NebulaGraph

Nebula Graph Database
Manual

v2.0.1

Table

of contents

Table of contents

1. About

2. Introduction

2.1
2.2

2.3

What is Nebula Graph
Data modeling

Nebula Graph architecture

3. Quick start

3.1
3.2
3.3
3.4
3.5
3.6

3.7

FAQ

Quick start workflow

Deploy Nebula Graph with Docker Compose

Manage Nebula Graph services
Connect to Nebula Graph
Nebula Graph CRUD

Useful links

4. nGQL guide

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18

nGQL overview
Data types
Variables and composite queries
Operators
Functions and expressions
General queries statements
Clauses and options
Space statements
Tag statements
Edge type statements
Vertex statements
Edge statements
Native index statements
Full-text index statements
Subgraph and path

Query tuning statements

Operation and maintenance statements

Appendix

5. Deployment and installation

5.1 Prepare resources for compiling, installing, and running Nebula Graph

5.2 Compile and install Nebula Graph

-2/290 -

11
17
17
24
25
30
33
36
46
48
48
53
66
71
84
106
141
164
170
176
182
189
195
204
212
217
220
224
230
230
237

2021 Vesoft Inc.

Table of contents

5.3 Deploy Nebula Graph cluster 244
5.4 Upgrade Nebula Graph to v2.0.0 246
5.5 Uninstall Nebula Graph 252
6. Configurations and logs 254
6.1 Configurations 254
6.2 Log management 269
7. Monitor and metrics 271
7.1 Query Nebula Graph metrics 271
8. Data security 273
8.1 Authentication and authorization 273
8.2 Backup and restore data with snapshots 278
9. Service Tuning 280
9.1 Compaction 280
9.2 Storage load balance 282
10. Ecosystem 285
10.1 Nebula Exchange 285
11. Contribution 287
11.1 How to Contribute 287

- 3/290 - 2021 Vesoft Inc.

1. About

1. About

A new version has been released. This Document of v2.0.1 is deprecated.

Last update: September 10, 2021

- 4/2 90 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/

2. Introduction

2. Introduction

2.1 Whatis Nebula Graph

Nebula Graph is an open-source, distributed, easily scalable, and native graph database. It is capable of hosting graphs with

hundreds of billions of vertices and trillions of edges, and serving queries with millisecond-latency.

2.1.1 What is a graph database

A graph database, such as Nebula Graph, is a database that specializes in storing vast graph networks and retrieving information
from them. It efficiently stores data as vertices (nodes) and edges (relationships) in labeled property graphs. Properties can be

attached to both vertices and edges. Each vertex can have one or multiple tags (labels).

name: Joe
company: Awesome Corps

Use
env: production

Read
rating: 4.5

Introduce

Graph
database

Documentation

product: Nebula Graph name: Nebula Graph
topic: What is Nebula Graph website: nebula-graph.io

Graph databases are well suited for storing most kinds of data models abstracted from reality. Things are connected in almost all
fields in the world. Modeling systems like relational databases extract the relationships between entities and squeeze them into

table columns alone, with their types and properties stored in other columns or even other tables. This makes the data

management time-consuming and cost-ineffective. Nebula Graph, as a typical native graph database, allows you to store the rich

relationships as edges with edge types and properties directly attached to them.

-5/290 -

2021 Vesoft Inc.

2.1.2 Benefits of Nebula Graph

2.1.2 Benefits of Nebula Graph
Open-source

Nebula Graph is open under the Apache 2.0 license. More and more people such as database developers, data scientists, security
experts, and algorithm engineers are participating in the designing and development of Nebula Graph. To join the opening of
source code and ideas, surf the Nebula Graph GitHub page.

Outstanding performance

Written in C++ and born for graph, Nebula Graph handles graph queries in milliseconds. Among most databases, Nebula Graph
shows superior performance in providing graph data services. The larger the data size, the greater the superiority of Nebula
Graph. For more information, see Nebula Graph benchmarking.

Developer friendly
Nebula Graph supports clients in popular programming languages like Java, Python, C++, and Go, and more are being developed.
For more information, see Nebula Graph clients.

Diversified ecosystem
More and more native tools of Nebula Graph have been released, such as Nebula Graph Studio, Nebula Console, and Nebula
Exchange. Besides, Nebula Graph has the ability to be integrated with many cutting-edge technologies, such as Spark, Flink, and
HBase, for the purpose of mutual strengthening in a world of increasing challenges and chances. For more information, see
Ecosystem development.

OpenCypher-compatible query language
The native Nebula Graph Query Language, also known as nGQL, is a declarative, openCypher-compatible textual query language.
It is easy to understand and easy to use. For more information, see nGQL guide.

Easy data modeling and high flexibility
You can easily model the connected data into Nebula Graph for your business without forcing them into a structure such as a
relational table, and properties can be added, updated, and deleted freely. For more information, see Data modeling.

Reliable access control
Nebula Graph supports strict role-based access control and external authentication servers such as LDAP (Lightweight Directory
Access Protocol) servers to enhance data security. For more information, see Authentication and authorization.

High scalability
Nebula Graph is designed in a shared-nothing architecture and supports scaling in and out without interrupting the database
service.

High popularity
Nebula Graph is being used by tech leaders such as Tencent, Vivo, Meituan, and JD Digits. For more information, visit the Nebula
Graph official website.

2.1.3 Use cases

Nebula Graph can be used to support various graph-based scenarios. To spare the time spent on pushing the kinds of data
mentioned in this section into relational databases and on bothering with join queries, use Nebula Graph.

- 6/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/t/nebula-graph-1-0-benchmark-report/581
https://github.com/vesoft-inc/nebula-web-docker
https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-spark-utils/tree/v2.0.0/nebula-exchange
https://github.com/vesoft-inc/nebula-spark-utils/tree/v2.0.0/nebula-exchange
https://nebula-graph.io/
https://nebula-graph.io/

2.1.3 Use cases

Fraud detection

Financial institutions have to traverse countless transactions to piece together potential crimes and understand how combinations
of transactions and devices might be related to a single fraud scheme. This kind of scenario can be modeled in graphs, and with
the help of Nebula Graph, fraud rings and other sophisticated scams can be easily detected.

Real-time recommendation

Nebula Graph offers the ability to instantly process the real-time information produced by a visitor and make accurate
recommendations on articles, videos, products, and services.

Intelligent question-answer system

Natural languages can be transformed into knowledge graphs and stored in Nebula Graph. A question organized in a natural
language can be resolved by a semantic parser in an intelligent question-answer system and re-organized. Then, possible answers
to the question can be retrieved from the knowledge graph and provided to the one who asked the question.

Social networking

Information on people and their relationships are typical graph data. Nebula Graph can easily handle the social networking
information of billions of people and trillions of relationships, and provide lightning-fast queries for friend recommendations and
job promotions in the case of massive concurrency.

Last update: November 3, 2021

-7/290 - 2021 Vesoft Inc.

2.2 Data modeling

2.2 Data modeling

A data model is a model that organizes data and specifies how they are related to one another. This topic describes the
Nebula Graph data model and provides suggestions for data modeling with Nebula Graph.

2.2.1 Data structures
Nebula Graph data model uses five data structures to store data. They are vertices, edges, properties, tags, and edge types.

* Vertices: Vertices are used to store entities.

* In Nebula Graph, vertices are identified with vertex identifiers (i.e. vip). The vip must be unique in the same graph
space.

* Avertex must have at least one tag.
* Edges: Edges are used to connect vertices. An edge is a connection or behavior between two vertices.
* An edge is identified uniquely with a source vertex, an edge type, a rank value, and a destination vertex.
* Edges are directed. -> identifies the directions of edges. Edges can be traversed in either direction.
* An edge must have one and only one edge type.

* The rank value is an immutable user-assigned 64-bit signed integer. It identifies the edges with the same edge type
between two vertices. Edges are sorted by their rank values. The edge with the greatest rank value is listed first. The
default rank value is zero.

* Properties: Properties are key-value pairs. Both vertices and edges are containers for properties.
» Tags: Tags are used to categorize vertices. Vertices that have the same tag share the same definition of properties.

* Edge types: Edge types are used to categorize edges. Edges that have the same edge type share the same definition of
properties.

2.2.2 Directed property graph

Nebula Graph stores data in directed property graphs. A directed property graph has a set of vertices connected by edges. And
the edges have directions. A directed property graph is represented as:

G=<V,E,PV,PE>
* Vis a set of vertices.
 E is a set of directed edges.
¢ Py is the property of vertices.

* P is the property of edges.

- 8/290 - 2021 Vesoft Inc.

2.2.3 Graph data modeling suggestions

The following table is an example of the structure of the basketball player dataset. We have two types of vertices, that is player
and team, and two types of edges, that is serve and like.

Element Name Property name Description
(Data type)
Tag player name (string) Represents players in the team.
age (int)
Tag team name (string) Represents the teams.
Edge type serve start year (int) Represents actions taken by players in the team. An action links a
end year (int) player and a team and the direction is from a player to a team.
Edge type like likeness (int) Represents actions taken by players in the team. An action links a

player and another player and the direction is from one player to
the other player.

2.2.3 Graph data modeling suggestions

This section provides general suggestions for modeling data in Nebula Graph.

/" Note

The following suggestions may not apply to some special scenarios. In these cases, find help in the Nebula Graph community.

Model for performance

There is no perfect method to model in Nebula Graph. Graph modeling depends on the questions that you want to know from the
data. Your data drives your graph model. Graph data modeling is intuitive and convenient. Create your data model based on your
business model. Test your model and gradually optimize it to fit your business. To get better performance, you can change or re-
design your model multiple times.

Edges as properties
Traversal depth decreases the traversal performance. To decrease the traversal depth, use vertex properties instead of edges.
For example, to model a graph that have the name, age, and eye color elements, you can:

* (RECOMMENDED) Create a tag person, then add the name, age, and eye color as its properties.

* (WRONG WAY) Create a new tag eye color and a new edge type has, then create an edge to indicate that a person has an
eye color.

The first modeling solution leads to much better performance. DO NOT use the second solution unless you have to.
Multiple properties under one tag are permitted. But make sure that tags are fine-grained. For more information, see the
Granulated vertices section.

Granulated vertices
In graph modeling, use the data models with a higher level of granularity. Put a set of parallel properties into one tag, i.e., separate
different concepts.

Use indexes correctly

Correct use of indexes speeds up queries, but indexes reduce the write performance by 90% or more. ONLY use indexes when
you locate vertices or edges by their properties.

- 9/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

2.2.3 Graph data modeling suggestions

No long string properties on edges

Be careful when you create long string properties for edges. Nebula Graph supports storing such properties on edges. But note
that these properties are stored both in the outgoing edges and the incoming edges. Thus be careful with the write amplification.

Last update: April 22, 2021

- 10/290 - 2021 Vesoft Inc.

2.3 Nebula Graph architecture

2.3 Nebula Graph architecture

2.3.1 Architecture overview
Nebula Graph consists of three services: the Graph Service, the Storage Service, and the Meta Service.

Each service has its executable binaries and processes launched from the binaries. You can deploy a Nebula Graph cluster on a
single machine or multiple machines using these binaries.

The following figure shows the architecture of a typical Nebula Graph cluster.

1
1
1

' I Monitor

Partition_1 Partition_2 Partition_1 : :
Nebula Graph Follower Follower Follower : :
Exchange Partition_2 Partition_2 Partition_3 : :
Follower Raft Leader Raft Leader Raft : :
Partition_3 ' l Partition_3 l l I Partition_5 L |
Follower Follower Leader : :
[
Partition_5 Partition_5 1
nebula- Follower Follower : :
BRI Storaged0 Storaged1 Storaged2 Storaged3 [|
[
. L |

- Storage Service ——— - - """ - - - - - - - m e mm e mmmm—— - ————-—= —--=- 4

The Meta Service

The Meta Service in the Nebula Graph architecture is run by the nebula-metad processes. It is responsible for metadata
management, such as schema operations, cluster administration, and user privilege management.

For details on the Meta Service, see Meta Service.

- 11/290 - 2021 Vesoft Inc.

2.3.1 Architecture overview

The Graph Service and the Storage Service

Nebula Graph applies a disaggregated storage and compute architecture. The Graph Service is responsible for querying. The
Storage Service is responsible for storage. And they run on different processes, i.e., nebula-graphd and nebula-storaged. The
benefits of disaggregated storage and compute are as follows:

 Great scalability. A disaggregated structure makes both the Graph Service and the Storage Service flexible and easy to scale
in or out.

» High availability. If part of the Graph Service fails, the data stored by the Storage Service suffers no loss. And if the rest part of
the Graph Service is still able to serve the clients, service recovery can be performed quickly, or even unfelt by the users.

» Cost-effective. The separation of computing and storage provides a higher resource utilization rate, and it enables you to
manage the cost flexibly according to business demands. The cost savings can be more significant if you use the Nebula
Graph Cloud service.

* Open to more possibilities. With the ability to run separately, the Graph Service may work with multiple types of storage
engines, and the Storage Service may serve more types of computing engines.

For details on the Graph Service and the Storage Service, see Graph Service and Storage Service.

Last update: March 25, 2021

- 12/290 - 2021 Vesoft Inc.

https://www.nebula-cloud.io/
https://www.nebula-cloud.io/

2.3.2 Meta Service

This topic describes the architecture and functions of the Meta Service.

The architecture of the Meta Service

The architecture of the Meta Service is as follows.

V

=

)
jo
-~

Graph

Service
Meta

Client

Storage

Service
Meta

Client

<4+

nebula_metadO

Follower

nebula_metadl nebula_metad?2

-MetaService-----------————-—----

2.3.2 Meta Service

The Meta Service is run by the nebula-metad processes. You can deploy nebula-metad processes according to the scenario:

¢ In a test environment, you can deploy one or three nebula-metad processes on different machines or a single machine.

¢ In a production environment, we recommend that you deploy three processes on different machines for high availability.

All the nebula-metad processes form a Raft-based cluster, with one process as the leader and the others as the followers. The

leader is elected by quorum, and only the leader can provide service to the clients and other components of Nebula Graph. The

followers run in a standby way and each has a data replication of the leader. Once the leader fails, one of the followers will be

elected as the new leader.

Functions of the Meta Service

MANAGES USER ACCOUNTS

The Meta Service stores the information of user accounts and the privileges granted to the accounts. When the clients send

queries to the Graph Service through an account, the Graph Service checks the account information and whether the account has

the right privileges to execute the queries or not.

For more information on Nebula Graph access control, see Authentication and authorization.

MANAGES PARTITIONS

The Meta Service stores and manages the locations of the storage partitions and helps balance the partitions.

-13/290 -

2021 Vesoft Inc.

2.3.2 Meta Service

MANAGES GRAPH SPACES

Nebula Graph supports multiple graph spaces. Data stored in different graph spaces are securely isolated. The Meta Service
stores the metadata of all graph spaces and tracks the changes of them, such as adding or dropping a graph space.

MANAGES SCHEMA INFORMATION

Nebula Graph is a strong-typed graph database. Its schema contains tags (i.e., the vertex types), edge types, tag properties, and
edge type properties.

The Meta Service stores the schema information. Besides, it performs the addition, modification, and deletion of the schema, and

logs the versions of them.
For more information on Nebula Graph schema, see Data model.
MANAGES TTL-BASED DATA EVICTION
The Meta Service provides automatic data eviction and space reclamation based on TTL (time to live) options for Nebula Graph.
For more information on TTL, see TTL options.
MANAGES JOBS

The Job Manager module in the Meta Service is responsible for the creation, queuing, querying and deletion of jobs.

Last update: March 19, 2021

- 14/290 - 2021 Vesoft Inc.

2.3.3 Graph Service

2.3.3 Graph Service

/" Note

Writing this topic is listed in the training plan for the next Nebula Graph Technical Writer. If you want to learn about the Graph
Service, see An Introduction to Nebula Graph 2.0 Query Engine for now.

Last update: April 22, 2021

-15/290 - 2021 Vesoft Inc.

https://nebula-graph.io/posts/nebula-query-engine-introduction/

2.3.4 Storage Service

2.3.4 Storage Service

/" Note

We are using this topic in recruitment tests. So the official version of it won't be released until the end of April. Feel free to contact
us if you want to join the team. You may also contribute to this topic if interested.

References:

¢ An Introduction to Nebula Graph's Storage Engine
 Architecture overview

* Meta Service

Last update: April 22, 2021

-16/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula-docs/tree/master/docs-2.0
https://nebula-graph.io/posts/nebula-graph-storage-engine-overview/

3. Quick start

3. Quick start

3.1 FAQ

This topic lists the frequently asked questions for using Nebula Graph. You can use the search box in the help center or the search
function of the browser to match the questions you are looking for.

If the solutions described in this topic cannot solve the problem, ask for help on the Nebula Graph forum or submit an issue on
GitHub.

3.1.1 About manual updates

Why is the behavior of manual not consistent with the system?
Nebula Graph is still under development. Its behavior changes from time to time. Please tell us if the manual and the system are not
consistent.

Some errors in this manula

1. Click the pencil button at the top right side of this page.
2. Use markdown to fix this errorfiThen "Commit changes" at the bottom, which will start a Github pull request.

3. Sign the CLA. This pull request (and the fix) will be merged after to reviewer's accept.

3.1.2 About forward and backward compatibility

Major version compatibility

Neubla Graph 2.0.1 is not compatible with Nebula Graph 1.x nor 2.0-RC in both data formats and RPC-protocols, and vice versa.
Check how to upgrade to Neubla Graph 2.0.1. You must upgrade all clients.

Micro version compatibility

Neubla Graph 2.0.1 is compatible with Nebula Graph in both data formats and RPC-protocols.

-17/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula-graph/issues

3.1.3 About openCypher compatibility

3.1.3 About openCypher compatibility

9 Is nGQL compatible with openCypher 9?

nGQL is partially compatible with openCypher 9. Known incompatible items are listed in Nebula Graph Issues. Submit an issue with
the incompatible tag if you find a new issue of this type. You can search in this manual with the keyword compatibility to find major
compatibility issues.

The following are some major differences (by design incompatible) between nGQL and openCypher.

openCypher 9 nGQL

schema optional strong schema

equality operator '=' equality operator '=="'

math exponentiation 2 A not supported. Use pow(x, y) instead.
no such concept edge rank (reference by @)

all DMLs (CREATE,, MERGE , etc), and OPTIONAL MATCH are not supported.

OpenCypher 9 and Cypher have some differences (in grammar and licence). For example, Cypher requires that All Cypher
statements are explicitly run within a transaction. While openCypher has no such requirement of transaction.And nGQL does not
support transaction.

- 18/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues?q=is-3Aissue+is-3Aopen+label-3Aincompatible
http://www.opencypher.org/
https://neo4j.com/developer/cypher/

3.1.3 About openCypher compatibility

Q Where can I find more nGQL examples?

Find more than 2500 nGQL examples in the features directory on the Nebula Graph GitHub page.
The features directory consists of .feature files. Each file records scenarios that you can use as nGQL examples.
Here is an example:

Feature: Match seek by tag

Background: Prepare space
Given a graph with space named "basketballplayer"

Scenario: seek by empty tag index
When executing query:
MATCH (v:bachelor)
RETURN id(v) AS vid
Wi
Then the result should be, in any order:
| vid |
| 'Tim Duncan' |
And no side effects
When executing query:
i
MATCH (v:bachelor)
RETURN id(v) AS vid, v.age AS age
Then the result should be, in any order:
| vid | age |
| 'Tim Duncan' | 42 |
And no side effects

The keywords in the preceding example are described as follows:

Keyword Description

Feature Describes the topic of the current .feature file.

Background Describes the background information of the current .feature file.

Given Describes the prerequisites of running the test statements in the current .feature file.

Scenario Describes the purpose of the scenario. If there is the @skip before scenario, this scenario may not work

and don't use it as a working example.
When Describes the nGQL statement to be executed.

Then Describes the expected result of running the statement in the when clause. If the result in your
environment does not match the result described in the .feature file, submit an issue to inform the
Nebula Graph team.

And Describes the side effects of running the statement in the when clause.

@skip This test case will be skipped. Commonly, the to-be-tested code is not ready.

Welcome to add more practical scenarios and become a Nebula Graph contributor.

0 Does it support TinkerPop Gremlin?

No. And no plan to support that.

-19/290 -

2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/tree/master/tests/tck/features
https://github.com/vesoft-inc/nebula-graph/issues

3.1.4 About Data Model

3.1.4 About Data Model

Does Nebula Graph support W3C RDF (SPARQL), or GraphQL?

No. And no plan to support that.
Nebula Graph's data model is the property graph, and it is a strong schema system.
It doesn't support rdf.

Nebula Graph Query Language does not support SPARQL nor GraphQL .

3.1.5 About executions

How is the time spent value at the end of each return message calculated?

Take the return message of SHow SPACES as an example:

nebula> SHOW SPACES;

Fommmmmmeeeeeaas +
| Name |
R +
| basketballplayer |
L R R +

Got 1 rows (time spent 1235/1934 us)

» The first number 1235 shows the time spent by the database itself, that is, the time it takes for the query engine to receive a
query from the client, fetch the data from the storage server and perform a series of calculations.

* The second number 1934 shows the time spent from the client's perspective, that is, the time it takes for the client from sending a
request, receiving a response, and displaying the result on the screen.

Can I set replica_factor as an even number in CREATE SPACE statements, e.g., replica_factor = 2?

NO.

The Storage Service garantees its availability based on the Raft consensus protocol. The number of failed replicas must not exceed
half of the total replica number.

When replica_factor=2, if one replica fails, the Storage Service fails. No matter replica factor=3 or replica_factor=4, if more than
one replica fails, the Storage Service fails, so replica_factor=3 is recommended.

To prevent unnecessary waste of resources, we recommend that you set an odd replica number.

We suggest that you set replica factor to 3 for the production environment and 1 for the test environment. Do not use an even
number.

How to resolve [ERROR (-7)]: SyntaxError: syntax error near ?

In most cases, a query statement requires a YIELD or a RETURN . Check your query statement to see if YIELD or RETURN is provided.

How to count the vertices/edges number of each tag/edge type?

See show-stats.

- 20/290 - 2021 Vesoft Inc.

3.1.5 About executions

Q How to get all the vertices/edge of each tag/edge type?

1. Create and rebuild the index.

> CREATE TAG INDEX i_player ON player();
> REBUILD TAG INDEX i_player;

2. Use LOOKUP Or MATCH .

> LOOKUP ON player;
> MATCH (n:player) RETURN n;

See INDEX, LOOKUP and MATCH .

9 How to resolve the can’t solve the start vids from the sentence error?

The graphd requires start vids to begin a graph traversal. The start vids can either be specified by the user, for example,

> GO FROM ${vids} ...
> MATCH (src) WHERE id(src) == ${vids}
The start vids are explicitly given by ${vids}.

or be found from a (property) index, for example,

*

CREATE TAG INDEX i_player ON player(name(20));
REBUILD TAG INDEX i_player;

*

v

LOOKUP ON player WHERE player.name == "abc" | ... YIELD ...
MATCH (src) WHERE src.name == "abc" ...
The start vids are found from the property index on name.

* Vv

Otherwise, an error like can’t solve the start vids from the sentence will be raised.

Q How to resolve error storage Error: The VID must be a 64-bit integer or a string. ?

Check your vid is an integer or a fix_string(N) . If it is a string type, make sure your input is not longer than N (default value is 8).
See create space.

0 How to resolve error edge conflict Or vertex conflict ?

Nebula Graph returns such errors when the Storage Service receives multiple requests to insert or update the same vertex or edge
within milliseconds. Try the failed requests again later.

0 Storage Error E RPC_FAILURE

Storaged returns too many data back to graphd@IPossible solutions:

1. Check whether storaged is Out-of-memory. (dmesg| grep nebula).

2. In nebula-graphd.conf , modify or add the item --storage_client_timeout_ms=60000 to change the timeout(ms)g
3. Modify your nGQL to reduce full scans (including limit sentence).

4. Use better hardware (NVMe, more memory).

5. retry@d

Q The leader has changed. Try again later

Known Issue. Just retry 1 to N times, where N is the partition number@The reason is that meta client needs some heartbeats to
update or errors to trigger the new leader information.

-21/290 - 2021 Vesoft Inc.

3.1.6 About operation and maintenance

9 How to stop a slow query

You can't. Even killing a client will not stop the running slow query. You have to wait the query to complete.

3.1.6 About operation and maintenance

1.

0 The log files are too large. How to recycle the logs?

Nebula Graph uses glog to print logs. glog can't recycle the outdated files. You can use crontab to delete them by yourself. Refer to
the discussions of Glog should delete old log files automatically .

Q How to check the Nebula Graph version?

. Use the <binary path> --version command to get the Git commit IDs of the Nebula Graph binary files.

For exmaple, to check the version of the Graph Service, go to the directories where the nebula-graphd binary files are stored, and
run ./nebula-graphd --version as follows to get the commit IDs.

$./nebula-graphd --version
nebula-graphd version Git: ab4f683, Build Time: Mar 24 2021 02:17:30

. Search for the commit ID obtained in the preceding step on the GitHub commits page.

. Compare the commit time of the binary files with the release time of Nebula Graph versions to find out the version of the Nebula

Graph services.

0 How to scale out or scale in?

Nebula Graph 2.0.1 doesn't provide any commands or tools to support automatic scale out/in. You can do by the following stepsf

metadfdl metad can not be scaled out or scale in. The process can't be moved to a new machine. You can not add a new metad
process to the service.

. Scale in graphd [remove graphd from client's code. Close this graphd process.

. Scale out graphdfil prepare graphd's binary and config files in the new host. Modify the config files and add all existing metad's

addresses. Then start the new graphd process.

. Scale in storaged[All spaces' replace number must be greater than 1Eref to Balance remove command. After the command

finish, stop this storaged process.

. Scale out storaged[iJAll spaces' replace number must be greater than 1Efprepare storaged's binary and config files in the new

host, Modify the config files and add all existing metad's adDresses. Then start the new storaged process.

You may also need to run Balance Data and Balance leader after scaling in/out storaged.

- 22/290 - 2021 Vesoft Inc.

https://github.com/google/glog
https://github.com/google/glog/issues/423
https://github.com/google/glog/issues/423
https://github.com/vesoft-inc/nebula-graph/commits/master
https://github.com/vesoft-inc/nebula-graph/releases

3.1.7 About connections

3.1.7 About connections

0 Which ports should be opened on the firewalls?

If you have not changed the predefined ports in the configurations, open the following ports for the Nebula Graph services:

Service Ports

Meta 9559, 9560, 19559, 19560
Graph 9669, 19669, 19670
Storage 9777 ~ 9780, 19779, 19780

If you have customized the configuration files and changed the predefined ports, find the port numbers in your configuration files and

open them on the firewalls.

Q How to test whether a port is open or closed?

You can use telnet as follows to check for port status.

telnet <ip> <port>

For example:

// If the port is open:
$ telnet 192.168.1.10 9669
Trying 192.168.1.10...
Connected to 192.168.1.10.
Escape character is 'A]'.

// If the port is closed or blocked:

$ telnet 192.168.1.10 9777

Trying 192.168.1.10...

telnet: connect to address 192.168.1.10: Connection refused

If you cannot use the telnet command, check if telnet is installed or enabled on your host.

Last update: November 3, 2021

-23/290 - 2021 Vesoft Inc.

3.2 Quick start workflow

3.2 Quick start workflow

The quick start introduces the simplest workflow to using Nebula Graph, including deploying Nebula Graph, connecting to
Nebula Graph, and doing basic CRUD.
1. Deploy Nebula Graph with Docker Compose
2. Connect to Nebula Graph
3. CRUD in Nebula Graph
Other frequently read topics are recommended as follows. They are not in the quick start, but you may need them as soon as you
pass the quick start phase.
* Read FAQ
* Deploy a Nebula Graph cluster
* Some useful links

* Compaction

Last update: April 1, 2021

-24/290 - 2021 Vesoft Inc.

3.3 Deploy Nebula Graph with Docker Compose

3.3 Deploy Nebula Graph with Docker Compose

There are multiple ways to deploy Nebula Graph, but using Docker Compose is usually considered to be a fast starter.

3.3.1 Reading guide

If you are reading this topic with the questions listed below, click them to jump to their answers.

* What do I need to do before deploying Nebula Graph?

* How to fast deploy Nebula Graph with Docker Compose?

* How to check the status and ports of the Nebula Graph services?
* How to check the data and logs of the Nebula Graph services?

* How to stop the Nebula Graph services?

* What are the other ways to install Nebula Graph?

3.3.2 Prerequisites

* You have installed the following applications on your host.

Application Recommended version Official installation reference
Docker Latest Install Docker Engine

Docker Compose Latest Install Docker Compose

Git Latest Download Git

 If you are deploying Nebula Graph as a non-root user, grant the user with Docker-related privileges. For a detailed
instruction, see Docker document: Manage Docker as a non-root user.

* You have started the Docker service on your host.
 If you have already deployed another version of Nebula Graph with Docker Compose on your host, to avoid compatibility
issues, back up the service data if you need, and delete the nebula-docker-compose/data directory.
/" Note

To backup the Nebula Graph data, see Use B&R to backup data. TODO: It is not released.

3.3.3 How to deploy

1. Clone the master branch of the nebula-docker-compose repository to your host with Git.

0 Danger
The master branch contains the Docker Compose solution for the latest Nebula Graph development release. DON'T use this
release for production.

$ git clone https://github.com/vesoft-inc/nebula-docker-compose.git

2. Go to the nebula-docker-compose directory.

$ cd nebula-docker-compose/

3. Run the following command to start all the Nebula Graph services.

- 25/290 - 2021 Vesoft Inc.

https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/
https://git-scm.com/download/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user

3.3.4 Check the Nebula Graph service status and port

/" Note

Update the Nebula Graph images and Nebula Console images first if they are out of date.

nebula-docker-compose]$ docker-compose up -d

Creating nebula-docker-compose_metad®_1 ... done
Creating nebula-docker-compose_metad2_1 ... done
Creating nebula-docker-compose_metadl 1 ... done
Creating nebula-docker-compose_graphd2_1 ... done
Creating nebula-docker-compose_graphd_1 ... done
Creating nebula-docker-compose_graphdl_ 1 ... done
Creating nebula-docker-compose_storaged®_1 ... done
Creating nebula-docker-compose_storaged2_1 ... done
Creating nebula-docker-compose_storagedl 1 ... done
\J
7/ Note

For more information of the preceding services, see Nebula Graph architecture.

4. Connect to Nebula Graph.

a. Run the following command to start a new docker container with the Nebula Console image, and connect the container to
the network where Nebula Graph is deployed.

$ docker run --rm -ti --network nebula-docker-compose_nebula-net \
--entrypoint=/bin/sh vesoft/nebula-console:v2-nightly
CJ
7/ Note
Your local network (nebula-docker-compose nebula-net) may be different from the example above. Use the following command.

$ docker network 1s

NETWORK ID NAME DRIVER SCOPE
a74c312b1d16 bridge bridge local
dbfa82505f0e host host local
ed55ccf356ae nebula-docker-compose_nebula-net bridge local
93ba48b4b288 none null local

b. Connect to Nebula Graph with Nebula Console.

docker> nebula-console -u user -p password --address=graphd --port=9669

/" Note

By default, the authentication is off, you can log in with any user name and password. To turn it on, see Enable authentication.

c. Run the sHow HosTs statement to check the status of the nebula-storaged processes.

nebula> SHOW HOSTS;

oo e e ommmmme—eaa B T TP B L C T +
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
o o R o oo L R T +
| "storaged®" | 9779 | "ONLINE" | © | "No valid partition" | "No valid partition" |
oo e e ommmmme—eaa B T TP B L C T +
| "storaged1" | 9779 | "ONLINE" | © |

"No valid partition" | "No valid partition" |

"No valid partition" |

| "Total"
e

5. Run exit twice to switch back to your terminal (shell). You can run Step 4 to login Nebula Graph again.

3.3.4 Check the Nebula Graph service status and port

Run docker-compose ps to list all the services of Nebula Graph and their status and ports.

-26/290 - 2021 Vesoft Inc.

$ docker-compose ps

nebula-docker-compose_graphdi_1
nebula-docker-compose_graphd2_1
nebula-docker-compose_graphd_1
nebula-docker-compose_metado_1

/usr/local/nebula/bin/nebu ...
/usr/local/nebula/bin/nebu ...
/usr/local/nebula/bin/nebu ...
./bin/nebula-metad --flagf ...

nebula-docker-compose_metadl 1
nebula-docker-compose_metad2_1
nebula-docker-compose_storaged0_1
nebula-docker-compose_storagedl_1

nebula-docker-compose_storaged2_1

./bin/nebula-metad --flagf ...
./bin/nebula-metad --flagf ...
./bin/nebula-storaged --fl ...
./bin/nebula-storaged --fl ...

./bin/nebula-storaged --fl ...

V]
(V]
(V]
V]

T T T T

V]

©

V]

©

V]

©

V]

©

V]

h=]

(healthy)
(healthy)
(healthy)
(healthy)
(healthy)
(healthy)
(healthy)
(healthy)

(healthy)

0.0.0.0:33170->19669/tcp, 0.0.0.0
0.0.0.0:33174->19669/tcp, 0.0.0.0
0.0.0.0:33205->19669/tcp, 0.0.0.0
0.0.0.0:33165->19559/tcp, 0.0.0.0

9560/tcp

0.0.0.0:33166->19559/tcp, 0.0.0.
9560/tcp

0.0.0.0:33161->19559/tcp, 0.0.0.
9560/tcp

.0.0.0:33180->19779/tcp, 0.0.0.0
:33183->9779/tcp, 9780/tcp
33175->19779/tcp, 0.0.0.0
133177->9779/tcp, 9780/tcp
:133184->19779/tcp, 0.0.0.0
:33185->9779/tcp, 9780/tcp

©
[} =}

© 0000 o0

0.0
0.0
0.0.
0.0
0.0

o000

3.3.5 Check the service data and logs

133169->19670/tcp,
133171->19670/tcp,
133204->19670/tcp,
133162->19560/tcp,
133163->19560/tcp,
133160->19560/tcp,
133178->19780/tcp,

:133172->19780/tcp,

:133181->19780/tcp,

0.0.0.0:33173->9669/tcp
0.0.0.0:33176->9669/tcp
0.0.0.0:9669->9669/tcp

0.0.0.0:33167->9559/tcp

0.0.0.0:33168->9559/tcp

0.0.0.0:33164->9559/tcp

9777/tcp, 9778/tcp,
9777/tcp, 9778/tcp,

9777/tcp, 9778/tcp,

Nebula Graph provides services to the clients through port 9669 by default. To use other ports, modify the docker-compose.yaml file
in the nebula-docker-compose directory and restart the Nebula Graph services.

3.3.5 Check the service data and logs

All the data and logs of Nebula Graph are stored persistently in the nebula-docker-compose/data and nebula-docker-compose/logs

directories.

The structure of the directories is as follows:

nebula-docker-compose/
| -- docker-compose.yaml
|— data
|— meta®
|— metal
|— meta2
|— storage®
|— storage1
L— storage2

[
|
|
|
[
|
L— logs

— graph
|— graph1
|— graph2
|— metao
|— metal
|— meta2
|— storage®
|— storagel
L— storage2

3.3.6 Stop the Nebula Graph services

You can run the following command to stop the Nebula Graph services:

$ docker-

compose down

The following information indicates you have successfully stopped the Nebula Graph services:

Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Removing
Removing
Removing
Removing
Removing
Removing
Removing
Removing
Removing
Removing

nebula-docker-compose_storagedd_1 ...
. done
. done
nebula-docker-compose_storagedl_ 1 ...
. done
nebula-docker-compose_storaged2_1 ...
. done
. done
. done
nebula-docker-compose_storagedo_1 ...
. done
. done
nebula-docker-compose_storaged1l 1 ...
. done
nebula-docker-compose_storaged2_1 ...
. done
. done
. done

nebula-docker-compose_graphdi_1
nebula-docker-compose_graphd_1

nebula-docker-compose_graphd2_1
nebula-docker-compose_metad®_1
nebula-docker-compose_metad2_1

nebula-docker-compose_metadl_ 1

nebula-docker-compose_graphdil_ 1
nebula-docker-compose_graphd_1

nebula-docker-compose_graphd2_1
nebula-docker-compose_metad®_1

nebula-docker-compose_metad2_1
nebula-docker-compose_metadl_1

done

done

done

done

done

done

network nebula-docker-compose_nebula-net

-27/290 -

2021 Vesoft Inc.

3.3.7 Other ways to install Nebula Graph

/" Note

Command docker-compose down -v will delete all your local Nebula Graph storage data. Try this command if you're using a developing/

nightly version and having some compatibility issues.

3.3.7 Other ways to install Nebula Graph

* Use Source Code
* Use RPM or DEB package
* Deploy Nebula Graph cluster

3.3.8 FAQ
How to update the docker images of Nebula Graph services

To update the images of the Graph Service, Storage Service, and Meta Service, run docker-compose pull in the

nebula-docker-compose directory.

ERROR: toomanyrequests when docker-compose pull

You may meet the following error.

ERROR: toomanyrequests: You have reached your pull rate limit. You may increase the limit by authenticating and upgrading: https://

www . docker.com/increase-rate-limit .

You have met the rate limit of Docker Hub. Learn more on Understanding Docker Hub Rate Limiting.

How to update the Nebula Console client

To update the Nebula Console client, run the following command.

docker pull vesoft/nebula-console:v2-nightly

How to upgrade Nebula Graph services
To upgrade Nebula Graph, update the Nebula Graph docker images and restart the services.

1. In the nebula-docker-compose directory, run docker-compose pull to update the Nebula Graph docker images.

Caution

Make sure that you have backed up all important data before following the next step to stop the Nebula Graph services.

2. Run docker-compose down to stop the Nebula Graph services.

3. Run docker-compose up -d to start the Nebula Graph services again.

Why can't | connect to Nebula Graph through port 3699 after updating the nebula-docker-compose repository? (Nebula Graph 2.0.0-RC)

On the release of Nebula Graph 2.0.0-RC, the default port for connection changed from 3699 to 9669. To connect to Nebula
Graph after updating the repository, use port 9669 or modify the port number in the docker-compose.yaml file.

Why can'tl access the data after updating the nebula-docker-compose repository? (Jan 4, 2021)

If you updated the nebula-docker-compose repository after Jan 4, 2021 and there are pre-existing data, modify the docker-
compose.yaml file and change the port numbers to the previous ones before connecting to Nebula Graph.

- 28/290 - 2021 Vesoft Inc.

https://www.docker.com/increase-rate-limit
https://github.com/vesoft-inc/nebula-docker-compose/commit/2a612f1c4f0e2c31515e971b24b355b3be69420a

3.3.8 FAQ

Why can't | access the data after updating the nebula-docker-compose repository? (Jan 27, 2021)

The data format is incompatible before and after in Jan 27, 2021. Run docker-compose down -v to delete all your local data.

Where are the data stored when Nebula Graph is deployed with Docker Compose

If deployed with Docker Compose, Nebula Graph stores all data in nebula-docker-compose/data/ .

Last update: April 22, 2021

- 29/290 - 2021 Vesoft Inc.

3.4 Manage Nebula Graph services

3.4 Manage Nebula Graph services

You can use the nebula.service script to start, stop, restart, terminate, and check the Nebula Graph services. This topic takes
starting, stopping and checking the Nebula Graph services for examples.

nebula.service is stored in the /usr/local/nebula/ directory by default, which is also the default installation path of Nebula Graph.
If you have customized the path, use the actual path in your environment.

3.4.1 Syntax

$ sudo /usr/local/nebula/scripts/nebula.service
[-v] [-c <config_file path>]
<start|stop|restart|status|kill>

<metad |graphd|storaged|all>

Parameter Description

-v Display detailed debugging information.

-c Specify the configuration file path. The default path is /usr/local/nebula/etc/ .
start Start the target services.

stop Stop the target services.

restart Restart the target services.

kill Terminate the target services.

status Check the status of the target services.

metad Set the Meta Service as the target service.

graphd Set the Graph Service as the target service.

storaged Set the Storage Service as the target service.

all Set all the Nebula Graph services as the target services.

3.4.2 Start Nebula Graph
In non-container environment
Run the following command to start Nebula Graph.

$ sudo /usr/local/nebula/scripts/nebula.service start all
[INFO] Starting nebula-metad...

[INFO] Done

[INFO] Starting nebula-graphd...

[INFO] Done

[INFO] Starting nebula-storaged...

[INFO] Done

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to start Nebula Graph.

- 30/290 - 2021 Vesoft Inc.

nebula-docker-compose]$ docker-compose up -d

Building
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating
Creating

with native build. Learn about native build in Compose here: https://docs.docker.com/go/compose-native-build/

network "nebula-docker-compose_nebula-net" with the default driver
nebula-docker-compose_metad®_1 ... done
nebula-docker-compose_metad2_1 ... done
nebula-docker-compose_metadl 1 ... done
nebula-docker-compose_storaged2_1 ... done
nebula-docker-compose_graphdi_1 ... done
nebula-docker-compose_storagedl_ 1 ... done
nebula-docker-compose_storagedd_1 ... done
nebula-docker-compose_graphd2_1 ... done
nebula-docker-compose_graphd_1 ... done

3.4.3 Stop Nebula Graph

0 Danger

Don't run kill -9 to forcibly terminate the processes, otherwise, there is a low probability of data loss.

In non-container environment

Run the following command to stop Nebula Graph.

sudo /usr/local/nebula/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...

[INFO] Done

[INFO] Stopping nebula-graphd...

[INFO] Done

[INFO] Stopping nebula-storaged...

[INFO] Done

In docker container (deployed with docker-compose)

Run the following command in the nebula-docker-compose/ directory to stop Nebula Graph.

nebula-docker-compose]$ docker-compose down

Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Stopping
Removing
Removing
Removing
Removing
Removing
Removing
Removing
Removing
Removing
Removing

nebula-docker-compose_graphd_1 ... done
nebula-docker-compose_graphd2_1 ... done
nebula-docker-compose_storagedd_1 ... done
nebula-docker-compose_storagedl 1 ... done
nebula-docker-compose_graphdi_1 ... done
nebula-docker-compose_storaged2_1 ... done
nebula-docker-compose_metadl 1 ... done
nebula-docker-compose_metad2_1 ... done
nebula-docker-compose_metad®_1 ... done
nebula-docker-compose_graphd_1 ... done
nebula-docker-compose_graphd2_1 ... done
nebula-docker-compose_storaged®_1 ... done
nebula-docker-compose_storagedl 1 ... done
nebula-docker-compose_graphdil_1 ... done
nebula-docker-compose_storaged2_1 ... done
nebula-docker-compose_metadl_1 ... done
nebula-docker-compose_metad2_1 ... done
nebula-docker-compose_metad®_1 ... done
network nebula-docker-compose_nebula-net

3.4.3 Stop Nebula Graph

If you are using a development or nightly version for testing and have compatibility issues, try to run 'docker-compose down-v' to
DELETE all data stored in Nebula Graph and import data again.

3.4.4 Check the service status

In non-container environment

Run the following command to check the service status of Nebula Graph.

$ sudo /usr/local/nebula/scripts/nebula.service status all

* Nebula Graph is running normally if the following information is returned.

-31/290 -

2021 Vesoft Inc.

3.4.4 Check the service status

[INFO] nebula-metad: Running as 26601, Listening on 9559
[INFO] nebula-graphd: Running as 26644, Listening on 9669
[INFO] nebula-storaged: Running as 26709, Listening on 9779

e If the return information is similar to the following one, there is a problem.

