amazon S3 CLI

Documentation and Alibaba Cloud ossutil Documentation.

NOTE: Run ln -s /<ossutil_tool_installation_path>/<ossutil64 or ossutil> /usr/local/bin/ossutil to make the ossutil

command effective.

If the backup files are stored locally on the servers, create a directory with the same absolute path on the BR machine and

all the servers of the target Nebula Graph cluster, and then manually move these backup files to this directory. Such file

movement causes redundant data and troubles.

•

•

•

•

•

•

•

•

•

•

8.2.4 Use BR to restore data

- 274/287 - 2021 Vesoft Inc.

http://alexander.holbreich.org/ssh-tunnel-without-password/
https://docs.amazonaws.cn/en_us/cli/latest/userguide/cli-services-s3.html
https://docs.amazonaws.cn/en_us/cli/latest/userguide/cli-services-s3.html
https://www.alibabacloud.com/help/doc-detail/120075.htm#concept-303829

Procedure

To restore data from some backup files:

Edit the configuration file as follows. You can find an example configuration in the nebula-storage/util/br/ directory.

Run the command to change to the nebula-storage/util/br/bin/ directory.

Run the command to restore data.

In this command:

- restore full : Restores data. - --config "/absolute/path/to/the/restore/configuration/file.yaml" : Sets the absolute path of the

configuration file.

NOTE: During the restoration process, if the leader changes, an error occurs. To prevent data corruption, when an error

occurs, you must run the br restore command to perform the restoration again.

When the restoration is successful, you can find the data in the <nebula_installation_path>/data/storage directory under the

Nebula Graph installation directory.

Wait about several seconds until the metadata and the schema are synchronized, and then verify the data. For example, on the

nebula-console, run SHOW STATS to verify the number of vertices and edges in the restored graph space.

NOTE: After restoration,

if no records are returned for the USE <space_name> statement, we recommend that you restart the Graph Service.

if the Storage Error: part: 2, error code: -3. error occurs when you query the restored data, do a check of the status of

the Storage Service. If necessary, restart the Storage Service.

1.

meta_nodes:
 - # Set the IP address and the port of one meta server
 addrs: "192.168.8.161:9559"
 # Set the absolute path of the Nebula Graph installation directory
 root: "/usr/local/nebula/"
 # Set the absolute path of the data directory of the metad process
 data: "/usr/local/nebula/data/meta"
 # Set the account of the BR machine that is authorized to log on to the meta server via SSH
 user: "nebula"
 #- # If more than one metad processes run, refer to the preceding configuration to add more
 #- addrs: "192.168.8.161:9559"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/meta"
 # user: "nebula"
 #- addrs: "192.168.8.161:9559"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/meta"
 # user: "nebula"

storage_nodes:
 - # Set the IP address and the port of one storage server
 addrs: "192.168.8.161:9779"
 # Set the absolute path of the Nebula Graph installation directory
 root: "/usr/local/nebula/"
 # Set the absolute path of the data directory of the storaged process
 data: "/usr/local/nebula/data/storage"
 # Set the account of the BR machine that is authorized to log on to the storage server via SSH
 user: "nebula"
 #- If more than one storaged processes run, refer to the preceding configuration to add more
 #- addrs: "192.168.8.161:9779"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/storage"
 # user: "nebula"
 #- addrs: "192.168.8.161:9779"
 # root: "/usr/local/nebula/"
 # data: "/usr/local/nebula/data/storage"
 # user: "nebula"

 # Set the directory where the backup files are located.
 # If the backup files are stored locally
backend: "local:///absolute/path/to/the/store/directory"
 # If Alibaba Cloud OSS is used
 # backend: "oss://nebulabackup"
 # If Amazon S3 is used
 # backend: "s3://nebulabackup"
 # Set the backup files to be restored
backup_name: "BACKUP_2020_12_21_01_17_53"

2.

cd nebula-storage/util/util/br/bin/

3.

./br restore full --config "/absolute/path/to/the/restore/configuration/file.yaml"

4.

•

•

8.2.4 Use BR to restore data

- 275/287 - 2021 Vesoft Inc.

Last update: January 5, 2021

8.2.4 Use BR to restore data

- 276/287 - 2021 Vesoft Inc.

8.3 Backup and restore data with snapshots

Nebula Graph supports using snapshots to backup and restore data.

8.3.1 Authentication and snapshots

Nebula Graph authentication is disabled by default. In this case, All users can use the snapshot feature.

If authentication is enabled, only the GOD-role user can use the snapshot function. For more information about roles, see Roles

and privileges.

8.3.2 Precautions

To prevent data loss, create a snapshot as soon as the system structure changes, for example, after operations such as ADD

HOST , DROP HOST , CREATE SPACE , DROP SPACE , and BALANCE are performed.

Nebula Graph cannot automatically delete the invalid files created by a failed snapshot task, you have to manually delete

them by using DROP SNAPSHOT .

Customizing the storage path for the snapshots is not supported for now.

8.3.3 Snapshot form and path

Nebula Graph snapshots are in the form of directories with names like SNAPSHOT_2021_03_09_08_43_12 . The suffix

2021_03_09_08_43_12 is generated automatically based on the creation time.

When a snapshot is created, snapshot directories will be automatically created in the checkpoints directory on the leader Meta

server and each Storage server.

To fast locate the path where the snapshots are stored, you can use the Linux command find . For example:

NOTE: For how to get the snapshot name, see View snapshots.

8.3.4 Create a snapshot

Run CREATE SNAPSHOT to create a snapshot for all the graph spaces based on the current time for Nebula Graph.

NOTE: Creating a snapshot for a specific graph space is not supported yet.

If the creation fails, delete the snapshot and try again. If it still fails, go to the Nebula Graph community for help.

8.3.5 View snapshots

To view all existing snapshots, run SHOW SNAPSHOTS .