[INFO] nebula-metad: Running as 25600, Listening on 9559
[INFO] nebula-graphd: Exited
[INFO] nebula-storaged: Running as 25646, Listening on 9779

The Nebula Graph services consist of the Meta Service, Graph Service, and Storage Service. The configuration files for all three
services are stored in the /usr/local/nebula/etc/ directory by default. You can check the configuration files according to the return
information to troubleshoot problems.

You may also go to the Nebula Graph community for help.

In docker container (deployed with docker-compose)
Run the following command in the nebula-docker-compose/ directory to check the service status of Nebula Graph.

nebula-docker-compose]$ docker-compose ps

Name Command State Ports

nebula-docker-compose_graphdl_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49223->19669/tcp, 0.0.0.0:49222->19670/tcp, 0.0.0.0:49224->9669/tcp

nebula-docker-compose_graphd2_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49229->19669/tcp, 0.0.0.0:49228->19670/tcp, 0.0.0.0:49230->9669/tcp

nebula-docker-compose_graphd_1 /usr/local/nebula/bin/nebu ... Up (healthy) 0.0.0.0:49221->19669/tcp, 0.0.0.0:49220->19670/tcp, 0.0.0.0:9669->9669/tcp

nebula-docker-compose_metad®d_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49212->19559/tcp, 0.0.0.0:49211->19560/tcp, 0.0.0.0:49213->9559/tcp,
9560/tcp

nebula-docker-compose_metadl_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49209->19559/tcp, 0.0.0.0:49208->19560/tcp, 0.0.0.0:49210->9559/tcp,
9560/tcp

nebula-docker-compose_metad2_1 ./bin/nebula-metad --flagf ... Up (healthy) 0.0.0.0:49206->19559/tcp, 0.0.0.0:49205->19560/tcp, 0.0.0.0:49207->9559/tcp,
9560/tcp

nebula-docker-compose_storagedo_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49218->19779/tcp, 0.0.0.0:49217->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49219->9779/tcp, 9780/tcp

nebula-docker-compose_storagedl_1 ./bin/nebula-storaged --f1 ... Up (healthy) 0.0.0.0:49215->19779/tcp, 0.0.0.0:49214->19780/tcp, 9777/tcp, 9778/tcp,
0.0.0.0:49216->9779/tcp, 9780/tcp
nebula-docker-compose_storaged2_1 ./bin/nebula-storaged --fl ... Up (healthy) 0.0.0.0:49226->19779/tcp, 0.0.0.0:49225->19780/tcp, 9777/tcp, 9778/tcp,

0.0.0.0:49227->9779/tcp, 9780/tcp

To troubleshoot for a specific service:

1. Confirm the container name in the preceding return information.
2. Run docker ps to find the CONTAINER ID.

3. Use the conTAINER ID to log in the container and troubleshoot.

nebula-docker-compose]$ docker exec -it 2a6c56c405f5 bash
[root@2a6c56c405f5 nebula]#

Last update: April 22, 2021

-32/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

3.5 Connect to Nebula Graph

3.5 Connectto Nebula Graph

Nebula Graph supports multiple types of clients, including a CLI client, a GUI client, and clients developed in popular
programming languages. This topic provides an overview of Nebula Graph clients and basic instructions on how to use the native
CLI client, Nebula Console.

3.5.1 Nebula Graph clients

You can use supported clients or console to connect to Nebula Graph.

3.5.2 Use Nebula Console to connect to Nebula Graph

Prerequisites

* You have started the Nebula Graph services. For how to start the services, see Start and Stop Nebula Graph.

e The machine you plan to run Nebula Console on has network access to the Nebula Graph services.

Steps

1. On the nebula-console page, select a Nebula Console version and click Assets.

/" Note

We recommend that you select the latest release.

Draft a new release

Edit

(Pre-release)

Nebula Graph Console v2.0.0-alpha

© v2.0.0-alpha .
O 070686 ‘Jude-zhu released this 15 days ago
Yoriied e Supports interactive and non-interactive mode.
Compare ¥ ® Supports viewing history statements.

e Supports autocompletion.
e Supports multiple OS and architecture (We recommend Linux/AMDG64).

» Assets 7

2. In the Assets area, find the correct binary file for the machine where you want to run Nebula Console and download the file to

the machine.

- 33/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/releases

3.5.2 Use Nebula Console to connect to Nebula Graph

v Assets 7

@ nebula-console-darwin-amd64-v2.0.0-alpha 8.24 MB
@ nebula-console-linux-amd64-v2.0.0-alpha 8.22 MB
@ nebula-console-linux-arm-v2.0.0-alpha 7.28 MB
@ nebula-console-windows-amd64-v2.0.0-alpha.exe 7.84 MB
@ nebula-console-windows-arm-v2.0.0-alpha.exe 7.06 MB

m Source code (zip)

m Source code (tar.gz)

3. (Optional) Rename the binary file to nebula-console for convenience.

/" Note

For Windows, rename the file to nebula-console.exe .

4. On the machine to run Nebula Console, grant the execute permission of the nebula-console binary file to the user.

/" Note

For Windows, skip this step.

$ chmod 111 nebula-console

5. In the command line interface, change the working directory to the one where the nebula-console binary file is stored.
6. Run the following command to connect to Nebula Graph.

¢ For Linux or macOS:

$./nebula-console -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

¢ For Windows:

> nebula-console.exe -addr <ip> -port <port> -u <username> -p <password>
[-t 120] [-e "nGQL_statement" | -f filename.nGQL]

-34/290 - 2021 Vesoft Inc.

3.5.3 Nebula Console export mode

The description of the parameters is as follows.

Option Description

-h Shows the help menu.

-addr Sets the IP address of the graphd service. The default address is 127.0.0.1.

-port Sets the port number of the graphd service. The default port number is 9669.

-u/-user Sets the username of your Nebula Graph account. Before enabling authentication, you can use any

characters as the username.

-p/-password Sets the password of your Nebula Graph account. Before enabling authentication, you can use any
characters as the password.

-t/-timeout Sets an integer-type timeout threshold of the connection. The unit is second. The default value is 120.

-e/-eval Sets a string-type nGQL statement. The nGQL statement is executed once the connection succeeds. The
connection stops after the result is returned.

-f/-file Sets the path of an nGQL file. The nGQL statements in the file are executed once the connection succeeds.
You'll get the return messages and the connection stops then.

You can find more details in the Nebula Console Repository.

3.5.3 Nebula Console export mode
When the export mode is enabled, Nebula Console exports all the query results into a CSV file. When the export mode is disabled,
the export stops. The syntax is as follows.
7" Note

* The following commands are case insensitive.

* The CSV file is stored in the working directory. Run the Linux command pwd to show the working directory.

* Enable Nebula Console export mode:
nebula> :SET CSV <your_file.csv>

* Disable Nebula Console export mode:

nebula> :UNSET CSV

3.5.4 Disconnect Nebula Console from Nebula Graph

You can use :EXIT or :QuiT to disconnect from Nebula Graph. For convenience, Nebula Console supports using these commands
in lower case without the colon (":"), such as quit .

nebula> :QUIT

Bye root!

3.5.5 FAQ

How can | install Nebula Console from the source code

To download and compile the latest source code of Nebula Console, follow the instructions on the nebula console GitHub page.

Last update: April 22, 2021

- 35/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console/tree/v2.0.0-ga
https://github.com/vesoft-inc/nebula-console#build-nebula-graph-console

3.6 Nebula Graph CRUD

3.6 Nebula Graph CRUD

This topic describes the basic CRUD operations in Nebula Graph.

3.6.1 Graph space and Nebula Graph schema

A Nebula Graph instance consists of one or more graph spaces. Graph spaces are physically isolated from each other. You can use
different graph spaces in the same instance to store different datasets.

o

/

7’

Graph Space A Graph Space B Graph Space ...

[
|
|
|
|
|
I
|

A Nebula Graph Instance
\ /

e e e e o Em o e e o o o o o o o o o o = o

To insert data into a graph space, define a schema for the graph database. Nebula Graph schema is based on the following

components.
Schema component Description
Vertex Represents an entity in the real world. A vertex can have one or more tags.
Tag The type of a vertex. It defines a group of properties that describes a type of vertices.
Edge Represents a directed relationship between two vertices.
Edge type The type of an edge. It defines a group of properties that describes a type of edges.

For more information, see Data modeling.

In this topic, we use the following dataset to demonstrate basic CRUD operations.

- 36/290 - 2021 Vesoft Inc.

3.6.2 Check the machine status in the Nebula Graph cluster

- EEE EEE EEE S SN SN B B B EEE SEE SEE SEN SN SN SN OSSN S S S S S ey

- -~
” ~
/7
/
/ Tag: player \
I} VID: “player102” \
Properties:
I Fd foll * name: “LaMarcus 1
e type: follow P
: ge type: follow
| Prgpez;’ A'd"gge Ed foll I
: * age: -
| * degree: 75 - Property: |
* degree: 90
I I
I I
| , |
Edge type: follow
| Tag: player Property: Tag: player |
| VID: “player101” * degree: 95 VID: “player100” I
Properties: Properties:

| * name: “Tony * name: “Tim |
| Parker” Duncan” I
I * age:36 * age:42 !
I Edge type: serve Edge type: serve !
I Property: Property: |

l * start_year: 1999 * start_year: 1997
* end_year: 2018 * end_year: 2016 !
| I
I I
I I
I Tag: team Tag: team !
I VID: “team201” VID: “team200” I
| Properties: Properties: |
| * name: “Nuggets” * name: “Warriors” |
! |
\ /

\ /
\
N Graph space: basketballplayer P /
~ ”
~ -

3.6.2 Check the machine status in the Nebula Graph cluster

First, we recommend that you check the machine status to make sure that all the Storage services are connected to the Meta
Services. Run sHow HosTs as follows.

nebula> SHOW HOSTS;

drmscososososas droscosocosas droscosocosas dhmccosococo=ooo fhmcocococococococosccas fmccocococccococoooccooos +
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
Fommmmmmeeeaas B - B - B e Fommm e mmeemeeemeemaaa +
| "storagede" | 9779 | "ONLINE" | © | "No valid partition" | "No valid partition" |
drmscosasososas drmscosocosas droccosocosas dmccosocoso=ooo frmcococococococasocseas mccocscocccococococccoss +
| "storaged1l" | 9779 | "ONLINE" | © | "No valid partition" | "No valid partition" |
Fommmmmmeeeaas B - B - B e Fommm e mmeemeeemeemaaa +
| "storaged2" | 9779 | "ONLINE" | © | "No valid partition" | "No valid partition" |
drmscosasososas drmscosocosas droccosocosas dmccosocoso=ooo frmcococococococasocseas mccocscocccococococccoss +
| "Total" | _EMPTY__ | _EMPTY__ | @ | __EMPTY | __EMPTY. |
Fommmmmmeeeaas B - B - B e Fommm e mmeemeeemeemaaa +

Got 4 rows (time spent 1061/2251 us)

From the Status column of the table in the return message, you can see that all the Storage services are online.

- 37/290 - 2021 Vesoft Inc.

3.6.3 Create and use a graph space

Asynchronous implementation of creation and alteration

Nebula Graph implements the following creation or alteration operations asynchronously in the next heartbeat cycle. The
operations won't take effect until they finish.

* CREATE SPACE

* CREATE TAG

* CREATE EDGE

¢ ALTER TAG

¢ ALTER EDGE

* CREATE TAG INDEX

* CREATE EDGE INDEX

/" Note

The default heartbeat interval is 10 seconds. To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the

configuration files for all services.

To make sure the follow-up operations work as expected, take one of the following approaches:

¢ Run sHow or DESCRIBE statements accordingly to check the status of the objects, and make sure the creation or alteration is

complete. If it is not, wait a few seconds and try again.

» Wait for two heartbeat cycles, i.e., 20 seconds.

3.6.3 Create and use a graph space
nGQL syntax

* Create a graph space:

CREATE SPACE [IF NOT EXISTS] <graph_space_name>
[(partition_num = <partition_number>,
replica_factor = <replica_number>,
vid_type = {FIXED_STRING(<N>) | INT64})];

| Property
Description

| partition_num | Specifies the number of partitions in each replica. The suggested number is the number of hard disks in the cluster times 5. For example, if you

have 3 hard disks in the cluster, we recommend that you set 15 partitions. |
| replica_factor | Specifies the number of replicas in the Nebula Graph cluster. The suggested number is 3 in a production environment and 1 in a test environment.

The replica number must always be an **odd** number for the need of quorum-based voting. |
|vid_type | Specifies the data type of VIDs in a graph space. Available values are “FIXED_STRING(N) and "INT64 . "N’ represents the maximum length of the VIDs and
it must be a positive integer. The default value is “FIXED_STRING(8) . If you set a VID length greater than 'N°, Nebula Graph throws an error. To set the integer VID

for vertices, set “vid type' to 'INT64 . |

 List graph spaces and check if the creation is successful:

nebula> SHOW SPACES;

* Use a graph space:

USE <graph_space_name>

Examples

1. Use the following statement to create a graph space named basketballplayer .

- 38/290 - 2021 Vesoft Inc.

3.6.4 Create tags and edge types

nebula> CREATE SPACE basketballplayer(partition_num=15, replica_factor=1, vid_type=fixed_string(30));
Execution succeeded (time spent 2817/3280 us)

2. Check the partition distribution with sHow HosTs to make sure that the partitions are distributed in a balanced way.

nebula> SHOW HOSTS;

’

+ feccocooncosnsa + + == cooodh

| | | Leader count | | Partition distribution |

+ + Fecccccccaaaaan + i +

| | | 5 | | "basketballplayer:5" |

+ + feccocooncosnsa + droscosocooocasocasooscaos +

| "storaged1" | 9779 | "ONLINE" | 5 | | "basketballplayer:5" |

B F R ——— P ——— P R —— + G . +

| "storaged2" | 9779 | "ONLINE" | 5 | | "basketballplayer:5" |
fococococosooo fococccosoos focoscoonzos feccocooncosnsa + +
| "Total" | _EMPTY__ | _EMPTY__ | 15 | |
+ Fecccccccaaaaan + +

Got 4 rows (time spent 1633/2867 us)

If the Leader distribution is uneven, use BALANCE LEADER to redistribute the partitions. For more information, see BALANCE.

3. Use the basketballplayer graph space.

nebula> USE basketballplayer;
Execution succeeded (time spent 1322/2206 us)

You can use sHow SPACES to check the graph space you created.

nebula> SHOW SPACES;

frocosscococosoccooss +
| Name |
e +
| basketballplayer |
frocosscococosoccooss +

Got 1 rows (time spent 1235/1934 us)

3.6.4 Create tags and edge types
nGQL syntax

CREATE {TAG | EDGE} {<tag_name> | <edge_type>}(<property_name> <data_type>
[, <property name> <data_ type> ...]);

Examples

Create tags player and team, edge types follow and serve.

Component name Type Property

player Tag name (string), age (int)

team Tag name (string)

follow Edge type degree (int)

serve Edge type start year (int), end year (int)

nebula> CREATE TAG player(name string, age int);
Execution succeeded (time spent 2694/3116 us)

Thu, 15 Oct 2020 06:22:29 UTC

nebula> CREATE TAG team(name string);
Execution succeeded (time spent 2630/3002 us)

Thu, 15 Oct 2020 06:22:37 UTC

nebula> CREATE EDGE follow(degree int);
Execution succeeded (time spent 3087/3467 us)

Thu, 15 Oct 2020 06:22:43 UTC

nebula> CREATE EDGE serve(start_year int, end_year int);
Execution succeeded (time spent 2645/3123 us)

Thu, 15 Oct 2020 06:22:50 UTC

-39/290 - 2021 Vesoft Inc.

3.6.5 Insert vertices and edges

3.6.5 Insert vertices and edges

You can use the INSERT statement to insert vertices or edges based on existing tags or edge types.

nGQL syntax
¢ Insert vertices:

INSERT VERTEX <tag_name> (<property name>[, <property name>...])
[, <tag_name> (<property_name>[, <property name>...]), ...]
{VALUES | VALUE} <vid>: (<property_value>[, <property_value>...])
[, <vid>: (<property_value>[, <property_value>...];

vip is short for vertex ID. A vip must be a unique string value in a graph space.

 Insert edges:

INSERT EDGE <edge_type> (<property_name>[, <property_name>...])
{VALUES | VALUE} <src_vid> -> <dst_vid>[@<rank>] : (<property value>[, <property value>...])
[, <src_vid> -> <dst_vid>[@<rank> : (<property_name>[, <property_ name>...]), ...]

Examples
« Insert vertices representing basketball players and teams:

nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42);
Execution succeeded (time spent 2919/3485 us)

Fri, 16 Oct 2020 03:41:00 UTC

nebula> INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36);
Execution succeeded (time spent 3007/3539 us)

Fri, 16 Oct 2020 ©3:41:58 UTC

nebula> INSERT VERTEX player(name, age) VALUES "player102":("LaMarcus Aldridge", 33);
Execution succeeded (time spent 2449/2934 us)

Fri, 16 Oct 2020 03:42:16 UTC

nebula> INSERT VERTEX team(name) VALUES "team200":("Warriors"), "team201":("Nuggets");
Execution succeeded (time spent 3514/4331 us)

Fri, 16 Oct 2020 03:42:45 UTC

» Insert edges representing the relations between basketball players and teams:

nebula> INSERT EDGE follow(degree) VALUES "player100" -> "player101":(95);
Execution succeeded (time spent 1488/1918 us)

Wed, 21 Oct 2020 06:57:32 UTC

nebula> INSERT EDGE follow(degree) VALUES '"player100" -> '"player102":(90);
Execution succeeded (time spent 2483/2890 us)

Wed, 21 Oct 2020 07:05:48 UTC

nebula> INSERT EDGE follow(degree) VALUES "player102" -> "player101":(75);

Execution succeeded (time spent 1208/1689 us)
Wed, 21 Oct 2020 07:07:12 UTC

nebula> INSERT EDGE serve(start_year, end_year) VALUES "player100" -> "team200":(1997, 2016), "player101" -> "team201":(1999, 2018);
Execution succeeded (time spent 2170/2651 us)

Wed, 21 Oct 2020 07:08:59 UTC

3.6.6 Read data
* The GO statement traverses the database based on specific conditions. A 6o traversal starts from one or more vertices, along
one or more edges, and return information in a form specified in the YIELD clause.
* The FETCH statement is used to get properties from vertices or edges.

* The LOOKUP statement is based on indexes. It is used together with the wHERe clause to search for the data that meet the
specific conditions.

- 40/290 - 2021 Vesoft Inc.

3.6.6 Read data

* The MATCH statement is the most commonly used statement for graph data querying. But, it relies on indexes to match data
patterns in Nebula Graph.

nGQL syntax
* GO

GO [[<M> TO] <N> STEPS] FROM <vertex_list>
OVER <edge_type_list> [REVERSELY] [BIDIRECT]
[WHERE <expression> [AND | OR expression ...])]
YIELD [DISTINCT] <return_list>

* FETCH

» Fetch properties on tags:

FETCH PROP ON {<tag_name> | <tag_name_list> | *} <vid_list>
[YIELD [DISTINCT] <return_list>]

» Fetch properties on edges:

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>]
[, <src_vid> -> <dst_vid> ...]
[YIELD [DISTINCT] <return_list>]

* LOOKUP

LOOKUP ON {<tag_name> | <edge_type>}
WHERE <expression> [AND expression ...])]
[YIELD <return_list>]

* MATCH

MATCH <pattern> [<WHERE clause>] RETURN <output>

Examples of GO
» Find the vertices that VID "player100" follows.

nebula> GO FROM "player100" OVER follow;

frocomooooos oo +
| follow._dst |
tommmmmmeemaen +
| playeriei |
frocomooooos oo +
| player102 |

-41/290 - 2021 Vesoft Inc.

3.6.6 Read data

Got 2 rows (time spent 1935/2420 us)

* Search for the players that the player with VID "player100" follows. Filter the players that the player with VID "player100"
follows whose age is equal to or greater than 35. Rename the columns in the result with Teammate and Age .

nebula> GO FROM "player100" OVER follow WHERE $$.player.age >= 35 \
YIELD $$.player.name AS Teammate, $$.player.age AS Age;

fococococo=ooo focoos +
| Teammate | Age |
Feccmcccaaaaaa $emaaa +
| Tony Parker | 36 |
fococococo=ooo focoos +

Got 1 rows (time spent 3871/4349 us)

Clause/Sign Description

YIELD Specifies what values or results you want to return from the query.
$$ Represents the target vertices.

\ A line-breaker.

» Search for the players that the player with VID "player100" follows. Then Retrieve the teams of the players that the player
with VID "player100" follows. To combine the two queries, use a pipe or a temporary variable.

» With a pipe:

nebula> GO FROM "player100" OVER follow YIELD follow._ dst AS id | \
GO FROM $-.id OVER serve YIELD $$.team.name AS Team, \
$7.player.name AS Player;

dhmocomos oo e +
| Team | Player |
£ TR Fmmmmmmmmemee +
| Nuggets | Tony Parker |
dhmocomos oo dhmocomooooos oo +

Got 1 rows (time spent 2902/3496 us)

Clause/Sign Description

$A Represents the source vertex of the edge.

| A pipe symbol that can combine multiple queries.

$- Represents the output of the query before the pipe symbol.

* With a temporary variable:

/" Note

Once a compound statement is submitted to the server as a whole, the life cycle of the temporary variables in the statement
ends.

nebula> $var = GO FROM "player100" OVER follow YIELD follow._dst AS id; \
GO FROM $var.id OVER serve YIELD $$.team.name AS Team, \
$n.player.name AS Player;

drmocoso=as dhmocococoso=as +
| Team | Player |
D —_— Focmmmemeeaaas +
| Nuggets | Tony Parker |
drmocoso=as dhmocococoso=as +

Got 1 rows (time spent 3103/3711 us)

Example of FETCH
Use reTcH : Fetch the properties of the player with VID player100.

nebula> FETCH PROP ON player "player100";

| ("player100" :player{age: 42, name: "Tim Duncan"}) |

- 42/290 - 2021 Vesoft Inc.

3.6.7 Update vertices and edges

Got 1 rows (time spent 2006/2406 us)

3.6.7 Update vertices and edges
You can use the upDATE statement or the UPSERT statement to update existing data.

UPSERT is the combination of uppbATE and INSERT . If you update a vertex or an edge with UPSERT, it inserts a new vertex or edge if it
does not exist.

Note: UPSERT operates in serial a (partition-based) order and therefore is slower comparing with INSERT OR UPDATE .

nGQL syntax
* UPDATE vertices:

UPDATE VERTEX <vid> SET <properties to be updated>
[WHEN <condition>] [YIELD <columns>]

* UPDATE edges:

UPDATE EDGE <source vid> -> <destination vid> [@rank] OF <edge_type>
SET <properties to be updated> [WHEN <condition>] [YIELD <columns to be output>]

* UPSERT vertices or edges:
UPSERT {VERTEX <vid> | EDGE <edge_type>} SET <update_columns>
[WHEN <condition>] [YIELD <columns>]
Examples
e UPDATE the name property of the vertex with VID "player100" and check the result with the FeTCH statement:

nebula> UPDATE VERTEX "player100" SET player.name = "Tim";
Execution succeeded (time spent 3483/3914 us)

Wed, 21 Oct 2020 10:53:14 UTC

nebula> FETCH PROP ON player "player100";

| ("player100" :player{age: 42, name: "Tim"}) |

- 43/290 - 2021 Vesoft Inc.

3.6.8 Delete vertices and edges

Got 1 rows (time spent 2463/3042 us)

* upDATE the degree value of an edge and check the result with the rFeTcH statement:

nebula> UPDATE EDGE "player100" -> "player101" OF follow SET degree = 96;
Execution succeeded (time spent 3932/4432 us)

nebula> FETCH PROP ON follow "player100" -> "player101";

ffocosscocccococococccocccocscosocosocosocosoccoosooos +
| edges |
fh-Co-oCoCoooooEoooCCooCCEoCSCoESooSooooooooosooa0o0o0 +
| [:follow "player100"->"player101" @0 {degree: 96}] |
ffocosscocccococococccocccocscosocosocosocosoccoosooos +

Got 1 rows (time spent 2205/2800 us)

* Insert a vertex with VID "player111" and UPSERT it.

nebula> INSERT VERTEX player(name, age) VALUES "player111":("Ben Simmons", 22);
Execution succeeded (time spent 2115/2900 us)

Wed, 21 Oct 2020 11:11:50 UTC

nebula> UPSERT VERTEX "player11l1" SET player.name = "Dwight Howard", player.age = $/.player.age + 11 \

WHEN $/.player.name == "Ben Simmons" AND $/.player.age > 20 \
YIELD $/.player.name AS Name, $/.player.age AS Age;
fococccosocosoes focoos +

| Name | Age |

Feoccccccccaaaaaa $emaaa +

| Dwight Howard | 33 |

fococccosocosoes focoos +

Got 1 rows (time spent 1815/2329 us)

3.6.8 Delete vertices and edges
nGQL syntax
* Delete vertices:

DELETE VERTEX <vidi>[, <vid2>...]

* Delete edges:
DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>]
[, <src_vid> -> <dst_vid>...]
Examples
* Delete vertices:

nebula> DELETE VERTEX "teaml", "team2";
Execution succeeded (time spent 4337/4782 us)

* Delete edges:

nebula> DELETE EDGE follow "teami" -> "team2";
Execution succeeded (time spent 3700/4101 us)

3.6.9 About indexes

You can add indexes to tags or edge types with the CREATE INDEX statement.

Must-read for using index

* Both maTcH and Lookup depend on index. But indexes can dramatically reduce the write performance. The performance
reduction can be as much as 90% or even more. DO NOT use indexes in production environments unless you are fully aware
of their influences on your service.

* You MUST rebuild indexes for pre-existing data. Otherwise, the pre-existing data can't be indexed (and therefore can't be
returned in Match or Lookup). For more information, see REBUILD INDEX.

- 44/290 - 2021 Vesoft Inc.

3.6.9 About indexes

nGQL syntax
Create an index:

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name>
ON {<tag_name> | <edge_name>} (prop_name_list);

Rebuild an index:

REBUILD {TAG | EDGE} INDEX <index_name>

Examples
Create an index for the name property on all vertices with the tag player .
nebula> CREATE TAG INDEX player_index_0 on player(name(20));
nebula> REBUILD TAG INDEX player_index_0;
]
7/ Note

Define the index length when creating an index for a variable-length property. For more information, see CREATE INDEX

Examples of LOOKUP and MATCH (index-based)
Make sure there is an index for LookupP or MATCH to use. If there is not, create an index first.
Find the information of the vertex with the tag player and its value of the name property is "Tony parker" .

// Create an index on the player name property.
nebula> CREATE TAG INDEX player_name_0 on player(name(10));
Execution succeeded (time spent 3465/4150 us)

// Rebuild the index to make sure it takes effect on pre-existing data.
nebula> REBUILD TAG INDEX player_name_0

4ococccccnana +
| New Job Id |
droscosososass +
| 31 |
4ococccccnana +

Got 1 rows (time spent 2379/3033 us)

// Use LOOKUP to retrieve the vertex property.

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
YIELD player.name, player.age;

drmscosososozas drmscosocosocosas drmscosscosass +

| VertexID | player.name | player.age |

4ocmcmcmcmaa S dececccccnanaa +

| "player101" | "Tony Parker" | 36 |

drmscosososozas drmscosocosocosas drmscosscosass +

// Use MATCH to retrieve the vertex.
nebula> MATCH (v:player{name:"Tony Parker"}) RETURN v;

drmscosocococococosooccooocoSScosScosooosocooosooooosoo +
| v |
e +
| ("player101" :player{age: 36, name: "Tony Parker"}) |
drmscosococccooocosooccoSScaSScosScosooocososocooooos=ao +

Got 1 rows (time spent 5132/6246 us)

Last update: May 10, 2021

-45/290 - 2021 Vesoft Inc.

3.7 Useful links

3.7 Useful links

/" Note

This page lists all the tools and clients for Nebula Graph 2.0.1 kernel.

A Caution

Checkout the correct commit ID. And see each document carefully for the compatibility with Nebula Graph 2.0.1 kernel.

3.7.1 API Clients by Nebula Graph

links commit id
C++ Client 7305¢72
Go Client 542ed24
Python Client cbh48e8a
Java Client 923bc04

The following repositories of 2.0.1 are not released yet.

* Rust Client
* Node.js Client
¢« HTTP Client

3.7.2 Graph tools

links commit id
Command Line Console 1£32236
Studio 5d15d59

The following repositories of 2.0.1 are not released yet.

¢ Dashboard

3.7.3 Big Data and other Systems support

links commit id
csv (a.k.a. importer) 1d87c7b
Spark util af3fdf4
nebula-docker-compose 2c2549a

The following repositories of 2.0.1 are not released yet.

¢ Flink connector

¢ Promethus connector

- 46/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-cpp/tree/v2.0.0
https://github.com/vesoft-inc/nebula-go/tree/release-v2.0.0-ga
https://github.com/vesoft-inc/nebula-python/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-java/tree/v2.0.0-ga
https://github.com/vesoft-inc/nebula-rust
https://github.com/vesoft-inc/nebula-node
https://github.com/vesoft-inc/nebula-http-gateway
https://github.com/vesoft-inc/nebula-console/tree/v2.0.0-ga
https://github.com/vesoft-inc/nebula-graph-studio/tree/v2
https://github.com/vesoft-inc/nebula-stats-exporter
https://github.com/vesoft-inc/nebula-importer/tree/release-v2.0.0-ga
https://github.com/vesoft-inc/nebula-spark-utils/tree/v2.0.0
https://github.com/vesoft-inc/nebula-docker-compose/tree/v2.0.0
https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-stats-exporter

3.7.4 Benchmark, test, and Backup tools

3.7.4 Benchmark, test, and Backup tools
The following repositories of 2.0.1 are not released yet.

e Benchmark
¢ Chaos Test

* Backup&Restore

3.7.5 Misc
links commit id
Nebula Graph 1.2.1 721aeb51

* Open Source Community

* [BETEE

Last update: April 26, 2021

-47/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-bench
https://github.com/vesoft-inc/nebula-chaos
https://github.com/vesoft-inc/nebula-br
https://github.com/vesoft-inc/nebula/tree/v1.2.1
https://github.com/vesoft-inc/nebula-community
https://docs.nebula-graph.com.cn/

4. nGQL guide

4. nGQL guide

4.1 nGQL overview

4.1.1 Nebula Graph Query Language (nGQL)

This document gives an introduction to the query language of Nebula Graph, nGQL.

What is nGQL

nGQL is a declarative graph query language for Nebula Graph. It allows expressive and efficient graph patterns. nGQL is designed
for both developers and operations professionals. nGQL is an SQL-like query language, so it's easy to learn. nGQL is a project in
progress. New features and optimizations are done steadily. There can be differences between syntax and implementation. Nebula

Graph 2.0 or later version support openCypher 9.

What can nGQL do

* Supports graph traverse

e Supports pattern match

* Supports aggregation

¢ Supports graph mutation

* Supports access control

¢ Supports composite queries
e Supports index

e Supports most openCypher 9 graph query syntax (but mutations and controls syntax are not supported).

Example Data

The example data in Nebula Graph document statements can be downloaded here. After downloading the example data, you can
import it to Nebula Graph by using the -f option in Nebula Graph Console.

Placeholder Identifiers and Values
Refer to the following standards in nGQL.:

* ISO/IEC 10646
* ISO/IEC 39075
* ISO/IEC NP 39075 (Draft)
* OpenCypher 9

In template code, any token that is not a keyword, a literal value, or punctuation is a placeholder identifier or a placeholder value.

- 48/290 - 2021 Vesoft Inc.

https://www.opencypher.org/resources

4.1.1 Nebula Graph Query Language (nGQL)

For details of the symbols in nGQL, see the following table:

Token Meaning

<> name of a syntactic element

BES formula that defines an element
[1 optional elements

{} explicitly specified elements

| complete alternative elements

may be repeated any number of times

Last update: April 13, 2021

-49/290 - 2021 Vesoft Inc.

4.1.2 Patterns

4.1.2 Patterns

Patterns and graph pattern matching are the very heart of a graph query language.

Patterns for vertices
A vertex is described using a pair of parentheses, and is typically given a name. For example:
(a)

This simple pattern describes a single vertex, and names that vertex using the variable a.

Patterns for related vertices

A more powerful construct is a pattern that describes multiple vertices and edges between them. Patterns describe edges by
employing an arrow between two vertices. For example:

(a)-[1->(b)

This pattern describes a very simple data shape: two vertices, and a single edge from one to the other. In this example, the two
vertices are both named as a and b respectively, and the edge is directed: it goes from a to b.

This manner of describing vertices and edges can be extended to cover an arbitrary number of vertices and the edges between
them, for example:

(a)-[1->(b)<-[]-(c)
Such a series of connected vertices and edges is called a "path".

Note that the naming of the vertices in these patterns is only necessary should one need to refer to the same vertex again, either
later in the pattern or elsewhere in the query. If this is not necessary, then the name may be omitted, as follows:

(2)-[1->()<-[1-(c)
Patterns for tags

/7 OpenCypher compatibility
The concept tag in nGQL have a few differences from label in openCypher. For example, you must create a tag before using it. And a
tag also defines the properties' type.
In addition to simply describing the shape of a vertex in the pattern, one can also describe attributes. The most simple attribute
that can be described in the pattern is a tag that the vertex must have. For example:

(a:User)-[]->(b)

One can also describe a vertex that has multiple tags: (a:User:Admin)-[]->(b) .

Patterns for properties
Nodes and edges are the fundamental structures in a graph. nGQL uses properties on both of these to allow for far richer models.

Properties can be expressed in patterns using a map-construct: curly brackets surrounding a number of key-expression pairs,
separated by commas. E.g. a vertex with two properties on it would look like:

(a {name: 'Andres', sport: 'Brazilian Ju-Jitsu'})

- 50/290 - 2021 Vesoft Inc.

4.1.2 Patterns

An edge with expectations on it is given by:

(a)-[{blocked: false}]->(b)

Patterns for edges
The simplest way to describe an edge is by using the arrow between two vertices, as in the previous examples.

Using this syntax, you can describe that the edge should exist and the directionality of it. If you don’t care about the direction of
the edge, the arrowhead is omitted, as exemplified by:

(2)-[1-(b)

As with vertices, edges may also be given names. In this case, a pair of square brackets is used to break up the arrow and the

variable is placed between. For example:
(a)-[r]->(b)

Much like tags on vertices, edges can have types. To describe an edge with a specific type, use the pattern as follows:
(a)-[r:REL_TYPE]->(b)

An edge can only have one edge type. But if we’d like to describe some data such that the edge could have any one of a set of
types, then they can all be listed in the pattern, separating them with the pipe symbol | like this:

(a)-[r:TYPEL|TYPE2]->(b)
As with vertices, the name of the edge can always be omitted, as exemplified by:

(a)-[:REL_TYPE]->(b)

Variable-length pattern

Rather than describing a long path using a sequence of many vertex and edge descriptions in a pattern, many edges (and the
intermediate vertices) can be described by specifying a length in the edge description of a pattern. For example:

(a)-[*2]->(b)

This describes a graph of three vertices and two edges, all in one path (a path of length 2). This is equivalent to:
(a)-[1->0)-[1->(b)

A range of lengths can also be specified: such edge patterns are called 'variable-length edges'. For example:
(a)-[*3..51->(b)

The preceding example defines a path with a minimum length of 3, and a maximum length of 5. It describes a graph of either 4
vertices and 3 edges, 5 vertices and 4 edges, or 6 vertices and 5 edges, all connected in a single path.

the lower bound can be omitted. For example, to describe paths of length 5 or less, use:

(a)-[*..5]->(b)

/" OpenCypher compatibility

The upper bound must be specified. The following are NOT accepted.

(a)-[*3..]1->(b)
(a)-[*1->(b)

-51/290 - 2021 Vesoft Inc.

4.1.2 Patterns

Assigning to path variables

As described above, a series of connected vertices and edges is called a "path". nGQL allows paths to be named using a variable, as
exemplified by:

p = (a)-[3..5]->(b)

You can do this in mATCH.

Last update: April 22, 2021

- 52/290 - 2021 Vesoft Inc.

4.2 Data types

4.2 Data types

4.2.1 Numeric types

Integer
An integer is declared with keyword int , which is 64-bit signed. The supported range is [-9223372036854775808,
9223372036854775807]. Integer constants support multiple formats:

1. Decimal, for example 123456 .
2. Hexadecimal, for example oxdeadbeaf .

3. Octal, for example 01234567 .

Double-precision floating-point

double-precision floating-point values is used for storing double precision floating point values. E.g., 1.2, -3.0000001. The

keyword used for double floating point data type is double .

Scientific notation is also supported. For example, 1e2, 1.1e2, .3e4, 1.e4, -1234E-10.

Last update: March 16, 2021

- 53/290 - 2021 Vesoft Inc.

4.2.2 Boolean

4.2.2 Boolean

A boolean data type is declared with the bool keyword and can only take the values true or false.

Last update: November 19, 2020

- 54/290 - 2021 Vesoft Inc.

4.2.3 String

4.2.3 String

The string type is used to store a sequence of characters (text). The literal constant is a sequence of characters of any length
surrounded by double or single quotes. For example "shaquille 0'Neal" or '"This is a double-quoted literal string"'.Line breaks
are not allowed in a string. Embedded escape sequences are supported within strings, for example:

® "\n\t\r\b\f"

* "\110ello world"
Nebula Graph supports two kind of strings: fixed length string and variable length string. For example:

nebula> CREATE TAG t1 (pl FIXED_STRING(10)); -- Fixed length string type

nebula> CREATE TAG t2 (p2 string); -- Variable length string type

OpenCypher Compatibility
Here is a tiny difference between openCypher and Cypher, as well as nGQL.
The following is what openCypher requires. Single-quotes can't be converted to double-quotes.

#File: Literals.feature
Feature: Literals

Background:
Given any graph

Scenario: Return a single-quoted string
When executing query:

win

RETURN '' AS literal

Then the result should be, in any order:
| literal |

(I | # Note: it should return single-quotes as openCypher required.
And no side effects

While Cypher accepts both single-quotes and double quotes as the return results. nGQL follows the Cypher way.

nebula > YIELD '' AS quotel, "" AS quote2, "'" AS quote3, '"' AS quote4
Fommmmmam B R B e +
| quotel | quote2 | quote3 | quoted |
drmocosoco fococomos drmocosacs focosoc=os +
(I (B [(B |
Fommmmmam B Fommmmmam B +

Last update: February 5, 2021

- 55/290 - 2021 Vesoft Inc.

4.2.4 Date and time types

4.2.4 Date and time types

This document describes the DATE, TIME, DATETIME, and TIMESTAMP types. Nebula Graph converts the DATE, TIME, DATETIME, and
TIMESTAMP values from the current time zone to UTC for storage. Nebula Graph converts back from UTC to the current time zone
for retrieval.

While inserting time-type property values, except for timestamps, Nebula Graph transforms them to a UTC time according to the
time zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL queries
are all UTC time.

/" Note

To change the time zone, modify the timezone_name value in the configuration files of all Nebula Graph services.

Combined with ReTURN, functions date(), time(), datetime() all accept empty parameters to return the current date, time and
datetime.
OpenCypher Compatibility
In nGQL:
* Year, month, day, hour, minute, and second are supported. The millisecond field is displayed in oo .
* localdatetime(), duration() are not supported.

¢ Most string time formats are not supported. The only exception is 2017-03-04722:30:40 .

DATE

The DpATE type is used for values with a date part but no time part. Nebula Graph retrieves and displays bATE values in the
YYYy-mM-pb format. The supported range is -32768-01-01 to 32767-12-31.

TIME

The TIME type is used for values with a time part but no date part. Nebula Graph retrieves and displays TiMe values in
hh:mm:ss:usus format. The supported range is 0:0:0:0 to 23:59:59:999999 .

DATETIME

The pATETIME type is used for values that contain both date and time parts. Nebula Graph retrieves and displays DATETIME values in
YYYY-MM-DD hh:mm:ss:ususus format. The supported range is -32768-01-01 00:00:00:00 t0 32767-12-31 23:59:59:999999 .

TIMESTAMP
The TIMeEsTAMP data type is used for values that contain both date and time parts.

e TIMESTAMP has a range of 1970-01-01 00:00:01 UTC to 2262-04-11 23:47:16 UTC.
* Timestamp is measured in units of seconds.
e Supported TIMESTAMP inserting methods:
e Call the now() function.
e Input TIMESTAMP by using a string. For example: 2019-10-01 10:00:60 .
e Input TIMESTAMP directly, namely the number of seconds from 1970-01-01 00:00:00 .

* The underlying storage data type is: int64.

- 56/290 - 2021 Vesoft Inc.

4.2.4 Date and time types

Examples
Create a tag named date.

nebula> CREATE TAG date(pl date, p2 time, p3 datetime);
Insert a vertex named Datel.
nebula> INSERT VERTEX date(pl, p2, p3) VALUES "Datel":(date("2017-03-04"), time('"23:01:00"), datetime("2017-03-04T22:30:40"));
Create a tag named school.
nebula> CREATE TAG school(name string , found_time timestamp);
Insert a vertex named "stanford" with the foundation date "1885-10-01T08:00:00" .
nebula> INSERT VERTEX school(name, found_time) VALUES "Stanford":("Stanford", timestamp('"1885-10-01T08:00:00"));
Insert a vertex named "dut" with the foundation date now.
nebula> INSERT VERTEX school(name, found_time) VALUES "dut'":("dut", now());

nebula> WITH time({hour: 12, minute: 31, second: 14}) AS d RETURN d;

B +
| d |
eocococooacsos +
| 12:31:14.000 |
B +

o +
| x |
B +
| 1984-10-12 |
o +

nebula> WITH datetime({year: 1984, month: 10, day: 11, hour: 12, minute: 31, second: 14}) AS d \
RETURN toString(d) AS ts, datetime(toString(d)) == d AS b

| "1984-10-11T12:31:14.0" | true |
e dreocooo +

Last update: April 22, 2021

-57/290 - 2021 Vesoft Inc.

4.2.5 NULL

4.2.5 NULL

You can set the properties for vertices or edges to NULL . Also, you can set NOT NULL constraint to make sure that the property values

are NOT NULL .

If not specified, the property is set to nuLL by default.

Logical operations with NULL

The logical operations with NULL is the same as openCypher.

Here is the truth table for AND, OR, XOR, and NOT.

a

false

false

false

true

true

true

null

null

null

b

false

null

true

false

null

true

false

null

true

OpenCypher compatibility

The comparisons and operations about NULL are different from openCypher.

The behavior may change later.

COMPARISONS WITH NULL

aANDD

false

false

false

false

null

true

false

null

null

aORb

false

null

true

true

true

true

null

null

true

The comparison operations with NULL is incompatible with openCypher.

OPERATIONS AND EXPRESSION WITH NULL

The NULL operations and RETURN with NULL is incompatible with openCypher.

Examples

Create a tag named player. Specify the property name with noT nuLL . Ignore the property age constraint.

nebula> CREATE TAG player(name string NOT NULL, age int);

Execution succeeded (time spent 5001/5980 us)

The property name is NOT NULL . The property age is NuLL by default.

nebula> SHOW CREATE TAG player;

| "student" | "CREATE TAG “player” (|

o B T +

| “name’ string NOT NULL, |
| “age’ int64 NULL I
|) ttl duration = 0, ttl_col = """ |

-58/290 -

aXOR b

false

null

true

true

null

false

null

null

null

NOT a

true

true

true

false

false

false

null

null

null

2021 Vesoft Inc.

4.2.5 NULL

nebula> INSERT VERTEX player(name, age) VALUES "Kobe":("Kobe",null);
Execution succeeded (time spent 6367/7357 us)

Last update: March 25, 2021

- 59/290 - 2021 Vesoft Inc.

4.2.6 Lists

4.2.6 Lists
The list is a composite data type. Alist is a sequence of values. Individual list elements can be accessed by their positions.

A list starts with a left square bracket [and ends with a right square bracket] . Alist contains zero, one, or more expressions. List
elements are separated from each other with commas (,). Whitespace around elements is ignored in list, thus line breaks, tab
stops, and blanks can be used for formatting.

Examples

nebula> RETURN [1, 2, 3] AS List;

B +
| List |
B +
I [1, 2, 3] |
B +

o ————m +
| range(1,5)[3] |
[TR +
|4 |
o ————m +

o +
| range(1,5)[-(2)] |
L E e +
|4 |
o +

nebula> RETURN [n IN range(1,5) WHERE n > 2] AS a;

nebula> RETURN [n IN range(1,5) WHERE n > 2 | n + 10] AS a;

e +
| a |
B L C T +
| [13, 14, 15] |
e +

nebula> RETURN [n IN range(1,5) | n + 10] AS a;

dmmm e +
| a |
B T T +
| [11, 12, 13, 14, 15] |
dmmm e +

[n IN range(1, 3) WHERE true | n] AS r;

B +
Ir |
o +
I [1, 2, 8] |
B +

nebula> GO FROM "player100" OVER follow WHERE follow.degree NOT IN [x IN [92, 90] | x + $$.player.age] \
YIELD follow._dst AS id, follow.degree AS degree;

dboocoooooooeao dboocooooo +
| id | degree |
drmocosasoso=as drmocosaso +
| "playeri01" | 95 |
dboocooooooosoo dboocooooo +
| "player102" | 90 |
drmocosasoso=as drmocosaso +

nebula> MATCH p = (n:player{name:"Tim Duncan"})-[:follow]->(m) \
RETURN [n IN nodes(p) | n.age + 100] AS r;

- 60/290 - 2021 Vesoft Inc.

4.2.6 Lists

nebula> RETURN size([1,2,3]);

tmmmmmmmmm e +
| size([1,2,3]) |
L +
|3 |
tmmmmmmmmm e +

OpenCypher compatibility
* A composite data type (i.e., set, map, and list) CAN NOT be stored as properties for vertices or edges.
* Use the range() function to return the range of a list.

nebula> RETURN range(0,5)[0..3];
[ERROR (-7)]: SyntaxError: syntax error near ~3]'

* In openCypher, out-ofbound single elements returns null. However, in nGQL, out-of-bound single elements returns
OUT_OF_RANGE .

nebula> RETURN range(0,5)[-12];

Fomemmemeeeeeeeaeao +
| range(0,5)[-(12)] |
doococococsosoococos +
| OUT_OF_RANGE |
Fomemmemeeeeeeeaeao +

Last update: March 16, 2021

-61/290 - 2021 Vesoft Inc.

4.2.7 Sets

4.2.7 Sets

Set is a composite data type.

OpenCypher compatibility

Set is not a data type in openCypher. The behavior of set in nGQL is not determined yet.

Last update: April 22, 2021

-62/290 - 2021 Vesoft Inc.

4.2.8 Maps

4.2.8 Maps

Map is a composite data type. A composite data type cannot be stored as properties. Maps are unordered collections of key-value
pairs. In maps, the key is a string. The value can have any data type. You can get the map element by using map['key'] .

Literal maps

nebula> YIELD {key: 'Value', listKey: [{inner: 'Map1'}, {inner: 'Map2'}]}

| {key: "value", listKey: [{inner: "Map1"}, {inner: "Map2"}]} |

OpenCypher compatibility

* A composite data type (i.e. set, map, and list) CANNOT be stored as properties of vertices or edges.

* Map projection is not supported.

Last update: March 16, 2021

- 63/290 - 2021 Vesoft Inc.

4.2.9 Type Conversion/Type coercions

4.2.9 Type Conversion/Type coercions

Converting an expression of a given type to another type is known as type conversion.

Legacy version compatibility

* NGQL 1.0 adopted the c -style of type conversion (implicitly or explicitly). (type name)expression. For example, The results of
YIELD (int)(TRUE) is 1. Butitis error-prone to users who are not familiar with C language.

* NGQL 2.0 chooses the openCypher way of type coercions.

Type coercions functions

Function Description

toBoolean() Converts a string value to a boolean value.

toFloat() Converts an integer or string value to a floating point number.

tolnteger() Converts a floating point or string value to an integer value.

type() Returns the string representation of the relationship type.
Examples

nebula> UNWIND [true, false, 'true', 'false', NULL] AS b RETURN toBoolean(b) AS b

L +
| b |
drmmcoss=aoo +
| true |
L +
| false |
drmmcoss=aoo +
| true |
L +
| false |
drmmcoss=aoo +
| _NULL__ |
L +

nebula> RETURN toFloat(1l), toFloat('1.3'), toFloat('le3'), toFloat('not a number')
+

droscosososass fhocococosccococacifoccooscasacosass fhmcococococococccosscosoes +
| toFloat(1) | toFloat("1.3") | toFloat("1e3") | toFloat("not a number")

dboscomooooooo dhscomoooooooooeoo dboocooocosooosooo fhmcocooooocooocooaoooomooo +
| 1.0 | 1.3 | 1000.0 | __NULL |
droscosososass fhocosocosccosos=as droscomocosasosass fhmcococococococccosscosoes +

nebula> RETURN toInteger(1l), toInteger('1l'), toInteger('le3'), toInteger('not a number')

drmscososososaoo fococococccocosas dhmocosocosccososooo fhmcocococccococococcoocscoos +
| toInteger(1) | toInteger("1") | toInteger("1e3") | toInteger("not a number")

B - Fommmmemmeemeeaaaas Fommmemeemecmemeecmeaenaaa +
| 1 | 1 | 1000 | __NULL. |
drmscososososaoo fococococccocosas dhmocosocosccososooo fhmcocococccococococcoocscoos +

| "follow" |

nebula> MATCH (a:player {name: "Tim Duncan"}) WHERE toInteger(id(a)) == 100 RETURN a

B T T T T T T T T T T T T P +
I a |
drmscosscococosocccooscasscosososocosocooooscaos +
| ("100" :player{age: 42, name: "Tim Duncan"}) |
B T T T T T T T T T T T T P +

P +
| count |
drmocosas +
|2 |
P +

- 64/290 - 2021 Vesoft Inc.

4.2.9 Type Conversion/Type coercions

Last update: March 25, 2021

- 65/290 - 2021 Vesoft Inc.

4.3 Variables and composite queries

4.3 Variables and composite queries

4.3.1 Composite queries (clause structure)

Composite queries put data from different queries together. They then use filters, group-bys, or sorting before returning the
combined return results. A composite query retrieves multiple levels of related information on existing queries and presents data
as a single return result.

Nebula Graph supports three methods to compose queries (or sub-queries):

* (OpenCypher style) Clauses are chained together, and they feed intermediate result sets between each other.

¢ (nGQL extension) More than one queries can be batched together, separated by semicolons (;). The result of the last query is
returned as the result of the batch.

* (nGQL extension) Queries can be piped together by using the pipe operator (|). The result of the previous query can be used
as the input of the next query.

OpenCypher compatibility

In a composite query, choose the openCypher-style or nGQL-extension. NOT BOTH.

For example, if you're in the openCypher way (MATCH, RETURN, WITH, etc), don't introduce any pipe or semicolons to combine the
sub-clauses.

If you're in the nGQL-extension way (FETCH, GO, LOOKUP, etc), you must use pipe or semicolons to combine the sub-clauses.
Further more, don't put together openCypher and nGQL-extension clauses in one statement. E.g., This statement is undefined:
MATCH ... | GO ... | YIELD

Composite queries are not transactional queries (as in SQL/Cypher)

For example, a query composed of three sub-queries: AB C, A | B | C or A; B; c.Inthat Ais aread operation, B is a computation
operation, and C is a write operation. If any part fails in the execution, the whole result is undefined. There is no rollback. What is
written depends on the query executor.

/" Note

OpenCypher has no requirement of transaction .

Examples
¢ OpenCypher style

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \
WITH nodes(p) AS n \
UNWIND n AS ni1 \
RETURN DISTINCT ni;

* Semicolon queries

nebula> SHOW TAGS; SHOW EDGES; // Only edges are shown.
nebula> INSERT VERTEX player(name, age) VALUES "player100":("Tim Duncan", 42); \
INSERT VERTEX player(name, age) VALUES "player101":("Tony Parker", 36); \

INSERT VERTEX player(name, age) VALUES "player102":('"LaMarcus Aldridge", 33);
// Multiple vertices are inserted in a composite statement.

* Pipe queries

- 66/290 - 2021 Vesoft Inc.

4.3.1 Composite queries (clause structure)

nebula> GO FROM "player100" OVER follow YIELD follow._dst AS id | \
GO FROM $-.id OVER serve YIELD $$.team.name AS Team, \
$/.player.name AS Player;
drmmcoso=as drmococasosozas +

| Team | Player |
+

PR

| Nuggets | Tony Parker |
4

R

Last update: April 22, 2021

- 67/290 - 2021 Vesoft Inc.

4.3.2 User-defined variables

4.3.2 User-defined variables

User-defined variables allows passing the result of one statement to another.

OpenCypher variables

In openCypher, when you refer to a variable of vertex, edge or path, you need to name it first. The name you give to the pattern is
a variable. For example:

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;

The user-defined variable in the preceding query is v.

nGQL extensions

User-defined variables are written as $var_name . The var_name consists of letter, number or underline characters. Any other
characters are not permitted.

User-defined variables can only be used in one execution. For example, you can use user-defined variables in composite queries
separated by semicolon ; or pipe | . Details about composite queries, see Composite queries.

/" Note

A user-defined variable is valid only at the current session and execution.

A user-defined variable in one statement CANNOT be used in either other clients or other executions. The statement that defines

the user-defined variable and the statement that uses it must be submitted together. When this session ends, the user-defined
variable is automatically expired.

/" Note

User-defined variables are case-sensitive.

Example

nebula> $var = GO FROM "player100" OVER follow YIELD follow._dst AS id; \
GO FROM $var.id OVER serve YIELD $$.team.name AS Team, \
$n.player.name AS Player;

[S +
| Team | Player |
drmmcoso=as drmscosasoso=as +
| Nuggets | Tony Parker |
4o S +

Last update: May 20, 2021

- 68/290 - 2021 Vesoft Inc.

4.3.3 Property reference

4.3.3 Property reference
This page applies to nGQL extensions only.

You can refer to the properties of a vertex or an edge in wHERE or YIELD syntax.

Property reference for vertex

FOR SOURCE VERTEX
$A. tag_name.prop_name
$n isused to get the property of the source vertex, tag_name is the tag of the vertex, and prop_name specifies the property name.
FOR DESTINATION VERTEX

$$. tag_name.prop_name

$$ is used to get the property of the destination vertex, tag_name is the tag of the vertex, and prop_name specifies the property

name.

Property reference for edge
FOR PROPERTY
Use the following syntax to get the property of an edge.
edge_type. prop_name
edge_type is the edge type of the edge, and prop_name specifies the property name.
FOR BUILT-IN PROPERTIES
There are four built-in properties in each edge:

e _src:source vertex ID of the edge
¢ _dst : destination vertex ID of the edge
e _type:edge type

¢ _rank: the rank value for the edge

You can use _src and _dst to get the starting and ending vertices' ID, and they are very commonly used to show a graph path.

Examples

nebula> GO FROM "player100" OVER follow YIELD $7.player.name AS startName, $$.player.age AS endAge;

B tommeanan +
| startName | endAge |
drmscososososaoo fococomas +
| "Tim Duncan" | 36 |
B tommeanan +
| "Tim Duncan" | 33 |
drmscososososaoo fococomas +

The preceding query returns the name property of the source vertex and the age property of the destination vertex.

nebula> GO FROM "player100" OVER follow YIELD follow.degree;

droscomocosasosas +
| follow.degree |
dboocooocosoooooo +
| 95 |
droscomocosasosas +
| 9 |
dboocooocosoooooo +

The preceding query returns the degree property of the edge.

- 69/290 - 2021 Vesoft Inc.

4.3.3 Property reference

nebula> GO FROM "player100" OVER follow YIELD follow._src, follow._dst, follow._type, follow._rank;

dboocooooooosoo dboocoooooooeoo dbomcomooooosooo focomocosooosoo +
| follow._src | follow._dst | follow._ type | follow._rank |
drmocosasoso=as drmococasosozas drmmcosasoso=aoo focomocosocosas +
| "player100" | "player101" | 136 | © |
droocoooooooeoo dboocoooooooeoo dbemcomooooosooo fhocooocosooosoo +
| "player100" | "player102" | 136 | 0 |
drmocosasoso=as drmococasosozas drmmcosasoso=aoo focomocosocosas +

The preceding query returns all the neighbors of vertex "playeri00" over the follow edges, by referencing follow._src asthe
source vertex ID (which is "player100") and follow. dst as the destination vertex ID.

Last update: March 23, 2021

-70/290 - 2021 Vesoft Inc.

4.4 Operators

4.4.1 Comparison operators

Name Description

= Assign a value

/ Division operator

== Equal operator

B, E Not equal operator
< Less than operator
<= Less than or equal operator

- Minus operator

% Modulo operator
+ Addition operator
3 Multiplication operator

- Change the sign of the argument

IS NULL NULL check

IS NOT NULL not NULL check

Comparison operations result in a value of true and false.

/" Note

Equal. String comparisons are case-sensitive. Values of different types are not equal.

/" Note

/" OpenCypher compatibility

Comparability between values of different types is often undefined. The result could be NULL or others.

The equality operator is == in nGQL and is = in openCypher.

nebula> RETURN 'A' == 'a', toUpper('A') ==

toUpper('a'), toLower('A') == ti
4

oLower('a')

Fommmmmmen B e e TP +

nebula> RETURN '2' == 2, tolInteger('2') == 2;
£ S Fmmmmmmmmemeeeeeeeaen +
| ("2"==2) | (toInteger("2")==2) |
e B e R +

-71/290 -

4.4 Operators

Comparing with NULL is different from openCypher. The behavior may change. 1s [NOT] NULL is often used with OPTIONAL MATCH. But
OPTIONAL MATCH is not support in nGQL.

2021 Vesoft Inc.

4.4.1 Comparison operators

| false | true
[T Fececcccccccccc e e +

Greater than:

nebula> RETURN 3 > 2;

droocooooo +

| result |

drooco=oco +

| true |

droocooooo +
o >

Greater than or equal to:

nebula> RETURN 2 >= "2" 6 2 >= 2

fomcoss=aoo fhocosos=as +

| (2>="2") | (2>=2) |

[Fecccaaan +

| __NULL__ | true |

fomcoss=aoo fhocosos=as +
<

Less than:

nebula> YIELD 2.0 < 1.9;

£ S +

| (2<1.9) |

drmocosozas +

| false |

R +
* <=

Less than or equal to:

nebula> YIELD 0.11 <= 0.11;

Not equal:

nebula> YIELD 1 != '1';

e IS [NOT] NULL

nebula> RETURN null IS NULL AS valuel, null == null AS value2, null != null AS value3
S tommmmmme e S +
| valuel | value2 | value3 |

nebula> RETURN length(NULL), size(NULL), count(NULL), NULL IS NULL, NULL IS NOT NULL, sin(NULL), NULL + NULL, [1, NULL] IS NULL

| BAD_TYPE | __NULL__ (] | true | false | BAD_TYPE | __ NULL | false |

-72/290 - 2021 Vesoft Inc.

nebula> WITH {name: 'Mats', name2: 'Pontus'} AS mapl, \
{name: null} AS map2, {notName: O, notName2: null } AS map3 \
RETURN mapl.name IS NULL, map2.name IS NOT NULL, map3.name IS NULL

B T B +
| mapl.name IS NULL | map2.name IS NOT NULL | map3.name IS NULL |
drmscososococooooocas dhmocosscococosocacooseos dhmccococococasosocoo +
| false | false | true |
B T B +

nebula> MATCH (n:player) RETURN n.age IS NULL, n.name IS NOT NULL, n.empty IS NULL

droscosocosososas drmscocosococasooscaos fhocosscosccoco=ooo +
| n.age IS NULL | n.name IS NOT NULL | n.empty IS NULL |
dboccooooomoooooo dboscooooooosooooooaoo fhmcomocooooooosooo +
| false | true | true |
droscosocosososas drmscocosococasooscaos fhocosscosccoco=ooo +
| false | true | true |
dboccooooosoooooo dboscooooooosooooooaoo fhocomocooooooosooo +
| false | true | true |
droscosocosososas drmscocosococasooscaos fhocosscosccoco=ooo +

4.4.1 Comparison operators

Last update: April 22, 2021

- 73/290 -

2021 Vesoft Inc.

4.4.2 Boolean operators

Name
AND
NOT
OR

XOR

Description
Logical AND
Logical NOT
Logical OR

Logical XOR

For the precedence of the operators, refer to Operator Precedence.

For the logical operations with NULL, refer to NULL.

Legacy version compatibility

¢ In Nebula Graph 1.0, non-zero numbers are evaluated to true like c-language.

e In Nebula Graph 2.0, non-zero numbers can't be converted to boolean values.

4.4.2 Boolean operators

Last update: March 25, 2021

- 74/290 -

2021 Vesoft Inc.

4.4.3 Pipe operator

4.4.3 Pipe operator
OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax
One major difference between nGQL and SQL is how sub-queries are composed.

In SQL, to form a statement, sub-queries are nested (embedded). In nGQL the shell style pipE (|) is introduced.

Examples

nebula> GO FROM '"player100" OVER follow \
YIELD follow. dst AS dstid, $$.player.name AS Name |\
GO FROM $-.dstid OVER follow;

If there isno YIELD clause to define the output, the destination vertex ID is returned by default. If a YIELD clause is applied, the
output is defined by the YIELD clause.

You must define aliases in the YIiELD clause for the reference operator $- to use, just like $-.dstid in the preceding example.

Last update: March 23, 2021

- 75/290 - 2021 Vesoft Inc.

4.4.4 Reference operators

4.4.4 Reference operators

NGQL provides reference operators to represent a property in a wHERE or YIELD clause, or the output of the statement before the
pipe symbol in a composite query.

OpenCypher compatibility

This page applies to nGQL extensions only.

Reference operator List

Reference Description

operator

$A Refers to a source vertex property. For more information, see Property reference.

$$ Refers to a destination vertex property. For more information, see Property reference.

$- Refers to the output of the statement before the pipe symbol in a composite query. For more

information, see Pipe.

Examples
The following example returns the age of the source vertex and the destination vertex.

nebula> GO FROM "player100" OVER follow \
YIELD $7.player.age AS SrcAge, $$.player.age AS DestAge;

S tommmmmaee +
| SrcAge | DestAge |
drmocomooo focooomooo +
| 42 | 36 |
S tommmmmaee +
| 42 | 41 |
drmscosoeo focococooo +

The following example returns the name and team of the players that "player100" follows.

nebula> GO FROM "player100" OVER follow \
YIELD follow._dst AS id | \
GO FROM $-.id OVER serve \
YIELD $A.player.name AS Player, $$.team.name AS Team;

drmocosocosscososas dhoscosocosas +
| Player | Team |
Focmmmemmemeeaaas G - +
| "Tony Parker" | "Spurs" |
dhmocococosscososas dhoscosocosas +
| "Tony Parker" | "Hornets" |
Focmmmemmemeeaaas G - +
| "Manu Ginobili" | "Spurs" |
dhmocococosscososas dhoscosocosas +

Last update: March 23, 2021

- 76/290 - 2021 Vesoft Inc.

4.4.5 Set operations

4.4.5 Set operations
OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax

This document descriptions the set operations, including UNION, UNION ALL, INTERSECT, and MINUS . To combine multiple queries, use

the set operators.

All set operators have equal precedence. If a nGQL statement contains multiple set operators, Nebula Graph evaluates them from

the left to right unless parentheses explicitly specify another order.

To use the set operators, always match the return results of the 6o clause with the same number and data type.

UNION, UNION DISTINCT, and UNION ALL
<left> UNION [DISTINCT | ALL] <right> [UNION [DISTINCT | ALL] <right> ...]
Operator UNION DISTINCT (or by short union) returns the union of two sets A and B without the duplicate elements.

Operator UNION ALL returns the union of two sets A and B with duplicated elements.

The <left> and <right> must have the same number of columns and data types. Different data types are converted according to

the Type Conversion.
EXAMPLE
The following statement

nebula> GO FROM "player102" OVER follow \
UNION \
GO FROM "player100" OVER follow;

returns the neighbors' id of vertex "player102" and "playeriee (along with edge follow) without duplication.

While

nebula> GO FROM "player102" OVER follow \
UNION ALL \
GO FROM "player100" OVER follow;

returns all the neighbors of vertex "player102" and "playeriee, with all possible duplications.

UNION can also work with the YIELD statement. For example, let's suppose the results of the following two queries.

nebula> GO FROM "player102" OVER follow YIELD follow. dst AS id, follow.degree AS Degree, $$.player.age AS Age; -- query 1
drmocosasoso=as drmocosaso Focaos +

| id | Degree | Age |

droocoooooooeoo dboocooooo dhocooo +

| "playeri101" | 75 | 36 | -- line 1

drmocosasoso=as drmocosaso Focaos +

- 77/290 - 2021 Vesoft Inc.

4.4.5 Set operations

nebula> GO FROM "player100" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age; -- query 2
dhmocososooosas drmocosacs fhocaos +

| id | Degree | Age |

Fommmmemeeaaas S R — tommaa +

| "playeri01" | 96 | 36 | -- line 2

dhmocosasooosas drmocosocs focaos +

| "player102" | 90 | 33 | -- line 3

Fommmmemeeaaas S R — tommaa +

And the following statement

nebula> GO FROM '"player102" OVER follow YIELD follow._ dst AS id, follow.degree AS Degree, $$.player.age AS Age \
UNION /* DISTINCT */ \
GO FROM "player100" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age;

returns the follows:

drmscososososas drmmcososs focoos +
| id | Degree | Age |
R Fommmmmam Fommmm +
| "playeri01" | 75 | 36 | -- line 1
drmscososososas drmmcososs focoos +
| "player101" | 96 | 36 | -- line 2
R Fommmmmmm Femmm - +
| "player102" | 90 | 33 | -- line 3
drmscososososas drmmcososs focoos +

The pistincT check duplication by all the columns for every line. So line 1 and line 2 are different.

INTERSECT
<left> INTERSECT <right>

Operator INTERSECT returns the intersection of two sets A and B (denoted by A () B).

Similar to union, the <left> and <right> must have the same number of columns and data types. Only the INTERSECT columns of

<left> and <right> are returned.
For example, the following query

nebula> GO FROM "player102" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age \

INTERSECT \
GO FROM "player100" OVER follow YIELD follow._dst AS id, follow.degree AS Degree, $$.player.age AS Age;

returns

Empty set (time spent 5194/6264 us)

MINUS

<left> MINUS <right>

Operator MInus returns the subtraction (or difference) of two sets A and B (denoted by A - B). Always pay attention to the order of
the <left> and <right>.The set A - B consists of elements that are in A but not in B.

For example, the following query

nebula> GO FROM "player100" OVER follow \
MINUS \
GO FROM "player102" OVER follow;

returns

- 78/290 - 2021 Vesoft Inc.

4.4.5 Set operations

If you reverse the Minus order, the query

nebula> GO FROM "player102" OVER follow \
MINUS \
GO FROM "player100" OVER follow;

returns

Empty set (time spent 2243/3259 us)

Precedence of the SET Operations and Pipe

Please note that when a query contains pipe | and set operations, pipe takes precedence. Refer to the Pipe Doc for details. Query
GO FROM 1 UNION GO FROM 2 | GO FROM 3 is the same as query Go FROM 1 UNION (GO FROM 2 | GO FROM 3) .

For example:

nebula> GO FROM "player102" OVER follow YIELD follow._dst AS play_dst \
UNION \

GO FROM "team20@" OVER serve REVERSELY YIELD serve._dst AS play_dst \

| GO FROM $-.play_dst OVER follow YIELD follow._dst AS play_dst;

nebula>|GO0 FROM "playerl102" OVER follow YIELD follow._dst AS play_dst| \
UNION \

GO FROM "team200" OVER serve REVERSELY YIELD serve._dst AS play_dst \
| GO FROM $-.play_dst OVER follow YIELD follow._dst AS play_dst;

The statements in the red bar are executed first. And then the statement in the green box is executed.

nebula> (GO FROM "player102" OVER follow YIELD follow._dst AS play_dst \
UNION \

GO FROM "team20@" OVER serve REVERSELY YIELD serve._dst AS play_dst) \

| GO FROM $-.play_dst OVER follow YIELD follow. dst AS play_dst;

In the above query, the parentheses change the execution priority, and the statements within the parentheses take the
precedence.

Last update: March 17, 2021

-79/290 - 2021 Vesoft Inc.

4.4.6 String operators

4.4.6 String operators

Name Description
+ concatenating strings
CONTAINS Perform case-sensitive inclusion searching in strings
(NOT) IN Whether a value is within a set of values
(NOT) STARTS WITH Perform case-sensitive matching on the beginning of a string
(NOT) ENDS WITH Perform case-sensitive matching on the ending of a string
Regular expressions Perform regular expression matching on a string
/" Note

All the string matchings are case-sensitive.

Examples
e concatenation (+)

nebula> RETURN 'a' + 'b';

R +
| (atb) |
e +
| "ab" |
R +

* CONTAINS

The conNTAINS operator requires string type in both left and right side.

nebula> MATCH (s:player)-[e:serve]->(t:team) WHERE id(s) == "player101" \
AND t.name CONTAINS "ets" RETURN s.name, e.start_year, e.end_year, t.name;
Fommmmmm e R T B R +
| s.name | e.start_year | e.end_year | t.name |
droscosocosocosas drmscosososo=ooo focosocooos=os dhoccosocosas +
| "Tony Parker" | 2018 | 2019 | "Hornets" |
Fommmmmm e R T B R +

nebula> GO FROM "player101" OVER serve WHERE (STRING)serve.start_year CONTAINS "19" AND \
$n.player.name CONTAINS "ny" \
YIELD $A.player.name, serve.start_year, serve.end_year, $$.team.name;

T e e dhmocomocosooosooD fhocomocomooosoo +
| $7.player.name | serve.start_year | serve.end_year | $$.team.name |
droscosscosaso=ass fhococssosososoossao droscomscosssososs focosscosscosoe +
| "Tony Parker" | 1999 | 2018 | "Spurs" |
T e e dhmocomocosooosooD fhocomocomooosoo +

nebula> GO FROM "player101" OVER serve WHERE ! ($$.team.name CONTAINS "ets") \
YIELD $A.player.name, serve.start_year, serve.end_year, $$.team.name;

T e e dhmocomocosooosooD fhocomocomooosoo +

| $7.player.name | serve.start_year | serve.end_year | $$.team.name |

droscosscosaso=ass fhococssosososoossao droscomscosssososs focosscosscosoe +

| "Tony Parker" | 1999 | 2018 | "Spurs" |

T e S T R e fhocomocomoooeoo +
* IN

nebula> RETURN 1 IN [1,2,3], "Yao" IN ["Yi", "Tim", "Kobe"], NULL in ["Yi", "Tim", "Kobe"]
oocococooocoosos frocoooocsoocococacocooocsoooocoooo fpoococococcoscocococococooossoso +
| (1IN [1,2,3]) | ("Yao" IN ["Yi","Tim","Kobe"]) | (NULL IN ["Yi","Tim","Kobe"]) |
froooocooooooosooo fhcooocooooosocooooooocooooooosoo dboccooooocooooocooocooocooocoooo +

- 80/290 - 2021 Vesoft Inc.

4.4.6 String operators

| true | false | false
B Fececcccccccccccccccccccccccaaan T T T +

* (NOT) STARTS WITH

nebula> RETURN 'apple' STARTS WITH 'app', 'apple' STARTS WITH 'a', 'apple' STARTS WITH toUpper('a')

drmscosscococosoccoocscaoscosas dhmococscosccococooocccosseas dhmccococococococccocccooocosooocosooo +
| ("apple" STARTS WITH "app") | ("apple" STARTS WITH "a") | ("apple" STARTS WITH toUpper("a")) |
Fommme e meeececcmeeceaaaa Fo e eeeemeeceemeeemeaeaas Fm e e eeneeemeeeiemeeceeeeaaaa- +
| true | true | false |
drmscosscococosoccoocscaoscosas dhmococscosccococooocccosseas dhmccococococococccocccooocosooocosooo +

nebula> RETURN 'apple' STARTS WITH 'b', 'apple' NOT STARTS WITH 'app'
Scoedh

* (NOT) ENDS WITH

nebula> RETURN 'apple' ENDS WITH 'app', 'apple' ENDS WITH 'e', 'apple' ENDS WITH 'E', 'apple' ENDS WITH 'b'

dhmscosscocccosocooocscosseao dimscosocococosocccooscosoe dmccococococococccocscosoe fmccococococococccocscosos +
| ("apple" ENDS WITH "app") | ("apple" ENDS WITH "e") | ("apple" ENDS WITH "E") | ("apple" ENDS WITH "b") |
B T PP R e TP B e TR P R TR P +
| false | true | false | false |
dhmscosscocccosocooocscosseao dimscosocococosocccooscosoe dmccococococococccocscosoe fmccococococococccocscosos +

* Regular expressions

Nebula Graph supports filtering by using regular expressions. The regular expression syntax is inherited from std::regex . You can

match on regular expressions by using =~ 'regexp' . For example:

nebula> RETURN "384748.39" =~ "\\d+(\\.\\d{2})?";

/" Note

Regular expressions CAN NOT work with nGQL-extensions (GO/FETCH clause will return syntax error). Use it in openCypher only
(e.g., in MATCH-WHERE clause).

Last update: April 22, 2021

-81/290 - 2021 Vesoft Inc.

4.4.7 List operators

4.4.7 List operators
List operators are:

* concatenating lists: +
e checking if an element exists in a list: 1IN

* accessing an element(s) in a list using the subscript operator: []

Examples

nebula> YIELD [1,2,3,4,5]+[6,7] AS myList

| [1, 2, 8, 4,5 6, 7] |
co=d

nebula> WITH [2, 3, 4, 5] AS numberlist \
UNWIND numberlist AS number \
WITH number \
WHERE number IN [2, 3, 8] \
RETURN number

R +
| number |
drmocosoeo +
| 2 |
S +
I3 |
drmscosoeo +

Last update: March 17, 2021

-82/290 - 2021 Vesoft Inc.

4.4.8 Operator precedence

4.4.8 Operator precedence

The following list shows the precedence of nGQL operators in descending order. Operators that are shown together on a line have

the same precedence.

- (negative number)
!, NOT

/%

-, +
=, >=, > <=, £, <, I=
AND

OR, XOR

= (assignment)

For operators that occur at the same precedence level within an expression, evaluation proceeds left to right, with the exception

that assignments evaluate right to left.

The precedence of operators determines the order of evaluation of terms in an expression. To override this order and group terms

explicitly, use parentheses.

Examples

nebula> RETURN 2+3*5;

tommmmmeeaa +
I (2+(3*5)) |
R L +
| 17 |
tommmmmeeaa +

o +
I ((2+3)*5) |
o +
| 25 |
o +

OpenCypher compatibility

In openCypher, comparisons can be chained arbitrarily, e.g., x <y <= z is equivalentto x < y AND y <= z in openCypher. But in
nGQL, it is equivalent to (x < y) <= z, which is a boolean (x < y) compare again an integer (z). And the result is NULL.

Last update: March 17, 2021

- 83/290 - 2021 Vesoft Inc.

4.5 Functions and expressions

4.5 Functions and expressions

-84/290 - 2021 Vesoft Inc.

4.5.1 Built-in math functions

4.5.1 Built-in math functions

Nebula Graph supports the following built-in math functions:

-85/290 - 2021 Vesoft Inc.

Function

double abs(double x)
double floor(double x)
double ceil(double x)

double round(double x)

double sqrt(double x)
double cbrt(double x)

double hypot(double x,
double y)

double pow(double x,
double y)

double exp(double x)
double exp2(double x)
double log(double x)
double log2(double x)
double log10(double x)
double sin(double x)
double asin(double x)
double cos(double x)
double acos(double x)
double tan(double x)
double atan(double x)
double rand()

int rand32(int min, int
max)

int rand64(int min, int
max)

collect()
avg()
count()
max()
min()
std()
sum()
bit_and()
bit or()

bit xor()

Description

Returns absolute value of the argument.

4.5.1 Built-in math functions

Returns the largest integer value smaller than or equal to the argument. (Rounds down)

Returns the smallest integer greater than or equal to the argument. (Rounds up)

Returns the integer value nearest to the argument. Returns a number farther away from 0 if the

argument is in the middle.
Returns the square root of the argument.

Returns the cubic root of the argument.

Returns the hypotenuse of a right-angled triangle.

Returns the result of x raised by the y th power.

Returns the value of e raised to the x power.
Returns 2 raised to the argument.
Returns natural logarithm of the argument.

Returns the base-2 logarithm of the argument.

Returns the base-10 logarithm of the argument.

Returns sine of the argument.

Returns inverse sine of the argument.
Returns cosine of the argument.
Returns inverse cosine of the argument.
Returns tangent of the argument.

Returns inverse tangent the argument.

Returns a random floating point number in the range from 0 (inclusive) to 1 (exclusive); i.e.[0,1).

Returns a random 32-bit integer in [min, max). If you set only one argument, it is parsed as max and
min is default to o . If you set no argument, the system returns a random signed 32-bit integer.

Returns a random 64-bit integer in [min, max). If you set only one argument, it is parsed as max and
min is default to o . If you set no argument, the system returns a random signed 64-bit integer.

Puts all the collected values to a list.
Returns the average value of the argument.
Returns the number of records.

Returns the maximum value.

Returns the minimum value.

Returns the population standard deviation.
Returns the sum value.

Bitwise AND.

Bitwise OR.

Bitwise exclusive OR (XOR).

- 86/290 -

2021 Vesoft Inc.

Function
int size()

int range(int start, int
end, int step)

int sign(double x)

double e()
double pi()

double radians()

/" Note

4.5.1 Built-in math functions

Description
Returns the number of elements in a list or a map.

Returns a list of integers from start (inclusive) to end (inclusive) in the specified steps. step is
optional and default to 1.

Returns the signum of the given number: 0 if the number is 0, -1 for any negative number, and 1 for
any positive number.

Returns the base of the natural logarithm, e (2.718281828459045).
Returns the mathematical constant pi (3.141592653589793).

Converts degrees to radians. radians(180) returns 3.141592653589793.

If the argument is set to nuLL, the output is undefined.

Last update: April 22, 2021

- 87/290 - 2021 Vesoft Inc.

4.5.2 Built-in string functions

Nebula Graph supports the following built-in string functions:

Function

int strcasecmp(string a, string b)

string lower(string a)

string toLower(string a)
string upper(string a)

string toUpper(string a)

int length(string a)

string trim(string a)

string ltrim(string a)

string rtrim(string a)

string left(string a, int count)
string right(string a, int count)

string lpad(string a, int size,
string letters)

string rpad(string a, int size,
string letters)

string substr(string a, int pos, int
count)

string substring(string a, int pos,
int count)

string reverse(string)

string replace(string a, string b,
string c)

list split(string a, string b)
string toString()

int hash()

/" Note

Description

4.5.2 Built-in string functions

Compares strings without case sensitivity, when a = b, Returns 0, when a > b Returnsed

value is greater than 0, otherwise less than 0.

Returns the argument in lowercase.

The same as lower().

Returns the argument in uppercase.

The same as upper().

Returns the length of given string in bytes.

Removes leading and trailing spaces.

Removes leading spaces.

Removes trailing spaces.

Returns the substring in [1, count], if length a is less than count, Returns a.

Returns the substring in [size - count + 1, size], if length a is less than count, Returns a.

Left-pads a string with another string to a certain length.

Reft-pads a string with another string to a certain length.

Returns a substring from a string, starting at the specified position pos, extract count

characters.

The same as substr().

Returns the reverse of a string.

Replaces string b in string a with string c.

Splits string a at string b and returns a list of strings.
Takes in any data type and converts it into a string.

Takes in any data type and encodes it into an integer value.

If the argument is NULL , the return is undefined.

¢ pos uses a 0-based index.

Explanations for the return of substr() and substring()

o If pos is 0, the whole string a is returned.

¢ If pos is greater than the maximum string index, an empty string is returned.

o If pos is a negative number, BAD_DATA is returned.

- 88/290 -

2021 Vesoft Inc.

4.5.2 Built-in string functions

o If count is omitted, the function returns the substring starting at the position given by pos and extending to the end of string

a.
* Using NULL as any of the argument of substr() causes an issue.

e If count is 0, an empty string is returned.

7" OpenCypher compatibility

* In openCypher, if a is null, null is returned.
e In openCypher, if pos is 0, the returned substring starts from the first character, and extend to count characters.

* In openCypher, if either pos or count is null or a negative integer, an error is raised.

Last update: April 22, 2021

-89/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/issues/878

4.5.3 Built-in date and time functions

4.5.3 Built-in date and time functions

Nebula Graph supports the following built-in date and time functions:

Function Description

int now() Return the current date and time of the system time zone.

date date() Return the current UTC date based on the current system.

time time() Return the current UTC calendar time of the current time zone.
datetime datetime() Return the current UTC datetime based on the current time.

The date(), time(), and datetime() functions accept three kind of parameters, namely empty, string, and map.

Examples
> RETURN now(), date(), time(), datetime();
droscomooomooo fhocomoooooeoos R CEEE R e e +
| now() | date() | time() | datetime() |
[TR b PR R B ey +

| 1611907165 | 2021-01-29 | 07:59:22.000 | 2021-01-29T07:59:22.000 |
o B T e O B e +
OpenCypher compatibility

* Time in openCypher is measured in milliseconds.

* Time in nGQL is measured in seconds. The milliseconds are displayed in oeo .

Last update: March 29, 2021

-90/290 -

2021 Vesoft Inc.

4.5.4 Schema functions

4.5.4 Schema functions

Nebula Graph supports the following built-in schema functions:

Function Description
id(vertex) Returns the id of a vertex. The data type of the result is the same as the vertex ID.
list tags(vertex) Returns the tags of a vertex.
list labels(vertex) Returns the tags of a vertex.
map properties(vertex or edge) Takes in a vertex or an edge and returns its properties.
string type(edge) Returns the edge type of an edge.
vertex startNode(path) Takes in an edge or a path and returns its source vertex ID.
string endNode(path) Takes in an edge or a path and returns its destination vertex ID.
int rank(edge) Returns the rank value of an edge.
Examples

nebula> MATCH (a:player) WHERE id(a) == "player100" RETURN tags(a), labels(a), properties(a)

droscosaso=ass ococososo=as drmscosscocscococosocosocccoossao +

| tags(a) | labels(a) | properties(a) |

droscomoooeooo dhocomoooooeoo B T T e T +

| ["player"] | ["player"] | {age: 42, name: "Tim Duncan"} |

droscosaso=ass ococososo=as drmscosscocscococosocosocccoossao +

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) RETURN type(r), rank(r)

drmmcoso=as drmococo=as +
| type(r) | rank(r) |
R R +
| "serve" | @ |
drmmcoso=as drmococo=as +

nebula> MATCH p = (a :player {name : "Tim Duncan"})-[r:serve]-(t) RETURN startNode(p), endNode(p)

B = LT T T T e B e e T T T +
| startNode(p) | endNode(p) |
S eSS ey B S e +
| ("player100" :player{age: 42, name: "Tim Duncan"}) | ("team204" :team{name: "Spurs"}) |
B = LT T T T e B e e T T T +

Last update: March 25, 2021

- 91/290 - 2021 Vesoft Inc.

4.5.5 CASE expressions

4.5.5 CASE expressions

The case expression uses conditions to filter the result of an nGQL query statement. It is usually used in the YIELD or RETURN
clause. nGQL provides two forms of caAse expressions just like openCypher: the simple form and the generic form.

The case expression goes through conditions and returns a result when the first condition is met. Then the caAse expression stops
reading the conditions and returns the result. If no conditions are met, it returns the result in the ELse clause. If there is no ELSE
clause and no conditions are met, it returns NuLL .

The following graph is used for the examples in this topic.

- —
”~ ~
/7 N\
/ \
/ Tag: player \
! VID: “player102” \
Properties:
I Edae foll * name: “LaMarcus |
e type: follow o
| = gp . r)t/;): ::3 ’f‘;ge Edge type: follow |
| R e ' Property: |
» degree: 90
I I
I I
! Edge type: follow [
| Tag: player Property: Tag: player |
] VID: “player101” * degree: 85 VID: “player100” I
Properties: Properties:
| * name: “Tony * npame: “Tim |
I Parker” Duncan” l
= age:36 age: 42

I I
I Edge type: serve Edge type: serve |
| Property: Property: |
] * start_year: 1999 * start_year: 18997

* end_year: 2018 * end_year: 2016 I
1 I
I I
I I
I Tag: team Tag: team [
] VID: “team201” VID: “team200” I
| Properties: Properties: |
| * name: “Nuggets” * name: “Warriors” I
| I
\ /

\ /
\ /
N - Graph space: nba »
-~ - -

S o s S S SES SN S S OSSN SES SES SN SIS SESE S S S S S S o e

The simple form of CASE expressions

SYNTAX

- 92/290 - 2021 Vesoft Inc.

4.5.5 CASE expressions

CASE <comparer>

WHEN <value> THEN <result>
[WHEN ...]

[ELSE <default>]

END

A Caution

Always remember to end a CASE expression with END .

Parameters Description
comparer A value or a valid expression that outputs a value. This value is used to compare with value .
value It will be compared with comparer . If they match, then this condition is met.
result It is returned by the cAse expression if value matches comparer .
default It is returned by the cAse expression if no conditions are met.
EXAMPLES

nebula> RETURN \
CASE 2+3 \
WHEN 4 THEN 0 \
WHEN 5 THEN 1 \

ELSE -1 \
END \
AS result;
drmocosocs +
| result |
[T — +
1 |
drmocosocs +

nebula> GO FROM "player100" OVER follow \
YIELD $$.player.name AS Name, \
CASE $$.player.age > 35 \
WHEN true THEN "Yes" \
WHEN false THEN "No" \

ELSE "Nah" \

END \

AS Age_above_35;
Fommmmmmmeemeeeeaaas B +
| Name | Age_above_35 |
droscococososooosooosas drmocosocoso=aoo +
| "Tony Parker" | "Yes" |
Fommmmmmmeemeeeeaaas B +
| "LaMarcus Aldridge" | "No" |
droscococososooosooosas drmocosocoso=aoo +

The generic form of CASE expressions

SYNTAX

CASE

WHEN <condition> THEN <result>
[WHEN ...]

[ELSE <default>]

END

Parameters Description
condition If condition is evaluated as true, result is returned by the CASE expression.
result It is returned by the cAse expression if condition is evaluated as true.

default It is returned by the cAse expression if no conditions are met.

EXAMPLES

nebula> YIELD \
CASE WHEN 4 > 5 THEN 0 \
WHEN 3+4==7 THEN 1 \

- 93/290 - 2021 Vesoft Inc.