•

•

•

$ find |grep 'SNAPSHOT_2021_03_11_07_30_36'
./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_11_07_30_36
./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_11_07_30_36/data
./data/meta2/nebula/0/checkpoints/SNAPSHOT_2021_03_11_07_30_36/data/000081.sst
...

nebula> SHOW SNAPSHOTS;
+--------------------------------+---------+------------------+
| Name | Status | Hosts |
+--------------------------------+---------+------------------+
| "SNAPSHOT_2021_03_09_08_43_12" | "VALID" | "127.0.0.1:9779" |
+--------------------------------+---------+------------------+
| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |
+--------------------------------+---------+------------------+

8.3 Backup and restore data with snapshots

- 277/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

The parameters in the return information are described as follows.

8.3.6 Delete a snapshot

To delete a snapshot, use the following syntax:

Example:

8.3.7 Restore data with a snapshot

Find the snapshot directories you want to use for data restoration.

Choose an approach to restore the data files:

Change the data_path in the Meta configuration and Storage configuration to the snapshot path.

Copy the snapshot directories to other locations, and change the data_path to these locations.

Copy all the content in the snapshot directories into the directories where the checkpoints directories are located, and

cover the existing files that have duplicate names with them. For example, cover /usr/local/nebula/data/meta/nebula/0/data

with /usr/local/nebula/data/meta/nebula/0/checkpoints/SNAPSHOT_2021_03_09_09_10_52/data .

Restart Nebula Graph.

8.3.8 Another way to backup and restore data

You can also use Backup&Restore to backup and restore Nebula Graph data. (TODO: coding)

Parameter Description

Name Name of the snapshot directory.

Status Status of the snapshot. VALID indicates that the creation succeeded and INVALID indicates that it failed.

Hosts IP addresses and ports of all Storage servers at the time the snapshot was created.

DROP SNAPSHOT <snapshot_name>;

nebula> DROP SNAPSHOT SNAPSHOT_2021_03_09_08_43_12;
nebula> SHOW SNAPSHOTS;
+--------------------------------+---------+------------------+
| Name | Status | Hosts |
+--------------------------------+---------+------------------+
| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |
+--------------------------------+---------+------------------+

1.

2.

•

•

•

3.

Last update: March 19, 2021

8.3.6 Delete a snapshot

- 278/287 - 2021 Vesoft Inc.

9. Service Tuning

9.1 Compaction

This document gives some information about compaction.

9.1.1 Introduction to compaction

In Nebula Graph, compaction is the most important background process. Compaction has an important effect on performance.

Compaction reads the data that is written on the hard disk, then re-organizes the data structure and the indexes to make the

data easier to read. The read performance can increase by times after compaction. Thus, to get high read performance, trigger

compaction manually when writing a large amount of data into Nebula Graph. Note that compaction leads to long time hard disk

IO, we suggest that you do compaction during off-peak hours (for example, early morning).

Nebula Graph has two types of compaction: automatic compaction and full compaction.

9.1.2 Automatic compaction

Automatic compaction is done when the system reads data, writes data, or the system restarts. The automatic compaction is

enabled by default. But once triggered during peak hours, it can cause unexpected IO occupancy that has an unwanted effect on

the performance. To disable automatic compaction, use this statement:

CAUTION: The command overwrites all rocksdb_column_family_options items. Other items besides disable_auto_compactions is

overwritten to the default value. You may have to read all the items before the updates.

9.1.3 Full compaction

Full compaction enables large scale background operations for a graph space such as merging files, deleting the data expired by

TTL. Use these statements to enable full compaction:

The preceding statement returns a job_id. To show the compaction progress, use this statement:

NOTE: Do the full compaction during off-peak hours because full compaction has a lot of IO operations.

9.1.4 Operation suggestions

These are some operation suggestions to keep Nebula Graph performing well.

To avoid unwanted IO waste during data writing, set disable_auto_compactions to true before large amounts of data writing.

After data import is done, run SUBMIT JOB COMPACT .

Run SUBMIT JOB COMPACT periodically during off-peak hours, for example, early morning.

Set disable_auto_compactions to false during day time.

To control the read and write traffic limitation for compactions, set these two parameters in the nebula-storaged.conf

configuration file.

nebula> UPDATE CONFIGS storage:rocksdb_column_family_options = {disable_auto_compactions = true};

nebula> USE <your_graph_space>;
nebula> SUBMIT JOB COMPACT;

nebula> SHOW JOB <job_id>;

•

•

•

•

•

read from the local configuration file and start
--local-config=true
--rate_limit=20 (in MB/s)

9. Service Tuning

- 279/287 - 2021 Vesoft Inc.

9.1.5 FAQ

Q: Can I do full compactions for multiple graph spaces at the same time? A: Yes, you can. But the IO is much larger at this time.

Q: How much time does it take for full compactions? A: When rate_limit is set to 20 , you can estimate the full compaction time

by dividing the hard disk usage by the rate_limit . If you do not set the rate_limit value, the empirical value is around 50 MB/s.

Q: Can I modify --rate_limit dynamically? A: No, you cannot.

Q: Can I stop a full compaction after it starts? A: No you cannot. When you start a full compaction, you have to wait till it is done.

This is the limitation of RocksDB.

Last update: April 1, 2021

9.1.5 FAQ

- 280/287 - 2021 Vesoft Inc.

9.2 Storage load balance

You can use the BALANCE statements to balance the distribution of partitions and Raft leaders, or remove redundant Storage

servers.

9.2.1 Prerequisites

The graph spaces stored in Nebula Graph must have more than one replicas for the system to balance the distribution of

partitions and Raft leaders.

9.2.2 Balance partition distribution

BALANCE DATA starts a task to equally distribute the storage partitions in a Nebula Graph cluster. A group of subtasks will be

created and implemented to migrate data and balance the partition distribution.

DON'T: DON'T stop any machine in the cluster or change its IP address until all the subtasks finish. Otherwise, the follow-up

subtasks fail.

Take scaling out Nebula Graph for an example.

After you add new storage hosts into the cluster, no partition is deployed on the new hosts. You can run SHOW HOSTS to check the

partition distribution.