4.5.5 CASE expressions

ELSE 2 \
END \
AS result;
drmscosass +
| result |
[+
1 |
droocosass +

nebula> MATCH (v:player) WHERE v.age > 30 \
RETURN v.name AS Name, \

CASE \

WHEN v.name STARTS WITH "T" THEN "Yes" \

ELSE "No" \

END \

AS Starts_with_T;
Fommmmemecmeeceeaaas B +
| Name | Starts_with T |
drmscocococosooosooosas dioscosocosocosas +
| "Tim" | "Yes" I
Fommmmemecmeeceeaaas B +
| "LaMarcus Aldridge" | "No" |
drmscocococosooosooosas dioscosocosocosas +
| "Tony Parker" | "Yes" |
Fommmmemecmeeceeaaas B +

Differences between the simple form and the generic form

To avoid the misuse of the simple form and the generic form, it is important to understand their differences. The following example

can help explain them.

nebula> GO FROM "player100" OVER follow \
YIELD $$.player.name AS Name, $$.player.age AS Age, \
CASE $$.player.age \
WHEN $$.player.age > 35 THEN "Yes" \
ELSE "No" \
END \
AS Age_above_35;
F T [4ecocmcccccaaaa +
| Name | Age | Age_above 35 |

| "Tony Parker"

e
| "LaMarcus Aldridge" | 33 | "No" |
droscosocosososocososos dromscas dremcosososo=ooo +

The preceding 6o query is intended to output "Yes" when the player age is above 35. However, in this example, when the player
age is 36, the actual output is not as expected: It is "No" instead of "Yes".

This is because the query uses the CASE expression in the simple form, and a comparison between the values of $$.player.age and
$$.player.age > 35 is made. When the player age is 36:

e The value of $$.player.age is 36.Itis an integer.

* $$.player.age > 35 is evaluated to true. Itis a boolean.

The values of $$.player.age and $$.player.age > 35 do not match. This condition is not met and "No" is returned.

Last update: April 22, 2021

- 94/290 - 2021 Vesoft Inc.

4.5.6 List functions

Function

keys(expr)

labels(vertex)
nodes(path)

range(start, end [,
step])

relationships(path)

Description

4.5.6 List functions

Returns a list containing the string representations for all the property names of a vertex, edge,

or map.
Returns the tags of a vertex.
Returns a list containing all the nodes in a path.

A list of Integer elements.

Returns a list containing all the relationships in a path.

reverse(list) returns a list in which the order of all elements in the original list have been reversed.
tail(list) returns all the elements, excluding the first one.
head(list) Returns the first element of a list.
last(list) Returns the last element of a list.
coalesce(list) Returns the first not null value in a list.
reduce() See reduce() function.
7" Note

If the parameter is nuLL, the output is undefined.

Examples

nebula> WITH [NULL, 4923, 'abc', 521, 487] AS ids RETURN reverse(ids), tail(ids), head(ids), last(ids), coalesce(ids)

B T B TP R B R +
| reverse(ids) | tail(ids) | head(ids) | last(ids) | coalesce(ids) |
dimscococococosocccocscooocososooosoo dhmscococococococccaoscosoe dhoccosocosoe eccosocosoe fheccococosocosos +
| [487, 521, "abc", 4923, _ NULL__] | [4923, "abc", 521, 487] | __NULL__ | 487 | 4923 |
B T B TP R B R +

nebula> MATCH (a:player)-[r]->() WHERE id(a) == "player100" RETURN labels(a), keys(r)

droscosaso=ass fhococscococosocccooscasssosos +

| labels(a) | keys(r) |

droscomoooeooo e e e e T +

| ["player"] | ["degree"] [

droscosaso=ass fhococscococosocccooscasssosos +

| ["player"] | ["degree"] I

droscomoooeooo e e e e T +

| ["player"] | ["end_year", "start_year"] |

droscosaso=ass fhococscococosocccooscasssosos +

nebula> MATCH p = (a:player)-[]->(b)-[]->(c:team) WHERE a.name == "Tim Duncan" AND c.name == "Spurs" RETURN nodes(p)
drmscococococoooCooooocoSSCSSSCoSSSoCoEoooCoooCSCooSESSSCoSSSoCoCoooCoooCSCoCSESoSEoESSoSoCoooScooCSCoSSCoSSooSSooooooooCoooScoaSsoonoooanaoooa0D +
| nodes(p) |
T

| [("playeriee"

e Do S e e oo SE oo oS e DS C SE S e E S SO S SE S C e S S COE DS SE S E e S oS e Som e SE S SEe S COE Do o e SE S e Do S COE SoaCoe e See oS coE S Eaooas Senoasooan0as
| [("player100" :player{age: 42, name: "Tim

e e o i

Last update: April 22, 2021

-95/290 - 2021 Vesoft Inc.

4.5.7 The count() function

4.5.7 The count() function
The count() function calculates the number of the specified values or rows.

* (nGQL-extension) You can use count() and GRouP BY together to group and count the number of specific values. Use YIELD to
return.

¢ (OpenCypher style) You can use count() and RETURN. GROUP BY is not necessary.

Syntax
count({expr | *})
e count(*) returns the number of rows (including NULL).

e count(expr) return non-NULL values return by an expression.

¢ count() and size() are different.

EXAMPLES

nebula> WITH [NULL, 1, 1, 2, 2] As a UNWIND a AS b RETURN count(b), count(*), count(DISTINCT b)

oocacocooa frocooocsooo S S S +
| COUNT(b) | COUNT(*) | COUNT(distinct b) |
R f Fomemmeeeeeeeeeaeas +
| 4 |5 2 |
doocococooodisososcocos S S S +

nebula> GO FROM "player101" OVER follow BIDIRECT YIELD $$.player.name AS Name | \
GROUP BY $-.Name YIELD $-.Name, count(*);

droscosocososososooosas drmocoss=ooo +
| $-.Name | COUNT(*) |
Fmmmmm e Fommmmmmman +
| "Dejounte Murray" | 1 |
droscosocososososooosas drmocoss=ooo +
| "LaMarcus Aldridge" | 2 |
Fmmmmm e Fommmmmmman +
| "Tim Duncan" | 2 |
droscosocososososooosas drmocoss=ooo +
| "Marco Belinelli" | 1 |
Fmmmmm e Fommmmmmman +
| "Manu Ginobili" | 1 |
droscosocososososooosas drmocoss=ooo +
| "Boris Diaw" | 1 |
Fommmm o Fommmmmmman +

The statement in the preceding example searches for:

¢ People whom playeri01 follows.

* People who follow playerio1 .
And retrieves two columns:

e $-.Name, the names of the people.

* COUNT(*) , how many times the names show up.

Because there are no duplicate names in the basketballplayer dataset, the number 2 in the result shows that the person in that
row and player101 have followed each other.

nebula> LOOKUP ON player YIELD player.age As playerage \|
GROUP BY $-.playerage YIELD $-.playerage as age, count(*) AS number | ORDER BY number DESC, age DESC

Ao oo drmocomooo +
| age | number |
T L +
|34 |4 |
Ao oo drmocomooo +
|33 |4 |
T L +
|30 |4 |
Ao oo drmocomooo +
|29 |4 |
T L +
|38 |3 |
Ao oo drmocomooo +

- 96/290 - 2021 Vesoft Inc.

4.5.7 The count() function

nebula> MATCH (n:player) RETURN n.age as age, count(*) as number ORDER BY number DESC, age DESC

dhoscas drmocosaco +
| age | number |
T S - +
|34 |4 |
dhoscas drmocosaco +
|33 |4 |
T S - +
|30 |4 |
dhoscas drmocosaco +
|29 |4 |
T S - +
|38 |3 |
dhoscas drmocosaco +

The two statements in the preceding examples retrieves the age distribution of the players in the dataset.

nebula> MATCH (v:player{name:"Tim Duncan"}) -- (v2) RETURN count(DISTINCT v2)

count(NULL)

nebula> RETURN count(NULL), size(NULL)

e S Aoococooacsos +
| COUNT(NULL) | size(NULL) |
dboscoooooooooo dboccooocooooo +
| o | __NULL. |
e S Aoococooacsos +

Last update: April 13, 2021

-97/290 - 2021 Vesoft Inc.

4.5.8 collect()

4.5.8 collect()

collect() returns a list containing the values returned by an expression. Using this function aggregates data by amalgamating

multiple records or values into a single list.

collect() is an aggregation function. Like Group BY in SQL.

Examples
This example works like Group BY .

nebula> UNWIND [1, 2, 1] AS a RETURN a;
R

I a]

+---t

1]

R

2]

+---t

1]

R

nebula> UNWIND [1, 2, 1] AS a RETURN collect(a);

nebula> UNWIND [1, 2, 1] AS a RETURN a, collect(a), size(collect(a))
__________________ o

size(COLLECT(a)) |

B T T T
| a | COLLECT(a)
B I T S
21 1[2]

B T T T
111, 1]
B I T S

+— +— + — +
R

You can sort reversely, limit output rows to 3, and collect the output into a list.

nebula> UNWIND ["c", "b", "a", "d"] AS p \
WITH p AS g \
ORDER BY q DESC LIMIT 3 \
RETURN collect(q);

nebula> WITH [1, 1, 2, 2] AS coll \
UNWIND coll AS x \
WITH DISTINCT x \
RETURN collect(x) AS ss

o +
| ss |
Femmmmae +
I [1, 2] |
o +

This example aggregates all players' names by their ages.

nebula> MATCH (n:player) RETURN collect(n.age);

dhmscas dhmscosocococosoCoooCoooSScoSScoSScoSSSoSoCoooCoooCocoSScoSScosScosSoososooo +
| ["Cory Joseph"] |
gy +
| ["Damian Lillard", "Paul George", "Ricky Rubio"] |

dhmscas dhmscosocococosoCoooCoooSScoSScoSScoSSSoSoCoooCoooCocoSScoSScosScosSoososooo +
|
4

["Dejounte Murray", "James Harden", "Klay Thompson", "Jonathon Simmons"] |
,, +

Last update: April 22, 2021

-98/290 - 2021 Vesoft Inc.

4.5.9 reduce() function

4.5.9 reduce() function
OpenCypher Compatibility

In openCypher, the function reduce() is not defined. nGQL implements reduce() function as the Cypher way.

Syntax

reduce() returns the value resulting from the application of an expression on each successive element in a list in conjunction with
the result of the computation thus far. This function will iterate through each element e in the given list, run the expression on e
—taking into account the current partial result —and store the new partial result in the accumulator. This function is analogous to
the fold or reduce method in functional languages such as Lisp and Scala.

reduce(accumulator = initial, variable IN list | expression)

¢ Arguments:

Name Description

accumulator A variable that will hold the result and the partial results as the list is iterated.

initial An expression that runs once to give a starting value to the accumulator.

list An expression that returns a list.

variable The closure will have a variable introduced in its context. We decide here which variable to use.
expression This expression will run once per value in the list, and produce the result value.

¢ Returns:

The type of the value returned depends on the arguments provided, along with the semantics of expression.

Example

nebula> RETURN reduce(totalNum = 10, n IN range(1, 3) | totalNum + n) AS r;

oot
I rl
+o-- et
| 16 |
oot

nebula> RETURN reduce(totalNum = -4 * 5, n IN [1, 2] | totalNum + n * 2) AS r;

+-eme- +
lr
+omm-- +
| -14 |
+eeme- +

nebula> MATCH p = (n:player{name:"LeBron James"})<-[:follow]-(m) \
RETURN nodes(p)[0].age AS srci, \
nodes(p)[1].age AS dst2, \
reduce(totalAge = 100, n IN nodes(p) | totalAge + n.age) AS sum

drmscaos ocosoe droseas +

| srci | dst2 | sum |

Gt dhocoooo Ao oo +

| 3¢ |31 | 165 |

drmscaos ocosoe droseas +

| 34 |29 | 163 |

Gt dhocoooo Ao oo +

| 34 | 33 | 167 |

drmscaos ocosoe droseas +

| 34 | 26 | 160 |

Gt dhocoooo Ao oo +

| 34 | 34 | 168 |

drmscaos ocosoe droseas +

| 3¢ |37 |17 |

Gt dhocoooo Ao oo +

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" | GO FROM $-.VertexID over follow WHERE follow.degree != reduce(totalNum = 5, n IN range(1, 3) | $
$.player.age + totalNum + n) YIELD $$.player.name AS id, $$.player.age AS age, follow.degree AS degree
B e e dhmocoeooo +

| id | age | degree |

droscosocososososososas droseas droocososs +

- 99/290 - 2021 Vesoft Inc.

4.5.9 reduce() function

| "Tim Duncan" | 42 | 95 |
B LT R R o ommmmen +
| "LaMarcus Aldridge" | 33 | 90 |
droscosocososososooosas droseas drmocosass +
| "Manu Ginobili" | 41 | 95 |
B LT R R o ommmmen +

Last update: April 22, 2021

- 100/290 - 2021 Vesoft Inc.

4.5.10 Hash

4.5.10 Hash

The hash() function returns the hash value of the argument. The argument can be a number, a string, a list, a boolean, null, or an
expression that evaluates to a value of the preceding data types.

The source code of the hash() function (MurmurHash2), seed (exc7ef6907uL), and other parameters can be found in MurmurHahs2.h .

/" Note
Roughly, The chance of collision is about 1/10 in the case of 1 billion vertices. The number of edges is irrelevant to the collision

possibility.

For Java, call like follows.

MurmurHash2.hash64("to_be_hashed".getBytes(), "to_be_hashed".getBytes().length, 0xc70f6907)

Legacy version compatibility

In nGQL 1.0, when nGQL does not support string VIDs, a common practice is to hash the strings first and then use the values as
VIDs. But in nGQL 2.0, both string VIDs and integer VIDs are supported, you don't have to use hash() to make VIDs.

Hash a number

nebula> YIELD hash(-123);

dboscooooooosooo +
| hash(-(123)) |
Soocococooacsos +
| -123 |
dboscooooooosooo +

Hash a string

nebula> YIELD hash("to_be_hashed");

dhoscocscocosococoso=aoo +

| hash(to_be_hashed) |

Fommmmemeemeeemeaaaas +

| -1098333533029391540 |

droscocscocosococososaoo +
Hash a list

nebula> YIELD hash([1,2,3]);

Hash a boolean

nebula> YIELD hash(true);

Foceccanaaaan +
| hash(true) |
drmscoso=ososs +
|1 |
Foccccanaaaan +

D +
| hash(false) |
dbeccocosooosas +
| o |
D +

- 101/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/base/MurmurHash2.h
https://github.com/vesoft-inc/nebula-common/blob/master/src/common/base/MurmurHash2.h

4.5.10 Hash

Hash NULL

nebula> YIELD hash(NULL);

dtcococooooooo +
| hash(NULL) |
oococooossos +
[=2 |
dtcococooooooo +

Hash an expression

nebula> YIELD hash(toLower ("HELLO NEBULA"));

droscosocososococosocosoccoosseas +
| hash(toLower ("HELLO NEBULA")) |
B TS +
| -8481157362655072082 |
droscosocososococosocosoccoosseas +

Last update: April 22, 2021

- 102/290 - 2021 Vesoft Inc.

4.5.11 Predicate functions

4.5.11 Predicate functions

Predicate functions return true or false. They are most commonly used in WHERE .

Functions Description

exists() returns true if the specified property exists in the vertex, edge or map.

any() returns true if the predicate holds for at least one element in the given list.

all() returns true if the predicate holds for all elements in the given list.

none() returns true if the predicate holds for no element in the given list.

single() returns true if the predicate holds for exactly one of the elements in the given list.
7" Note

NULL is returned if the list is NULL or all of its elements are NULL.

OpenCypher compatibility

In openCypher, only function exists() is defined and specified. The other functions are implement-dependent.

Syntax

<predicate>(<variable> IN <list> WHERE <condition>)

Examples

nebula> RETURN any(n IN [1, 2, 3, 4, 5, NULL] WHERE n > 2) AS r

R +
Ir |
drmscaos +
| true |
Gt +

Fommmmm +
Ir |
dromcoos +
| true |
Fommmmm +

drmscaos +
Ir |
R +
| true |
drmscaos +

dimscococococococccaoscosas +
| any(n IN a WHERE (n>2)) |
B TP +
| true |
dimscococococococccaoscosas +

nebula> MATCH p = (n:player{name:'"LeBron James"})<-[:follow]-(m) \
RETURN nodes(p)[0].name AS n1, nodes(p)[1].name AS n2, \
all(n IN nodes(p) WHERE n.name NOT STARTS WITH "D") AS b

droscosscosaso=ass fhococscosocosooscaos focosoes +
| n1 | n2 | b |
T e e e dhocomooo +
| "LeBron James" | "Danny Green" | false |
droscosscosaso=ass fhococscosocosooscaos focosoes +
| "LeBron James" | "Dejounte Murray" | false |
T e e e dhocomooo +
| "LeBron James" | "Chris Paul" | true

TR Fmmmmmmeeeeeeeemmae e tmmmmme +
| "LeBron James" | "Kyrie Irving" | true |
T e e e dhocomooo +
| "LeBron James" | "Carmelo Anthony" | true

TR Fmmmmmmeeeeeeeemmae e tmmmmme +

- 103/290 - 2021 Vesoft Inc.

4.5.11 Predicate functions

| "LeBron James" | "Dwyane Wade" | false |
o o Hommmmen +

nebula> MATCH p = (n:player{name:"LeBron James"})-[:follow]->(m) \
RETURN single(n IN nodes(p) WHERE n.age > 40) AS b

L +
| b |
droscaos +
| true |
droocoos +

nebula> MATCH (n:player) RETURN exists(n.id), n IS NOT NULL

B B +
| exists(n.id) | n IS NOT NULL |
drmscososososaoo fhocococosocosoes +
| false | true |
B B +

Last update: April 22, 2021

- 104/290 - 2021 Vesoft Inc.

4.5.12 User-defined functions

4.5.12 User-defined functions
OpenCypher compatibility

User-defined functions are not yet supported nor designed in Nebula Graph 2 .x.

Last update: March 17, 2021

-105/290 - 2021 Vesoft Inc.

4.6 General queries statements

4.6 General queries statements

4.6.1 MATCH
The mATCH statement provides the searching ability based on pattern matching.

A wmATCH statement defines a search pattern and uses it to match data stored in Nebula Graph and to retrieve them in the form
defined in the RETURN clause. A wHERE clause is often used together with the pattern as a filter to the search result.

The examples in this topic use the basketballplayer dataset as the sample dataset.

Syntax

The syntax of MATCH is relatively more flexible compared with that of other query statements such as 6o or Lookup.But generally, it

can be summarized as follows.

MATCH <pattern> [<WHERE clause>] RETURN <output>

The workflow of MATCH

1. The maTcH statement uses a native index to locate a source vertex. The vertex can be in any position in a pattern. In other
words, in a valid mATCH statement, there must be an indexed property or tag, or a specific VID. For how to index a
property, see Create native index.

/" Note

The native index for VID is created by default, so you don't need to create an extra index if you want to match on VID.

2. The maTcH statement searches through the pattern to match edges and other vertices.

3. The mATCH statement retrieves data according to the RETURN clause.

7" OpenCypher compatibility

For now, nGQL DOES NOT support scanning all vertices and edges with MATCH . For example, MATCH (v) RETURN v .

Use patterns in MATCH statements

Make sure there is at least one index for the MATCH statement to use. If you want to create an index, but there are already vertices
or edges related to the tag, edge type, or property that you want to create the index for, you have to rebuild the index after
creation to make it take effect on existing vertices or edges.

Caution

Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance reduction
can be as much as 90% or even more. DO NOT use indexes in production environments unless you are fully aware of their influences

on your service.

nebula> CREATE TAG INDEX name ON player(name(20)); // Create an index on the name property.
Execution succeeded (time spent 2957/3986 us)

nebula> REBUILD TAG INDEX name; // Rebuild the index.

droocomooosooo +
| New Job Id |
[TR +
| 121 |
droscomooomooo +

- 106/290 - 2021 Vesoft Inc.

4.6.1 MATCH

Got 1 rows (time spent 2676/3990 us)

nebula> SHOW JOB 121; // Make sure the rebuild job succeeded.

droscosscosasososs fhmcosscocosocososo=aoo fhecosococos=os oscosoco=oss frocosocosos=as +
| Job Id(TaskId) | Command(Dest) | Status | Start Time | Stop Time |
B Fececccccccccccc e Fecccccccaaan decmcmcmceeaa Fececccccaaan +
| 121 | "REBUILD_TAG_INDEX" | "FINISHED" | 1607073046 | 1607073046 |
droscosscosasososs frocosscocssocosososaoo frocosococos=as foscosscososs frocosocosos=as +
| 0 | "storaged2" | "FINISHED" | 1607073046 | 1607073046 |
B Fececcccccccccccc e Hecccccccaaan Fecmcmcmcneaa Hececccacaaan +
|1 | "storagede" | "FINISHED" | 1607073046 | 1607073046 |
droscosscosasososs frocosscocssocosososaoo frocosococos=as foscosscososs frocosocosos=as +
| 2 | "storaged1" | "FINISHED" | 1607073046 | 1607073046 |
B Fececccccccccccc e Fecccccccaaan decmcmcmceeaa Fececccccaaan +

Got 4 rows (time spent 1186/2998 us)
MATCH A VERTEX

You can use a user-defined variable in a pair of parentheses to represent a vertex in a pattern. For example: (v).

MATCH ON TAG
To match on a tag, make sure there is an applicable tag index. For how to create a tag index, see Create tag indexes.
7" Note

Tag indexes are different from property indexes. If there is an index for a property of a tag, but no index for the tag, you cannot
match on the tag.

A vertex tag is specified with :<tag_name> in a pattern.

nebula> MATCH (v:player) RETURN v

B T = e T L +
| v |
drmscosococosososoooCccoSScooScoSSSoSSSoCoSososooococooScosoco=oo +
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
B T e T L e +
| ("player106" :player{age: 25, name: "Kyle Anderson"}) |
drmscosococosososoooCccoSScooScoSSSoSSSoCoSososooococooScosoco=oo +
| ("player115" :player{age: 40, name: "Kobe Bryant"}) |
B T = e T L +

MATCH ON VERTEX PROPERTY
Tag properties are specified with {<prop_name>: <prop_value>} in a pattern after a tag.
The following example uses the name property to match a vertex.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;

B T T T T e e T e T +
v |
drmscocococosooooccoSscaSScososososooocooocscaosco=oses +
| ("player100" :player{name: "Tim Duncan", age: 42}) |
B T T T T T T e e E T +

The wHere clause can do the same thing:

nebula> MATCH (v:player) WHERE v.name == "Tim Duncan" RETURN v;
dimccososococosoccoooscaoscosocococooocococscoSscosooo +
| v |
B e e e T T +
| ("player100" :player{name: "Tim Duncan", age: 42}) |
dimccososococosoccoooscaoscosocococooocococscoSscosooo +

/" OpenCypher compatibility

e In nGQL, == is the equality operator and = is the assignment operator (as in C++ or Java).

e In openCypher 9, = is the equality operator.

-107/290 - 2021 Vesoft Inc.

MATCH ON VID

You can use the VID to match a vertex. The id() function can retrieve the VID of a vertex.

nebula> MATCH (v) WHERE id(v) == 'player101' RETURN v;
drmscosocococosocccooscasScosocococoooccoooscasocosos +
| v |
e +
| (player101) player.name:Tony Parker,player.age:36 |
drmscosocococosocccooscasScosocococoooccoooscasocosos +

Got 1 rows (time spent 1710/2406 us)

To match on multiple VIDs, use WHERE id(v) IN [vid_list].

nebula> MATCH (v:player { name: 'Tim Duncan' })--(v2) \
WHERE id(v2) IN ["player101", "player102"] RETURN v2;

Got 3 rows (time spent 3107/3683 us)

MATCH CONNECTED VERTICES

You can use the -- symbol to represent edges of both directions and match vertices connected by these edges.

/" Legacy

* InnGQL 1.x, the -- symbol is used for inline comments.

e Starting from nGQL 2.0, the -- symbol represents an incoming or outgoing edge.

nebula> MATCH (v:player{name:"Tim Duncan"})--(v2) RETURN v2.name AS Name;

[+
| Name |
droscosocososososooosas +
| "Tony Parker" |
[+
| "LaMarcus Aldridge" |
droscosocososososooosas +
| "Marco Belinelli" |
F T +
| "Danny Green" |
droscosocososososooosas +
| "Aron Baynes" |
F T +

Got 13 rows (time spent 6029/8976 us)

And you can add a > or < tothe -- symbol to specify the direction of an edge.

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2) RETURN v2.name AS Name;

Got 3 rows (time spent 2897/5993 us)

4.6.1 MATCH

In the preceding example, --> represents an edge that starts from v and points to v2.To v, thisis an outgoing edge, and to v2

this is an incoming edge.

To extend the pattern, add more edges and vertices.

nebula> MATCH (v:player{name:"Tim Duncan"})-->(v2)<--(v3) RETURN v3.name AS Name;

Femmmmmmme e +
| Name |
B +
| "Tony Parker" |
Femmmmmmme e +

2021 Vesoft Inc.

| "Tiago Splitter" |

B T +
| "Dejounte Murray" |
droscosocososososooosas +
| "Tony Parker" |
B T +
| "LaMarcus Aldridge" |
droscosocososososooosas +

If you don't need to refer to a vertex, you can omit the variable representing it in the parentheses.

nebula> MATCH (v:player{name:"Tim Duncan"})-->()<--(v3) RETURN v3.name AS Name;

B T I +
| Name |
droscosocososososooosas +
| "Tony Parker" |
B T I +

-
| "Rudy Gay" |
B T I +
| "Danny Green" |
droscosocososososooosas +
| "Kyle Anderson" |
dboscomooooooooosoooeoo +

MATCH PATHS
Connected vertices and edges form a path. You can use a user-defined variable as follows to name a path.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-->(v2) RETURN p;

¢ "Tim Duncan"})-[:follow@0 {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})> |
¢ "Tim Duncan"})-[:follow@0 {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})> |

"Tim Duncan"})-[:serve@® {end_year: 2016, start_year: 1997}]->("team204" :team{name: "Spurs"})> |

Got 3 rows (time spent 3717/4573 us)

/" OpenCypher compatibility

In nGQL, the @ symbol represents the rank of an edge, but openCypher has no such a concept.

MATCH EDGES

4.6.1 MATCH

Besides using --, -->, or <-- toindicate a nameless edge, you can use a variable in a pair of square brackets to represent a

named edge. For example: -[e]-.

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]-(v2) RETURN e;

L e L L T +
I e |
dhmscosocococooocooooccoSScooScoSoco-oCoooCooooocoSSESoScosococosooocooosoooo +
| [:follow "player101"->"player100" @0 {degree: 95}] |
B e +
| [:follow "player102"->"player100" @0 {degree: 75}] |
dhmscosocococooocooooccoSScooScoSoco-oCoooCooooocoSSESoScosococosooocooosoooo +
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
B e +

MATCH ON EDGE TYPES AND PROPERTIES

Just like tags, edge types are specified with :<edge_type>. For example: -[e:serve]- .

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:serve]-(v2) RETURN e;

Got 1 rows (time spent 5041/5630 us)

-109/290 -

2021 Vesoft Inc.

4.6.1 MATCH

And edge type properties are specified with {<prop_name>: <prop_value>} after the :<edge_type>. For example:
[e:follow{likeness:95}] .

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow{degree:95}]->(v2) RETURN e;

drmscosocococosococooscaSscosocosasococosocccoSocasscosoes +
| e |
e +
| [:follow "player100"->"player101" @0 {degree: 95}] |
dimscosocococosococooscaSscosocososococosocccoSocasscosoes +
| [:follow "player100"->"player125" @0 {degree: 95}] |
e +

Got 2 rows (time spent 6080/6728 us)
MATCH ON MULTIPLE EDGE TYPES
The | symbol can help matching on multiple edge types. For example: [e:follow|:serve] .

nebula> MATCH (v:player{name:"Tim Duncan"})-[e:follow|:serve]->(v2) RETURN e;

B e +
I e |
drmocococococooococooccoSScoooco-oooooCoooCooooocoSScoSScoSococoCooocooosoooo +
| [:follow "player100"->"player101" @0 {degree: 95}] |
B e +
| [:follow "player100"->"player125" @0 {degree: 95}] |
drmocococococooococooccoSScoooco-oooooCoooCooooocoSScoSScoSococoCooocooosoooo +
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
B e +

Got 3 rows (time spent 4264/4976 us)

MATCH MULTIPLE EDGES
You can expand a pattern to match multiple edges in a path.

nebula> MATCH (v:player{name:"Tim Duncan"})-[]->(v2)<-[e:serve]-(v3) RETURN v2, v3;

S oS R B S +
| v2 | v3 |
B e T = B e e e T S +
| ("player204" :team{name: "Spurs"}) | ("player101" :player{name: "Tony Parker", age: 36}) |
S oS R B S +
| ("player204" :team{name: "Spurs"}) | ("player102" :player{name: "LaMarcus Aldridg

dheccococococococccocscosocosooososooo fhmcocococccococococccocccooocococococococooocooococosscosooo +
| ("player204" :team{name: "Spurs"}) | ("player103" :player{age: 32, name: "Rudy Gay"}) |
B oS R B St +

MATCH FIXED-LENGTH PATHS
To match a fixed-length path, use the :<edge_type>*<hop> pattern. hop must be a non-negative integer.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*2]->(v2) RETURN DISTINCT v2 AS Friends;

R
| Friends |
B e T e e +
| ("player100" :player{name: "Tim Duncan", age: 42}) |
S S eSS e S +
| ("player102" :player{name: "LaMarcus Aldridge", age: 33}) |
B e T e e +
| ("player125" :player{name: "Manu Ginobili", age: 41}) |
S S eSS e S +

Got 3 rows (time spent 4863/5591 us)

If hop is 0, the pattern matches the source vertex on the path.

nebula> MATCH (v:player{name:"Tim Duncan"}) -[*0]-> (v2) RETURN v2;

Got 1 rows (time spent 2785/3377 us)

-110/290 - 2021 Vesoft Inc.

4.6.1 MATCH

MATCH VARIABLE-LENGTH PATHS

You can use the :<edge_type>*[minHop]..<maxHop> pattern to match variable-length paths.

Parameter Description

minHop Optional. Represents the minimum length of the path. minHop must be a non-negative integer. The default
value is 1.

maxHop Required. Represents the maximum length of the path. maxHop must be a non-negative integer. It has no
default value.

/" OpenCypher compatibility

* In nGQL, maxHop is required. And .. cannot be omitted after minHop .

* In openCypher, maxHop is optional and default to infinity. When no bounds are given, .. can be omitted.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2) \
RETURN v2 AS Friends;

drmscosocosccosocosooocoSScoSScosSsosSsococooooocoSocosoco=os +
| Friends |
BT T T T T T T T T T T LT T e P T +
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
drmscosocosccosocosooocoSScoSScosSsosSsococooooocoSocosoco=os +
| ("player101" :player{age: 36, name: "Tony Parker"}) |
BT T T T T T T T T T T LT T e P T +
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
drmscosocosccosocosooocoSScoSScosSsosSsococooooocoSocosoco=os +
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
BT T T T T T T T T T T LT T e P T +

Got 4 rows (time spent 6166/6887 us)

You can use the bistincT keyword to aggregate duplicate results.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*1..3]->(v2:player) \
RETURN DISTINCT v2 AS Friends, count(v2);

s B +
| Friends | COUNT(v2) |
drmococococccooococooccooocoSScosScosScococooooocococooocosoo doccosocosas +
| ("player125" :player{age: : "Manu Ginobili"}) | 3 |
s B +
| ("player102" :player{age: "LaMarcus Aldridge"}) | 1 |
dhmscosococccococooooocooScoSScosocosScococooocccooocooocosoo dhoccosocosoe +
| ("player100" :player{age: 42, name: "Tim Duncan"}) | 4 |
s B +
| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |
dhmscosococccococooooocooScoSScosocosScococooocccooocooocosoo dhoccosocosoe +

Got 4 rows (time spent 5502/6556 us)

If minHop is O, the pattern matches the source vertex. Compared to the preceding statement, the following statement uses 0 as the
minHop , so in the following result set "Tim Duncan" is counted one more time than it is in the preceding result set because it is the
source vertex.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow*0..3]->(v2:player) \
RETURN DISTINCT v2 AS Friends, count(v2);

s B +
| Friends | COUNT(v2) |
dhmococococccosococooccooScoSScosScosScococooooccococooocosoo dhoscosocosos +
| ("player125" :player{age: 41, name: "Manu Ginobili"}) | 3 |
s B +
| ("player101" :player{age: 36, name: "Tony Parker"}) | 3 |
dhmococococccosococooccooScoSScosScosScococooooccococooocosoo dhoscosocosos +
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) | 1 |
s B +
| ("player100" :player{age: 42, name: "Tim Duncan"}) | 5 |
dhmococococccosococooccooScoSScosScosScococooooccococooocosoo dhoscosocosos +

Got 4 rows (time spent 5553/6275 us)
MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

You can specify multiple edge types in a fixed-length or variable-length pattern. In this case, hop, minHop, and maxHop take effect on
all edge types.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e:follow|serve*2]->(v2) \
RETURN DISTINCT v2;

- 111/290 - 2021 Vesoft Inc.

4.6.1 MATCH

s +
| v2 |
drmococococccocococooccooScooScosScosScocococooocococooocosoo +
| ("player10e0" "Tim Duncan", age: 42}) |
s +
| ("player102" "LaMarcus Aldridge", age: 33}) |
drmocosococccosococooccooScoSScosocosScococooooocococooocosoo +

| ("player125" "Manu Ginobili", ag

| ("player204" "Spurs"}) |
drmocosococccosococooccooScoSScosocosScococooooocococooocosoo +
| ("player215" :team{name: "Hornets"}) |
s +

Got 5 rows (time spent 3834/4571 us)

Common retrieving operations
This section shows how to retrieve commonly used items with MATCH statements.
RETRIEVE VERTEX OR EDGE INFORMATION

Use RETURN {<vertex_name> | <edge_name>} to retrieve all the information of a vertex or an edge.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v;

"Tim Duncan", age: 42}) |
--+

| ("player100" :player{name

Got 1 rows (time spent 1863/2545 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) RETURN e;

B e +
I e |
dhmscococococoooCocooccoSScooocosSooSoCoooCoSooocoSScoSScoSococosococooosoooo +
| [:follow "player100"->"player101" @0 {degree: 95}] |
B e +
| [:follow "player100"->"player125" @0 {degree: 95}] |
dhmscococococoooCocooccoSScooocosSooSoCoooCoSooocoSScoSScoSococosococooosoooo +
| [:serve "player100"->"team204" @ {end_year: 2016, start_year: 1997}] |
B e +

Got 3 rows (time spent 3139/3773 us)
RETRIEVE VIDS
Use the id() function to retrieve VIDs.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN id(v);

D +
| id(v) |
TR +
| "player100" |
R e T +

Got 1 rows (time spent 2070/2747 us)

RETRIEVE TAGS

Use the labels() function to retrieve the list of tags on a vertex.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN labels(v);

droscosososass +
| labels(v) |
droocomooosooo +
| ["player"] |
droscosososass +

Got 1 rows (time spent 2198/2941 us)

To retrieve the nth element in the labels(v) list, use labels(v)[n-1] . The following example shows how to use labels(v)[0] to

retrieve the first tag in the list.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN labels(v)[0];

drmscosososo=aoo +
| labels(v)[0] |
Foccccacaaaaaan +
| "player” |
drescosososo=ooo +

Got 1 rows (time spent 2609/3481 us)

-112/290 - 2021 Vesoft Inc.

4.6.1 MATCH

RETRIEVE A SINGLE PROPERTY ON A VERTEX OR AN EDGE
Use RETURN {<vertex_name> | <edge_ name>}.<property> to retrieve a single property.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v.age;

e +
| v.age |
dromcoooo +
| 42 |
e +

Got 1 rows (time spent 2261/2973 us)

Use As to specify an alias for a property.

nebula> MATCH (v:player{name:"Tim Duncan"}) RETURN v.age AS Age;

Got 1 rows (time spent 1762/2321 us)

RETRIEVE ALL PROPERTIES ON A VERTEX OR AN EDGE
Use the properties() function to retrieve all properties on a vertex or an edge.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) RETURN properties(v2);
|
|
|

Got 3 rows (time spent 2943/3541 us)

RETRIEVE EDGE TYPES

Use the type() function to retrieve the types of the matched edges.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[e]->() RETURN DISTINCT type(e);

Got 3 rows (time spent 3776/4660 us)

RETRIEVE PATHS

Use RETURN <path_name> to retrieve all the information of the matched paths.

(v:player{name:"Tim Duncan"})-[*3]->() RETURN p;

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@ {degree: 903}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:serve@0 {end_year: 2019, start_year: 2015}]->("team204" :team{name: "Spurs"})> |
—_—

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@® {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:serve@® {end_year: 2015, start_year: 2006}]->("team203" :team{name: "Trail Blazers"})> |

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@® {degree: 90}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})-[:follow@0 {degree: 75}]->("player101" :player{age: 36, name: "Tony Parker"})> |

RETRIEVE VERTICES IN A PATH

Use the nodes() function to retrieve all vertices in a path.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) RETURN nodes(p);

g +
| nodes(p) |
B T T T T T b LT I =TT e L T +
| [("player1e0" :star{} :player{age: 42, name: "Tim Duncan"}), ("player204" :team{name: "Spurs"})] |
e +

| [("player10e" :star{} :player{age: 42, name: "Tim Duncan"}), ("player101" :player{name: "Tony Parker", age: 36})] |

-113/290 - 2021 Vesoft Inc.

4.6.1 MATCH

Got 3 rows (time spent 2529/3128 us)

RETRIEVE EDGES IN A PATH
Use the relationships() function to retrieve all edges in a path.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[]->(v2) RETURN relationships(p);

B T Tl T L LT T T L e +
| relationships(p) |
e S S S St +
| [[:follow "player100"->"player101" @0 {degree: 95}]] |
B T Tl T L LT T T L e +
| [[:follow "player100"->"player125" @0 {degree: 95}]] |
e S S S St +
| [[:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}]] |
B T Tl T L LT T T L e +

Got 3 rows (time spent 2715/3363 us)
RETRIEVE PATH LENGTH
Use the length() function to retrieve the length of a path.

nebula> MATCH p=(v:player{name:"Tim Duncan"})-[*..2]->(v2) \
RETURN p AS Paths, length(p) AS Length;

drmococococccooococooccoSScoSScoSSco-ScoooCoooSccoSScoSScoSocosSsososooo focococao +
| Paths | Length |

= tommeanan +

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:serve@® {end_year: 2018,
start_year: 2002}]->("team204" :team{name: "Spurs"})> | 2 |

drmscosocococooosooooocoSScoSScSSSSoSSSoSoSSooCScoSScoSScoSScosSsososooo fococo=os +

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player125" :player{age: 41, name: "Manu Ginobili"})-[:follow@0 {degree: 90}]-
>("player100" :player{age: 42, name: "Tim Duncan"})> | 2 |

drmocosococccococooooocoSScoSScoSSco-SCoooCoooCccoSScoSScosocosSoososooo focococoo +

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@ {end_year: 2019,
start_year: 2018}]->("team215" :team{name: "Hornets"})> | 2 |

B e T L T e e e e e frocomomoo +
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:serve@® {end_year: 2018,
start_year: 1999}]->("team204" :team{name: "Spurs"})> | 2 |

----------------------------- Fommmmeaat
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@ {degree: 953}]-
>("player125" :player{age: 41, name: "Manu Ginobili"})> | 2 |
+-- seodfococosoedb

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@ {degree: 903}]-
>("player102" :player{age: 33, name: "LaMarcus Aldridge"})> | 2 |

drmocosococccococooooocoSScoSScoSSco-SCoooCoooCccoSScoSScosocosSoososooo focococoo +

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@® {degree: 95}]->("player101" :player{age: 36, name: "Tony Parker"})-[:follow@® {degree: 95}]-
>("player100" :player{age: 42, name: "Tim Duncan"})> | 2 |

B e T L T e e e e e frocomomoo +
| <("player100" :player{age: 42, name: "Tim Duncan"})-[:serve@d {end_year: 2016, start_year: 1997}]->("team204" :team{name:
"Spurs"})> | 1 |

B e T B e +

| <("player100" :player{age: 42, name: "Tim Duncan"})-[:follow@0® {degree: 95}]->("player125" :player{age: 41, name: "Manu
Ginobili"})> | 1 |

B T e T G L focososmos +

Last update: April 22, 2021

-114/290 - 2021 Vesoft Inc.

4.6.2 LOOKUP

4.6.2 LOOKUP

The Lookur statement retrieves data based on indexes.
You can use Lookup for the following purposes:

» Search for the specific data based on conditions defined by the wHERe clause.
« List vertices with a tag: retrieve the VID of all vertices with a tag.
» List edges with an edge type: retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges with an edge type.

* Count the number of vertices or edges with a tag or an edge type.

OpenCypher compatibility

This page applies to nGQL extensions only.

Prerequisites

Before using the Lookup statement, make sure that relative indexes are created. For how to create indexes, see CREATE INDEX.

Syntax

LOOKUP ON {<vertex_tag> | <edge_type>} [WHERE <expression> [AND <expression> ...]] [YIELD <return_list>]

<return_list>
<prop_name> [AS <col alias>] [, <prop_name> [AS <prop_alias>] ...]

* The wHERe clause filters data with the specified conditions. Both anb and or are supported between different expressions. For
more information, see WHERE.
* The YIELD clause specifies the results to be returned and the format of the results.
e If there is a wHERE clause butno YIELD clause:
e The Vertex ID is returned when Lookur a tag.

* The source vertex ID, destination vertex ID, and rank of the edge is returned when Lookup an edge type.

Limitations of using WHERE in LOOKUP
The wHERE clause in a Lookup statement does not support the following operations:

e $- and $n.

 In relational expressions, expressions with field names on both sides of the operator are not supported, such as
tagName.propl> tagName.prop2 .

* Nested AliasProp expressions in operation expressions and function expressions are not supported.
* Expressions that match string-type index, such as starts with ends with contains.

* The orR and xorR operations are not supported.

Retrieve Vertices
The following example returns vertices whose name is Tony parker and tagged with player.

nebula> CREATE TAG INDEX index_player ON player(name(30), age);

nebula> REBUILD TAG INDEX index_player;

nebula> LOOKUP ON player WHERE player.name == "Tony Parker";

- 115/290 - 2021 Vesoft Inc.

4.6.2 LOOKUP

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
YIELD player.name, player.age;

| VertexID | player.name | player.age |

nebula> LOOKUP ON player WHERE player.name == "Kobe Bryant" YIELD player.name AS name \
| GO FROM $-.VertexID OVER serve \
YIELD $-.name, serve.start_year, serve.end_year, $$.team.name;

| $-.name | serve.start_year | serve.end_year | $$.team.name |

| Kobe Bryant | 1996 | 2016 | Lakers |

Retrieve Edges
The following example returns edges whose degree is 90 and the edge typeis follow.

nebula> CREATE EDGE INDEX index_follow ON follow(degree);

nebula> REBUILD EDGE INDEX index_follow;

4ecccccccnanaa +
| New Job Id |
droscosocosass +
| 62 |
4ecccccccnanaa +

nebula> LOOKUP ON follow WHERE follow.degree == 90;

| SrcvIiD | DstVID | Ranking |

nebula> LOOKUP ON follow WHERE follow.degree == 90 YIELD follow.degree;

| SrcvIiD | DstVID | Ranking | follow.degree |

nebula> LOOKUP ON follow WHERE follow.degree == 60 YIELD follow.degree AS Degree \
| GO FROM $-.DstVID OVER serve \
YIELD $-.DstVID, serve.start_year, serve.end_year, $$.team.name;

| $-.DstVID | serve.start_year | serve.end_year | $$.team.name |

105	2010	2018	spurs
105	2009	2010	cavaliers
105	2018	2019	Raptors

List vertices or edges with a tag or an edge type
To list vertices or edges with a tag or an edge type, at least one index must exist on the tag or the edge type, or its property.

For example, if there is a player tag with a name property and an age property, to retrieve the VID of all vertices tagged with
player , there has to be an index on the player tag itself, the name property, or the age property.