Run BALANCE DATA to start balancing the storage partitions. If the partitions are already balanced, BALANCE DATA fails.

A BALANCE task ID is returned after running BALANCE DATA . Run BALANCE DATA <balance_id> to check the status of the BALANCE

task.

nebual> SHOW HOSTS;
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged0" | 9779 | "ONLINE" | 4 | "basketballplayer:4" | "basketballplayer:15" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged1" | 9779 | "ONLINE" | 8 | "basketballplayer:8" | "basketballplayer:15" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged2" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:15" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged3" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged4" | 9779 | "ONLINE" | 0 | "No valid partition" | "No valid partition" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "Total" | | | 15 | "basketballplayer:15" | "basketballplayer:45" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
Got 6 rows (time spent 1002/1780 us)

nebula> BALANCE DATA;
+------------+
| ID |
+------------+
| 1614237867 |
+------------+
Got 1 rows (time spent 3783/4533 us)

nebula> BALANCE DATA 1614237867;
+--+-------------------+
| balanceId, spaceId:partId, src->dst | status |
+--+-------------------+
| "[1614237867, 11:1, storaged1:9779->storaged3:9779]" | "SUCCEEDED" |
+--+-------------------+
| "[1614237867, 11:1, storaged2:9779->storaged4:9779]" | "SUCCEEDED" |
+--+-------------------+
| "[1614237867, 11:2, storaged1:9779->storaged3:9779]" | "SUCCEEDED" |
+--+-------------------+
...
+--+-------------------+
| "Total:22, Succeeded:22, Failed:0, In Progress:0, Invalid:0" | 100 |
+--+-------------------+
Got 23 rows (time spent 916/1528 us)

9.2 Storage load balance

- 281/287 - 2021 Vesoft Inc.

When all the subtasks succeed, the load balancing process finishes. Run SHOW HOSTS again to make sure the partition distribution

is balanced.

NOTE: BALANCE DATA does not balance the leader distribution.

If any subtask fails, run BALANCE DATA again to restart the balancing. If redoing load balancing does not solve the problem, ask for

help in the Nebula Graph community.

9.2.3 Stop data balancing

To stop a balance task, run BALANCE DATA STOP .

If no balance task is running, an error is returned.

If a balance task is running, the task ID is returned.

BALANCE DATA STOP does not stop the running subtasks but cancels all follow-up subtasks. The running subtasks continue.

To check the status of the stopped balance task, run BALANCE DATA <balance_id> .

Once all the subtasks are finished or stopped, you can run BALANCE DATA again to balance the partitions again.

If any subtask of the preceding balance task failed, Nebula Graph restarts the preceding balance task.

If no subtask of the preceding balance task failed, Nebula Graph starts a new balance task.

9.2.4 Remove storage servers

To remove specific storage servers and scale in the Storage Service, use the BALANCE DATA REMOVE <host_list> syntax.

For example, to remove the following storage servers:

Run the following statement:

Nebula Graph will start a balance task, migrate the storage partitions in storage3 and storage4, and then remove them from the

cluster.

9.2.5 Balance leader distribution

BALANCE DATA only balances the partition distribution. If the raft leader distribution is not balanced, some of the leaders may

overload. To load balance the raft leaders, run BALANCE LEADER .

nebula> SHOW HOSTS;
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged0" | 9779 | "ONLINE" | 4 | "basketballplayer:4" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged1" | 9779 | "ONLINE" | 8 | "basketballplayer:8" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged2" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged3" | 9779 | "ONLINE" | 0 | "No valid partition" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged4" | 9779 | "ONLINE" | 0 | "No valid partition" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "Total" | | | 15 | "basketballplayer:15" | "basketballplayer:45" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
Got 6 rows (time spent 849/1420 us)

•

•

•

•

Server name IP Port

storage3 192.168.0.8 19779

storage4 192.168.0.9 19779

BALANCE DATA REMOVE 192.168.0.8:19779,192.168.0.9:19779;

9.2.3 Stop data balancing

- 282/287 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

Run SHOW HOSTS to check the balance result.

nebula> BALANCE LEADER;
Execution succeeded (time spent 7576/8657 us)

nebula> SHOW HOSTS;
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged0" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged1" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged2" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged3" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "storaged4" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+
| "Total" | | | 15 | "basketballplayer:15" | "basketballplayer:45" |
+-------------+------+----------+--------------+-----------------------------------+------------------------+

Last update: April 13, 2021

9.2.5 Balance leader distribution

- 283/287 - 2021 Vesoft Inc.

10. Contribution

10.1 How to Contribute

10.1.1 Before you get started

File an issue on the github or forum

You are welcome to contribute any code or files to the project. But first we suggest you raise an issue on the github or on the

forum to start a discussion with the community. Check through the topic for Github.

Sign the Contributor License Agreement (CLA)

What is CLA?

Here is the vesoft inc. Contributor License Agreement.

Click the Sign in with GitHub to agree button to sign the CLA.

If you have any question, send an email to info@vesoft.com .

10.1.2 Step 1: Fork in the github.com

The Nebula Graph project has many repositories. Take the graph engine repository for example:

Visit https://github.com/vesoft-inc/nebula-graph

Click the Fork button (top right) to establish an online fork.

10.1.3 Step 2: Clone Fork to Local Storage

Define a local working directory:

Set user to match your Github profile name:

Create your clone:

1.

2.

Define your working directory
working_dir=$HOME/Workspace

user={your Github profile name}

mkdir -p $working_dir
cd $working_dir
git clone https://github.com/$user/nebula-graph.git
the following is recommended
or: git clone git@github.com:$user/nebula-graph.git

cd $working_dir/nebula
git remote add upstream https://github.com/vesoft-inc/nebula-graph.git
or: git remote add upstream git@github.com:vesoft-inc/nebula-graph.git

Never push to upstream master since you do not have write access.
git remote set-url --push upstream no_push

Confirm that your remotes make sense:
It should look like:
origin git@github.com:$(user)/nebula-graph.git (fetch)
origin git@github.com:$(user)/nebula-graph.git (push)
upstream https://github.com/vesoft-inc/nebula-graph (fetch)
upstream no_push (push)
git remote -v

10. Contribution

- 284/287 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/
https://www.apache.org/licenses/contributor-agreements.html
https://cla-assistant.io/vesoft-inc/
https://github.com/vesoft-inc
https://github.com/vesoft-inc/nebula-graph

Define a Pre-Commit Hook

Please link the Nebula Graph pre-commit hook into your .git directory.