The following example shows how to retrieve the VID of all vertices tagged with player .

nebula> CREATE TAG player(name string,age int);
Execution succeeded (time spent 3235/3865 us)

nebula> CREATE TAG INDEX player_index on player();
Execution succeeded (time spent 3486/4124 us)

nebula> REBUILD TAG INDEX player_index;

4ecccccccnanaa +
| New Job Id |
droscosocosass +
| 66 |
4ecccccccnanaa +

-116/290 - 2021 Vesoft Inc.

4.6.2 LOOKUP

nebula> INSERT VERTEX player(name,age) VALUES "player100":("Tim Duncan", 42), "player1e1":("Tony Parker", 36);
Execution succeeded (time spent 1695/2268 us)

nebula> LOOKUP ON player;

Got 2 rows (time spent 1514/2070 us)

The following example shows how to retrieve the source Vertex IDs, destination vertex IDs, and ranks of all edges of the like edge

type.

nebula)> CREATE EDGE like(likeness int);
Execution succeeded (time spent 3710/4483 us)

nebula)> CREATE EDGE INDEX like_index on like();
Execution succeeded (time spent 3422/4026 us)

nebula> REBUILD EDGE INDEX like_index;

4ecccccccnanaa +
| New Job Id |
droscosocosass +
| 88 |
4ecccccccnanaa +

nebula)> INSERT EDGE like(likeness) values "player100"->"player101":(95);
Execution succeeded (time spent 1638/2351 us)

nebula)> LOOKUP ON like;

drmscosasosozas drmmcoss=ooo frocococoso=ooo +
| _src | _ranking | _dst |
[T S [T EpRpupp +
| "player100" | O | "playerie1" |
drmscosasosozas drmmcoss=ooo frocococoso=ooo +

Got 1 rows (time spent 1163/1748 us)

Count the numbers of vertices or edges
The following example shows how to count the number of vertices tagged with player and edges of the like edge type.

nebula> LOOKUP ON player | YIELD COUNT(*) AS Player_Number;

dboscooooosoooooo +
| Player_Number |
droscosocosososas +
|2 |
dboscooooosoooooo +

Got 1 rows (time spent 1158/1864 us)

nebula> LOOKUP ON like | YIELD COUNT(*) AS Like_Number;

dboocoooooooeao +
| Like_Number |
drmscosososo=as +
[|
dboocoooooooeao +

Got 1 rows (time spent 1190/1970 us)

Last update: May 20, 2021

-117/290 - 2021 Vesoft Inc.

4.6.3 GO

4.6.3 GO

OpenCypher compatibility

This page applies to nGQL extensions only.

Syntax

GO [[<M> TO] <N> STEPS] FROM <vertex_list>

OVER <edge_type list> [{REVERSELY | BIDIRECT}]

[WHERE <expression> [{AND | OR} expression ...])]
[YIELD [DISTINCT] <return_list>]

[| ORDER BY <expression> [{ASC | DESC}]]

[| LIMIT [<offset_value>,] <number_rows>]

GO [[<M> TO] <N> STEPS] FROM <vertex_list>

OVER <edge_type_list> [{REVERSELY | BIDIRECT}]

[WHERE <conditions>]

[| GROUP BY {col_name | expr | position} YIELD <col_name>]

<vertex_list> ::=

<vid> [, <vid> ...]

<edge_type_list> ::=
edge_type [, edge_type ...]

|

<return_list> ::=

<col_name> [AS <col_alias>] [, <col_name> [AS <col_alias>] ...]

Go traverses in a graph with specified filters and returns results.

<N> STEPS specifies the hop number. If not specified, the default value for N is one. When n is zero, Nebula Graph does not
traverse any edges and returns nothing.

M TO N STEPS traverses from M to N hops. When M is zero, the output is the same as that of m is one. That is, the output of o
0 70 2 and GO 1 TO 2 are the same.

<vertex_list> is a list of vertex IDs separated by commas, or a special place holder $-.id. For more information, see Pipe.
<edge_type_list>is a list of edge types which the traversal can go through.

REVERSELY | BIDIRECT defines the direction of the query. By default, co statements searches for outgoing edges. If REVERSELY is
set, Go searches for incoming edges. If BIDIRECT is set, Go searches for edges of both directions.

WHERE <expression> specifies the traversal filters. You can use wHere for the source vertices, the edges, and the destination
vertices. You can use wHERE together with Anp, or, and NoT. For more information, see WHERE.

/" Note
There are some restrictions for the wHERe clause when you traverse along with multiple edge types. For example, WHERE

edgel.propl > edge2.prop2 is not supported.

YIELD [DISTINCT] <return_list> specifies the desired output. For more information, see YIELD. When not specified, the
destination vertex IDs are returned by default.

ORDER BY sorts the outputs with the specified orders. For more information, see ORDER BY.

/" Note

When the sorting method is not specified, the output orders can be different for the same query.

LIMIT limits the row numbers for the output. For more information, see LIMIT.

GROUP BY groups outputs into subgroups based on values of the specified properties. For more information, see GROUP BY.

Examples

- 118/2 90 - 2021 Vesoft Inc.

// Returns teams that player 102 serves.
nebula> GO FROM "player102" OVER serve;

droscosocosass +
| serve._dst |
[T — +
| "team203" |
droscosocosass +
| "team204" |
[T — +

// Returns the 2 hop friends of the player 102.
nebula> GO 2 STEPS FROM "player102" OVER follow;

// Adds a filter for the traversal then duplicates the output.
nebula> GO FROM "player100", "player102" OVER serve \
WHERE serve.start_year > 1995 \

YIELD DISTINCT $$.team.name AS team_name, serve.start_year AS start_year, $A.player.name AS player_name;

B T T e dromcomooosooo fhococooosooooosooosooo +
| team_name | start_year | player_name |
drmscosacosssoso=as dromcosocosass frocosscococosocososooo +
| "Spurs" | 1997 | "Tim Duncan" |
dbmscooooooosooosoo dromcomooooooo fhmcomooomooooosooosooo +
| "Trail Blazers" | 2006 | "LaMarcus Aldridge" |
drmscosacosssoso=as dromcosocosass frocosscococosocososooo +
| "Spurs" | 2015 | "LaMarcus Aldridge" |
dbmscooooooosooosoo dromcomooooooo fhmcomooomooooosooosooo +

// Traverses along with multiple edge types.

nebula> GO FROM "player100" OVER follow, serve YIELD follow.degree, serve.start_year;
dboocooocosoooooo dhoocomooososooosaoo +

| follow.degree | serve.start_year |

o ————m Fommm e n +
| 95 | _EMPTY__ |
[TR O +
| 95 | __EMPTY, |
o ————m Fommm e n +
| __EMPTY__ | 1997 |
[TR O +

Nebula Graph displays different properties by columns. If there is no value for a property, the outputis _ EmpTY__ .

// Returns player 100.
nebula> GO FROM "player100" OVER follow REVERSELY YIELD follow._dst AS destination;

| "player101"
+-
| "player102" |
4

-+

oo

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v)<-[e:follow]- (v2) WHERE id(v) player100' RETURN id(v2) AS destination;

// Finds player 100's friends and the teams that they serve.
nebula> GO FROM '"player100" OVER follow REVERSELY \

YIELD follow._ dst AS id | \

GO FROM $-.id OVER serve \

WHERE $7.player.age > 20 \

YIELD $/.player.name AS FriendOf, $$.team.name AS Team;

B e T +
| Friendof | Team |
droscosocososososososas drmscosososocososas +
| "Tony Parker" | "Spurs" |
B e T +
| "Tony Parker" | "Hornets" |
droscosocososososososas drmscosososocososas +

// This MATCH query shares the same semantics with the preceding GO query.

nebula> MATCH (v)<-[e:follow]- (v2)-[e2:serve]->(v3) WHERE id(v) == 'player100' RETURN v2.name AS FriendOf, v3.name AS Team;

-119/290 -

4.6.3 GO

2021 Vesoft Inc.

4.6.3 GO

Fommmmemecmeeceeaaas B - +
| Friendof | Team |
drmscosocososooosooosas dhmocosocosccososas +
| "Tony Parker" | "Spurs" |
Fommmmemecmeeceeaaas B - +
| "Tony Parker" | "Hornets" |
drmscocococosooosooosas dhmocosscosccososas +

nebula> GO FROM "player102" OVER follow BIDIRECT YIELD follow._dst AS both;

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v) -[e:follow]-(v2) WHERE id(v)== "player102" RETURN id(v2) AS both;

i

// This MATCH query shares the same semantics with the preceding GO query.
nebula> MATCH (v) -[e:follow*1..2]->(v2) WHERE id(v) == "player100" RETURN id(v2) AS destination;

| "player102" |

+ommm -t

nebula> GO 2 STEPS FROM "player100" OVER follow \
YIELD follow._src AS src, follow._dst AS dst, $$.player.age AS age \
| GROUP BY $-.dst YIELD $-.dst AS dst, collect_set($-.src) AS src, collect($-.age) AS age

dboocoooooooeao dboocomooooooooomooosoooooea0s fhmcomooosoo +
| dst | src | age |
drmscosososo=as drmscosscosccococosocccacssaos frocosocosas +
| "player125" | ["player101"] | [41] |
dboocoooooooeao dboocomooooooooomooosoooooea0s fhmcomooosoo +
| "player100" | ["player125", "player101"] | [42, 42] |
drmscosososo=as drmscosscosccococosocccacssaos frocosocosas +
| "player102" | ["player101"] | [33] |
dboocoooooooeao dboocomooooooooomooosoooooea0s fhmcomooosoo +

nebula> $a = GO FROM "player100" OVER follow YIELD follow._src AS src, follow._dst AS dst; \
GO 2 STEPS FROM $a.dst OVER follow YIELD $a.src AS src, $a.dst, follow._src, follow._dst \

| ORDER BY $-.src | OFFSET 1 LIMIT 2;

dhmocososooosas dhmococococosas dhmmcosocooo=as dhmmcococooo=as +

| src | $a.dst | follow._src | follow._dst |

Fommmmemeeaaas Fommmmemeeaaas B - Focmmmemeeaaas +

| "player100" | "player125" | "player100" | "player101" |

dhmocosasooosas dhmococosocosas dhmmcococooo=as dhmmcocococo=as +

| "player100" | "player101" | "player100" | "player125" |

Fommmmemeeaaas Fommmmemeeaaas B - Focmmmemeeaaas +

Last update: April 22, 2021

- 120/290 - 2021 Vesoft Inc.

4.6.4 FETCH

4.6.4 FETCH

The FeTcH statement retrieves the properties of the specified vertices or edges.

OpenCypher Compatibility

This topic applies to nGQL extensions only.

Fetch vertex properties
SYNTAX

FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
[YIELD <output>]

The descriptions of the fields are as follows.

Field Description

tag_name The name of the tag.

g Represents all the tags in the current graph space.

vid The vertex ID.

output Specifies the information to be returned. For more information, see YIELD. If there is no YIELD clause,

FETCH returns all the matched information.

FETCH VERTEX PROPERTIES BY ONE TAG

Specify a tag in the FETCH statement to fetch the vertex properties by that tag.

nebula> FETCH PROP ON player "player100";

s e e e e e L +
| vertices_ |
B T T T T T T e e E T +
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
s e e e e e L +

Got 1 rows (time spent 913/1629 us)
FETCH SPECIFIC PROPERTIES OF A VERTEX
Use a YIELD clause to specify the properties to be returned.

nebula> FETCH PROP ON player "player100" \
YIELD player.name;

Fommmmemeeaaas B +
| VertexID | player.name |
dhmscocosooosas dhmocososososooo +
| "player100" | "Tim Duncan" |
Fommmmemeeaaas B +

Got 1 rows (time spent 2933/5931 us)

FETCH PROPERTIES OF MULTIPLE VERTICES

Specify multiple VIDs (vertex IDs) to fetch properties of multiple vertices. Separate the VIDs with commas.

nebula> FETCH PROP ON player "player101", "player102", "player103";

S PSS e S +
| vertices_ |
B e T = L e T +
| ("player101" :player{age: 36, name: "Tony Parker"}) |
S PSS e S +
| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |
e T = T +
| ("player103" :player{age: 32, name: "Rudy Gay"}) |
S PSS e S +

Got 3 rows (time spent 1786/3135 us)

- 121/290 - 2021 Vesoft Inc.

4.6.4 FETCH

FETCH VERTEX PROPERTIES BY MULTIPLE TAGS

Specify multiple tags in the FeTcH statement to fetch the vertex properties by the tags. Separate the tags with commas.

// Create a new tag ti.
nebula> CREATE TAG tl(a string, b int);
Execution succeeded (time spent 4153/5296 us)

// Attach ti1 to vertex "player100".
nebula> INSERT VERTEX tl(a, b) VALUE "player100":("Hello", 100);
Execution succeeded (time spent 1703/2321 us)

// Fetch the properties of vertex "player100" by the tags player and ti.
nebula> FETCH PROP ON player, t1 "player100";

S SR S +
| vertices_ |
B L e T T e e T +
| ("player100" :ti{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
S SR S +

Got 1 rows (time spent 1788/2560 us)

You can combine multiple tags with multiple VIDs in a FeTcH statement.

nebula> FETCH PROP ON player, tl1 "player100", "player103";

Got 2 rows (time spent 2971/3748 us)

FETCH VERTEX PROPERTIES BY ALL TAGS

Set an asterisk symbol (*) to fetch properties by all tags in the current graph space.

nebula> FETCH PROP ON * "player100", "player106", "team200";

B S S +
| vertices_ |
B T = e T T T T = e T +
| ("player106" :player{age: 25, name: "Kyle Anderson"}) |
B S S +
| ("team200" :team{name: "Warriors"}) |
B T = e T T T T = e T +
| ("player100" :ti{a: "Hello", b: 100} :player{age: 42, name: "Tim Duncan"}) |
B S S +

Got 3 rows (time spent 2620/4863 us)

Fetch edge properties
SYNTAX

FETCH PROP ON <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <src_vid> -> <dst_vid> ...]
[YIELD <output>]

The descriptions of the fields are as follows.

Field Description

edge_type The name of the edge type.

src_vid The VID of the source vertex. It specifies the start of an edge.

dst_vid The VID of the destination vertex. It specifies the end of an edge.

rank The rank of the edge. It is optional and defaults to 0. It distinguishes an edge from other edges with the

same edge type, source vertex, and destination vertex.

output Specifies the information to be returned. For more information, see YIELD . If there is no YIELD clause,
FETCH returns all the matched information.

FETCH ALL PROPERTIES OF AN EDGE

The following statement fetches all the properties of the serve edge that connects vertex "playeriee" and vertex "team204" .

- 122/290 - 2021 Vesoft Inc.

4.6.4 FETCH

nebula> FETCH PROP ON serve "player100" -> "team204";

B T T T T T T T T T T T T ST +
| edges |
drmscosocososooocooooScoSScosSco-oSoCoCoooSScoSScaSScosSsososososooososao +
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
B T T T T T T T T T T T T e e S E T +

Got 1 rows (time spent 1048/1632 us)

FETCH SPECIFIC PROPERTIES OF AN EDGE

Use a YIELD clause to fetch specific properties of an edge.

nebula> FETCH PROP ON serve '"player100" -> "team204" YIELD serve.start_year;

D T ——_— 4oceccccccann Feccccccccaaaa Fecccccccccccaaaaan +
| serve._src | serve._dst | serve._rank | serve.start_year |
drmscosasosozas droscosocosass frocosocosozooo frmcococococososseas +
| "player100" | "team204" | © | 1997 |
D T ——_— 4oceccccccann Feccccccccaaaa Fecccccccccccaaaaan +

Got 1 rows (time spent 1834/2863 us)

FETCH PROPERTIES OF MULTIPLE EDGES

Specify multiple edge patterns (<src_vid> -> <dst_vid>[@<rank>]) to fetch properties of multiple edges. Separate the edge patterns

with commas.

nebula> FETCH PROP ON serve "player100" -> "team204", "player133" -> "team202";

Got 2 rows (time spent 1466/2441 us)

Fetch properties based on edge rank

If there are multiple edges that have different ranks but the same edge type, source vertex, destination vertex, specify the rank to

fetch the properties on the correct edge.

// Insert edges with different ranks and property values.
nebula> insert edge serve(start_year,end_year) \

values "player100"->"team204"@1: (1998, 2017);
Execution succeeded (time spent 1679/3192 us)

nebula> insert edge serve(start_year,end_year) \
values "player100"->"team204"@2: (1990, 2018);
Execution succeeded (time spent 1091/1608 us)

// By default, FETCH returns the edge with rank 0.
nebula> FETCH PROP ON serve "player100" -> "team204";

B L T T T T T T T e +
| edges. |
B S S S S +
| [:serve "player100"->"team204" @0 {end_year: 2016, start_year: 1997}] |
B L T T T T T T T e +

Got 1 rows (time spent 2031/2739 us)

// To fetch on an edge with rank other than ©, set its rank in FETCH.
nebula> FETCH PROP ON serve "player100" -> "team204"@1;

Got 1 rows (time spent 1049/1711 us)

Use FETCH in composite queries

A common way to use FETCH is to combine it with nGQL extensions such as GO. The following statement returns the degree values

of outgoing follow edges that start from vertex "playeriei".

nebula> GO FROM "player101" OVER follow \

YIELD follow._src AS s, follow. dst AS d | \

FETCH PROP ON follow $-.s -> $-.d \

YIELD follow.degree;
TR dheocoooooooeos B fhocomooomooosooo +
| follow._src | follow._dst | follow._ rank | follow.degree |
drmscosasososas drmscosasoso=as drmscosasososaoo focosscosscosoes +

-123/290 - 2021 Vesoft Inc.

4.6.4 FETCH

| "player101" | "player100" | © | 95 |
4o S O Feccccccccccaaaa +
| "player101" | "player102" | @ | 90 |
drmscosocococosiicasoscoosssas drmscosasoso=ooo frocosccosocosoes +
| "player101" | "player125" | © | 95 |
4o S O +

Got 3 rows (time spent 3047/3880 us)

Or you can use user-defined variables to construct similar queries.

nebula> $var = GO FROM "player101" OVER follow \
YIELD follow. src AS s, follow. dst AS d; \
FETCH PROP ON follow $var.s -> $var.d \
YIELD follow.degree;

| "playerie1"
O
| "player101"

Got 3 rows (time spent 1891/2509 us)

For more information about composite queries, see Composite queries (clause structure).

Last update: March 29, 2021

-124/290 - 2021 Vesoft Inc.

4.6.5 UNWIND

The unwIND statement splits a list into separated rows.

UNWIND can function as an individual statement or a clause in a statement.

Syntax

UNWIND <list> AS <alias> <RETURN clause>

Splita list

The following example splits the list [1,2,3] into three rows.

nebula) [basketballplayer]> UNWIND [1,2,3] AS n RETURN n;
R
In

+o- -t
1]
oot
2]
+o- -t
I3
oot

Got 3 rows (time spent 806/2126 us)

Return a list with distinct items

Use unwInD and WITH DISTINCT together to return a list with distinct items.

EXAMPLE 1

The following statement:

W N

. Splits the list [1,1,2,2,3,3] into rows.
. Removes duplicated rows.
. Sorts the rows.

. Transforms the rows to a list.

nebula> WITH [1,1,2,2,3,3] AS n \
UNWIND n AS r \
WITH DISTINCT r AS r \
ORDER BY r \
RETURN collect(r);

Got 1 rows (time spent 307/1043 us)

Example 2

The following statement:

1.

Outputs the vertices on the matched path into a list.

2. Splits the list into rows.

3. Removes duplicated rows.

4. Transforms the rows to a list.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--(v2) \
WITH nodes(p) AS n \
UNWIND n AS r \
WITH DISTINCT r AS r \
RETURN collect(r);

-125/290 -

4.6.5 UNWIND

2021 Vesoft Inc.

| COLLECT(r)

| [("player100" :player{age: 42, name: "Tim Duncan"}), ("player10l" :player{age: 36, name: "Tony Parker"}),
("team204" :team{name: "Spurs"}), ("player102" :player{age: 33, name: "LaMarcus Aldridge"}),

("player125" :player{age: 41, name: "Manu Ginobili"}), ("player104" :player{age: 32, name: "Marco Belinelli"}),
("player144" :player{age: 47, name: "Shaquile O'Neal"}), ("player105" :player{age: 31, name: "Danny Green"}),
("player113" :player{age: 29, name: "Dejounte Murray"}), ("player107" :player{age: 32, name: "Aron Baynes"}),
("player109" :player{age: 34, name: "Tiago Splitter"}), ("player108" :player{age: 36, name: "Boris Diaw"})] |

Got 1 rows (time spent 6157/6833 us)

4.6.5 UNWIND

Last update: April 13, 2021

-126/290 -

2021 Vesoft Inc.

4.6.6 SHOW

4.6.6 SHOW
SHOW CHARSET
The sHow CHARSET statement shows the available character sets.

Currently available types are utf8 and utf8mb4. The default charset type is utf8. Nebula Graph extends the uft8 to support four-

byte characters. Therefore utf8 and utf8mb4 are equivalent.
SYNTAX
SHOW CHARSET
EXAMPLE

nebula> SHOW CHARSET;

B e e e dhmocomooo +
| Charset | Description | Default collation | Maxlen |
£ S C S O L T +
| "utf8" | "UTF-8 Unicode" | "utf8_bin" 4 |
B e e e dhmocomooo +

Got 1 rows (time spent 527/1269 us)

The output of sHow CHARSET is explained as follows:

Column Description

Charset The character set name.

Description A description of the character set.

Default collation The default collation for the character set.

Maxlen The maximum number of bytes required to store one character.

Last update: December 31, 2020

- 127/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW COLLATION
The sHow coLLATION statement shows the collations supported by Nebula Graph.

Currently available types are: utf8 bin, utf8 general ci, utf8mb4 bin, and utf8mb4 general ci. When the character set is utf8,
the default collate is utf8_bin; when the character set is utf8mb4, the default collate is utf8mb4 bin. Both utf8 general ciand
utf8mb4 general ciare case-insensitive.

SYNTAX
SHOW COLLATION
EXAMPLE

nebula> SHOW COLLATION;

droscomooomooo dhocomomooo +
| Collation | Charset |
[TR tommmmmaen +
| "utf8_bin" | "utfs8" |
droscomooomooo dhocomomooo +

Got 1 rows (time spent 413/1034 us)

The output of sHow CHARSET is described as follows:

Column Description
Collation The collation name.
Charset The name of the character set with which the collation is associated.

Last update: December 31, 2020

- 128/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW CREATE SPACE

The sHow CREATE SPACE statement shows the basic information of the specified graph space, such as the nGQL for creating the
graph space, the partition number, the replica number.

For details about the graph space information, see CREATE SPACE.
SYNTAX
SHOW CREATE SPACE <space_name>
EXAMPLE

nebula> SHOW CREATE SPACE basketballplayer;

R e e T et TP +
| Space | Create Space |
drmscosocosocasosscaos B T L T T LT T T - LT T e - LT T T - I T e T T +
| "basketballplayer" | "CREATE SPACE "basketballplayer™ (partition_num = 10, replica_factor = 1, charset = utf8, collate = utf8_bin, vid_type = FIXED_STRING(32))" |
R e e T et TP +

Got 1 rows (time spent 1747/2562 us)

Last update: April 13, 2021

-129/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW CREATE TAG/EDGE

The sHow CREATE TAG Or SHOW CREATE EDGE statement shows the basic information of the specified tag or edge type.
For details about the tag or edge type information, see CREATE TAG and CREATE EDGE.
SYNTAX

SHOW CREATE {TAG <tag_name> | EDGE <edge_name>}

EXAMPLE

nebula> SHOW CREATE TAG player;
drmmcoss=ooo fococscococosocccooscosscososososooo +
| Tag | Create Tag |
droocososooo fhsco-ooooocoooooooaCoCcooooosooooos oo +
| "player" | "CREATE TAG “player™ (|
“name” string NULL, |
“age’ int64 NULL |
) ttl duration = 0, ttl col = "" |

Last update: March 29, 2021

-130/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW HOSTS
The sHow HosTs statement lists graph/storage/meta hosts registered by the Meta Service.
SYNTAX

SHOW HOSTS [GRAPH/STORAGE/META]

EXAMPLE

nebula> SHOW HOSTS;

drmscosososo=as rooco=as drmmcosc=ooo frocosocosocosas fmmcosscocccococooocccocscasscosaes ftocosococscocccococosoccoossoos +
Status | Leader count | Leader distribution | Partition distribution |
- --- - +

| "docs:5, basketballplayer:3" |

| Host | Port |

"ONLINE" | 8

"docs:5, basketballplayer:3"

Got 3 rows (time spent 866/1411 us)

nebula> SHOW HOSTS GRAPH;

| "12.16.2.3" | 9669 | "ONLINE"

nebula> SHOW HOSTS STORAGE;

| "12.16.2.3" | 9779 | "ONLINE"

nebula> SHOW HOSTS META;

"META" | "761f22b" |

Last update: April 13, 2021

-131/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW INDEX STATUS

The sHow INDEX STATUS statement shows the status of jobs that rebuild native indexes. You can find out whether a native index is

successfully rebuilt or not.
SYNTAX
SHOW {TAG | EDGE} INDEX STATUS
EXAMPLE

nebula> SHOW TAG INDEX STATUS;

Fommmmmm e B T +
| Name | Index Status |
dioscosocosocososs fhocooocosocosas +
| "like_index_©" | "FINISHED" |
R R T +
| "like1" | "FINISHED" |
dioscosocosocososs fhocooocosocosas +

Got 2 rows (time spent 1456/2122 us)

RELATED TOPICS

¢ Job manager and the JOB statements

* REBUILD NATIVE INDEX

Last update: January 22, 2021

-132/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW INDEXES

The sHow INDEXES statement shows the names of existing native indexes.

SYNTAX
SHOW {TAG | EDGE} INDEXES
EXAMPLE

nebula> SHOW TAG INDEXES;

drmscosacoscsaso=aoo +
| Names |
B T T T +
| "play_age 0" |
drmscosacoscsaso=aoo +
| "player_index_0" |
dbmscooooooosooosaoo +
| "player_index_1" |
drmscosacoscsaso=aoo +
| "star" |
B T T T +

Got 4 rows (time spent 1450/2087 us)

Last update: December 31, 2020

- 133/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW PARTS

The sHow PARTS statement shows the information of a specified partition or all partitions in a graph space.

SYNTAX
SHOW PARTS [<part_id>]
EXAMPLES
Show the information of all partitions:

nebula> SHOW PARTS;

drmscosasosozaoo fococosococasooscoos frocosscocososocscoos focosocs +
| Partition ID | Leader | Peers | Losts |
dboocooooooosooo fhococooooocooooooaoo fhocomooooocooooooaos fhmcomooo +
| 1 | "storaged1:44500" | "storaged1:44500" | "" |
drmscosasosozaoo fococosococasooscoos frocosscocososocscoos focosocs +
| 2 | "storaged2:44500" | "storaged2:44500" | "" |
dboocooooooosooo fhococooooocooooooaoo fhocomooooocooooooaos fhmcomooo +
| 3 | "storaged0:44500" | "storaged0:44500" | "" |
frocosscocososocscoos focosocs +
|

"storaged1:44500" |

"storaged2:44500" | "" |

|

frocosscocososocscoos focosocs +
| 6 | "storaged0:44500" | "storaged®:44500" | "" |
dboocooooooosooo fhococooooocooooooaoo fhocomooooocooooooaos fhmcomooo +
| 7 | "storaged1:44500" | "storaged1:44500" | "" |
drmscosasosozaoo fococosococasooscoos frocosscocososocscoos focosocs +
| 8 | "storaged2:44500" | "storaged2:44500" | "" |
dboocooooooosooo fhococooooocooooooaoo fhocomooooocooooooaos fhmcomooo +
| 9 | "storaged0:44500" | "storaged0:44500" | "" |

| "storaged1:44500" | "storagedl:44500" |
dboocooooooosooo fhococooooocooooooaoo fhocomooooocooooooaos fhmcomooo +
Got 10 rows (time spent 2317/3512 us)

Show the information of partition 1:

nebula> SHOW PARTS 1;

drescosasososaoo s T focosococosooocscoos focosocs +
| Partition ID | Leader | Peers | Losts |
B R e] e fhocomooo +
| 1 | "storaged1:44500" | "storagedl:44500" | "" |
drescosasososaoo s T focosococosooocscoos focosocs +

Got 1 rows (time spent 1055/1678 us)

Last update: December 31, 2020

-134/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW ROLES
The sHow ROLES statement shows the roles that are assigned to a user account.
The return message differs according to the role of the user who is running this statement:

e If the userisa Gob or ApmIN and is granted access to the specified graph space, Nebula Graph shows all roles in this graph
space except for Gop.

e If the userisa pBA, USER, or GUEST and is granted access to the specified graph space, Nebula Graph shows the user's own
role in this graph space.

e If the user doesn't have a role, permissionError is returned.

For more information about user roles, see Roles and privileges.

SYNTAX
SHOW ROLES IN <space_name>

EXAMPLE

nebula> SHOW ROLES in basketballplayer;
drmmsoso=as droscosocosas +
| Account | Role Type |
droocomosoo dbomcomoooooo +
| "useri" | "ADMIN" |

Got 1 rows (time spent 789/1594 us)

Last update: April 13, 2021

- 135/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW SNAPSHOTS

The sHow SNAPSHOTS statement shows all the snapshots.

For how to create a snapshot and backup data, see Snapshot.
ROLE REQUIREMENT

Only the root user who has the GOD role can use this statement.

SYNTAX
SHOW SNAPSHOTS
EXAMPLE

nebula> SHOW SNAPSHOTS;

e Ay [TP — e e +
| Name | Status | Hosts |
droscosocosasococosocasoccoooscaos focosccooo fhococococccococosocccocccocscosocosocococococooocoooos +
| "SNAPSHOT_2020_12_16_11_13_55" | "VALID" | "storaged0:9779, storaged1l:9779, storaged2:9779" |
e Ay [TP — e e +
| "SNAPSHOT_2020_12 16_11 14 10" | "VALID" | "storaged0:9779, storaged1l:9779, storaged2:9779" |
droscosocosasococosocasoccoooscaos focosccooo fhococococccococosocccocccocscosocosocococococooocoooos +

Got 2 rows (time spent 762/1434 us)

Last update: March 25, 2021

-136/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW SPACES

The sHow spaces statement shows the graph spaces in Nebula Graph.
For how to create a graph space, sese CREATE SPACE.
SYNTAX

SHOW SPACES

EXAMPLE

nebula> SHOW SPACES;

droscosocososososooosas +
| Name |
B T I +
| "docs" |
droscosocososososooosas +
| "basketballplayer" |
B T I +

Got 2 rows (time spent 968/1893 us)

Last update: April 13, 2021

-137/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW STATS
The sHow STATS statement shows the statistics of the graph space collected by the latest sTATS job.
The statistics list the following information:

e The number of vertices and edges in the graph space
* The number of vertices with each tag

* The number of edges of each edge type
PREREQUISITES

You have successfully run the suBMIT JoB STATS statement in the graph space you want to collect statistics. For more information,
see SUBMIT JOB STATS.

/" Note
The result of the sHow sTATS statement is based on the last executed susMIT JoB STATS statement. If you want to update the result,
run SUBMIT JOB STATS again.
SYNTAX
SHOW STATS
EXAMPLE

nebula> USE basketballplayer;
Execution succeeded (time spent 1075/1646 us)

--Start a “STATS" job.
nebula> SUBMIT JOB STATS;

droscosososass +
| New Job Id |
droocomooosooo +
| 98 |
droscosososass +

Got 1 rows (time spent 2058/2609 us)

--Make sure the job is finished.
nebula> SHOW JOB 98;

[TR Fommmmmemeeeeaas Fommemmeeaeas S F +
Job Id(TaskI ommand (Des atus art Time top Time
b Id(TaskId) | C d(Dest) | Stat st i Stop Ti
S fhocooocscooscooo fhocococcosooo oococococcos fhocococcosooo +
| 98 | "STATS" | "FINISHED" | 1606552675 | 1606552675 |
[TR Fommmmmemeeeeaas Fommemmeeaeas S F +
| o | "storaged2" | "FINISHED" | 1606552675 | 1606552675 |
doocacocococsosos frocccocscooscoco frocococcosooe fpoococococcos frocococcosooo +
|1 | "storagede" | "FINISHED" | 1606552675 | 1606552675 |
[TR Fommmmmemeeeeaas Fommemmeeaeas S F +
| 2 | "storagedl" | "FINISHED" | 1606552675 | 1606552675 |
doocacocococsosos frocccocscooscoco frocococcosooe fpoococococcos frocococcosooo +

Got 4 rows (time spent 1233/1924 us)

--Check the statistics.
nebula> SHOW STATS;

7

------- +

Count |
»»»»»»» +
51 |
------- +
30 |
»»»»»»» +
81 |
------- +
152 |
»»»»»»» +
81 |
------- +
233 |
dbmocomoooooo dhocooooo +

Got 6 rows (time spent 996/1637 us)

Last update: April 22, 2021

-138/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW TAGS/EDGES

The sHow TAGS or sHow EDGES statement shows all tags or edge types in the current graph space.

SYNTAX
SHOW {TAGS | EDGES}
EXAMPLES
Show tags:

nebula> SHOW TAGS;

drmmcoss=ooo +
| Name |
droocososooo +
| "player" |
drmmcoss=ooo +
| "star" |
droocososooo +
| "team" |
drmmcoss=ooo +

Got 3 rows (time spent 1461/2114 us)

Show edge typesi
nebula> SHOW EDGES;
O +
| Name |
drmm=oso=as +
| "like" |
O +
| "serve" |
drmm=oso=as +

Got 2 rows (time spent 1039/1687 us)

Last update: December 31, 2020

-139/290 - 2021 Vesoft Inc.

4.6.6 SHOW

SHOW USERS

The sHow USERs statement shows the user information.

ROLE REQUIREMENT

Only the root user who has the Gop role can use this statement.

SYNTAX
SHOW USERS
EXAMPLE

nebula> SHOW USERS;

Got 2 rows (time spent 964/1691 us)

Last update: December 31, 2020

-140/290 - 2021 Vesoft Inc.

4.7 Clauses and options

4.7 Clauses and options

4.7.1 GROUP BY

OpenCypher Compatibility
This page applies to nGQL extensions only.
Use GrRouP BY in nGQL-extensions ONLY to aggregate data.
OpenCypher uses the count() function to aggregate data.

nebula> MATCH (v:player)<-[:follow]-(:player) RETURN v.name AS Name, count(*) as cnt ORDER BY cnt DESC

droscosscosasosocososaoo frocosocosocosas +
| Name | Follower_Num |
4ececcccccccccccccaaaaa Fecccccccanaaan +
| "Tim Duncan" | 10 |
droscosscosasosocososaoo frocosocosocosas +
| "LeBron James" | 6 |
4ececcccccccccccccaaaaa Fecccccccanaaan +
| "Tony Parker" | 5 |
droscosscosasosocososaoo frocosocosocosas +
| "Manu Ginobili" | 4 |
4ececcccccccccccccaaaaa Fecccccccanaaan +
| "Chris Paul" | 4 |
droscosscosasosocososaoo frocosocosocosas +
| "Tracy McGrady" | 3 |
4ececcccccccccccccaaaaa Fecccccccanaaan +
| "Dwyane Wade" | 3 |
droscosscosasosocososaoo frocosocosocosas +

Syntax

The Group BY clause groups the rows with the same value into summary rows. Then operations such as counting, sorting, and
calculation can be applied.

GrouP BY works after the pipe symbol and before a YIELD clause.

| GROUP BY <var> YIELD <var>, <aggregation_function(var)>

e aggregation function can be avg(), sum(), max(), min(), count(), collect(), std() .

Examples

The following statement finds all the vertices connected directly to vertex "playeriee", groups the result set by player names, and
counts the times that the names show up in the result set.

nebula> GO FROM "player100" \
OVER follow BIDIRECT \
YIELD $$.player.name as Name | \
GROUP BY $-.Name \
YIELD $-.Name as Player, count(*) AS Name_Count;

Fommmmmmmeemeeeeaaas S +
| Player | Name_Count |
droscococososooosooosas droscococosass +
| "Tiago Splitter" | 1 |
Fommmmmmmeemeeeeaaas S +
| "Aron Baynes" | 1 |
droscococososooosooosas droscococosass +
| "Boris Diaw" | 1 |
B R +
| "Manu Ginobili" | 2 |
droscococososooosooosas droscococosass +
| "Dejounte Murray" | 1 |
B R +
| "Danny Green" | 1 |
droscococososooosooosas droscococosass +
| "Tony Parker" | 2 |
B R +
| "Shaquille 0'Neal" | 1 |
droscococososooosooosas droscococosass +
| "LaMarcus Aldridge" | 1 |
B R +

- 141/290 - 2021 Vesoft Inc.

4.7.1 GROUP BY

| "Marco Belinelli" | 1 |
B T docmcmcmeeeaa +

Got 10 rows (time spent 3527/4423 us)

Group and calculate with functions

The following statement finds all the players followed by "playeriee", returns these players as player and the property of the
follow edge as degree . These players are grouped and the sum of their degree values is returned.

nebula> GO FROM "player100" OVER follow YIELD follow._src AS player, follow.degree AS degree | GROUP BY $-.player YIELD sum($-.degree);

e +
| sum($-.degree) |
droscosscosacosass +
| 190 |
- +

Got 1 rows (time spent 2851/3624 us)

For more information about functions, see Functions.

Last update: March 25, 2021

-142/290 - 2021 Vesoft Inc.

4.7.2 LIMIT AND SKIP

4.7.2 LIMIT AND SKIP
The LiviT clause constrains the number of rows in the output.
The Syntax in openCypher and nGQL-extension are different.

* NGQL-extension: A pipe | must be used. And an offset can be ignored.

* OpenCypher style: No pipes are permitted. Use skip to indicate offset.

/" Note

When using LIMIT (in either syntax above), it is important to use an orDER BY clause that constrains the output into a unique order.
Otherwise, you will get an unpredictable subset of the output.

nGQL-extension syntax

In nGQL-extension, LIMIT works the same asin sqL, and must be used with pipe |.The LimMIiT clause accepts one or two
arguments. The values of both arguments must be non-negative integers.

YIELD <var>
[| LIMIT [<offset_value>,] <number_rows>]

e var: The columns or calculations that you wish to sort.
e number rows: It constrains the number of rows to return. For example, LIviT 10 would return the first 10 rows.
« offset value(Optional): It defines from which row to start including the rows in the output. The offset starts from zero.

EXAMPLES

nebula> GO FROM "player100" OVER follow REVERSELY YIELD $$.player.name AS Friend, $$.player.age AS Age | ORDER BY Age,Friend | LIMIT 1, 3;

B T e +
| Friend | Age |
drmscososococaoooocas droscao +
| "Danny Green" | 31 |
B T e +
| "Aron Baynes" | 32 |
drmscososococaoooocas droscao +
| "Marco Belinelli" | 32 |
L —— R +

OpenCypher Syntax

RETURN <var>
[SKIP <offset>]
[LIMIT <number_rows>]

Parameter Description
offset Optional. It specifies the number of rows to be skipped. The offset starts from zero.
number_rows It specifies the number of rows to be returned. It can be a non-negative integer or an expression that

outputs a non-negative integer.
Either offset or number_rows can accept an expression, which value must be a non-negative integer.
\J
7/ Note

Fraction expressions composed of two integers are automatically floored to integers. For example, 8/6 is floored to 1.

- 143/290 - 2021 Vesoft Inc.

4.7.2 LIMIT AND SKIP

EXAMPLES
Return a specific number of rows. To return the top N rows from the result, use LIMIT <N> as follows:

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
ORDER BY Age LIMIT 5;

e e o L +
| Name | Age |
e e e Ao oo +
| "Luka Doncic" | 20 |
e e o L +
| "Ben Simmons" | 22 |
e e Ao oo +
| "Kristaps Porzingis" | 238 |
e e o L +
| "Giannis Antetokounmpo" | 24 |
e e e Ao oo +
| "Kyle Anderson" | 25 |

e e o L +
nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age \
ORDER BY Age LIMIT rand32(5);

drmscosocosocasocscasscosas drmocas +
| Name | Age |
L TR +
| "Luka Doncic" | 20 |
drmscosocosocasocscasscosas drmocas +
| "Ben Simmons" | 22 |
L TR +
| "Kristaps Porzingis" | 23 |
drmscosocosocasocscasscosas drmocas +
| "Giannis Antetokounmpo" | 24 |
L TR +
SKIP-SYNTAX

You can use skip <N> to skip the top N rows from the result and return the rest of the result.

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
RETURN v2.name AS Name, v2.age AS Age \
ORDER BY Age DESC SKIP 1;

B T T e Ao oo +
| Name | Age |
drmscososocosososas droseas +
| "Manu Ginobili" | 41 |
B T e +
| "Tony Parker" | 36 |
drmscososocosososas droseas +

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
RETURN v2.name AS Name, v2.age AS Age \
ORDER BY Age DESC SKIP 1+1;

| "Tony Parker" | 36 |
droscosscosasosas droscas +

You can use skip and LIMIT together to return the middle N rows.

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
RETURN v2.name AS Name, v2.age AS Age \
ORDER BY Age DESC SKIP 1 LIMIT 1;

Last update: April 22, 2021

-144/290 - 2021 Vesoft Inc.

4.7.3 ORDER BY

4.7.3 ORDER BY

The orDER BY clause specifies the order of the rows in the output.

* NGQL-extension: You must use a pipe (|) and an orperR By clause after YIELD clause.

* OpenCypher style: no pipe is permitted. orber By follows a RETURN clause.
There are two order options:

¢ AsC: Ascending. Asc is the default order.

¢ pesC : Descending.

An order option takes effect only when the expression before it is used for sorting the results.

nGQL-extension Syntax

<YIELD clause>
ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...]

EXAMPLES

nebula> FETCH PROP ON player "player100", '"player101", "player102", "player103" YIELD player.age AS age, player.name AS name \
| ORDER BY age ASC, name DESC;

drmscosasosozas drmscas droscosocososososososas +
| VertexID | age | name |
L P —— R F T —— +
| "player103" | 32 | "Rudy Gay" |
drmscosasosozas drmscas droscosocososososososas +
| "player102" | 33 "LaMarcus Aldridge" |
LT LT e +
| "player101" | 36 | "Tony Parker |
drmscosasosozas drmscas droscosocososososososas +
| "player100" | 42 | "Tim Duncan" |
L P —— R F T —— +

OpenCypher Syntax

<RETURN clause>
ORDER BY <expression> [ASC | DESC] [, <expression> [ASC | DESC] ...]

An order option takes effect only when the expression before it is used for sorting the results.

EXAMPLES

nebula> MATCH (v:player) RETURN v.name AS Name, v.age AS Age ORDER BY Name DESC;

|
+
|
¥
| "vince Carter" |
drmscosocosscososas droscas +
| "Tracy McGrady" |
[TSR —— +
| "Tony Parker" |
drmscosocosscososas +
| "Tim Duncan" |
[TSR —— +

nebula>

IS
=)
+— +— + — + — + — +

- 145/290 - 2021 Vesoft Inc.

4.7.3 ORDER BY

In the preceding example, nGQL sorts the rows by Age first. If multiple people are of the same age, nGQL sorts them by Name .

Order by NULL values

nGQL lists NULL values at the end of the output for ascending sorting, and at the start for descending sorting.