This hook checks your commits for formatting, building, doc generation, etc.

Sometimes, pre-commit hook can not be executable. You have to make it executable manually.

10.1.4 Step 3: Branch

Get your local master up to date:

Checkout a new branch from master:

NOTE: Because your PR often consists of several commits, which might be squashed while being merged into upstream, we

strongly suggest you open a separate topic branch to make your changes on. After merged, this topic branch could be just

abandoned, thus you could synchronize your master branch with upstream easily with a rebase like above. Otherwise, if you

commit your changes directly into master, maybe you must use a hard reset on the master branch, like:

10.1.5 Step 4: Develop

Code Style

We adopt cpplint to make sure that the project conforms to Google's coding style guides. The checker will be implemented

before the code is committed.

Unit Tests Required

Please add unit tests for your new features or bug fixes.

Build Your Code with Unit Tests Enable

Please refer to the build source code documentation to compile.

Make sure you have enabled the build of unit tests by setting -DENABLE_TESTING=ON .

Run Tests

In the root folder of nebula-graph , run the following command:

10.1.6 Step 5: Bring Your Branch Update to Date

cd $working_dir/nebula-graph/.git/hooks
ln -s $working_dir/nebula-graph/.linters/cpp/hooks/pre-commit.sh .

cd $working_dir/nebula-graph/.git/hooks
chmod +x pre-commit

cd $working_dir/nebula-graph
git fetch upstream
git checkout master
git rebase upstream/master

git checkout -b myfeature

git fetch upstream
git checkout master
git reset --hard upstream/master
git push --force origin master

ctest -j$(nproc)

10.1.4 Step 3: Branch

- 285/287 - 2021 Vesoft Inc.

You need to bring the head branch up to date after other collaborators merge pull requests to the base branch.

10.1.7 Step 6: Commit

Commit your changes.

Likely you'll go back and edit/build/test some more than --amend in a few cycles.

10.1.8 Step 7: Push

When ready to review (or just to establish an offsite backup or your work), push your branch to your fork on github.com :

10.1.9 Step 8: Create a Pull Request

Visit your fork at https://github.com/$user/nebula-graph (replace $user obviously).

Click the Compare & pull request button next to your myfeature branch.

10.1.10 Step 9: Get a Code Review

Once your pull request has been opened, it will be assigned to at least two reviewers. Those reviewers will do a thorough code

review to make sure that the changes meet the repository's contributing guidelines and other quality standards.

While on your myfeature branch.
git fetch upstream
git rebase upstream/master

git commit -a

git push origin myfeature

1.

2.

Last update: April 7, 2021

10.1.7 Step 6: Commit

- 286/287 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.0

Nebula Graph Database Manual 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.0
https://docs.nebula-graph.io/2.0
https://docs.nebula-graph.io/2.0
https://docs.nebula-graph.io/2.0
https://docs.nebula-graph.io/2.0
https://docs.nebula-graph.io/2.0

	Nebula Graph Database Manual
	1. About
	2. Introduction
	2.1 What is Nebula Graph
	2.1.1 What is a graph database
	2.1.2 Benefits of Nebula Graph
	Open-source
	Outstanding performance
	Developer friendly
	Diversified ecosystem
	OpenCypher-compatible query language
	Easy data modeling and high flexibility
	Reliable access control
	High scalability
	High popularity

	2.1.3 Use cases
	Fraud detection
	Real-time recommendation
	Intelligent question-answer system
	Social networking

	2.2 Data modeling
	2.2.1 Data structures
	2.2.2 Directed property graph
	2.2.3 Graph data modeling suggestions
	Model for performance
	Edges as properties
	Granulated vertices
	Use indexes correctly
	No long string properties on edges

	2.3 Nebula Graph architecture
	2.3.1 Architecture overview
	The Meta Service
	The Graph Service and the Storage Service

	2.3.2 Meta Service
	The architecture of the Meta Service
	Functions of the Meta Service
	MANAGES USER ACCOUNTS
	MANAGES PARTITIONS
	MANAGES GRAPH SPACES
	MANAGES SCHEMA INFORMATION
	MANAGES TTL-BASED DATA EVICTION
	MANAGES JOBS

	2.3.3 Graph Service
	2.3.4 Storage Service

	3. Quick start
	3.1 FAQ
	3.1.1 About openCypher compatibility
	Is nGQL compatible with openCypher 9?
	Where can I find more nGQL examples?

	3.1.2 About Data Model
	Does Nebula Graph support W3C RDF (or SPARQL, GraphQL)?

	3.1.3 About executions
	How is the time spent value at the end of each return message calculated?
	Can I set replica_factor as an even number in CREATE SPACE (e.g., replica_factor = 2) ?
	[ERROR (-7)]: SyntaxError: syntax error near '`
	How to count the vertices/edges number of each tag/edge type?
	How to get all the vertices/edge of each tag/edge type?
	Error can’t solve the start vids from the sentence
	Error Storage Error: The VID must be a 64-bit integer or a string.