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
RETURN v2.name AS Name, v2.age AS Age \
ORDER BY Age;

£ R S +
| Name | Age |
B T drmocommsooo +
| "Tony Parker" | 36 |
£ R S +
| "Manu Ginobili" | 41 |
B T drmocommsooo +
| "Spurs" | _NULL__ |
£ R S +

Got 3 rows (time spent 3089/3719 us)

nebula> MATCH (v:player{name:"Tim Duncan"}) --> (v2) \
RETURN v2.name AS Name, v2.age AS Age \
ORDER BY Age DESC;

B T drmocommsooo +
| Name | Age |
£ R S +
| "Spurs" _ NULL__ |
B T e S +

|
+
| "Manu Ginobili" |
£ R S +
| "Tony Parker" |
B T +
Got 3 rows (time spent 2851/3360 us)

Last update: March 29, 2021

-146/290 - 2021 Vesoft Inc.

4.7.4 RETURN

4.7.4 RETURN
RETURN defines the output of an nGQL query. To return multiple fields, separate them with commas.
RETURN can lead a clause or a statement:

* A ReTURN clause works in openCypher statements in nGQL, such as MATCH or UNWIND .

* A RETURN statement works independently to output the result of an expression.

OpenCypher compatibility
This topic applies to the openCypher syntax in nGQL only. For nGQL extensions, use YIELD.
RETURN does not support the following openCypher features yet.
¢ Return variables with uncommon characters, for example:

MATCH (non-english_characters™:player) \
RETURN “non-english_characters;

e Set a pattern in the ReTURN clause and return all elements that this pattern matches, for example:

MATCH (v:player) \
RETURN (v)-[e]->(v2);

NGQL compatibility
* In nGQL 1.0, reTurN works with nGQL extensions with the syntax RETURN <var_ref> IF <var_ref> IS NOT NULL .

¢ In nGQL 2.0, rReTURN does not work with nGQL extensions.

Return vertices
Set a vertex in the RETURN clause to return it.

nebula> MATCH (v:player) \

RETURN v;
drmocococosccococoooocoooocoSScosocosoooooCooocacooocoSocooocosoo +
v |
B N +
| ("player104" :player{age: 32, name: "Marco Belinelli"}) |
drmocococosccococoooocoooocoSScosocosoooooCooocacooocoSocooocosoo +
| ("player107" :player{age: 32, name: "Aron Baynes'}) |
B N +
| ("player116" :player{age: 34, name: "LeBron James"}) |
dhmscosococccosocooocooooScoSScosocosooocoCooocosocccooocooocosoo +
| ("player120" :player{age: 29, name: "James Harden"}) |
B N +
| ("player125" :player{age: 41, name: "Manu Ginobili"}) |
dhmscosococccosocooocooooScoSScosocosooocoCooocosocccooocooocosoo +

Got 51 rows (time spent 7322/8244 us)

Return edges
Set an edge in the RETURN clause to return it.

nebula> MATCH (v:player)-[e]->() \

RETURN e;
drmscosocococooocccooScooSScosSco-SCoooCoooCScoSSEoSScSSSSocoSoooSoooSScaSScosoes +
| e |
T e +
| [:follow "player104"->"player100" @0 {degree: 55}] |
drmscosocococooocccooScooSScosSco-SCoooCoooCScoSSEoSScSSSSocoSoooSoooSScaSScosoes +
| [:follow "player104"->"player101" @0 {degree: 50}] |
T ' +
| [:follow "player104"->"player105" @0 {degree: 60}] |
drmscosocococooocccooScooSScosSco-SCoooCoooCScoSSEoSScSSSSocoSoooSoooSScaSScosoes +
| [:serve "player104"->"team200" @ {end_year: 2009, start_year: 2007}] |
T ' +

- 147/290 - 2021 Vesoft Inc.

4.7.4 RETURN

| [:serve "player104"->"team208" @0 {end_year: 2016, start_year: 2015}]

Got 233 rows (time spent 14013/16136 us)

Return properties

To return a vertex or edge property, use the {<vertex_name>|<edge_name>}.<property> syntax.

nebula> MATCH (v:player) \
RETURN v.name, v.age \
LIMIT 3;

drmscosososocasooscas drmmcosas +

| v.name | v.age |

Got 3 rows (time spent 2663/3260 us)

Return all elements
To return all the elements matched on a pattern, use an asterisk (*).

nebula> MATCH (v:player{name:"Tim Duncan"}) \

RETURN *;
dhmocococococosoocoooscosscosscooocooocooooocooscosooo +
v |
Fmm e e emeeeeeceeeceeecmeeecemec—mem—eeeaaa +
| ("player100" :player{age: 42, name: "Tim Duncan"}) |
dhmscococococosoocoooocosscosscooocooocooooococscosooo +

Got 1 rows (time spent 3332/3954 us)

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \

RETURN *;
drmscocococosooooccooscaSScosooocosooocooocscaosco=oos fhocococococococooocccocScosScosScosoCocoScooSSCoSSooSSooSoooooSooosoooos
e +
| v | e
v2 |
drmscocococosooooccooscaSScosooocosooocooocscaosco=oos fhocococococococooocccocScosScosScosoCocoScooSSCoSSooSSooSoooooSooosoooos
e +
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player101" @0 {degree: 95}] | ("player101" :player{age: 36, name:
"Tony Parker"}) |
drmscocococosooooccooscaSScosooocosooocooocscaosco=oos fhocococococococooocccocScosScosScosoCocoScooSSCoSSooSSooSoooooSooosoooos
e +
| ("player100" :player{age: 42, name: "Tim Duncan"}) | [:follow "player100"->"player125" @0 {degree: 95}] | ("playeri125" :player{age: 41, name:

"Manu Ginobili"}) |

"player100"

+

. -
:player{age: o 3 im Duncan"}) | [:serve "player100"->'"team204" @0 {end_year: 2016, start_year: 1997}] | ('"team204" :team{name:

I (

"spurs"}) |

Got 3 rows (time spent 3957/4696 us)

Rename a field
Use the As <alias> syntax to rename a field in the output.

nebula> MATCH (v:player{name:"Tim Duncan"})-[:serve]->(v2) \
RETURN v2.name AS Team;

£ S +
| Team |
B +
| "Spurs" |
£ S +

Got 1 rows (time spent 2370/3017 us)

nebula> RETURN "Amber" AS Name;

£ S +
| Name |
B +
| "Amber" |
£ S +

Got 1 rows (time spent 380/1097 us)

-148/290 - 2021 Vesoft Inc.

4.7.4 RETURN

Return a non-existing property
If a property matched does not exist, NnULL is returned.

nebula> MATCH (v:player{name:"Tim Duncan"})-[e]->(v2) \
RETURN v2.name, type(e), v2.age;
+

drmscosocosccososas dhoscosocosotbooosooosas +
| v2.name | type(e) | v2.age |
Focmmmmmmemeeaaas B P —— +
| "Tony Parker" | "follow" | 36 |
drmscosocosccososas drmococs=ooo focococosas +
| "Manu Ginobili" | "follow" | 41 |
B T R R +
| "Spurs" | "serve" | _NULL__ |
drmscosocosccososas drmococs=ooo focococosas +

Got 3 rows (time spent 2976/3658 us)

Return expression results
To return the results of expressions such as literals, functions, or predicates, set them in a RETURN clause.

nebula> MATCH (v:player{name:"Tony Parker"})-->(v2:player) \
RETURN DISTINCT v2.name, "Hello"+" graphs!", v2.age > 35;

dhoscocococosooooooosoo drmscocococccososaoo fhmcocococozooo +
| v2.name | (Hello+ graphs!) | (v2.age>35) |
Fommmmmmeeeeeeeeeaae D tommmmmmeeaaen +
| "Tim Duncan" | "Hello graphs!" | true |
dhoscocococosooooooosoo drmscocococccososaoo fhmcocococozooo +
| "LaMarcus Aldridge" | "Hello graphs!" | false |
PR

| "Manu Ginobili" | "Hello graphs! | true |
dhoscocococosooooooosoo drmscocococccososaoo fhmcocococozooo +
Got 3 rows (time spent 2645/3237 us)

nebula> RETURN 1+1;

oo +
| (1+1) |
R +
2 |
oo +

Got 1 rows (time spent 319/1238 us)

nebula> RETURN 3 > 1;

Got 1 rows (time spent 205/751 us)

RETURN 1+1, rand32(1, 5);

drmmcosoe dheccocosooooas +
| (1+1) | rand32(1,5) |
S E +
2 1 |
drmmcosoe dbeccososooooas +

Got 1 rows (time spent 258/1098 us)

Return unique fields
Use DISTINCT to remove duplicate fields in the result set.

// Before using DISTINCT

nebula> MATCH (v:player{name:"Tony Parker"})--(v2:player) \
RETURN v2.name, v2.age;

drmscosocososososooosos drmocosocs +

| v2.name |

Fmmmmm e +

| "Tim Duncan" |

drmscosocososososooosos +

| "LaMarcus Aldridge" |

Fmmmmm e Fommmmmam +

| "Marco Belinelli" |

droscosococosososooosos +

| "Boris Diaw" |

Fmmmmm e +

| "Dejounte Murray" |

P
| "Tim Duncan" | 42 |
Fmmmmm e Fommmmmam +
| "LaMarcus Aldridge" | 33 |
droscosococosososooosos drmmcosoes +
| "Manu Ginobili" | 41 |
Fmmmmm e Fommmmmam +

Got 8 rows (time spent 3273/3893 us)

-149/290 - 2021 Vesoft Inc.

4.7.4 RETURN

// After using DISTINCT
MATCH (v:player{name:"Tony Parker"})--(v2:player) RETURN DISTINCT v2.name, v2.age;

| "Tim Duncan" | 42 |
droscosocososososooosas drmocosass +
| "LaMarcus Aldridge" | 33 |
B e I dboocomooo +
| "Marco Belinelli" | 32 |
droscosocososososooosas drmocosass +
| "Boris Diaw" | 36 |
B LT R R ommmmen +
| "Dejounte Murray" | 29 |
droscosocososososooosas drmocosass +
| "Manu Ginobili" | 41 |
B e I dboocomooo +

Got 6 rows (time spent 3314/3897 us)

Last update: March 4, 2021

- 150/290 - 2021 Vesoft Inc.

4.7.5 TTL

475TTL

TTL indicates time to live. Use the TTL options to specify a timeout for a property. Once timed out, the property expires.

OpenCypher Compatibility

This topic applies to nGQL extensions only.

Precautions
* You CANNOT modify a property with TTL options on it.

* TTL options and indexes CANNOT coexist on a tag or an edge type. Not even if you try to set them on different properties.

Data expiration and deletion

VERTEX PROPERTY EXPIRATION
Vertex property expiration has the following impact.
 If a vertex has only one tag, once a property of the vertex expires, the vertex expires.

« If a vertex has multiple tags, once a property of the vertex expires, properties bound to the same tag with the expired
property also expires, but the vertex does not expire and other properties of it remain untouched.

EDGE PROPERTY EXPIRATION
Since an edge can have only one edge type, once an edge property expires, the edge expires.
DATA DELETION
The expired data are still stored on the disk, but queries will filter them out.

Nebula Graph automatically deletes the expired data and reclaims the disk space during the next compaction.

/" Note

If TTL is disabled, the corresponding data deleted after the last compaction can be queried again.

TTL options

The nGQL TTL feature has the following options.

Option Description
ttl col Specifies the property to set a timeout on. The data type of the property must be int or timestamp.
ttl duration Specifies the timeout adds-on value in seconds. The value must be a non-negative int64 number. A property

expires if the sum of its value and the ttl duration value is smaller than the current timestamp. If the
ttl duration value is O, the property never expires.
Use TTL options
You must use the TTL options together to set a valid timeout on a property.
SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS

If a tag or an edge type is already created, to set a timeout on a property bound to the tag or edge type, use ALTER to update the
tag or edge type.

- 151/290 - 2021 Vesoft Inc.

// Create a tag.
nebula> CREATE TAG t1 (a timestamp);
Execution succeeded (time spent 4172/5377 us)

// Use ALTER to update the tag and set the TTL options.
nebula> ALTER TAG t1 ttl col = "a", ttl _duration = 5;
Execution succeeded (time spent 2975/3700 us)

// Insert a vertex with tag tl. The vertex expires 5 seconds after the insertion.

nebula> INSERT VERTEX ti(a) values "101":(now());
Execution succeeded (time spent 1902/2642 us)

SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

4.7.5 TTL

Use TTL options in the crReaTE statement to set a timeout when creating a tag or an edge type. For more information, see CREATE

TAG or CREATE EDGE.

// Create a tag and set the TTL options.
nebula> CREATE TAG t2(a int, b int, c string) ttl duration= 100, ttl col = "a";
Execution succeeded (time spent 3173/3753 us)

// Insert a vertex with tag t2.
// The timeout timestamp is 1612778164774 (1612778164674 + 100).
nebula> INSERT VERTEX t2(a, b, c) values "102":(1612778164674, 30, "Hello");
Execution succeeded (time spent 1254/1921 us)
Remove a timeout

To disable TTL and remove the timeout on a property, use the following approaches.

e Set ttl col to an empty string.

nebula> ALTER TAG t1 ttl col = "";

* Drop the property with the timeout.

nebula> ALTER TAG tl DROP (a);

e Set ttl duration to 0. This operation keeps the TTL options and prevents the property from expiring.

nebula> ALTER TAG t1 ttl duration = 0;

A Caution

Even when ttl duration is 0, you CANNOT alter the property because it still has TTL options.

Last update: April 22, 2021

-152/290 -

2021 Vesoft Inc.

4.7.6 WHERE

4.7.6 WHERE
The wHere clause filters the outputs by conditions.
wHERE works in the following queries:

* nGQL extensions such as 6o and LOOKUP .

* OpenCypher syntax such as MATCH and WITH.

OpenCypher compatibility
* Using patterns in wHERE is not supported (TODO: planning), for example WHERE (v)-->(v2).

« Filtering on edge rank is a native nGQL feature. It only applies to nGQL extensions such as 6o and Lookup because the
concept edge rank does not exist in openCypher.

Basic usage

DEFINE CONDITIONS WITH BOOLEAN OPERATORS

Use the boolean operators NoT, AND, OR, and XxorR to define conditions in wHERE clauses. For the precedence of the operators, see
Precedence.

nebula> MATCH (v:player) \

WHERE v.name == "Tim Duncan" \
XOR (v.age < 30 AND v.name == "Yao Ming") \
OR NOT (v.name == "Yao Ming" OR v.name == "Tim Duncan") \
RETURN v.name, v.age;
drmscosocosocasocscasscosas moco=as +
| v.name | v.age |
T R p—— +
| "Marco Belinelli" | 32 |
drmscosocosocasocscasscosas moco=as +
| "Aron Baynes" | 32 |
T R p—— +
| "LeBron James" | 34 |
drmscosocosocasocscasscosas moco=as +
| "James Harden" | 29 |
T R p—— +
| "Manu Ginobili" | 41 |
drmscosocosocasocscasscosas moco=as +

Got 50 rows (time spent 6152/6994 us)

nebula> GO FROM "player100" \
OVER follow \
WHERE follow.degree > 90 \
OR $$.player.age != 33 \
AND $$.player.name !'= "Tony Parker";

Got 2 rows (time spent 3198/3877 us)

- 153/290 - 2021 Vesoft Inc.

4.7.6 WHERE

FILTER ON PROPERTIES
Use vertex or edge properties to define conditions in WHERE clauses.
« Filter on a vertex property:

nebula> MATCH (v:player)-[e]->(v2) \
WHERE v2.age < 25 \
RETURN v2.name, v2.age;
focococococococooocseas Peocosocs +
| v2.name | v2.age |

| "Luka Doncic" |
focococococococooocseas +
| "Kristaps Porzingis" |
Fecccccccccccccccaaaaan R — +
|
4

Ben Simmons"

e
Got 3 rows (time spent 7382/8080 us)

nebula> GO FROM "player100" \
OVER follow \
WHERE $/.player.age >= 42;

player125" |
-+
Got 2 rows (time spent 1051/1668 us)

+--

« Filter on an edge property:

nebula> MATCH (v:player)-[e]->() \
WHERE e.start_year < 2000 \
RETURN DISTINCT v.name, V.age;

Fecccccccccccccaaaaan TR — +

| v.name | v.age |

| "Grant Hill"
e

| "Tony Parker"
e

Got 11 rows (time spent 7585/8154 us)

nebula> GO FROM "player100" \
OVER follow \
WHERE follow.degree > 90;

Got 2 rows (time spent 2815/3571 us)
FILTER ON DYNAMICALLY-CALCULATED PROPERTY

nebula> MATCH (v:player) \
WHERE v[toLower ("AGE")] < 21 \
RETURN v.name, v.age;

FILTER ON THE EXISTENCE OF A PROPERTY

nebula> MATCH (v:player) \
WHERE exists(v.age) \
RETURN v.name, v.age;

e e o L Y +
| v.name | v.age |
dreccococococococccasscosoe dhmmcosae +
| "Boris Diaw" | 36 |
e e o L Y +

-154/290 - 2021 Vesoft Inc.

| "DeAndre Jord
e

an" | 30 |
----------- Fommmmeat

FILTER ON EDGE RANK

4.7.6 WHERE

In nGQL, if a group of edges has the same source vertex, destination vertex, and properties, the only thing that distinguishes them

is the rank. Use rank conditions in wHEre to filter such edges.

The following example creates a group of edges. The differences among the edges are their ranks and properties. Then the

example uses a Go statement with a wHERE clause to filter the edges on ranks.

nebula> CREATE
nebula> USE tes
nebula> CREATE
nebula> CREATE
nebula> INSERT
nebula> INSERT
nebula> INSERT
nebula> INSERT
nebula> INSERT
nebula> INSERT
nebula> INSERT
nebula> INSERT
nebula> INSERT

SPACE test;
t;

EDGE el(pl int);

TAG person(pl int);

VERTEX person(pl) VALUES "1":(1);
VERTEX person(pl) VALUES "2":(2);
EDGE e1(p1) VALUES "1"->"2"@0:(10);
EDGE e1(pl) VALUES "1"->"2"@1:(11);
EDGE e1(pl) VALUES "1"->"2"@2:(12);
EDGE e1(pl) VALUES "1"->"2"@3:(13);
EDGE el(pl) VALUES "1"->'"2"@4:(14);
EDGE el(pl) VALUES "1"->"2"@5:(15);
EDGE e1(pl) VALUES "1"->"2"@6:(16);

// The return messages of the preceding statements

nebula> GO FROM "1" \
OVER el \
WHERE el._rank>2 \
YIELD el._src, el._dst, el._rank AS Rank, el.p1l | \
ORDER BY Rank DESC;

| el._src | el.

_dst | Rank | el.p1 |

|1 | 2
T
T
T

Filter on strings

Use STARTS WITH, ENDS WITH, Or CONTAINS in WHERE to match a specific part of a string. String matching is case-sensitive.

MATCH THE BEGIN

|6 |16 |
s s
T e
s s

NING OF A STRING

are omitted in this example.

Use STARTS WITH "T" to match a player name that starts with T.

nebula> MATCH (

v:player) \

WHERE v.name STARTS WITH "T" \

RETURN
e
| v.name
O
| "Tracy McGrad
e
| "Tony Parker"
S
| "Tim Duncan"
e
| "Tiago Splitt
O

v.name, Vv.age;

cocodbooosooo +

| v.age |
cocodbmcososs +
y" | 39 |
cocodbooosooo +

| 36 |
cocodbmcososs +

| 42 |
cocodbooosooo +
er" | 34 |
coc=dbmco=oss +

Got 4 rows (time spent 5575/7203 us)

If you use sTARTS WITH "t" in the preceding statement, an empty set is returned because no name in the dataset starts with the

lowercase t.

nebula> MATCH (

v:player) \

WHERE v.name STARTS WITH "t" \

RETURN

v.name, Vv.age;

Empty set (time spent 5080/6474 us)

MATCH THE ENDIN

G OF A STRING

Use ENDS WITH "r" to match a player name that ends with r.

-155/290 -

2021 Vesoft Inc.

nebula> MATCH (v:player) \
WHERE v.name ENDS WITH "r" \
RETURN v.name, v.age;

drmscosasosc=aso=aoo Focososs +
| v.name | v.age |
R

| "vince Carter" | 42 |
s

| "Tony Parker"

B e e =T dhocooooo +
| "Tiago Splitter" | 34 |
drmscosasosc=aso=aoo Focososs +

Got 3 rows (time spent 4934/5832 us)

MATCH ANY PART OF A STRING

Use CONTAINS "Pa" to match a player name that contains pa.

nebula> MATCH (v:player) \
WHERE v.name CONTAINS "Pa" \
RETURN v.name, v.age;

4ocmcmcmcmcnana R —— +
| v.name | v.age |
droscosocosocosas drmocosas +
| "Paul George" | 28 |
4ocmcmcmcmcnana R —— +
| "Tony Parker" | 36 |
droscosocosocosas drmocosas +
| "Paul Gasol" | 38 |
4ocmcmcmcmcnana R —— +
| "Chris Paul" | 33 |
droscosocososo=as dromoco=as +

Got 4 rows (time spent 3265/4113 us)

NEGATIVE STRING MATCHING

Use the boolean operator noT to negate a string matching condition.

nebula> MATCH (v:player) \

WHERE NOT v.name ENDS WITH "R" \

RETURN v.name, v.age;

fpmocococococococososososas dpmmcocas +
| v.name | v.age |
SRR SRR L S +
| "Rajon Rondo" | 33 |
fpmocococococococososososas dpmmcocas +
| "Rudy Gay" | 32 |
SRR SRR L S +
| "Dejounte Murray" | 29 |
fpmocococococococososososas dpmmcocas +
| "Chris Paul" | 33 |
SRR RS Rp— L S +
| "carmelo Anthony" | 34 |
P

Got 51 rows (time spent 2622/3463 us)

Filter on lists
MATCH VALUES IN A LIST

Use the 1N operator to check if a value is in a specific list.

nebula> MATCH (v:player) \
WHERE v.age IN range(20,25) \
RETURN v.name, v.age;

drmscocosococosocscaosco=as drmocosas +

| v.name

e e

|

4

| "Ben Simmons" |
drmscocosococosocscaosco=as drmocosas +

|

4

|

| "Kristaps Porzingis"
.
| "Luka Doncic"

| "Kyle Anderson" |
O e +
| "Giannis Antetokounmpo" | 24 |
B e S +
| "Joel Embiid" |
O e dbmocoeoo +
Got 6 rows (time spent 5815/7220 us)

4.7.6 WHERE

2021 Vesoft Inc.

4.7.6 WHERE

MATCH VALUES NOT IN A LIST

Use NoT before 1IN to rule out the values in a list.

nebula> MATCH (v:player) \
WHERE v.age NOT IN range(20,25) \
RETURN v.name AS Name, v.age AS Age \
ORDER BY Age;

B T Ao oo +
| Name | Age |
B S £ +
| "Kyrie Irving" | 26 |
B T Ao oo +
| "Cory Joseph" | 27 |
B S £ +
| "Damian Lillard" | 28 |
B T Ao oo +
| "Paul George" | 28 |
B S £ +
| "Ricky Rubio" | 28 |
B T Ao oo +

Got 45 rows (time spent 2954/3725 us)

Last update: April 1, 2021

- 157/290 - 2021 Vesoft Inc.

4.7.7 YIELD

4.7.7 YIELD

YIELD defines the output of an nGQL query.
YIELD can lead a clause or a statement:

* A YIELD clause works in nGQL statements such as 6o, FETCH, or LOOKUP .

* A YIELD statement works in a composite query or independently.
OpenCypher Compatibility

This topic applies to nGQL extensions only. For the openCypher syntax, use RETURN .

vIELD has different functions in openCypher and nGQL.

¢ In openCypher, YIELD is used in the cALL[..YIELD] clause to specify the output of the procedure call.

/" Note

NGQL does not support CALL[..YIELD] yet.

¢ In nGQL, vieLd works like RETURN in openCypher.

YIELD clauses

SYNTAX

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]

The syntax is described as follows.

Keyword/Field Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col. It is set after the keyword As and will be a column name in the output.

USE AYIELD CLAUSE IN A STATEMENT
e Use YIELD with Go:

nebula> GO FROM "player100" OVER follow \
YIELD $$.player.name AS Friend, $$.player.age AS Age;

tmmmmmememmeeeeeen +mmme = +
| Friend | Age |
frocomocomomosos oo frocaoo +
| "Tony Parker" | 36 |
tmmmmmememmeeeeeen +mmme = +

| “"Manu Ginobili" | 41 |

- 158/290 - 2021 Vesoft Inc.

4.7.7 YIELD

tommmmmmeemeeaaaa teomaa +
Got 2 rows (time spent 3378/4030 us)

e Use YIELD with FETCH:

nebula> FETCH PROP ON player "player100" \
YIELD player.name;

fhmcomooooosooo fhmcomocomooosoo +
| VertexID | player.name |
frocosscoco=ooo frocosocosocosae +
| "player100" | "Tim Duncan" |
fhmcomooooosooo fhmcomocomooosoo +

Got 1 rows (time spent 2933/5931 us)

e Use YIELD with LoOKUP :

nebula> LOOKUP ON player WHERE player.name == "Tony Parker" \
YIELD player.name, player.age;

| VertexID | player.name | player.age |

Got 1 rows (time spent 2963/3778 us)

YIELD Statements

SYNTAX

YIELD [DISTINCT] <col> [AS <alias>] [, <col> [AS <alias>] ...]
[WHERE <conditions>]

The syntax is described as follows.

Field Description

DISTINCT Aggregates the output and makes the statement return a distinct result set.

col A field to be returned. If no alias is set, col will be a column name in the output.

alias An alias for col. It is set after the keyword As and will be a column name in the output.
conditions Conditions set in a wHERE clause to filter the output. For more information, see WHERE .

USE A YIELD STATEMENT IN A COMPOSITE QUERY

In a composite query, a YIELD statement accepts, filters, and reforms the result set of the preceding statement, and then outputs
it.

The following query finds the players that "player100" follows and calculates their average age.

nebula> GO FROM "player100" OVER follow \
YIELD follow._ dst AS ID | \
FETCH PROP ON player $-.ID \
YIELD player.age AS Age | \
YIELD AVG($-.Age) as Avg_age, count(*)as Num_friends;

droocomosoo dboocooooooosao +
| Avg_age | Num_friends |
drmmcoso=as drmscosasoso=as +
| 38.5 2 |
droocomosoo dboocooooooosoo +

Got 1 rows (time spent 1846/2426 us)

The following query finds the players that "player101" follows and the follow degrees are greater than 90.

nebula> $varl = GO FROM "player101" OVER follow \
YIELD follow.degree AS Degree, follow._dst as ID; \
YIELD $varl.ID AS ID \
WHERE $varl.Degree > 90;

Got 2 rows (time spent 891/1411 us)

- 159/290 - 2021 Vesoft Inc.

4.7.7 YIELD

USE A STANDALONE YIELD STATEMENT
A vIiELD statement can calculate a valid expression and output the result.

nebula> YIELD rand32(1, 6);

drmscosasosozas +
| rand32(1,6) |
[T +
I3 |
drmscosasosozas +

Got 1 rows (time spent 144/615 us)

nebula> YIELD "Hel" + "\tlo" AS stringl, ", World!" AS string2;

drmscosasosozas droscosocosass +
| stringl | string2 |
[T dececccccnaaa +
| "Hel 10" | ", World!" |
drmscosasosozas droscosocosass +

Got 1 rows (time spent 154/692 us)

nebula> YIELD hash("Tim") % 100;

oocococooocsosooo +
| (hash(Tim)%100) |
dboscooocooooooosoo +
| 42 |
oocococooocsosooo +

Got 1 rows (time spent 164/820 us)

nebula> YIELD \
CASE 2+3 \
WHEN 4 THEN © \
WHEN 5 THEN 1 \

ELSE -1 \
END \
AS result;
[+
| result |
drmscosass +
[|
[+

Got 1 rows (time spent 204/935 us)

Last update: April 22, 2021

- 160/290 - 2021 Vesoft Inc.

4.7.8 WITH

4.7.8 WITH

OpenCypher compatibility
The wiTH clause can take the output from a query part, process it, and pass it to the next query part as the input.
wITH has a similar function with the pipe symbol in nGQL-extension, but they work in different ways.
wITH only works in the openCypher syntax, such asin MATCH or UNWIND.

In the nGQL-extensions such as Go or FETCH, use pipe symbols (|) instead.

0 Danger

Don't use pipe symbols in the openCypher syntax or use wiTH in the nGQL extensions. Such operations may cause unpredictable
results.

Combine statements and form a composite query

Use a wiTH clause to combine statements and transfer the output of a statement as the input of another statement.
EXAMPLE 1

The following statement:

1. Matches a path.
. Outputs all the vertices on the path to a list with the nodes() function.

. Unwinds the list into rows.

s W N

. Removes duplicated vertices and returns a set of distinct vertices.

nebula> MATCH p=(v:player{name:"Tim Duncan"})--() \
WITH nodes(p) AS n \
UNWIND n AS n1 \
RETURN DISTINCT ni;

| ("player102" :player{age: 33, name: "LaMarcus Aldridge"}) |

drmscosocococooocooooScoSScoSScSSSSoSSEoSoSSooCScoSScoSScoSSsosSsososooo +
| ("player125" :player{age: 41, name: |
B T T T T Tt T T e T T e T +
| ("player104" :player{age: 32, name: |
drmscosocococooocooooScoSScoSScSSSSoSSEoSoSSooCScoSScoSScoSSsosSsososooo +
| ("player144" :player{age: 47, name: |
B T T T T Tt T T e T T e T +
| ("player105" :player{age: 31, name: |
drmscosocococooosooooocoSScoSScSSSSoSSSoSoSSooCScoSScoSScoSScosSsososooo +
| ("player113" :player{age: 29, name: |
B T T T T Tt T T e T T e T +
| ("player107" :player{age: 32, name: |
drmscosocococooosooooocoSScoSScSSSSoSSSoSoSSooCScoSScoSScoSScosSsososooo +
| ("player109" :player{age: 34, name: |
B T T T T Tt T T e T T e T +
| ("player108" :player{age: 36, name: |
drmscosocococooosooooocoSScoSScSSSSoSSSoSoSSooCScoSScoSScoSScosSsososooo +

Got 12 rows (time spent 3795/4487 us)

- 161/290 - 2021 Vesoft Inc.

4.7.8 WITH

EXAMPLE 2
The following statement:

1. Matches a vertex with the VID "player100".
. Outputs all the tags of the vertex into a list with the labels() function.

. Unwinds the list into rows.

s~ W N

. Returns the rows.

nebula> MATCH (v) \
WHERE id(v)=="player100" \
WITH labels(v) AS tags_unf \
UNWIND tags_unf AS tags_f \
RETURN tags_f;

Got 3 rows (time spent 1709/2495 us)

Filter aggregated queries
WITH can work as a filter in the middle of an aggregated query.

nebula> MATCH (v:player)-->(v2:player) \
WITH DISTINCT v2 AS v2, v2.age AS Age \
ORDER BY Age \
WHERE Age<25 \
RETURN v2.name AS Name, Age;

droscosscososososososaoo Focaos +
| Name | Age |
B dhocooo +
| "Luka Doncic" | 20 |
droscosscososososososaoo Focaos +
| "Ben Simmons" | 22 |
B dhocooo +
| "Kristaps Porzingis" | 23 |
droscosocososososososaoo Focaos +

Got 3 rows (time spent 7444/8467 us)

Process the output before using collect() on it
Use a wITH clause to sort and limit the output before using collect() to transform the output into a list.

nebula> MATCH (v:player) \
WITH v.name AS Name \
ORDER BY Name DESC \

LIMIT 3 \

RETURN collect(Name);
B T e T T +
| COLLECT(Name) |
S S S S Sy e +
| ["Yao Ming", "vince Carter", "Tracy McGrady"] |
B T e T T +

Got 1 rows (time spent 3498/4222 us)

Use with RETURN
Set a alias using a wiTH clause, and then output the result through a RETURN clause.

nebula> WITH [1, 2, 3] AS list RETURN 3 IN list AS r;

[. +
Ir |
drmmcaos +
| true |
dommmmm +

- 162/290 - 2021 Vesoft Inc.

4.7.8 WITH

Last update: May 7, 2021

- 163/290 - 2021 Vesoft Inc.

4.8 Space statements

4.8 Space statements

4.8.1 CREATE SPACE

CREATE SPACE [IF NOT EXISTS] <graph_space_name>
[(partition_num = <partition_number>,
replica_factor = <replica_number>,
vid_type = {FIXED_STRING(<N>) | INT64})];

The CREATE SPACE statement creates a new graph space with the given name. A spAce is a region that provides physically isolated
graphs in Nebula Graph. An error occurs if a graph space with the same name exists if you did not specify IF NOT EXISTS.

IF NOT EXISTS
You can use the 1F noT ExisTs keywords when creating graph spaces. These keywords automatically detect if the related graph

space exists. If it does not exist, a new one is created. Otherwise, no graph space is created.

/" Note

The graph space existence detection here only compares the graph space name (excluding properties).

Graph space name

The graph_space_name uniquely identifies a graph space in a Nebula Graph instance.

Customized graph space options
You can set four optional options for a new graph space:

® partition_num

Specifies the number of partitions in each replica. The suggested number is five times the number of the hard disks in the
cluster. For example, if you have 3 hard disks in the cluster, we recommend that you set 15 partitions.

* replica_factor
Specifies the number of replicas in the cluster. The default replica factor is 1. The suggested number is 3 in a production

environment and 1 in a test environment. Always set the replica to an odd number for the need of quorum-based voting.

NOTICE: If the replica number is set to one, you won't be able to use the BALANCE statements to load balance or scale out the
Nebula Graph Storage Service.

* vid_type

Specifies the data type of VIDs in a graph space. Available values are FIXep _STRING(N) and INTe4 , where N represents the
maximum length of the VIDs and it must be a positive integer. The default value is FIXED_STRING(8) .

If you set a VID length greater than n, Nebula Graph throws an error. To set the integer VID for vertices, set vid_type to
INT64 .

If no option is given, Nebula Graph creates the graph space with the default options.

Example

nebula> CREATE SPACE my_space_1; -- create a graph space with default options

nebula> CREATE SPACE my_space_2(partition_num=10); -- create a graph space with customized partition number

nebula> CREATE SPACE my_space_3(replica_factor=1); -- create a graph space with customized replica factor

nebula> CREATE SPACE my_space_4(vid_type = FIXED_STRING(30)); -- create a graph space with customized VID maximum length

- 164/290 - 2021 Vesoft Inc.

4.8.1 CREATE SPACE

Implementation of the operation
Trying to use a newly created graph space may fail because the creation is implemented asynchronously.

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take one of the

following approaches:

* Find the new graph space in the result of sHow SPACES or DESCRIBE SPACE . If you can't, wait a few seconds and try again.

* Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

Check partition distribution

On some large clusters, the partition distribution is possibly unbalanced because of the different startup times. You can run the
command to do a check of the machine distribution.

nebula> SHOW HOSTS;

droscomoooooo dboscoooo dhoocomooo fhocooocosooosoo dhmocosooosoooooCoooCoooooEanoooEooD fhmcocooooooooocooocooacooosooD +
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
droscosasosas doocosas drmocosaso focosscosocosas fmmcosscocccococococccocscasscosaes frococscocccococcoocscacseosaos +
| storaged® | 9779 | ONLINE | 1 | basketballplayer:5 | basketballplayer:5 |
droscomoooooo dboscoooo dboocomooo fhocooocosooosoo B T T T T e =T fhmcocooooooooocooocooacooosooD +
| storagedl | 9779 | ONLINE | 2 | test:1, basketballplayer:5 | basketballplayer:5, test:1 |
droscosasosas doocosas drmocosaso focosscosocosas fmmcosscocccococococccocscasscosaes frococscocccococcoocscacseosaos +
| storaged2 | 9779 | ONLINE | 1 | basketballplayer:5 | basketballplayer:5 |
droscomoooooo dboscoooo dhoocomooo fhocooocosooosoo dhmocosooosoooooCoooCoooooEanoooEooD fhmcocooooooooocooocooacooosooD +

To balance the request loads, use the following command.

nebula> BALANCE LEADER;

Last update: April 22, 2021

- 165/290 - 2021 Vesoft Inc.

4.8.2 USE

4.8.2 USE

USE <graph_space_name>

The use statement specifies a graph space as the current working space for subsequent queries. To manage multiple graph
spaces, use the use statement. The use statement requires some privilege.

The graph space remains the same unless another use statement is executed.

nebula> USE spacel;

-- Traverse in graph spacel.

nebula> GO FROM 1 OVER edgel;

nebula> USE space2;

-- Traverse in graph space2. These vertices and edges have no relevance with spacel.
nebula> GO FROM 2 OVER edge2;

-- Now you are back to spacel. Hereafter, you can not read any data from space2.
nebula> USE spacel;

/" Note

You can't use two spaces in one statement.

Different from SQL or Fabric Cypher, making a graph space as the working graph space prevents you from accessing other
spaces. The only way to traverse in a new graph space is to switch by the use statement.

Graph spaces are FuLLy 1SOLATED from each other. Unlike Fabric Cypher, you can only use one graph space at a time in Nebula
Graph. But in Fabric Cypher, you can use two (graph) spaces in one statement.

Last update: April 22, 2021

- 166/290 - 2021 Vesoft Inc.

4.8.3 SHOW SPACES

SHOW SPACES

The sHow spaces statement lists the all the graph spaces in a Nebula Graph instance.

For example:

nebula> SHOW SPACES;

B e +
| Name |
droscososososososososas +
| "basketballplayer" |
B e +

To create graph spaces, see Create Space document.

4.8.3 SHOW SPACES

Last update: April 13, 2021

-167/290 -

2021 Vesoft Inc.

4.8.4 DESCRIBE SPACE

4.8.4 DESCRIBE SPACE

DESC[RIBE] SPACE <graph_space_name>

The DESCRIBE SPACE statement returns information about a graph space.

The DpescrIBE SPACE statement is different from the sHow sPACES statement. For details about sHow SPACES, see SHOW SPACES.

You can use Desc instead of DpescriBe for short.

Example
Get information about a graph space.

nebula> DESCRIBE SPACE basketballplayer;

B e e e fhocomocomomoooeoo dhocomosoo dhoccomocomooD frocorooorooomomooonoo Ghecoomooooonoo Socoomooonoo +
| ID | Name | Partition Number | Replica Factor | Charset | Collate | vid Type | Atomic Edge | Group |
B e e S tommmmemeeeeeeaae R R e mmmeeemeeeeeoaee R T +
| 1 | "basketballplayer" | 10 |1 | "utfg" | "utfs bin" | "FIXED_STRING(32)" | "false" | "default" |
B e e e fhocomocomomoooeoo dhocomosoo dhoccomocomooD frocorooorooomomooonoo Ghecoomooooonoo Socoomooonoo +

Last update: April 13, 2021

-168/290 - 2021 Vesoft Inc.

4.8.5 DROP SPACE

4.8.5 DROP SPACE

The prop spAcE statement deletes everything in the specified graph space.

0 Danger

Before dropping a graph space, make sure that you have backed up all the important data stored in it. Otherwise, once the graph
space is dropped, the data cannot be restored.

DROP SPACE [IF EXISTS] <graph_space_name>

You must have the prop privilege for the related graph space.

You can use the 1F exisTs keywords when dropping spaces. These keywords automatically detects if the related graph space
exists. If it exists, it is deleted. Otherwise, no graph space is deleted.

Other graph spaces stay unchanged.

The prop spACE statement does not immediately remove all the files and directories from disk. use another space, and submit job

compact .

Last update: April 22, 2021

- 169/290 - 2021 Vesoft Inc.

4.9 Tag statements

4.9 Tag statements

4.9.1 CREATE TAG

CREATE TAG creates a tag with the given name in a graph space. You must have the creaTe privilege for the graph space. To create
a tag in a specific graph space, you must use the graph space first.

OpenCypher compatibility

Tags in nGQL are similar with labels in openCypher. But they are also quite different. For example, the ways to create them are
different.

* In openCypher, labels are created together with nodes by CReaTE statements.

¢ In nGQL, tags are created separately by CREATE TAG statements. Tags in nGQL are more like tables in MySQL.

Syntax

CREATE TAG [IF NOT EXISTS] <tag_name>
([<create_definition>, ...])
[tag_options]

<create definition> ::=
<prop_name> <data_type> [NULL | NOT NULL]

<tag_options> ::=
<option> [, <option> ...]

<option> ::=
TTL_DURATION [=] <ttl duration>
| TTL_COL [=] <prop_name>

| DEFAULT <default_value>

Tag name

e IF NOT EXISTS: Creating an existent tag results in an error. You can use the Ir NOT EXISTS option to conditionally create the tag
and avoid the error.

/" Note

The tag existence detection here compares only the tag names (excluding properties).

¢ tag_name : The tag name must be unique in a graph space. Once the tag name is set, it can not be altered. The rules for
permitted tag names are the same as those for graph space names. For prohibited names, see Keywords and reserved words.

PROPERTY NAMES AND DATA TYPES

* prop_name

prop_name is the name of the property. It must be unique for each tag.

* data_type

data_type shows the data type of each property. For a full description of the property data types, see Data types.

® NULL | NOT NULL

Specifies if the property supports nNuLL | NOT NULL . The default value is NULL .

® DEFAULT

Specifies a default value for a property. The default value can be a literal value or an expression supported by Nebula Graph.
If no value is specified, the default value is used when inserting a new vertex.

- 170/290 - 2021 Vesoft Inc.

4.9.1 CREATE TAG

TIME-TO-LIVE (TTL)

* TTL_DURATION
Specifies the life cycle for the data. Data that exceeds the specified TTL expires. The expiration threshold is the TTL_coL value
plus the TTL_DURATION. The default value of TTL DURATION is zero. It means the data never expires.

e TTL_COL

The data type of prop_name must be either int or timestamp.

 single TTL definition

Only one TTL_coL field can be specified in a tag.

For more information on TTL, see TTL options.

EXAMPLES

nebula> CREATE TAG player(name string, age int);

// Create a tag with no properties.
nebula> CREATE TAG no_property();

// Create a tag with a default value.
nebula> CREATE TAG player_with_default(name string, age int DEFAULT 20);

// Time interval is 100s, starting from the create_time field
nebula> CREATE TAG woman(name string, age int, \
married bool, salary double, create_time timestamp) \
TTL_DURATION = 100, TTL_COL = "create_time";
// Data expires after TTL_DURATION

nebula> CREATE TAG icec_ream(made timestamp, temperature int) \
TTL_DURATION = 100, TTL_COL = "made";

Implementation of the operation
Trying to insert vertices with a newly created tag may fail, because the creation of the tag is implemented asynchronously.

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take one of the
following approaches:

e Find the new tag in the result of sHow TAGS . If you can't, wait a few seconds and try again.

* Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

Last update: April 22, 2021

- 171/290 - 2021 Vesoft Inc.

4.9.2 DROP TAG

4.9.2 DROPTAG

DROP TAG [IF EXISTS] <tag_name>

DROP TAG drops a tag with the given name in a graph space. You must have the prop privilege for the graph space. To drop a tag in
a specific graph space, you must use the graph space first.

/" Note
Before you drop a tag, make sure that the tag does not have any indexes. Otherwise, a conflict error ([ERROR (-8)]: Conflict!) is
returned. To remove an index, see DROP INDEX.

A vertex can have one or more tags.

* When a vertex has only one tag, after you drop it, the vertex CANNOT be accessible. But its edges are available. The vertex is
deleted in the next compaction.

* When a vertex has multiple tags, after you drop one of them, the vertex is still accessible. But all the properties defined by
this dropped tag are not accessible.

This operation only deletes the Schema data. All the files and directories in the disk are NOT deleted directly. Data is deleted in the
next compaction.
Tag name
e IF EXISTS: Dropping a non-existent tag results in an error. You can use the IF EXISTS option to conditionally drop the tag and
avoid the error.
/" Note

The tag existence detection here compares only the tag names (excluding properties).

e tag_name : Specifies the tag name that you want to drop. You can drop only one tag in one statement.