	3.1.4 About operation and maintenance
	The log files are too large. How to recycle the logs
	How to check the Nebula Graph version

	3.1.5 About manual updates
	The behavior of manual is not consistent with the system

	3.1.6 About connections
	Which ports should be opened on the firewalls
	How to test whether a port is open or closed

	3.2 Quick start workflow
	3.3 Deploy Nebula Graph with Docker Compose
	3.3.1 Reading guide
	3.3.2 Prerequisites
	3.3.3 How to deploy
	3.3.4 Check the Nebula Graph service status and port
	3.3.5 Check the service data and logs
	3.3.6 Stop the Nebula Graph services
	3.3.7 Other ways to install Nebula Graph
	3.3.8 FAQ
	How to update the docker images of Nebula Graph services
	ERROR: toomanyrequests when docker-compose pull
	How to update the Nebula Console client
	How to upgrade Nebula Graph services
	Why can't I connect to Nebula Graph through port 3699 after updating the nebula-docker-compose repository? (Nebula Graph 2.0.0-RC)
	Why can't I access the data after updating the nebula-docker-compose repository? (Jan 4, 2021)
	Why can't I access the data after updating the nebula-docker-compose repository? (Jan 27, 2021)
	Where are the data stored when Nebula Graph is deployed with Docker Compose

	3.4 Manage Nebula Graph services
	3.4.1 Syntax
	3.4.2 Start Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.4.3 Stop Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.4.4 Check the service status
	In non-container environment
	In docker container (deployed with docker-compose)

	3.5 Connect to Nebula Graph
	3.5.1 Nebula Graph clients
	3.5.2 Use Nebula Console to connect to Nebula Graph
	Prerequisites
	Steps

	3.5.3 Nebula Console export mode
	3.5.4 Disconnect Nebula Console from Nebula Graph
	3.5.5 FAQ
	How can I install Nebula Console from the source code

	3.6 Nebula Graph CRUD
	3.6.1 Graph space and Nebula Graph schema
	3.6.2 Check the machine status in the Nebula Graph cluster
	Asynchronous implementation of creation and alteration

	3.6.3 Create and use a graph space
	nGQL syntax
	Examples

	3.6.4 Create tags and edge types
	nGQL syntax
	Examples

	3.6.5 Insert vertices and edges
	nGQL syntax
	Examples

	3.6.6 Read data
	nGQL syntax
	Examples of GO
	Example of FETCH

	3.6.7 Update vertices and edges
	nGQL syntax
	Examples

	3.6.8 Delete vertices and edges
	nGQL syntax
	Examples

	3.6.9 About indexes
	Must-read for using index
	nGQL syntax
	Examples
	Examples of LOOKUP and MATCH (index-based)

	3.7 Useful links
	3.7.1 API Clients by Nebula Graph
	3.7.2 Graph tools
	3.7.3 Big Data and other Systems support
	3.7.4 Benchmark, test, and Backup tools
	3.7.5 Misc

	4. nGQL guide
	4.1 nGQL overview
	4.1.1 Nebula Graph Query Language (nGQL)
	What is nGQL
	What can nGQL do
	Example Data
	Placeholder Identifiers and Values

	4.1.2 Patterns
	Patterns for vertices
	Patterns for related vertices
	Patterns for tags
	Patterns for properties
	Patterns for edges
	Variable-length pattern
	Assigning to path variables

	4.2 Data types
	4.2.1 Numeric types
	Integer
	Double-precision floating-point

	4.2.2 Boolean
	4.2.3 String
	OpenCypher Compatibility

	4.2.4 Date and time types
	OpenCypher Compatibility
	DATE
	TIME
	DATETIME
	TIMESTAMP
	Examples

	4.2.5 NULL
	Logical operations with NULL
	OpenCypher compatibility
	COMPARISONS WITH NULL
	OPERATIONS AND EXPRESSION WITH NULL

	Examples

	4.2.6 Lists
	Examples
	OpenCypher compatibility

	4.2.7 Sets
	OpenCypher compatibility

	4.2.8 Maps
	Literal maps
	OpenCypher compatibility

	4.2.9 Type Conversion/Type coercions
	Legacy version compatibility
	Type coercions functions
	Examples

	4.3 Variables and composite queries
	4.3.1 Composite queries (clause structure)
	OpenCypher compatibility
	Composite queries are not transactional queries (as in SQL/Cypher)
	Examples

	4.3.2 User-defined variables
	OpenCypher variables
	nGQL extensions
	Example

	4.3.3 Property reference
	Property reference for vertex
	FOR SOURCE VERTEX
	FOR DESTINATION VERTEX

	Property reference for edge
	FOR PROPERTY
	FOR BUILT-IN PROPERTIES

	Examples

	4.4 Operators
	4.4.1 Comparison operators
	4.4.2 Boolean operators
	Legacy version compatibility

	4.4.3 Pipe operator
	OpenCypher compatibility
	Syntax
	Examples

	4.4.4 Reference operators
	OpenCypher compatibility
	Reference operator List
	Examples

	4.4.5 Set operations
	OpenCypher compatibility
	Syntax
	UNION, UNION DISTINCT, and UNION ALL
	EXAMPLE

	INTERSECT
	MINUS
	Precedence of the SET Operations and Pipe

	4.4.6 String operators
	Examples

	4.4.7 List operators
	Examples

	4.4.8 Operator precedence
	Examples
	OpenCypher compatibility

	4.5 Functions and expressions
	4.5.1 Built-in math functions
	4.5.2 Built-in string functions
	Explanations for the return of substr() and substring()

	4.5.3 Built-in date and time functions
	Examples
	OpenCypher compatibility

	4.5.4 Schema functions
	Examples

	4.5.5 CASE expressions
	The simple form of CASE expressions
	SYNTAX
	EXAMPLES

	The generic form of CASE expressions
	SYNTAX
	EXAMPLES

	Differences between the simple form and the generic form

	4.5.6 List functions
	Examples

	4.5.7 The count() function
	Syntax
	EXAMPLES

	count(NULL)

	4.5.8 collect()
	Examples

	4.5.9 reduce() function
	OpenCypher Compatibility
	Syntax
	Example

	4.5.10 Hash
	Legacy version compatibility
	Hash a number
	Hash a string
	Hash a list
	Hash a boolean
	Hash NULL
	Hash an expression