Example

nebula> CREATE TAG test(pl string, p2 int);

nebula> DROP TAG test;

Last update: April 22, 2021

- 172/290 - 2021 Vesoft Inc.

4.9.3 ALTER TAG

4.9.3 ALTERTAG

ALTER TAG <tag_name>
<alter_definition> [, alter_definition] ...]
[ttl definition [, ttl definition] ...]
alter_definition:
| ADD (prop_name data_type)
| DROP (prop_name)
| CHANGE (prop_name data_type)

ttl_definition:
TTL_DURATION = ttl duration, TTL_COL = prop_name

ALTER TAG alters the structure of a tag with the given name in a graph space. You must have the ALTER privilege for the graph
space. To alter a tag in a specific graph space, you must use the graph space first.

You can add or drop properties, change the data type of an existing property. You can also set TTL (Time-To-Live) for a property, or
change the TTL duration. TTL_coL only supports the properties whose values are of the INT or the TIMESTAMP type.

Before you alter properties for a tag, make sure that the properties are not indexed. If the properties contain any indexes, a
conflict error occurs when you alter them.

For information about index, see Index.

Multiple App, Dprop, and CHANGE clauses are permitted in a single ALTER statement, separated by commas.

Tag name

e tag_name : Specifies the tag name that you want to alter. You can alter only one tag in one statement. Before you alter a tag,
make sure that the tag exists in the graph space. If the tag does not exist, an error occurs when you alter it.

Example

nebula> CREATE TAG t1 (pl string, p2 int);
nebula> ALTER TAG t1 ADD (p3 int, p4 string);
nebula> ALTER TAG t1 TTL_DURATION = 2, TTL_COL = "p2";

Implementation of the operation

Nebula Graph implements the alteration asynchronously in the next heartbeat cycle. Before the process finishes, the alteration
does not take effect. To make sure the alteration is successful, take the following approaches:

* Use DESCRIBE TAG to confirm that the tag information is updated. If it is not, wait a few seconds and try again.

* Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

Last update: March 19, 2021

- 173/290 - 2021 Vesoft Inc.

4.9.4 SHOW TAGS

4.9.4 SHOW TAGS

SHOW TAGS

sHow TAGS shows all tags in the current graph space. You do not need any privileges for the graph space to run this statement. But

the returned results are different based on role privileges. To show tags in a specific graph space, you must use the graph space
first.

Examples

nebula> SHOW TAGS;

L +
| Name |
drmmcoss=aoo +
| "player" |
L +
| "team" |
drmmcoss=aoo +

Got 2 rows (time spent 1461/2114 us)

Last update: March 19, 2021

-174/290 - 2021 Vesoft Inc.

4.9.5 DESCRIBE TAG

4.9.5 DESCRIBE TAG

DESC[RIBE] TAG <tag_name>

DESCRIBE TAG returns information about a tag with the given name in a graph space. You must have the read Schema privilege for
the graph space. To describe a tag in a specific graph space, you must use the graph space first. You can use pesc instead of

DESCRIBE for short.

DESCRIBE TAG is different from sHow TAGS . For details about sHow TAGs , see SHOW TAGS.

Example
Get information about a tag named player .

nebula> DESCRIBE TAG player;

droocooooo dhmcomoooooo dboocoooo dbomcomooosoo +
| Field | Type | Null | Default |
drmocosass focosocosas drooco=as droscosacosas +
| "name" | "string" | "YES" | _EMPTY__

droocooooo dhmcomoooooo dboocoooo dbomcomooosoo +
| "age" | "int64" | "YES" | __EMPTY__ |
drmocosass focosocosas drooco=as droscosacosas +

Last update: March 19, 2021

-175/290 - 2021 Vesoft Inc.

4.10 Edge type statements

4.10 Edge type statements

4.10.1 CREATE EDGE

CREATE EDGE creates an edge type with the given name in a graph space. You must have the creaTe privilege for the graph space.
To create an edge type in a specific graph space, you must use the graph space first.

OpenCypher compatibility

Edge types in nGQL are similar to labels/relationship types in openCypher. But they are also quite different. For example, the ways
to create them are different.

* In openCypher, relationship types are created together with relationships by CReATE statements.

* In nGQL, edge types are created separately by CReATE EDGE statements. Edge types in nGQL are more like tables in MySQL.

Syntax

CREATE EDGE [IF NOT EXISTS] <edge_type_name>
([<create_definition>, ...])
[edge_type_options]

<create definition> ::=
<prop_name> <data_type>

<edge_type_options> ::=
<option> [, <option> ...]

<option> ::=
TTL_DURATION [=] <ttl duration>
| TTL_COL [=] <prop_name>

| DEFAULT <default_value>

Edge type name

e IF NOT EXISTS: Creating an existent edge type causes an error. You can use the IF NOT EXISTS option to conditionally create the
edge type and avoid the error.

/" Note

The edge type existence detection here compares only the edge type names (excluding properties).

* edge_type_name : The edge type name must be unique in a graph space. Once the edge type name is set, it can not be altered.
The rules for permitted edge type names are the same as those for graph space names. For prohibited names, see Keywords
and reserved words.

PROPERTY NAMES AND DATA TYPES

* prop_name

prop_name is the name of the property. It must be unique for each edge type.

* data_type

data_type shows the data type of each property. For a full description of the property data types, see Data types.

® NULL | NOT NULL

Specifies if the property supports nuLL | nNoT NULL . The default value is nuLL .

® DEFAULT

Specifies a default value for a property. The default value can be a literal value or an expression supported by Nebula Graph.
If no value is specified, the default value is used when inserting a new vertex.

- 176/290 - 2021 Vesoft Inc.

4.10.1 CREATE EDGE

TIME-TO-LIVE (TTL)

* TTL_DURATION
Specifies the life cycle for the data. Data that exceeds the specified TTL expires. The expiration threshold is the TTL_coL value
plus the TTL_DURATION. The default value of TTL DURATION is 6. It means the data never expires.

e TTL_COL

The data type of prop_name must be either int or timestamp.

 single TTL definition

Only one TTL_coL field can be specified in an edge type.

For more information about TTL, see TTL options.
EXAMPLES

nebula> CREATE EDGE follow(degree int);

// Create an edge type with no properties.
nebula> CREATE EDGE no_property();

// Create an edge type with a default value.
nebula> CREATE EDGE follow_with_default(degree int DEFAULT 20);

// Time interval is 100s, starting from the p2 field
// Data expires after TTL_DURATION
nebula> CREATE EDGE el(pl string, p2 int, \

p3 timestamp) \

TTL_DURATION = 100, TTL_COL = "p2";

Implementation of the operation

Trying to insert edges of a newly created edge type may fail, because the creation of the edge type is implemented
asynchronously.

Nebula Graph implements the creation in the next heartbeat cycle. To make sure the creation is successful, take the following

approaches:

¢ Find the new edge type in the result of sHow EDGES . If you can't, wait a few seconds and try again.

* Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval_secs parameter in the configuration files for all services.

Last update: April 22, 2021

- 177/290 - 2021 Vesoft Inc.

4.10.2 DROP EDGE

4.10.2 DROP EDGE

DROP EDGE [IF EXISTS] <edge_type_name>

DROP EDGE drops an edge type with the given name in a graph space. You must have the prop privilege for the graph space. To
drop an edge type in a specific graph space, you must use the graph space first.

/" Note

Before you drop an edge type, make sure that the edge type does not have any indexes. Otherwise, a conflict error ([ERROR (-8)]:
conflict!) is returned. To remove an index, see DROP INDEX.

An edge can have only one edge type. After you drop it, the edge CANNOT be accessible. The edge is deleted in the next
compaction.

Edge type name

e IF EXISTS: Dropping a non-existent edge type causes an error. You can use the IF ExISTS option to conditionally drop the edge
type and avoid the error.

/" Note

The edge type existence detection here compares only the edge type names (excluding properties).

* edge_type_name : Specifies the edge type name that you want to drop. You can drop only one edge type in one statement.

Example

nebula> CREATE EDGE el(pl string, p2 int);

nebula> DROP EDGE e1l;

Last update: April 22, 2021

- 178/290 - 2021 Vesoft Inc.

4.10.3 ALTER EDGE

4.10.3 ALTER EDGE

ALTER EDGE <edge_type_name>
<alter_definition> [, alter_definition] ...]
[ttl definition [, ttl definition] ...]
alter_definition:
| ADD (prop_name data_type)
| DROP (prop_name)
| CHANGE (prop_name data_type)

ttl_definition:
TTL_DURATION = ttl duration, TTL_COL = prop_name

ALTER EDGE alters the structure of an edge type with the given name in a graph space. You must have the ALTER privilege for the
graph space. To alter an edge type in a specific graph space, you must use the graph space first.

You can add or drop properties, change the data type of an existing property. You can also set TTL (Time-To-Live) for a property, or
change the TTL duration. TTL_coL only supports INT or TIMESTAMP type properties.

Before you alter properties for an edge type, make sure that the properties are not indexed. If the properties contain any indexes,
a conflict error occurs when you alter them.

For information about index, see Index.

Multiple App, Dprop, and CHANGE clauses are permitted in a single ALTER statement, separated by commas.

Edge type name

edge_type_name specifies the edge type name that you want to alter. You can alter only one edge type in one statement. Before you

alter an edge type, make sure that the edge type exists in the graph space. If the edge type does not exist, an error occurs when
you alter it.

Example

nebula> CREATE EDGE el(pl string, p2 int);
nebula> ALTER EDGE el ADD (p3 int, p4 string);
nebula> ALTER EDGE el TTL_DURATION = 2, TTL_COL = "p2";

Implementation of the operation

Nebula Graph implements the alteration asynchronously in the next heartbeat cycle. Before the process finishes, the alteration
does not take effect. To make sure the alteration is successful, take the following approaches:

* Use DESCRIBE EDGE to confirm that the edge information is updated. If it is not, wait a few seconds and try again.

* Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval secs parameter in the configuration files for all services.

Last update: March 19, 2021

- 179/290 - 2021 Vesoft Inc.

4.10.4 SHOW EDGES

4.10.4 SHOW EDGES

SHOW EDGES

sHow EDGES shows all edge types in the current graph space. You do not need any privileges for the graph space to run this

statement. But the returned results are different based on role privileges. To show edge types in a specific graph space, you must
use the graph space first.

Examples

nebula> SHOW EDGES;

L +
| Name |
drmmcoss=aoo +
| "follow" |
L +
| "serve" |
drmmcoss=aoo +

Got 2 rows (time spent 1039/1687 us)

Last update: March 19, 2021

-180/290 - 2021 Vesoft Inc.

4.10.5 DESCRIBE EDGE

4.10.5 DESCRIBE EDGE

DESC[RIBE] EDGE <edge_type_name>

DESCRIBE EDGE returns information about an edge type with the given name in a graph space. You must have the read Schema
privilege for the graph space. To describe an edge type in a specific graph space, you must use the graph space first. You can use

DESC instead of DEscrRIBE for short.

DESCRIBE EDGE is different from sHow EDGE . For details about sHow EDGE , see SHOW EDGE.

Example

Get information about an edge type named follow .

nebula> DESCRIBE EDGE follow;

droocososooo dhocooocooo dhocomooo fhmcomooomooo +
| Field | Type | Null | Default |
drmmcoss=ooo focosc=ooo Focososs focosocososs +
| "degree" | "int64" | "YES" | _EMPTY__

droocososooo dhocooocooo dhocomooo fhmcomooomooo +

Last update: March 19, 2021

- 181/290 - 2021 Vesoft Inc.

4.11 Vertex statements

4.11 Vertex statements

4.11.1 INSERT VERTEX

The INSERT VERTEX statement inserts one or more vertices into a graph space in Nebula Graph.

When inserting a vertex with a VID that already exists, INSERT VERTEX overrides the vertex.

Syntax
INSERT VERTEX <tag_name> (<prop_name_list>) [, <tag_name> (<prop_name_list>), ...]
{VALUES | VALUE} VID: (<prop_value_list>[, <prop_value_list>])

prop_name_list:
[prop_name [, prop_name] ...]

prop_value_list:
[prop_value [, prop_value] ...]
¢ tag_name denotes the tag (vertex type), which must be created before INSERT VERTEX.
e prop_name_list contains the names of the properties on the tag.

e viD is the vertex ID. In Nebula Graph 2.X, string and integer VID types are supported. The VID type is set when a graph
space is created. For detail information on the maximum VID length, see CREATE SPACE.

e prop_value_list must provide the property values according to the prop_name_list . If the property values do not match the
data type in the tag, an error is returned. When the NoT NULL constraint is set for a given property, an error is returned if no
property is given. When the default value for a property is nNULL, you can omit to specify the property value. For details, see

CREATE TAG.
Examples
nebula> CREATE TAG ti1(); -- Create tag tl1 with no property
nebula> INSERT VERTEX ti() VALUE "10":(); -- Insert vertex "10" with no property
nebula> CREATE TAG t2 (name string, age int); -- Create tag t2 with two properties
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n1", 12); -- Insert vertex "11" with two properties
nebula> INSERT VERTEX t2 (name, age) VALUES "12":("ni", "a13"); -- Failed. "a13" is not int
nebula> INSERT VERTEX t2 (name, age) VALUES "13":("n3", 12), "14":("n4", 8); -- Insert two vertices

nebula> CREATE TAG t3(pl int);
nebula> CREATE TAG t4(p2 string);
nebula> INSERT VERTEX t3 (p1), t4(p2) VALUES "21": (321, "hello"); -- Insert vertex "21" with two tags.

A vertex can be inserted/written multiple times. Only the last written values can be read.

// Insert vertex "11" with the new values.

nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n2", 13);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n3", 14);
nebula> INSERT VERTEX t2 (name, age) VALUES "11":("n4", 15);

// Only the last version can be read
nebula> FETCH PROP ON t2 "11";

T +
| vertices_ |
drmscosococccosocooocccaoscasssosas +
| ("11" :t2{age: 15, name: "n4"}) |
S +

nebula> CREATE TAG t5(pl fixed_string(5) NOT NULL, p2 int, p3 int DEFAULT NULL);
nebula> INSERT VERTEX t5(p1, p2, p3) VALUES "001":("Abe", 2, 3);

nebula> INSERT VERTEX t5(pl, p2, p3) VALUES "002":(NULL, 4, 5);

[ERROR (-8)]: Storage Error: The not null field cannot be null.

nebula> INSERT VERTEX t5(p1, p2) VALUES "003":("cd", 5);

// The value for p3 is the default NULL.
nebula> FETCH PROP ON t5 "003";

| ("003" :t5{p1: "cd", p2: 5, p3: _NULL__}) |

- 182/290 - 2021 Vesoft Inc.

4.11.1 INSERT VERTEX

nebula> INSERT VERTEX t5(pl, p2) VALUES "004":('"shalalalala", 4);

// The allowed maximum length for property pl is 5.
nebula> FETCH PROP on t5 "004";

b e +
| vertices_ |
drmscosococcoosososoccoosscaSScosocosososososo=oo +
| ("e04" :t5{p1l: "shala", p2: 4, p3: _NULL_}) |
B T T T T T +

Last update: April 13, 2021

- 183/290 - 2021 Vesoft Inc.

4.11.2 DELETE VERTEX

4.11.2 DELETE VERTEX

DELETE VERTEX <vid> [, <vid> ...]

Use DELETE VERTEX to delete vertices and the related incoming and outgoing edges of the vertices. The DELETE VERTEX statement
deletes one vertex or multiple vertices at a time. You can use DELETE VERTEX together with pipe. For more information about pipe,
see Pipe operator.

Examples

nebula> DELETE VERTEX "teaml';

This query deletes the vertex whose ID is "team1".

nebula> GO FROM "player100" OVER serve YIELD serve._dst AS id | DELETE VERTEX $-.id;

This query shows that you can use DELETE VERTEX together with pipe.

Nebula Graph traverses the incoming and outgoing edges related to the vertices and deletes them all. Then Nebula Graph deletes
information related to the vertices.

/" Note

Atomic operation is not guaranteed during the entire process for now, so please retry when a failure occurs.

Last update: April 22, 2021

- 184/290 - 2021 Vesoft Inc.

4.11.3 UPDATE VERTEX

The uPDATE VERTEX statement updates properties on a vertex. UPDATE VERTEX supports compare-and-set (CAS).

/" Note

An UPDATE VERTEX statement can only update properties on ONE TAG of a vertex.

Syntax

UPDATE VERTEX ON <tag_name> <vid>
SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Field Required
ON <tag_name> Yes
<vid> Yes
SET Yes

<update_prop>

WHEN No

<condition>

YIELD <output> No
Example

// Check the properties of vertex "player101".
nebula> FETCH PROP ON player "player101";

Description

Specifies the tag of the vertex. The properties to be updated
must be on this tag.

Specifies the ID of the vertex to be updated.

Specifies the properties to be updated and how they will be
updated.

Specifies the filter conditions. If <condition> evaluates to
false, the SeT clause does not take effect.

Specifies the output format of the statement.

// Update the age property and return name and the new age.

nebula> UPDATE VERTEX ON player "player101" \
SET age = age + 2 \
WHEN name == "Tony Parker" \
YIELD name AS Name, age AS Age;

4.11.3 UPDATE VERTEX

Example

ON player

"player100"

SET age = age
+1

WHEN name ==

nTip"

YIELD name AS

Name

Last update: May 7, 2021

- 185/290 -

2021 Vesoft Inc.

4.11.4 UPSERT VERTEX

4.11.4 UPSERT VERTEX

UPSERT is a combination of upDATE and INSERT. Use UPSERT VERTEX to update properties of a vertex if it exists or insert a new vertex if
it does not exist.

/" Note

An UPSERT VERTEX statement can only update properties on ONE TAG of a vertex.

The performance of UpPserT is much lower than that of INSERT, because UPSERT is a read-modify-write serialization operation at the
partition level.

0 Danger

Don't use upserT for scenarios with highly concurrent writes. Use UPDATE or INSERT instead.

Syntax

UPSERT VERTEX ON <tag> <vid>
SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Field Required Description Example

ON <tag> Yes Specifies the tag of the vertex. The properties to be ON player
updated must be on this tag.

<vid> Yes Specifies the ID of the vertex to be updated or inserted. "player100"

SET Yes Specifies the properties to be updated and how they will be SET age = age +1

<update_prop> updated.

WHEN <condition> No Specifies the filter conditions. WHEN name ==
nTim"

YIELD <output> No Specifies the output format of the statement. YIELD name AS
Name

Insert a vertex if it does not exist

If a vertex does not exist, it is created no matter the conditions in the wHEN clause are met or not, and the seT clause always takes
effect. The property values of the new vertex depends on:

* How the seT clause is defined

* The default value of the properties
For example, if:

* The vertex to be inserted will have properties name and age based on tag player .

* The set clause specifies that age = 30.

- 186/290 - 2021 Vesoft Inc.

Then the property values in different cases are listed as follows:

Are wHEN conditions met If properties has default values
Yes Yes
Yes No
No Yes
No No

Here are some examples:

// Check if the following three vertices exists.
nebula> FETCH PROP ON * "player666", "player667", "player668";
Empty set

// The result Empty set indicates that the vertices don't exist.

nebula> UPSERT VERTEX ON player "player666" \
SET age = 30 \

WHEN name == "Joe" \
YIELD name AS Name, age AS Age;
drmscocs=ooo fhmcococosoe +
| Name | Age |
£ S tommmmmeeaa +
| _NULL__ | 30 |
drmscocs=ooo fhmcococosoe +
nebula> UPSERT VERTEX ON player "player666" SET age = 31 WHEN name == "Joe" YIELD name AS Name,
[Heceen +
| Name | Age |
drmmcoso=ooo focaos +
| _NULL__ | 30 |
[Heceen +

nebula> UPSERT VERTEX ON player "player667" \
SET age = 31 \
YIELD name AS Name, age AS Age;

drmscocs=ooo fhocoos +
| Name | Age |
£ S Hmmme e +
| _NULL__ | 31 |
drmscocs=ooo fhocaos +

nebula> UPSERT VERTEX ON player "player668" \
SET name = "Amber", age = age + 1 \
YIELD name AS Name, age AS Age;

drmmcoso=as drmmcosc=ooo +

| Name | Age |

+--- +

| "Amber" | __NULL__ |

drmmcoso=as drmmcosc=ooo +

-+

Value of name

The default value

NULL

The default value

NULL

age AS Age;

Value of age
30
30
30

30

4.11.4 UPSERT VERTEX

In the last query of the preceding example, since age has no default value, when the vertex is created, age is NULL, and age = age
+ 1 does not take effect. But if it has a default value, age = age + 1 in the SeT clause will take effect. For example:

nebula> CREATE TAG player_with_default(name string, age int DEFAULT 20);
Execution succeeded

nebula> UPSERT VERTEX ON player_with_default "player101" \
SET age = age + 1 \
YIELD name AS Name, age AS Age;

drmmcoso=aoo Focaos +
| Name | Age |
e dhocmos +
| _NULL__ | 21 |
drmmcoso=aoo Focaos +

Update a vertex if it exists
If the vertex exists and the wHEN conditions are met, the vertex is updated.

nebula> FETCH PROP ON player "player101";

e +
| vertices_ |
drmscosocococococosooccooocoSScosScosooosocooosooooosoo +
| ("player101" :player{age: 42, name: "Tony Parker"}) |
e +

-187/290 -

2021 Vesoft Inc.

4.11.4 UPSERT VERTEX

nebula> UPSERT VERTEX ON player "player101" \
SET age = age + 2 \
WHEN name == "Tony Parker" \
YIELD name AS Name, age AS Age;

L +
If the vertex exists and the wHEN conditions are not met, the update does not take effect.

nebula> FETCH PROP ON player "player101";

T T e e Tt +
| vertices_ |
drmscosocosccosocosooccoSScaSScosScososocosooosooooosao +
| ("player101" :player{age: 44, name: "Tony Parker"}) |
T T e e Tt +

nebula> UPSERT VERTEX ON player "player101" \
SET age = age + 2 \
WHEN name == "Someone else" \
YIELD name AS Name, age AS Age;

Last update: May 10, 2021

- 188/290 - 2021 Vesoft Inc.

4.12 Edge statements

4.12.1 INSERT EDGE

4.12 Edge statements

The INSERT EDGE statement inserts an edge from a source vertex (given by src vid) to a destination vertex (given by dst vid) with a
specific rank.

When inserting an edge that already exists, INSERT VERTEX overrides the edge.

Syntax

INSERT EDGE <edge_type> (<prop_name_list>) {VALUES | VALUE}
<src_vid> -> <dst_vid>[@<rank>] : (<prop_value_list>)
[, <src_vid> -> <dst_vid>[@<rank>] : (<prop_value list>), ...]

<prop_name_list> ::=
[<prop_name> [, <prop_name>] ...]

<prop_value_list> ::=
[<prop_value> [, <prop_value>] ...]

* <edge_type> denotes the edge type, which must be created before INSERT EDGE . Only one edge type can be specified in this
statement.

e <prop_name_list> is the property name list in the given <edge type>.

e <prop_value_list> must provide the value list according to <prop_name_list>. If the property values do not match the data type
in the edge type, an error is returned. When the nNoT NULL constraint is set for a given property, an error is returned if no
property is given. When the default value for a property is NULL, you can omit to specify the property value.

¢ rank is optional. It specifies the edge rank of the same edge type. If not specified, the default value is 0. You can insert many
edges with the same edge type for two vertices by using different rank values.

/" OpenCypher compatibility

OpenCypher has no such a concept as rank.

Examples
nebula> CREATE EDGE el(); -- create edge type tl with empty property
nebula> INSERT EDGE el () VALUES "10"->"11":(); -- insert an edge from vertex "10" to vertex "11" with empty property
nebula> INSERT EDGE el () VALUES "10"->"11"@1:(); -- insert an edge from vertex "10" to vertex "11" with empty property, the edge rank is 1
nebula> CREATE EDGE e2 (name string, age int); -- create edge type e2 with two properties
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 1); -- insert edge from "11" to "13" with two properties
nebula> INSERT EDGE e2 (name, age) VALUES \
"12"->"13":("n1", 1), "13"->"14":("n2", 2); -- insert two edges
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", "a13"); -- ERROR. "a13" is not int

An edge can be inserted/written multiple times. Only the last written values can be read.

-- insert edge with the new values.

nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 12);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("ni1", 13);
nebula> INSERT EDGE e2 (name, age) VALUES "11"->"13":("n1", 14);

// Only the last write can be read
nebula> FETCH PROP ON e2 "11"->"13";

dhmmcocococccococosooccococasscocococscoooooo +
| edges. |
R R +
| [:e2 "11"->"13" @0 {age: 14, name: "n1"}] |
dhmmcocococccococosooccococasscocococscoooooo +

Last update: April 22, 2021

- 189/290 - 2021 Vesoft Inc.

4.12.2 DELETE EDGE

4.12.2 DELETE EDGE
DELETE EDGE <edge_type> <src_vid> -> <dst_vid>[@<rank>] [, <edge_type> <src_vid> -> <dst_vid>[@<rank>] ...]

Use DELETE EDGE to delete edges. The DELETE EDGE statement deletes one edge or multiple edges at a time. You can use DELETE EDGE
together with pipe. For more information about pipe, see Pipe operator.

Examples

nebula> DELETE EDGE serve "player100" -> "team200"@0;

This query deletes the serve edge from "playeriee" to "team200" , of which the rank value is 0.

nebula> GO FROM "player100" OVER follow WHERE follow. dst == "team200" YIELD follow._src AS src, follow. dst AS dst, follow._rank AS rank | \
DELETE EDGE follow $-.src->$-.dst @ $-.rank;

This query shows that you can use DELETE EDGE together with pipe. This query first traverses all the follow edges with different
rank values from "player100" to "team200" then deletes them.

To delete all the outgoing edges for a vertex, delete the vertex. For more information, see DELETE VERTEX.

/" Note

Atomic operation is not guaranteed during the entire process for now, so please retry when a failure occurs.

Last update: April 22, 2021

- 190/290 - 2021 Vesoft Inc.

4.12.3 UPDATE EDGE

4.12.3 UPDATE EDGE

The upPDATE EDGE statement updates properties on an edge. UPDATE EDGE supports compare-and-set (CAS).

Syntax

UPDATE EDGE ON <edge_type>
<src_vid> -> <dst_vid> [@<rank>]
SET <update_prop>

[WHEN <condition>]

[YIELD <output>]

Field Required Description Example

ON <edge_type> Yes Specifies the type of the edge. The properties to be ON serve
updated must be on this edge type.

<src_vid> Yes Specifies the source vertex ID of the edge. "player100"
<dst_vid> Yes Specifies the destination vertex ID of the edge. "team204"
<rank> No Specifies the rank of the edge. 10
SET Yes Specifies the properties to be updated and how they will SET start_year =
<update_prop> be updated. start_year +1
WHEN No Specifies the filter conditions. If <condition> evaluates WHEN end_year < 2010
<condition> to false, the seT clause does not take effect.
YIELD <output> No Specifies the output format of the statement. YIELD start_year AS
Start_Year
Example

// Check the properties of the edge with the GO statement.
nebula> GO FROM "player100" \

OVER serve \

YIELD serve.start_year, serve.end_year;
s=oedh

| serve.start_year | serve.end_year |

// Update the start_year property and return end_year and the new start_year.

nebula> UPDATE EDGE on serve "player100" -> "team204"@0 \
SET start_year = start_year + 1 \
WHEN end_year > 2010 \
YIELD start_year, end_year;

droscosososass fhocosocosas +
| start_year | end_year |
4ococccccnana Fecccccanaa- +
| 1998 | 2016 |
droscosososass fhocosocosas +

Last update: May 10, 2021

- 191/290 - 2021 Vesoft Inc.

4.12.4 UPSERT EDGE

4.12.4 UPSERT EDGE

UPSERT is a combination of upDATE and INSERT. Use UPSERT EDGE to update properties of an edge if it exists or insert a new edge if it
does not exist.

The performance of UPSERT is much lower than that of INSERT, because UPSERT is a read-modify-write serialization operation at the
partition level.

O Danger

Don't use upserT for scenarios with highly concurrent writes. Use UPDATE or INSERT instead.

Syntax

UPSERT EDGE ON <edge_type>
<src_vid> -> <dst_vid> [@rank]
SET <update_prop>

[WHEN <condition>]

[YIELD <properties>]

Field Required Description Example

ON <edge_type> Yes Specifies the type of the edge. The properties to be ON serve
updated must be on this edge type.

<src_vid> Yes Specifies the source vertex ID of the edge. "player100"

<dst_vid> Yes Specifies the destination vertex ID of the edge. "team204"

<rank> No Specifies the rank of the edge. 10

SET Yes Specifies the properties to be updated and how they SET start_year =

<update_prop> will be updated. start_year +1

WHEN No Specifies the filter conditions. WHEN end_year < 2010

<condition>

YIELD <output> No Specifies the output format of the statement. YIELD start_year AS
Start_Year

Insert an edge if it does not exist

If an edge does not exist, it is created no matter the conditions in the wHEN clause are met or not, and the seT clause takes effect.
The property values of the new edge depends on:

* How the seT clause is defined

* The default value of the properties
For example, if:

* The edge to be inserted will have properties start_year and end_year based on the edge type serve.

* The seT clause specifies that end year = 2021.

- 192/290 - 2021 Vesoft Inc.

Then the property values in different cases are listed as follows:

Are wHEN conditions met If properties has default values

Yes Yes
Yes No
No Yes
No No

Here are some examples:

// Check if the following three vertices has any outgoing serve edge.
nebula> GO FROM "player666", '"player667", '"player668" \

OVER serve \

YIELD serve.start_year, serve.end_year;
Empty set

// The result Empty set indicates that the edges don't exist.

nebula> UPSERT EDGE on serve \
"player666" -> "team200"@0 \
SET end_year = 2021 \
WHEN end_year == 2010 \
YIELD start_year, end_year;

4ococccccnana Fecccccanaa- +
| start_year | end_year |
drmscoso=ososs fhocosocosas +
| _NULL__ | 2021 |
4ococccccnana Fecccccanaa- +

nebula> UPSERT EDGE on serve \
"player666" -> "team200"@0 \
SET end_year = 2022 \
WHEN end_year == 2010 \
YIELD start_year, end_year;

[TR tommmmmeeaa +
| start_year | end_year |
droccococosaes fhmcococosoe +
| _NULL__ | 2021 |
[TR tommmmmeeaa +

nebula> UPSERT EDGE on serve \
"player667" -> "team200"@0 \
SET end_year = 2022 \
YIELD start_year, end_year;

dhmscococosoes fhocococosae +
| start_year | end_year |
[TR tommmmmeeaa +
| _NULL__ | 2022 |
dhmscococosoes fhocococosae +

nebula> UPSERT EDGE on serve \
"player668" -> "team200"@0 \
SET start_year = 2000, end_year = end_year + 1 \
YIELD start_year, end_year;

[TR tommmmmeeaa +

| start_year | end_year |

dhmscococosoes fhocococosae +

| 2000 | _NULL__ |

-+

4.12.4 UPSERT EDGE

Value of start_year Value of end_year

The default value 2021
NULL 2021
The default value 2021
NULL 2021

In the last query of the preceding example, since end_year has no default value, when the edge is created, end_year is nULL, and

end_year = end_year + 1 does not take effect. But if it has a default value, end year = end_year + 1 in the SET clause will take effect.

For example:

nebula> CREATE EDGE serve_with_default(start_year int, end_year DEFAULT 2010);
Execution succeeded

nebula> UPSERT EDGE on serve_with_default \
"player668" -> "team200" \
SET end_year = end_year + 1 \
YIELD start_year, end_year;

droocomooosooo focomocomoo +
| start_year | end_year |
[TR tommmmmmeae +
| _NULL__ | 2011 |
droscomooomooo fhocomooomoo +

-193/290 -

2021 Vesoft Inc.

4.12.4 UPSERT EDGE

Update an edge if it exists
If the edge exists and the wHEN conditions are met, the edge is updated.

nebula> MATCH (v:player{name:'"Ben Simmons"})-[e:serve]-(v2) \

RETURN e;
dhmscosocococooocooooocooScosSco-SoocoCoooCccoSScoSScosocococooocooococoo +
| e |
B s +
| [:serve "player149"->"team219" @0 {end_year: 2019, start_year: 2016}] |
dhmscosocococooocooooocooScosSco-SoocoCoooCccoSScoSScosocococooocooococoo +

nebula> UPSERT EDGE on serve \
"player149" -> "team219" \
SET end_year = end_year + 1 \
WHEN start_year == 2016 \
YIELD start_year, end_year;

droocomooosooo fhocomoooeoo +
| start_year | end_year |
droscosaso=ass Focosocosas +
| 2016 | 2020 |
droocomooosooo fhocomoooeoo +

If the edge exists and the wHEN conditions are not met, the edge does not take effect.

nebula> MATCH (v:player{name:"Ben Simmons"})-[e:serve]-(v2) \

RETURN e;
B S S S S +
| e |
B L T T T T T T T e +
| [:serve "player149"->"team219" @0 {end_year: 2020, start_year: 2016}] |
B S S S S +

nebula> UPSERT EDGE on serve \
"player149" -> "team219" \
SET end_year = end_year + 1 \
WHEN start_year != 2016 \
YIELD start_year, end_year;

[TR tommmmmmeae +
| start_year | end_year |
droocomooooos fhocomooomoo +
| 2016 | 2020 |
[TR tommmmmmeae +

Last update: May 10, 2021

-194/290 - 2021 Vesoft Inc.

4.13 Native index statements

4.13 Native index statements

4.13.1 CREATE INDEX

Use CReATE INDEX to add native indexes for existing tags, edge types or properties.

/" Note

For how to create text-based indexes, see Deploy full-text index.

Most graph queries start the traversal from a list of vertices or edges that are identified by their properties. Indexes make these

global retrieval operations efficient on large graphs.

Prerequisites

Before you create an index, make sure that the relative tag or edge type is created. For how to create tags or edge types, see

CREATE TAG and CREATE EDGE.

Must-read for using index
Correct use of indexes can speed up queries, but indexes can dramatically reduce the write performance. The performance
reduction can be as much as 90% or even more. DO NOT use indexes in production environments unless you are fully aware of

their influences on your service.
If you must use indexes, we suggest that you:
1. Import data into Nebula Graph.

2. Create indexes.

3. Rebuild the indexes.

The preceding workflow minimizes the negative influences of using indexes.

Syntax

- 195/290 - 2021 Vesoft Inc.

4.13.1 CREATE INDEX

CREATE {TAG | EDGE} INDEX [IF NOT EXISTS] <index_name> ON {<tag_name> | <edge_name>} ([prop_name_list])
¢ index_name : The name of the index. It must be unique in a graph space. A recommended way of naming is i_tagName_propName .

e IF NOT EXISTS: Creating an existent index results in an error. You can use the IF NOT EXISTS option to conditionally create the

index and avoid the error.

® prop_name_list :

* To index a variable string property, you must use the prop_name(length) syntax to specify an index length.

/" Note

Long indexes decrease the scan performance of the Storage Service and use more memory. We suggest that you set the
indexing length the same as that of the longest string to be indexed. The longest indexing length is 255. Strings longer than

255 are truncated.

» To index a fixed-length string property, you must use the prop_name syntax, and the index length is the string length you

set.

» To index a tag or an edge type, ignore the prop_name_list in the parentheses.

/" Note
When there is an index for any property of a tag or an edge type, creating another index for the tag or edge type is neither

supported nor necessary.

Implementation of the operation

Nebula Graph implements the creation of the index asynchronously in the next heartbeat cycle. To make sure the creation is

successful, take one of the following approaches:

¢ Find the new index in the result of SHOw TAG/EDGE INDEXES .
* Wait for two heartbeat cycles, i.e., 20 seconds.

To change the heartbeat interval, modify the heartbeat_interval secs parameter in the [configuration files] for all services.

Create tagledge type indexes

The following statement creates an index on the player tag.
nebula> CREATE TAG INDEX player_index on player();
The following statement creates indexes on the edge type like.

nebula> CREATE EDGE INDEX like_index on like();

After indexing a tag or an edge type, you can use the Lookur statement to retrieve the VID of all vertices with the tag, or the source
vertex ID, destination vertex ID, and ranks of all edges with the edge type. For more information, see List vertices or edges with a

tag or an edge type.

Create single-property indexes
nebula> CREATE TAG INDEX player_index_0 on player(name(10));

The preceding statement creates an index for the name property on all vertices carrying the player tag. This statement creates an

index using the first 10 characters of the name property.

nebula> CREATE TAG var_string(pl string);
nebula> CREATE TAG INDEX var ON var_string(p1(10));

- 196/290 - 2021 Vesoft Inc.

4.13.1 CREATE INDEX

nebula> CREATE TAG fix_string(pl FIXED_STRING(10));
nebula> CREATE TAG INDEX fix ON fix_string(pl);

nebula> CREATE EDGE INDEX follow_index_0 on follow(degree);

The preceding statement creates an index for the degree property on all edges carrying the follow edge type.

Create composite property indexes

An index on multiple properties is called a composite index.

/" Note

Creating index across multiple tags is not supported.

Consider the following example:

nebula> CREATE TAG INDEX player_index_1 on player(name(10), age);

This statement creates a composite index for the name and age property on all vertices carrying the player tag.

Nebula Graph follows the left matching principle to select indexes. That is, columns in the wHERE conditions must be in the first N
columns of the index. For example:

nebula> CREATE TAG INDEX example_index ON TAG t(pl, p2, p3); -- Create an index for the first 3 properties of tag t
nebula> LOOKUP ON t WHERE p2 == 1 and p3 == 1; -- Not supported

nebula> LOOKUP ON t WHERE p1 == 1; -- Supported

nebula> LOOKUP ON t WHERE p1 1 and p2 == 1; -- Supported

nebula> LOOKUP ON t WHERE p1l == 1 and p2 == 1 and p3 == 1; -- Supported

Using index
After the index is created and data is inserted, you can use LOOKUP or MATCH to query the data.

You do not need to specify which indexes to use in a query, Nebula Graph figures that out by itself.

Last update: April 22, 2021

- 197/290 - 2021 Vesoft Inc.

4.13.2 Show INDEXES

4.13.2 Show INDEXES

SHOW {TAG | EDGE} INDEXES

Use sHow INDEXES to list the defined tag or edge type indexes names.

Example

nebula> SHOW TAG INDEXES;

B +
| Names |
[R +
| "Fix" |
B +
| "player_index_0" |
[R +
| "player_index_1" |
B +
| "var" |
[R +

-+

Last update: December 16, 2020

-198/290 - 2021 Vesoft Inc.

4.13.3 SHOW CREATE INDEX

4.13.3 SHOW CREATE INDEX

SHOW CREATE INDEX shows the statement that an index was created with. You can find the detailed information of the index, such as

the property that the index is created for.

Syntax

SHOW CREATE {TAG | EDGE} INDEX <index_name>;

Examples

You can run sHow TAG INDEXES to list all tag indexes, and then use sHow CREATE TAG INDEX to show how a tag index was created.

nebula> SHOW TAG INDEXES;

nebula> SHOW CREATE TAG INDEX player_index_1;

Fommmmmmmecmeeaaaas s +
| Tag Index Name | Create Tag Index |
drmocosscosscasosaoo fhocococococococcoocccocscosscococooocooooocooocosoe +
| "player_index_1" | "CREATE TAG INDEX “player_index_1" ON “player” (|
| | “name(20)° |
| 1" |
drmocosscosscasosaoo fhocococococococcoocccocscosscococooocooooocooocosoe +

Edge indexes can be queried through a similar approach:

nebula> SHOW EDGE INDEXES;

TR +
| Names |
T e +
| "index_follow" |
TR +

nebula> SHOW CREATE EDGE INDEX index index_follow;

drmscosacosscososas dhmscococosocococococccooscosocosocosocooocasoooeao +
| Edge Index Name | Create Edge Index |
B T B T e PP P +
| "index_follow" | "CREATE EDGE INDEX “index_follow™ ON “follow™ (|
| | “degree” |
| 1" |
B T B T e PP P +

Last update: March 29, 2021

-199/290 - 2021 Vesoft Inc.

4.13.4 DESCRIBE INDEX

4.13.4 DESCRIBE INDEX
DESCRIBE {TAG | EDGE} INDEX <index_name>
Use DEsCRIBE INDEX to get information about the index. DEscrRiBE INDEX returns the following columns:

* Field
The property name. - Type

The property type.

Example

nebula> DESCRIBE TAG INDEX player_index_0;

dfmocosass fhocosscocososozooosas +
| Field | Type |
[Fececccccccccccccaaan +
| "name" | "fixed_string(30)" |
drmscosass fhocosscocososozooosas +

nebula> DESCRIBE TAG INDEX player_index_1;

drmocosocs fhococscosococooooosas +
| Field | Type |
[T — Fommmmmeemeeaeeaaas +
| "name" | "fixed_string(10)" |
drmocosocs fhococscosocococooosas +
| "age" | "intea" I
[T — Fommmmmeemeeaeeaaas +

Last update: December 16, 2020

-200/290 - 2021 Vesoft Inc.

4.13.5 REBUILD INDEX

4.13.5 REBUILD INDEX

0 Danger

If data is updated or inserted before the index's creation, you must rebuild the indexes manually to make sure that the indexes
contain the previously added data. If the index is created before any data insertion, there is no need to rebuild the index.

0 Danger

During the rebuilding, all queries skip the index and perform sequential scans. This means that the return results can be different

because not all the data is indexed during rebuilding.

REBUILD {TAG | EDGE} INDEX [<index_name_list>]
<index_name_list>::=

[index_name [, index_name] ...]

Use ReBUILD INDEX to rebuild the created tag or edge type index. For details on how to create an index, see CREATE INDEX.

Multiple indexes are permitted in a single ReBuILD statement, separated by commas. When the index name is not specified, all tag

or edge indexes are rebuilt.

After rebuilding is complete, you can use the sHow {TAG | EDGE} INDEX STATUS command to check if the index is successfully rebuilt.
For details on index status, see SHOW INDEX STATUS.

Example

nebula> CREATE TAG person(name string, age int, gender string, email string);
Execution succeeded (Time spent: 10.051/11.397 ms)

nebula> CREATE TAG INDEX single_person_index ON person(name(10));
Execution succeeded (Time spent: 2.168/3.379 ms)

nebula> REBUILD TAG INDEX single_person_index;

droscomooooooo +
| New Job Id |
droscosososass +
| 66 |
droscomooooooo +

nebula> SHOW TAG INDEX STATUS;
Nebula Graph creates a job to rebuild the index. The job ID is displayed in the preceding return message. To check if the
rebuilding process is complete, use the sHow JoB <job_id> statement. For more information, see SHOW JOB.
Legacy version compatibility

In Nebula Graph 2.x, the ofFFLINE options is no longer needed and not supported.

Last update: April 19, 2021

- 201/290 - 2021 Vesoft Inc.

4.13.6 SHOW INDEX STATUS

4.13.6 SHOW INDEX STATUS

SHOW {TAG | EDGE} INDEX STATUS

SHOW INDEX STATUS returns the created tag or edge type index status. For details on how to create index, see CREATE INDEX.
SHow INDEX STATUS returns the following fields:

* Name

The index name.

* Index Status

Index Status includes QUEUE, RUNNING, FINISHED, FAILED, STOPPED, INVALID.

Example

nebula> SHOW TAG INDEX STATUS;

droscosscocososocososaoo frocosocosocosas +
| Name | Index Status |
B fhmcooocosoooooo +
| "player_index_0" | "FINISHED" |
droscosscocososocososaoo frocosocosocosas +

| "FINISHED" |

fhmcooocosoooooo +

Last update: December 16, 2020

-202/290 - 2021 Vesoft Inc.