	4.5.11 Predicate functions
	OpenCypher compatibility
	Syntax
	Examples

	4.5.12 User-defined functions
	OpenCypher compatibility

	4.6 General queries statements
	4.6.1 MATCH
	Syntax
	The workflow of MATCH
	Use patterns in MATCH statements
	MATCH A VERTEX
	MATCH ON TAG
	MATCH ON VERTEX PROPERTY
	MATCH ON VID
	MATCH CONNECTED VERTICES
	MATCH PATHS
	MATCH EDGES
	MATCH ON EDGE TYPES AND PROPERTIES
	MATCH ON MULTIPLE EDGE TYPES
	MATCH MULTIPLE EDGES
	MATCH FIXED-LENGTH PATHS
	MATCH VARIABLE-LENGTH PATHS
	MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

	Common retrieving operations
	RETRIEVE VERTEX OR EDGE INFORMATION
	RETRIEVE VIDS
	RETRIEVE TAGS
	RETRIEVE A SINGLE PROPERTY ON A VERTEX OR AN EDGE
	RETRIEVE ALL PROPERTIES ON A VERTEX OR AN EDGE
	RETRIEVE EDGE TYPES
	RETRIEVE PATHS
	RETRIEVE VERTICES IN A PATH
	RETRIEVE EDGES IN A PATH
	RETRIEVE PATH LENGTH

	4.6.2 LOOKUP
	OpenCypher compatibility
	Syntax
	Prerequisites
	Syntax
	Limitations of using WHERE in LOOKUP
	Retrieve Vertices
	Retrieve Edges
	List vertices or edges with a tag or an edge type
	Count the numbers of vertices or edges
	FAQ
	ERROR CODE 411
	NO VALID INDEX FOUND

	4.6.3 GO
	OpenCypher compatibility
	Syntax
	Examples

	4.6.4 FETCH
	OpenCypher Compatibility
	Fetch vertex properties
	SYNTAX
	FETCH VERTEX PROPERTIES BY ONE TAG
	FETCH SPECIFIC PROPERTIES OF A VERTEX
	FETCH PROPERTIES OF MULTIPLE VERTICES
	FETCH VERTEX PROPERTIES BY MULTIPLE TAGS
	FETCH VERTEX PROPERTIES BY ALL TAGS

	Fetch edge properties
	SYNTAX
	FETCH ALL PROPERTIES OF AN EDGE
	FETCH SPECIFIC PROPERTIES OF AN EDGE
	FETCH PROPERTIES OF MULTIPLE EDGES

	Fetch properties based on edge rank
	Use FETCH in composite queries

	4.6.5 UNWIND
	Syntax
	Split a list
	Return a list with distinct items
	EXAMPLE 1

	Example 2

	4.6.6 SHOW
	SHOW CHARSET
	SYNTAX
	EXAMPLE

	SHOW COLLATION
	SYNTAX
	EXAMPLE

	SHOW CREATE SPACE
	SYNTAX
	EXAMPLE

	SHOW CREATE TAG/EDGE
	SYNTAX
	EXAMPLE

	SHOW HOSTS
	SYNTAX
	EXAMPLE

	SHOW INDEX STATUS
	SYNTAX
	EXAMPLE
	RELATED TOPICS

	SHOW INDEXES
	SYNTAX
	EXAMPLE

	SHOW PARTS
	SYNTAX
	EXAMPLES

	SHOW ROLES
	SYNTAX
	EXAMPLE

	SHOW SNAPSHOTS
	ROLE REQUIREMENT
	SYNTAX
	EXAMPLE

	SHOW SPACES
	SYNTAX
	EXAMPLE

	SHOW STATS
	PREREQUISITES
	SYNTAX
	EXAMPLE

	SHOW TAGS/EDGES
	SYNTAX
	EXAMPLES

	SHOW USERS
	ROLE REQUIREMENT
	SYNTAX
	EXAMPLE

	4.7 Clauses and options
	4.7.1 GROUP BY
	OpenCypher Compatibility
	Syntax
	Examples
	Group and calculate with functions

	4.7.2 LIMIT AND SKIP
	nGQL-extension syntax
	EXAMPLES

	OpenCypher Syntax
	EXAMPLES
	SKIP-SYNTAX

	4.7.3 ORDER BY
	nGQL-extension Syntax
	EXAMPLES

	OpenCypher Syntax
	EXAMPLES

	Order by NULL values

	4.7.4 RETURN
	OpenCypher compatibility
	NGQL compatibility
	Return vertices
	Return edges
	Return properties
	Return all elements
	Rename a field
	Return a non-existing property
	Return expression results
	Return unique fields

	4.7.5 TTL
	OpenCypher Compatibility
	Precautions
	Data expiration and deletion
	VERTEX PROPERTY EXPIRATION
	EDGE PROPERTY EXPIRATION
	DATA DELETION

	TTL options
	Use TTL options
	SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS
	SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

	Remove a timeout

	4.7.6 WHERE
	OpenCypher compatibility
	Basic usage
	DEFINE CONDITIONS WITH BOOLEAN OPERATORS
	FILTER ON PROPERTIES
	FILTER ON DYNAMICALLY-CALCULATED PROPERTY
	FILTER ON THE EXISTENCE OF A PROPERTY
	FILTER ON EDGE RANK

	Filter on strings
	MATCH THE BEGINNING OF A STRING
	MATCH THE ENDING OF A STRING
	MATCH ANY PART OF A STRING
	NEGATIVE STRING MATCHING

	Filter on lists
	MATCH VALUES IN A LIST
	MATCH VALUES NOT IN A LIST

	4.7.7 YIELD
	OpenCypher Compatibility
	YIELD clauses
	SYNTAX
	USE A YIELD CLAUSE IN A STATEMENT

	YIELD Statements
	SYNTAX
	USE A YIELD STATEMENT IN A COMPOSITE QUERY
	USE A STANDALONE YIELD STATEMENT

	4.7.8 WITH
	OpenCypher compatibility
	Combine statements and form a composite query
	EXAMPLE 1
	EXAMPLE 2

	Filter aggregated queries
	Process the output before using collect() on it
	Use with RETURN

	4.8 Space statements
	4.8.1 CREATE SPACE
	IF NOT EXISTS
	Graph space name
	Customized graph space options
	Example
	Implementation of the operation
	Check partition distribution

	4.8.2 USE
	4.8.3 SHOW SPACES
	4.8.4 DESCRIBE SPACE
	Example

	4.8.5 DROP SPACE

	4.9 Tag statements
	4.9.1 CREATE TAG
	OpenCypher compatibility
	Syntax
	Tag name
	PROPERTY NAMES AND DATA TYPES
	TIME-TO-LIVE (TTL)
	EXAMPLES

	Implementation of the operation

	4.9.2 DROP TAG
	Tag name
	Example

	4.9.3 ALTER TAG
	Tag name
	Example
	Implementation of the operation

	4.9.4 SHOW TAGS
	Examples

	4.9.5 DESCRIBE TAG
	Example

	4.10 Edge type statements
	4.10.1 CREATE EDGE
	OpenCypher compatibility
	Syntax
	Edge type name
	PROPERTY NAMES AND DATA TYPES
	TIME-TO-LIVE (TTL)
	EXAMPLES

	Implementation of the operation

	4.10.2 DROP EDGE
	Edge type name
	Example

	4.10.3 ALTER EDGE
	Edge type name
	Example
	Implementation of the operation

	4.10.4 SHOW EDGES
	Examples

	4.10.5 DESCRIBE EDGE
	Example

	4.11 Vertex statements
	4.11.1 INSERT VERTEX
	Syntax
	Examples

	4.11.2 DELETE VERTEX
	Examples

	4.11.3 UPDATE VERTEX
	4.11.4 UPSERT VERTEX

	4.12 Edge statements
	4.12.1 INSERT EDGE
	Syntax
	Examples

	4.12.2 DELETE EDGE
	Examples

	4.12.3 UPDATE EDGE
	4.12.4 UPSERT EDGE

	4.13 Native index statements
	4.13.1 CREATE INDEX
	Prerequisites
	Must-read for using index
	Syntax
	Implementation of the operation
	Create tag/edge type indexes
	Create single-property indexes
	Create composite property indexes
	Using index

	4.13.2 Show INDEXES
	Example

	4.13.3 SHOW CREATE INDEX
	Syntax
	Examples

	4.13.4 DESCRIBE INDEX
	Example

	4.13.5 REBUILD INDEX
	Example
	Legacy version compatibility

	4.13.6 SHOW INDEX STATUS
	Example

	4.13.7 DROP INDEX
	Example

	4.14 Full-text index statements
	4.14.1 Index overview
	Native indexes
	OPERATIONS ON NATIVE INDEXES

	Full-text indexes
	OPERATIONS ON FULL-TEXT INDEXES

	Null values
	Range queries

	4.14.2 Full-text index restrictions
	4.14.3 Deploy full-text index
	Before you start
	Deploy Elasticsearch cluster
	Sign in to the text search clients
	Show text search clients
	Sign out to the text search clients

	4.14.4 Deploy Raft Listener for Nebula Storage service
	Prerequisites
	Precautions
	Step 1: Prepare the configuration file for the Listeners
	Step 2: Start the Listeners
	Step 3: Add Listeners to Nebula Graph
	Show Listeners
	Remove Listeners
	What to do next

	4.14.5 Full-text search
	Before you start
	Natural language full-text search
	Examples

	4.15 Subgraph and path
	4.15.1 GET SUBGRAPH
	Syntax
	Examples

	4.15.2 FIND PATH
	Limitations
	Examples

	4.16 Query tuning statements
	4.16.1 EXPLAIN and PROFILE
	Execution Plan
	Syntax
	Output formats
	Format "row"
	Format "dot"

	4.17 Operation and maintenance statements
	4.17.1 BALANCE syntax
	4.17.2 Job manager and the JOB statements
	SUBMIT JOB COMPACT
	SUBMIT JOB FLUSH
	SUBMIT JOB STATS
	SHOW JOB
	JOB STATUS

	SHOW JOBS
	STOP JOB
	RECOVER JOB

	FAQ
	HOW TO TROUBLESHOOT JOB PROBLEMS

	4.18 Appendix
	4.18.1 Comments
	Legacy version compatibility
	Examples
	OpenCypher Compatibility

	4.18.2 Identifer Case Sensitivity
	Identifiers are Case-Sensitive
	Keywords and Reserved Words are Case-Insensitive

	4.18.3 Keywords and Reserved Words
	Reserved Words
	Non-Reserved Keywords

	4.18.4 Vertex identifier and partition ID
	VID
	Partition ID

	5. Deployment and installation
	5.1 Prepare resources for compiling, installing, and running Nebula Graph
	5.1.1 Reading guide
	5.1.2 Requirements for compiling the Nebula Graph source code
	Hardware requirements for compiling Nebula Graph
	Supported operating systems for compiling Nebula Graph
	Software requirements for compiling Nebula Graph
	Prepare software for compiling Nebula Graph

	5.1.3 Requirements and suggestions for installing Nebula Graph in test environments
	Hardware requirements for test environments
	Supported operating systems for test environments
	Suggested service architecture for test environments

	5.1.4 Requirements and suggestions for installing Nebula Graph in production environments
	Hardware requirements for production environments
	Supported operating systems for production environments
	Suggested service architecture for production environments

	5.1.5 Capacity requirements for running a Nebula Graph cluster
	5.1.6 About storage devices

	5.2 Compile and install Nebula Graph
	5.2.1 Install Nebula Graph by compiling the source code
	Prerequisites
	How to install
	CMake variables
	ENABLE_BUILD_STORAGE
	CMAKE_INSTALL_PREFIX
	ENABLE_WERROR
	ENABLE_TESTING
	ENABLE_ASAN
	CMAKE_BUILD_TYPE
	CMAKE_C_COMPILER/CMAKE_CXX_COMPILER
	ENABLE_CCACHE
	NEBULA_THIRDPARTY_ROOT

	5.2.2 Install Nebula Graph with RPM or DEB package
	Prerequisites
	Steps
	DOWNLOAD THE PACKAGE FROM CLOUD SERVICE
	OR, DOWNLOAD THE PACKAGE FROM GITHUB.

	Install Nebula Graph

	5.3 Deploy Nebula Graph cluster
	5.3.1 Prerequisites
	5.3.2 Step 1: Install Nebula Graph
	5.3.3 Step 2: Modify the configurations
	5.3.4 Step 3: Start the cluster
	5.3.5 Connect to the cluster
	5.3.6 Check the cluster status

	5.4 Upgrade Nebula Graph to v2.0.0
	5.4.1 Limitations
	5.4.2 Installation paths
	Old installation path
	New installation path

	5.4.3 Steps
	5.4.4 Upgrade failure and rollback
	5.4.5 Appendix 1: Test Environment
	5.4.6 Appendix 2: Nebula Graph V2.0.0 code address and commit ID
	5.4.7 FAQ
	Can I write through the client during the upgrade?
	Can I upgrade other old versions except for v1.2.0 or v2.0.0-RC1 to v2.0.0?
	How to upgrade clients after the server upgrade?
	How to upgrade if a machine has only the Graph Service, but not the Storage Service?
	How to resolve the error Permission denied?
	Is there any change in gflags?
	What are the differences between deleting data then installing the new version and upgrading according to this topic?
	Is there a tool or solution for verifying data consistency after the upgrade?

	6. Configurations and logs
	6.1 Configurations
	6.1.1 Configurations
	Get configurations
	Modify configurations
	Legacy version compatibility

	6.1.2 Meta Service configuration
	How to use the configuration files
	About parameter values
	Basic configurations
	Logging configurations
	Networking configurations
	Storage configurations
	Misc configurations
	RocksDB options

	6.1.3 Graph Service configuration
	How to use the configuration files
	About parameter values
	Basic configurations
	Logging configurations
	Networking configurations
	Charset and collate configurations
	Authorization and authentication configurations

	6.1.4 Storage Service configurations
	How to use the configuration files
	About parameter values
	Basic configurations
	Logging configurations
	Networking configurations
	Raft configurations
	Disk configurations
	RocksDB options
	For super-Large vertices
	Storage configuration for large dataset

	6.1.5 Kernel configurations
	ulimit
	ULIMIT -C
	ULIMIT -N

	Memory
	VM.SWAPPINESS
	VM.MIN_FREE_KBYTES
	VM.MAX_MAP_COUNT
	VM.OVERCOMMIT_MEMORY
	VM.DIRTY_*
	TRANSPARENT HUGE PAGE

	Networking
	NET.IPV4.TCP_SLOW_START_AFTER_IDLE
	NET.CORE.SOMAXCONN
	NET.IPV4.TCP_MAX_SYN_BACKLOG
	NET.CORE.NETDEV_MAX_BACKLOG
	NET.IPV4.TCP_KEEPALIVE_*
	NET.IPV4.TCP_RMEM/WMEM
	SCHEDULER

	Other parameters
	KERNEL.CORE_PATTERN

	Parameter usage guide
	SYSCTL
	INTRODUCTION TO ULIMIT
	PRLIMIT

	6.2 Log management
	6.2.1 Logs
	Log Directory
	Parameter Description
	TWO MOST COMMONLY USED FLAGS IN GLOG
	CONFIGURATION FILES

	Check and Change the Severity Levels Dynamically

	7. Monitor and metrics
	7.1 Query Nebula Graph metrics
	7.1.1 Metrics
	7.1.2 Query metrics over HTTP
	Syntax
	Example

	8. Data security
	8.1 Authentication and authorization
	8.1.1 Authentication
	Local authentication
	ENABLE LOCAL AUTHENTICATION

	LDAP authentication
	ENABLE LDAP AUTHENTICATION

	8.1.2 User management
	CREATE USER
	GRANT ROLE
	REVOKE ROLE
	CHANGE PASSWORD
	ALTER USER
	DROP USER
	SHOW USERS

	8.1.3 Roles and privileges
	Built-in roles
	Role privileges and allowed nGQL

	8.2 Backup & Restore
	8.2.1 What is Backup & Restore
	Features
	Limitations
	Implementation
	BACKUP
	RESTORE

	How to use

	8.2.2 Compile BR
	Prerequisites
	Procedure

	8.2.3 Use BR to back up data
	Prerequisites
	Procedure
	Next to do

	8.2.4 Use BR to restore data
	Prerequisites
	Procedure

	8.3 Backup and restore data with snapshots
	8.3.1 Authentication and snapshots
	8.3.2 Precautions
	8.3.3 Snapshot form and path
	8.3.4 Create a snapshot
	8.3.5 View snapshots
	8.3.6 Delete a snapshot
	8.3.7 Restore data with a snapshot
	8.3.8 Another way to backup and restore data

	9. Service Tuning
	9.1 Compaction
	9.1.1 Introduction to compaction
	9.1.2 Automatic compaction
	9.1.3 Full compaction
	9.1.4 Operation suggestions
	9.1.5 FAQ

	9.2 Storage load balance
	9.2.1 Prerequisites
	9.2.2 Balance partition distribution
	9.2.3 Stop data balancing
	9.2.4 Remove storage servers
	9.2.5 Balance leader distribution

	10. Contribution
	10.1 How to Contribute
	10.1.1 Before you get started
	File an issue on the github or forum
	Sign the Contributor License Agreement (CLA)

	10.1.2 Step 1: Fork in the github.com
	10.1.3 Step 2: Clone Fork to Local Storage
	Define a Pre-Commit Hook

	10.1.4 Step 3: Branch
	10.1.5 Step 4: Develop
	Code Style
	Unit Tests Required
	Build Your Code with Unit Tests Enable
	Run Tests

	10.1.6 Step 5: Bring Your Branch Update to Date
	10.1.7 Step 6: Commit
	10.1.8 Step 7: Push
	10.1.9 Step 8: Create a Pull Request
	10.1.10 Step 9: Get a Code Review