4.13.7 DROP INDEX

4.13.7 DROP INDEX

DROP {TAG | EDGE} INDEX [IF EXISTS] <index_name>

The prop INDEX statement removes an existing index from the current graph space. Removing a nonexistent index results in an
error. You can use the IF ExisTs option to conditionally drop the index and avoid the error. To run this statement you need some
privilege. For information about the built-in roles in Nebula Graph, see Built-in roles.

Example

nebula> DROP TAG INDEX player_index_0;

This query drops a tag index names player_index_0 .

Last update: March 19, 2021

- 203/290 - 2021 Vesoft Inc.

4.14 Full-text index statements

4.14 Full-text index statements

4.14.1 Index overview

Indexes are built to fast process graph queries. Nebula Graph supports two kinds of indexes: native indexes and full-text indexes.
This topic introduces the index types and helps choose the right index.

Native indexes

Native indexes allow querying data based on a given property. There are two kinds of native indexes: tag index and edge type
index. Native indexes must be updated manually. You can use the REBUILD INDEX statement to update native indexes. Native
indexes support indexing multiple properties on a tag or an edge type (composite indexes), but do not support indexing across
multiple tags or edge types.

You can do partial match search by using composite indexes. Use composite indexes only for partial match searches when the
declared fields in the composite index are used from left to right. For more information, see LOOKUP FAQ.

String operators like conTAINS and STARTS WITH are not allowed in native index searching. Use full-text indexes to do fuzzy search.

OPERATIONS ON NATIVE INDEXES
You can do the following operations against native indexes:

* Create index

e Show index

* Describe index

* Rebuild index

* Show index status
* Drop index

* Query index

Full-text indexes

Full-text indexes are used to do prefix, wildcard, regexp, and fuzzy search on a string property. Full-text indexes allow indexing
just one property. Only strings within a specified length (no longer than 256 bytes) are indexed. Full-text indexes do not support
logical operations such as anp, orR and NoT. To do complete text match, use native indexes.

OPERATIONS ON FULL-TEXT INDEXES

Before doing any operations on full-text indexes, please mak sure that you deploy full-text indexes. Details on full-text indexes
deployment, see Deploy Elasticsearch and Deploy Listener. At this time, full-text indexes are created automatically on the
Elasticsearch cluster. And rebuilding or altering full-text indexes are not supported. To drop full-text indexes, you need to drop
them on the Elasticsearch cluster manually. To query full-text indexes, see Search with full-text indexes.

Null values

Indexes do not support indexing null values at this time.

Range queries

In addition to querying single results from native indexes, you can also do range queries. Not all the native indexes support range
queries. You can only do range search for numeric, date, and time type properties.

Last update: December 16, 2020

- 204/290 - 2021 Vesoft Inc.

_ =
—_

_ e
w N

4.14.2 Full-text index restrictions

4.14.2 Full-text index restrictions

This document holds the restrictions for full-text indexes. Please read the restrictions very carefully before using the full-text
indexes. For now, full-text search has the following limitations:

—_

S ©O©W 0 N o U W N

. The maximum indexing string length is 256 bytes. The part of data that exceeds 256 bytes will not be indexed.

. Full-text index can not be applied to more than one property at a time (similar to a composite index).

. The wHere clause in full-text search statement Lookup does not support logical expressions AnpD and oR.

. Full-text index can not be applied to multiple tags search.

. Sorting for the returned results of the full-text search is not supported. Data is returned in the order of data insertion.

. Full-text index can not search the null properties.

. Rebuilding or altering Elasticsearch indexes is not supported at this time.

. Pipe is not supported in the Lookur statement, excluding the examples in our document.

. Full-text search only works on single terms.

. Full-text indexes are not deleted together with the graph space.

. Make sure that you start the Elasticsearch cluster and Nebula Graph at the same time. If not, the data writing on the
Elasticsearch cluster can be incomplete.

. Do not contain ' or \ in the vertex or edge values. If not, a error is caused in the Elasticsearch cluster storage.

. It may take a while for Elasticsearch to create indexes. If Nebula Graph warns no index is found, wait for the index to take effect.

Last update: May 7, 2021

- 205/290 - 2021 Vesoft Inc.

4.14.3 Deploy full-text index

4.14.3 Deploy full-text index

Nebula Graph full-text indexes are powered by Elasticsearch. This means that you can use Elasticsearch full-text query language
to retrieve what you want. Full-text indexes are managed through built-in procedures. They can be created only for variable

STRING and FIXED_STRING properties when the listener cluster and the Elasticsearch cluster are deployed.

Before you start

Before you start using the full-text index, please make sure that you know the restrictions.

Deploy Elasticsearch cluster
To deploy an Elasticsearch cluster, see the Elasticsearch documentation.

When the Elasticsearch cluster is started, add the template file for the Nebula Graph full-text index. Take the following sample

template for example:

{

"template": "nebula*",
"settings": {
"index": {

"number_of_shards": 3,
"number_of_replicas": 1

}

}
"mappings": {
"properties" : {
"tag_id" : { "type" : "long" },
"column_id" : { "type" : "text" },
"value" :{ "type" : "keyword"}

Make sure that you specify the following fields in strict accordance with the preceding template format:

"template": "nebula*"
"tag_id" : { "type" : "long" },
"column_id" : { "type" : "text" },
"value" :{ "type" : "keyword"}

You can configure the Elasticsearch to meet your business needs. To customize the Elasticsearch, see Elasticsearch Document.

Sign in to the text search clients

SIGN IN TEXT SERVICE [(<elastic_ip:port> [,<username>, <password>]), (<elastic_ip:port>),

When the Elasticsearch cluster is deployed, use the siGn IN statement to sign in to the Elasticsearch clients. Multiple
elastic_ip:port pairs are separated with commas. You must use the IPs and the port number in the configuration file for the

Elasticsearch. For example:

nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200);
Elasticsearch does not have username or password by default. If you configured a username and password, you need to specify in

the siGN IN statement.

Show text search clients
SHOW TEXT SEARCH CLIENTS

Use the sHow TEXT SEARCH CLIENTS statement to list the text search clients. For example:

nebula> SHOW TEXT SEARCH CLIENTS;

- 206/290 - 2021 Vesoft Inc.

https://en.wikipedia.org/wiki/Elasticsearch
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-deploy-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/settings.html

4.14.3 Deploy full-text index
| "127.0.0.1" | 9200 |
R T +ommmm +
| "127.0.0.1" | 9200 |
drmscosososo=as dromcaos +

| "127.0.0.1" | 9200 |

Fommmmmm e Hommmm +

Sign out to the text search clients

SIGN OUT TEXT SERVICE

Use the SIGN ouT TEXT SERVICE to sign out all the text search clients. For example:

nebula> SIGN OUT TEXT SERVICE;

Last update: December 17, 2020

-207/290 - 2021 Vesoft Inc.

4.14.4 Deploy Raft Listener for Nebula Storage service

4.14.4 Deploy Raft Listener for Nebula Storage service
Full-Text index data is written to the Elasticsearch cluster asynchronously. The Raft Listener (hereinafter shortened as Listener) is
a separate process that fetches data from the Storage Service and writes them into the Elasticsearch cluster.
Prerequisites
* You have read and fully understand the restrictions for using Full-Text indexes.
* You have deployed a Nebula Graph cluster.
* You have prepared at least one extra Storage Server. To use the Full-Text search, you must run one or more Storage Server as
the Raft Listener.
Precautions

* The Storage Service that you want to run as a Listener must have the same or later version with all the other Nebula Graph
services in the cluster.

* For now, you can only add Listeners to a graph space once and for all. Trying to add listeners to a graph space that already
has a listener will fail. To add multiple listeners, set them in one statement.

Step 1: Prepare the configuration file for the Listeners

You have to prepare a Listener configuration file on the machine that you want to deploy the Listeners. The file name must be
nebula-storaged-listener.conf . A template is provided for your reference.

/" Note

Use real IP addresses in the configuration file instead of domain names or loopback IP addresses such as 127.0.0.1.

Step 2: Start the Listeners
Run the following command to start the Listeners.

./bin/nebula-storaged --flagfile ${listener_config_path}/nebula-storaged-listener.conf

${listener_config_path} is the path where you store the Listener configuration file.

Step 3: Add Listeners to Nebula Graph

Connect to Nebula Graph and run Use <space> to enter the graph space that you want to create Full-Text indexes for. Then run the
following statement to add the Listener into Nebula Graph.

/" Note

You must use real IPs for the listeners.

ADD LISTENER ELASTICSEARCH <listener_ip:port> [,<listener_ip:port>, ...]

Multiple listener_ip:port pairs are separated with commas. For example:

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:46780,192.168.8.6:46780;

- 208/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-storage/blob/master/conf/nebula-storaged-listener.conf.production

4.14.4 Deploy Raft Listener for Nebula Storage service

Show Listeners
Run the sHow LISTENER statement to list the Listeners.
For example:

nebula> SHOW LISTENER;

drmocoeooo dhocococosomoooeooo e e e fhocomoooeoo +
PartId | Type Host Status
yp
drosco=aso fhocosscococososooo fhocosscococososasocscaos focosscosos +
| 1 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |
drmocoeooo dhocomocomomoooeooo B e e fhocomoooeoo +
| 2 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |
drosco=aso fhocosscococososooo fhocosscococososasocscaos focosscosos +
| 3 | "ELASTICSEARCH" | "[192.168.8.5:46780]" | "ONLINE" |
drmocoeooo dhocococosomoooeooo e e e fhocomoooeoo +

Remove Listeners
Run the REMOVE LISTENER ELASTICSEARCH statement to remove all the Elasticsearch Listeners for a graph space.
For example:

nebula> REMOVE LISTENER ELASTICSEARCH;

What to do next

After deploying the Elasticsearch cluster and the Listeners, Full-Text indexes are created automatically on the Elasticsearch
cluster. You can do Full-Text search now. For more information, see Full-Text search.

Last update: April 22, 2021

-209/290 - 2021 Vesoft Inc.

4.14.5 Full-text search

LOOKUP ON {<tag> | <edge_type>} WHERE <expression> [YIELD <return_list>]

<expression> ::=

PREFIX | WILDCARD | REGEXP | FUZZY

<return_list>

<prop_name> [AS <prop_alias>] [, <prop_name> [AS <prop_alias>] ...]

* PREFIX(schema name.prop name, prefix string, row limit, timeout)
* WILDCARD(schema name.prop name, wildcard string, row limit, timeout)
* REGEXP(schema name.prop name, regexp string, row limit, timeout)

* FUZZY(schema name.prop name, fuzzy string, fuzziness, operator, row limit, timeout)

4.14.5 Full-text search

* fuzziness (optional): Maximum edit distance allowed for matching. The default value is Auto. For other valid values and

more information, see Elasticsearch document.

* operator (optional): Boolean logic used to interpret text. Valid values are or (default) and AnD.
* row_limit (optional): Specifies the number of rows to return. The default value is 100.

e timeout (optional): Specifies the timeout time. The default value is 200ms.

Use the Lookur on statement to do full-text search. The search string is specified in the wHerRe clause. Before doing a full-text

search, make sure that you deployed a Elasticsearch cluster and a Listener cluster. For more information, see Deploy Elasticsearch

and Deploy Listener.

Before you start

Before you start using the full-text index, please make sure that you know the restrictions.

Natural language full-text search

A natural language search interprets the search string as a phrase in natural human language. The search is case-insensitive.

Examples

nebula> CREATE SPACE basketballplayer (partition_num=3,replica_factor=1, vid_type=fixed_string(30));
nebula> SIGN IN TEXT SERVICE (127.0.0.1:9200);

nebula> USE basketballplayer;

nebula> ADD LISTENER ELASTICSEARCH 192.168.8.5:46780;
nebula> CREATE TAG player(name string, age int);
nebula> CREATE TAG INDEX name ON player(name(20));
nebula> INSERT VERTEX player(name, age) VALUES \
"Russell Westbrook": ("Russell Westbrook", 30), \
"Chris Paul": ("Chris Paul", 33),\
"Boris Diaw": ("Boris Diaw", 36),\
"David West": ("David West", 38),\

"Danny Green": ("Danny Green", 31),\

"Tim Duncan": ("Tim Duncan", 42),\

"James Harden": ("James Harden", 29),\
"Tony Parker": ("Tony Parker", 36),\
"Aron Baynes": ("Aron Baynes", 32),\
"Ben Simmons": ("Ben Simmons", 22),\
"Blake Griffin": ("Blake Griffin", 30);

nebula> LOOKUP ON player WHERE PREFIX(player.name,

4ecmcmcmcmcmcmena +
| _vid |
drmscosocosccososas +
| "Boris Diaw" |
4ecmcmcmcmcmcmena +
| "Ben Simmons" |
drmscosocosocososas +
| "Blake Griffin" |
4ecmcmcmcmcmcmena +

nebula> LOOKUP ON player WHERE WILDCARD(player.name,

| "Chris Paul" | "Chris Paul"

"B");

"*ri*") YIELD player.name, player.age;

-210/290 -

2021 Vesoft Inc.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/common-options.html#fuzziness

Focmmmemeemeeaaas Fommmmmmmeemeaaas L T +
| "Boris Diaw" | "Boris Diaw" | 36 |
dhmocosocosscososas dhmocosocosccooosas dhoscas +
| "Blake Griffin" | "Blake Griffin" | 30 |
Focmmmemeemeeaaas Fommmmmmmeemeaaas L T +

4.14.5 Full-text search

Last update: April 13, 2021

-211/290 -

2021 Vesoft Inc.

4.15 Subgraph and path

4.15 Subgraph and path

4.15.1 GET SUBGRAPH

The GET SUBGRAPH statement retrieves information of vertices and edges reachable from the start vertices over the specified types
of edges.

Syntax

GET SUBGRAPH [<step_count> STEPS] FROM {<vid>, <vid>...}
[IN <edge_type>, <edge_type>...]

[OUT <edge_type>, <edge_type>...]

[BOTH <edge_type>, <edge_type>...]

Clause Description

STEPS Specifies the steps to go from the start vertices. A step_count must be a non-negative integer. Its default value
is 1. When <step_count> is specified to N, the Nebula Graph returns zero to N steps subgraph.

FROM Specifies the start vertices.

IN Gets the subgraphs from the start vertices over the specified incoming edges (edges pointing to the start
vertices).

ouT Gets the subgraphs from the start vertices over the specified outgoing edges (edges pointing out from the start
vertices).

BOTH Gets the subgraphs from the start vertices over the specified types of edges, both incoming and outgoing.

When the traversal direction is not specified, both the incoming and outgoing edges are returned.

Examples

The following graph is used as the sample.

- 212/290 - 2021 Vesoft Inc.

4.15.1 GET SUBGRAPH

- EEE EEE EEE S SN SN B B B EEE SEE SEE SEN SN SN SN OSSN S S S S S ey

/ Tag: player \
I} VID: “player102” \
Properties:

Ed foll * name: “LaMarcus

e type: follow A

Pr(?petrz;)' Ald"gge Edge type: follow
) * age: :

* degree: 75 = ?rOZigée~ %

Edge type: follow
Tag: player Property: Tag: player
VID: “player101” * degree: 95 VID: “player100”
Properties: Properties:
* name: “Tony * name: “Tim
Parker” Duncan”
* age:36 * age:42

Edge type: serve Edge type: serve
Property: Property:
* start_year: 1999 * start_year: 1997
* end_year: 2018 * end_year: 2016

Tag: team Tag: team

VID: “team201” VID: “team200”
Properties: Properties:

* name: “Nuggets” * name: “Warriors”

N Graph space: basketballplayer

* Go one step from the vertex with VID "player100" over all types of edges and get the subgraph.

nebula> GET SUBGRAPH 1 STEPS FROM "player100";

_edges

b e D o Do o S — SO DS C o S e C SO Do S S Do S D S SO DS GO SO S e S BB DSOS OE S OE oo S e SO S S oaC Se S oa s See SaeSoa e e ao s ses saa D0

B s T It T T T T e e T T O e T e e T T e o +

| [(player100) player.name:Tim,player.age:42] | [player100-[follow]->player101@0
degree:96, player100-[follow]->player102@0 degree:90, player100-[serve]->team200@0 end_year:2016,start_year:1997] |

b e Do e Do S — SO DS C o S o — SO DE S S Do S e — SO DS S SO S e S BB DSOS OE S OE oo e SO S oaC Se S oa S See S aeSea e e ae s ses soa D0

B s T It T T T T e e T T O e T e e T T e o +

Got 2 rows (time spent 6289/7423 us)

The returned subgraph is as follows.

- 213/290 - 2021 Vesoft Inc.

4.15.1 GET SUBGRAPH

gt WSS UNLI III III IIN NN NN I DN BN IID IEN IIN IIE IID IID I GIE IIE I Imm - -
-
7

/

/ Tag: player \
1 VID: “player102”
Properties:
* name: “LaMarcus

Aldr.idge” Edge type: follow
* age:33 Property:
* degree: 90

-~
~

N\

-

Edge type: follow

Property: Tag: player

* degree: 95 VID: “player100”

Properties:

* npame: “Tim
Duncan”

* age:42

Tag: player
VID: “player101”
Properties:

* name: “Tony
Parker”
* age:36

Edge type: serve
Property:

* start_year: 1997
* end_year: 2016

GET SUBGRAPH FROM "player100";
Tag: team

VID: “team200”
Properties:
\ * name: “Warriors” [}

S

* Go one step from the vertex with VID "player100" over incoming follow edges and get the subgraph.

nebula> GET SUBGRAPH 1 STEPS FROM "player100" IN follow;

focococosoes fococo=as +
| _vertices | _edges |
Hommmmmaen ommmmnen +
|11 |11 |
focococosoes fococo=as +
|11 |11 |
Hommmmmaen ommmmnen +

Got 2 rows (time spent 2292/3091 us)

There is no incoming follow edge to "player100", so no vertex or edge is returned.

* Go one step from the vertex "player100" over outgoing serve edges and get the subgraph.

nebula> GET SUBGRAPH 1 STEPS FROM "player100" OUT serve;

frococscococococcoocscocscosocosscococoooccooos fococoooccooooooooocooscnoocoonooonoaoosaoooaoao0ca00sooasosa0 +
| _vertices | _edges |
Fm e e e e e +
| [(player100) player.age:42,player.name:Tim] | [player100-[serve]->team200@0 start_year:1997,end_year:2016] |
frococscococococcoocscocscosocosscococoooccooos fococoooccooooooooocooscnoocoonooonoaoosaoooaoao0ca00sooasosa0 +
| [(team200) team.name:Warriors] | [1 |
R e e L T R +

Got 2 rows (time spent 2107/2547 us)

The returned subgraph is as follows.

- 214/290 - 2021 Vesoft Inc.

4.15.1 GET SUBGRAPH

’___________________\

/ \
I \
] |
] Tag: player |

VID: “player100” Tag: team
] Properties: ., VID: “team200” |
] Y WHIE I Properties: |
Duncan " o
] e age:42 * name: “Warriors |
] |
] |
I { n n I
\ GET SUBGRAPH FROM “player100" OUT serve"; /
N\ 7

S S S S S S S S B D S G G B I S e e e e

Last update: April 15, 2021

- 215/290 - 2021 Vesoft Inc.

4.15.2 FIND PATH

4.15.2 FIND PATH

FIND { SHORTEST | ALL | NOLOOP } PATH FROM <vertex_id_list> TO <vertex_id_list>
OVER <edge_type_list> [REVERSELY | BIDIRECT] [UPTO <N> STEPS] [| ORDER BY $-.path] [| LIMIT <M>]
<vertex_id list> ::=

[vertex_id [, vertex_id] ...]

The FInD PATH statement finds the paths between the selected source vertices and destination vertices.

SHORTEST finds the shortest path.

ALL finds all the paths.

<vertex_id_list> is a list of vertex IDs separated with commas (,). It supports $- and $var .

<edge_type_list> is a list of edge types separated with commas (,). * is all edge types.

<N> is the hop number. The default value is 5.

<M> specifies the maximum number of rows to return.

Limitations
* When a list of source and/or destination vertex IDs are specified, the paths between any source vertices and the destination
vertices is returned.
* There can be cycles when searching all paths.
e FIND PATH does not support filtering with whHere clauses.
e FIND PATH does not support specifying a direction.
* FIND PATH is a single-thread procedure, so it uses much memory.

« If noLoop is not used, FIND PATH can retrieve paths containing cycles. If noLoop is used, FIND PATH can retrieve paths without
cycles.
Examples
In Nebula Console, a path is shown as vertex_id <edge_name, rank> vertex_id .

nebula> FIND SHORTEST PATH FROM "player162" TO "team201" OVER *;

drmscosococosososoooCccoSScooScoSSSoSSSoCoSososooococooScosoco=oo -+
| path

B T LT e L= = T L e T +
| ("player102")-[:follow@0]->("player101")-[:serve@0]->("team201")

e T e & == e e L T e +

dhmscosocococosocooocccooscosocosoooooooo +
| path

B e T +
| ("team200")<-[:serve@0]-("player100") |
dhmscosocococosocooocccooscosocosoooooooo +

nebula> FIND ALL PATH FROM '"player100" TO '"team200" OVER *;

B T T e T = +
| path

e e L +
| ("player100")-[:serve@]->("team200") |
B T e T T e +

Ly Ly +
| path

dhmscosocococosocooocccooscosocosoooooooo +
| ("player100")-[:serve@d]->("team200") |
B e T +

Last update: April 1, 2021

- 216/290 - 2021 Vesoft Inc.

4.16 Query tuning statements

4.16 Query tuning statements

4.16.1 EXPLAIN and PROFILE

EXPLAIN helps output the execution plan of an nGQL statement without executing the statement. pPrRoFILE executes the statement,
then outputs the execution plan as well as the execution profile. You can optimize the queries for better performance with the
execution plan and profile.

Execution Plan
The execution plan is determined by the execution planner in the Nebula Graph query engine.

The execution planner processes the parsed nGQL statements into actions. An action is the smallest unit that can be executed. A
typical action fetches all neighbors of a given vertex, gets the properties of an edge, or filters vertices or edges based on the given
conditions. Each action is assigned to an operator that performs the action.

For example, a sHow TAGS statement is processed into two actions and assigned to a start operator and a ShowTags operator, while a
more complex 6o statement may be processed into more than 10 actions and assigned to 10 operators.

Syntax
* EXPLAIN
EXPLAIN [format="row" | "dot"] <your_nGQL_statement>
* PROFILE

PROFILE [format="row" | "dot"] <your_nGQL_statement>

Output formats

The output of an EXPLAIN or a PROFILE statement has two formats, the default "row" format and the "dot" format. You can use the
format option to modify the output format. Omitting the format option indicates using the default "row" format.

-217/290 - 2021 Vesoft Inc.

4.16.1 EXPLAIN and PROFILE

Format "row"
The "row" format outputs the return message in a table as follows.
* EXPLAIN :

nebula> EXPLAIN format="row" SHOW TAGS;
Execution succeeded (time spent 104/705 us)
Execution Plan

fhocomdboosooosooo fhmcomoocomooosoo Ghoccomooosooosooo T T T e T e T +
| id | name | dependencies | profiling data | operator info |
focosdheosacosass focomocosocosae eccosocosocosoos frecomocoscoosoooooccooscooocosnsooaoooosaooo0o000ca00canaSosasooSsa0osaS +
| © | ShowTags | 2 | | outputvar: [{"colNames":[],"name":"__ShowTags_0", "type":"DATASET"}] |
| | | | | inputvar: |
focosdheosocosoes focooocococosae + +
| 2| start | | |
B L R —— + +

® PROFILE:

nebula> PROFILE format="row" SHOW TAGS;

fococo=as +
| Name |
fhocoeosoo +
| player |
fococo=as +
| team |
fhocooocoo +

Got 2 rows (time spent 2038/2728 us)

Execution Plan

focosdheosocosoes focooocococosae fmccococococococoooccoocooosoooooooooocoSocooososoooas ffeccocosocasocacooscosscososososooosasooscoSScoSScosooooocooooaoooosas +
| id | name | dependencies | profiling data | operator info |
R e T Fommmmm e B e e T T e e PP +
| © | ShowTags | 2 | ver: @, rows: 1, execTime: 79us, totalTime: 1692us | outputVar: [{"colNames":[],"name":"__ShowTags_0","type":"DATASET"}] |
| | | | | inputVvar: |
focosdheosocosoes focomscosscosos eccocscocccoooccooscooSSoosSooooooooooooosaoosos oo feocososocosooosaoscaossososososooScoSooScaSScaSSsosoSososooooasoos=ao +
| 2| Start | | ver: @, rows: 0, execTime: 1lus, totalTime: 57us | outputvar: [{"colNames":[],"name":"__Start_2","type":"DATASET"}] |
fhocomdboosooosooo fhmcomoocomooosoo T T T e T T T e T T T T T T T T T T T T T T e +
The descriptions of the columns are as follows:

Column Description

id Indicates the ID of the operator.

name Indicates the name of the operator.

dependencies Shows the ID of the operator that the current operator depends on.

profiling Shows the execution profile. ver is the version of the operator, which you can use to identify loops; rows

data shows the number of rows to be output by the operator; execTime shows the execution time only; totalTime

contains the execution time and the system scheduling and queueing time.

operator info Shows the detailed information of the operator.

Format "dot"

You can use the format="dot" option to output the return message in the DOT language, and then use Graphviz to generate a
graph of the plan.

/" Note
Graphviz is open source graph visualization software.
Graphviz provides an online tool for previewing DOT language files and exporting them to other formats such as SVG or JSON. For

more information, see Graphviz Online.

nebula> EXPLAIN format="dot" SHOW TAGS;
Execution succeeded (time spent 161/665 us)
Execution Plan

- 218/290 - 2021 Vesoft Inc.

https://dreampuf.github.io/GraphvizOnline/

4.16.1 EXPLAIN and PROFILE

digraph exec_plan {
rankdir=LR;
"ShowTags_0"[label="ShowTags_0|outputVar: \[\{\"colNames\":\[\],\"name\":\"__ShowTags_0\",\"type\":\"DATASET\"\}\]\1|inputVvar:\1", shape=Mrecord];
"Start_2"->"ShowTags_0";
"Start_2"[label="Start_2|outputVar: \[\{\"colNames\":\[\],\"name\":\"__Start_2\",\"type\":\"DATASET\"\}\]\1|inputvar: \1", shape=Mrecord];

Transformed into a Graphviz graph, it is as follows:

¢ Start_2 h (ShowTags_0 h
outputVar: [{"colNames":[]."name":"__Start_2","type":"DATASET"}] outputVar: [{"colNames":[]."name":"__ShowTags_0"."type":"DATASET"}]
\mputVar:) \iopu tVar:)

Last update: April 22, 2021

- 219/290 - 2021 Vesoft Inc.

4.17 Operation and maintenance statements

4.17 Operation and maintenance statements

4.17.1 BALANCE syntax

The BALANCE statements support the load balancing operations of the Nebula Graph Storage services. For more information about
storage load balancing and examples for using the BALANCE statements, see Storage load balance.

The BALANCE statements are listed as follows.

Syntax
BALANCE
BALANCE
BALANCE
BALANCE

BALANCE

DATA

DATA <balance_id>

DATA STOP

DATA REMOVE <host_list>

LEADER

Description

Starts a task to balance the distribution of storage partitions in a Nebula Graph cluster.
Shows the status of the balance task.

Stops the BALANCE DATA task.

Scales in the Nebula Graph cluster and detaches specific storage hosts.

Balances the distribution of storage raft leaders in a Nebula Graph cluster.

Last update: March 5, 2021

- 220/290 - 2021 Vesoft Inc.

4.17.2 Job manager and the JOB statements

4.17.2 Job manager and the JOB statements

The long-term tasks running by the Storage Service are called jobs. For example, there are jobs for covpAcT, FLusH, and STATS.
These jobs can be time-consuming if the data size in the graph space is large. The job manager helps you run, show, stop, and
recover the jobs.

SUBMIT JOB COMPACT

The suBMIT JoB COMPACT statement triggers the long-term RocksDB compact operation.

nebula> SUBMIT JOB COMPACT;

[T — +
| New Job Id |
drmscosocososs +
| 40 |
[T — +

For more information about compact configuration, see Storage Service configuration.

SUBMIT JOB FLUSH
The suBmIT JoB FLUSH statement writes the RocksDB memfile in memory to the hard disk.

nebula> SUBMIT JOB FLUSH;

SUBMIT JOB STATS

The suBMIT JoB STATS statement starts a job that makes the statistics of the current graph space. Once this job succeeds, you can
use the sHow STATs statement to list the statistics. For more information, see SHOW STATS.

/" Note

If the data stored in the graph space changes, in order to get the latest statistics, you have to run susMIT JOB STATS again.

nebula> SUBMIT JOB STATS;

droscosososass +
| New Job Id |
N !
droscosososass +
SHOW JOB

The Meta Service parses a SUBMIT JoB request into tasks and assigns them to the nebula-storaged processes. The sHow JOB <job_id>
statement shows the information about a specific job and all its tasks.

The job ID is created when you run the susMIT JOB statement.

nebula> SHOW JOB 96;

o Hommmme e Hommmmeeaa B LT +
ol as ommand (Des atus art Time
Job Id(TaskId Ct d(Dest Stat Start Ti
o o e T e +
| 96 | "FLUSH" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
o Hommmme e Hommmmeeaa B LT o +
| © | "storaged2" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
o o o e R B LT TP +
| 1 | "storagede" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
o Hommmme e Hommmmeeaa B LT o +
| 2 | "storaged1" | "FINISHED" | 2020-11-28T14:14:29.000 | 2020-11-28T14:14:29.000 |
o o e T B LT T B LT TP +

- 221/290 - 2021 Vesoft Inc.

4.17.2 Job manager and the JOB statements

The description of the return message is as follows.

Column

Job Id(TaskId)

Command (Dest)

Status

Start Time

Stop Time

JOB STATUS

Description
The first row shows the job ID, and the other rows show the task IDs.

The first row shows the command executed, and the other rows show on which storaged processes the task
is running.

Shows the status of the job or task. For more information about job status, see Job status.
Shows a timestamp indicating the time when the job or task enters the RunnING phase.

Shows a timestamp indicating the time when the job or task gets FINISHED, FAILED, Or STOPPED.

The description of the job status is as follows.

Status
QUEUE
RUNNING

FINISHED

FAILED

STOPPED

REMOVED

Description
The job or task is waiting in a queue. The start Time is empty in this phase.
The job or task is running. The start Time shows the beginning of this phase.

The job or task is successfully finished. The stop Time shows the time when the job or task enters this
phase.

The job or task failed. The stop Time shows the time when the job or task enters this phase.

The job or task is stopped without running. The stop Time shows the time when the job or task enters this
phase.

The job or task is removed.

Status switching is described as follows.

Queue -- running -- finished -- removed
\ \ /
\ \ -- failed -- /
\ \ /
A stopped -/
SHOW JOBS

The sHow JoBS statement lists all the unexpired jobs. The default job expiration interval is one week. You can change it by

modifying the job_expired_secs parameter of the Meta Service. For how to modify job_expired_secs, see Meta Service

configuration.

nebula> SHOW JOBS;

L tommmmmmm e meeeeaee
| Job Id | Command
drmscosoeo fhmcocscocosococooosooo
| 97 | "STATS"
L tommmmmmm e meeeeaee
| 96 | "FLUSH"
drmscosoeo fhococscocosococooosooo
| 95 | "STATS"
L tommmmmmm e meeeeaee
| 86 | "REBUILD_EDGE_INDEX"
drmscosoeo fhmcocscocosococooosooo
STOPJOB

......................... +
Stop Time |
,,,,,,,,,,,,,,,,,,,,,,,,, +
2020-11-28T14:48:52.000 |
......................... +
2020-11-28T14:14:29.000 |
,,,,,,,,,,,,,,,,,,,,,,,,, +
2020-11-28T13:02:11.000 |
......................... +
2020-11-26T13:38:24.000 |
______________________________________ +

The stop JoB statement stops jobs that are not finished.

- 222/290 - 2021 Vesoft Inc.

4.17.2 Job manager and the JOB statements

nebula> STOP JOB 22;

dboccooooosoooooo +
| Result |
droscomocosasosas +
| "Job stopped" |
dboocooocosoooooo +
RECOVER JOB

The RecoveErR JoB statement re-executes the failed jobs and returns the number of recovered jobs.

nebula> RECOVER JOB;

dhescococococosooocao +

| 5 job recovered |

B +
FAQ

HOW TO TROUBLESHOOT JOB PROBLEMS
The suBmIT JoB operations use the HTTP port. Please check if the HTTP ports on the machines where the Storage Service is

running are working well. You can use the following command to debug.

curl "http://{storaged-ip}:19779/admin?space={space_name}&op=compact"

Last update: April 22, 2021

-223/290 - 2021 Vesoft Inc.

4.18 Appendix

4.18.1 Comments
Legacy version compatibility

¢ In Nebula Graph 1.0, four comment styles: #, --, 7/, /* */.

e In Nebula Graph 2.0, -- represents an edge, and can not be used as comments.

Examples

nebula> # Do nothing this line

nebula> RETURN 1+1; # This comment continues to the end of line
nebula> RETURN 1+1; // This comment continues to the end of line
nebula> RETURN 1 /* This is an in-line comment */ + 1 == 2;

nebula> RETURN 11 + \

/* Multiple-line comment \

Use backslash as line break. \

*/ 12;

The backslash \ in a line indicates a line break.

OpenCypher Compatibility
You must add a \ atthe end of every line, even in multi-line comments * *\.

/* The openCypher style:
The following comment
spans more than

one line */

MATCH (n:label)

RETURN n

/* The ngql style: \
The following comment \
spans more than \
one line */ \
MATCH (n:tag) \
RETURN n

4.18 Appendix

Last update: March 29, 2021

-224/290 -

2021 Vesoft Inc.

4.18.2 Identifer Case Sensitivity

4.18.2 Identifer Case Sensitivity

Identifiers are Case-Sensitive

The following statements would not work because they refer to two different spaces, i.e. my_space and MY_SPACE :

nebula> CREATE SPACE my_space;

nebula> use MY_SPACE;

[ERROR (-8)]: SpaceNotFound:

my_space and MY_SPACE are two different spaces

Keywords and Reserved Words are Case-Insensitive
The following statements are equivalent:

nebula> show spaces; # show and spaces are keywords.
nebula> SHOW SPACES;
nebula> SHOW spaces;
nebula> show SPACES;

Last update: March 29, 2021

-225/290 - 2021 Vesoft Inc.

4.18.3 Keywords and Reserved Words

4.18.3 Keywords and Reserved Words
Keywords have significance in nGQL. Certain keywords are reserved and require special treatment for use as identifiers.

Non-reserved keywords are permitted as identifiers without quoting. Non-reserved keywords are case-insensitive. To use reserved
keywords as identifiers, quote them with back quotes such as "AND".

nebula> CREATE TAG TAG(name string);
[ERROR (-7)]: SyntaxError: syntax error near "TAG'

// SPACE is an unreserved keyword.
nebula> CREATE TAG SPACE(name string);
Execution succeeded

TAG is a reserved keyword. To use TAG as an identifier, you must quote it with a backtick. space is a non-reserved keyword. You can
use SPACE as an identifier without quoting it.

/" Note

There is a small pitfall when you use the non-reserved keyword. Unquoted non-reserved keyword will be converted to lower-case
words. For example, SPACE or Space will become space .

// TAG is a reserved keyword here.
nebula> CREATE TAG 'TAG (name string);
Execution succeeded

Reserved Words
The following list shows reserved words in nGQL.

ADD
ALTER
AND

AS

AsC
BALANCE
BOOL

BY

CASE
CHANGE
COMPACT
CREATE
DATE
DATETIME
DELETE
DESC
DESCRIBE
DISTINCT
DOUBLE
DOWNLOAD
DROP
EDGE
EDGES
EXISTS
EXPLAIN
FETCH
FIND
FIXED_STRING
FLOAT
FLUSH
FORMAT
FROM
GET

GO
GRANT

IF

IN

INDEX
INDEXES
INGEST
INSERT
INT
INT16
INT32
INT64
INT8
INTERSECT

- 226/290 - 2021 Vesoft Inc.

4.18.3 Keywords and Reserved Words

Is
LIMIT
LOOKUP
MATCH
MINUS
NO

NOT
NULL

OF
OFFSET
ON

OR
ORDER
OVER
OVERWRITE
PROFILE
PROP
REBUILD
RECOVER
REMOVE
RETURN
REVERSELY
REVOKE
SET
SHOW
STEP
STEPS
STOP
STRING
SUBMIT
TAG
TAGS
TIME
TIMESTAMP
TO
UNION
UPDATE
UPSERT
UPTO
USE
VERTEX
WHEN
WHERE
WITH
XOR
YIELD

Non-Reserved Keywords

ACCOUNT
ADMIN
ALL

ANY
ATOMIC_EDGE
AUTO

AVG
BIDIRECT
BIT_AND
BIT_OR
BIT_XOR
BOTH
CHARSET
CLIENTS
COLLATE
COLLATION
COLLECT
COLLECT_SET
CONFIGS
CONTAINS
COUNT
COUNT_DISTINCT
DATA

DBA
DEFAULT
ELASTICSEARCH
ELSE

END

ENDS
FALSE
FORCE
Fuzzy
GOD

GRAPH
GROUP
GROUPS
GUEST
HDFS

HOST
HOSTS
INTO

JoB

-227/290 - 2021 Vesoft Inc.

4.18.3 Keywords and Reserved Words

JoBs
LEADER
LISTENER
MAX

META

MIN
NOLOOP
NONE
OPTIONAL
out

PART
PARTITION_NUM
PARTS
PASSWORD
PATH
PLAN
PREFIX
REGEXP
REPLICA_FACTOR
RESET
ROLE
ROLES
SEARCH
SERVICE
SHORTEST
SIGN
SINGLE
SKIP
SNAPSHOT
SNAPSHOTS
SPACE
SPACES
STARTS
STATS
STATUS
STD
STORAGE
SUBGRAPH
SUM

TEXT
TEXT_SEARCH
THEN
TRUE
TTL_COL
TTL_DURATION
UNWIND
USER
USERS
UuID
VALUE
VALUES
VID_TYPE
WILDCARD
ZONE
ZONES

Last update: April 22, 2021

- 228/290 - 2021 Vesoft Inc.

4.18.4 Vertex identifier and partition ID

4.18.4 Vertex identifier and partition 1D
VID
vID is short for vertex identifier.

In Nebula Graph, vertices are identified with vertex identifiers (i.e. vips). The VID can be an int64 or a fixed length string. When
inserting a vertex, you must specify a vipo for it.

You can also call hash() to generate an int64 VID if the graph has less than one billion vertices.

viD must be unique in a graph space.
That is, in the same graph space, two vertices that have the same vip are considered as the same vertex.
In addition, one vib can have multiple TAGs. E.g., One person (vib) can have two roles (tags).

Two vibs in two different graph spaces are totally independent of each other.

Partition ID

When inserting into Nebula Graph, vertices and edges are distributed across different partitions. And the partitions are located on
different machines. If you want certain vertices to locate on the same partition (i.e., on the same machine), you can control the
generation of the vip s by using the following formula / code.

// If the length of the id is 8, we will treat it as int64_t to be compatible
// with the version 1.0
uint64_t vid = 0;
if (id.size() == 8) {
memcpy (static_cast<void*>(&vid), id.data(), 8);
} else {
MurmurHash2 hash;
vid = hash(id.data());

}
PartitionID pId = vid % numParts + 1;

Roughly say, after hashing a fixed string to int64, (the hashing of int64 is the number itself), do modulo and then plus one.

pId = vid % numParts + 1;

In the preceding formula,

* % is the modulo operation.

e numpParts is the number of partition for the graph space where the vip is located, namely the value of partition_num in the
CREATE SPACE statement.

e pId is the ID for the partition where the vib islocated.
For example, if there are 100 partitions, the vertices with vip 1, 101, 1001 will be stored on the same partition.

But, the mapping between the partition 10 and the machine address is random. Therefore, you can't assume that any two
partitions are located on the same machine.

Last update: March 29, 2021

- 229/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-common/blob/master/src/common/clients/meta/MetaClient.cpp

5. Deployment and installation

5. Deployment and installation

5.1 Prepare resources for compiling, installing, and running Nebula Graph

This topic describes the requirements and suggestions for compiling and installing Nebula Graph, as well as how to estimate the

resource you need to reserve for running a Nebula Graph cluster.

5.1.1 Reading guide
If you are reading this topic with the questions listed below, click them to jump to their answers.

* What do I need to compile Nebula Graph?
* What do I need to run Nebula Graph in a test environment?
* What do I need to run Nebula Graph in a production environment?

* How much memory and disk space do I need to reserve for my Nebula Graph cluster?

5.1.2 Requirements for compiling the Nebula Graph source code

Hardware requirements for compiling Nebula Graph

Item Requirement
CPU architecture x86_64
Memory 4 GB

Disk 10 GB, SSD

Supported operating systems for compiling Nebula Graph

For now, we can only compile Nebula Graph in the Linux system. We recommend that you use any Linux system with kernel

version 2.6.32 or above.

- 230/290 - 2021 Vesoft Inc.

5.1.2 Requirements for compiling the Nebula Graph source code

Software requirements for compiling Nebula Graph

You must have the correct version of the software listed below to compile Nebula Graph. If they are not as required or you are not
sure, follow the steps in Prepare software for compiling Nebula Graph to get them ready:.

Software Version Note

glibc 2.12 or above You can run 1dd --version to check the glibc version.

make Any stable version -

mé Any stable version -

git Any stable version -

wget Any stable version -

unzip Any stable version -

XZ Any stable version -

readline-devel Any stable version -

ncurses-devel Any stable version -

zlid-devel Any stable version -

gcc 7.1.0 or above You can run gec -v to check the gcc version.

gce-c++ Any stable version -

cmake 3.5.0 or above You can run cmake --version to check the cmake version.
gettext Any stable version -

curl Any stable version -

redhat-lsb-core Any stable version -

libstdc++-static Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.
libasan Any stable version Only needed in CentOS 8+, RedHat 8+, and Fedora systems.

Other third-party software will be automatically downloaded and installed to the build directory at the configure (cmake) stage.

- 231/290 - 2021 Vesoft Inc.

5.1.2 Requirements for compiling the Nebula Graph source code

Prepare software for compiling Nebula Graph

This section guides you through the downloading and installation of software required for compiling Nebula Graph.

- 232/290 - 2021 Vesoft Inc.

5.1.2 Requirements for compiling the Nebula Graph source code

1 Install dependencies.

* For CentOS, RedHat, and Fedora users, run the following commands.

* " bash
$ yum update
$ yum install -y make \
m4 \
git \
wget \
unzip \
xz \
readline-devel \
ncurses-devel \
zlib-devel \
gcec \
gcc-c++ \
cmake \
gettext \
curl \
redhat-1sh-core
// For CentOS 8+, RedHat 8+, and Fedora, install libstdc++-static, libasan as well
$ yum install -y libstdc++-static libasan

* For Debian and Ubuntu users, run the following commands.

* " bash

$ apt-get update

$ apt-get install -y make \
m4 \
git \
wget \
unzip \
xz-utils \
curl \
1sb-core \
build-essential \
libreadline-dev \
ncurses-dev \
cmake \
gettext

2. Check if the GCC and cmake on your host are in the right version. See Software requirements for compiling Nebula Graph for
the required versions.

$ g++ --version
$ cmake --version

If your GCC and CMake are in the right version, then you are all set. If they are not, follow the sub-steps as follows.

1. Clone the nebula-common repository to your host.

" “bash
$ git clone https://github.com/vesoft-inc/nebula-common.git

The source code of Nebula Graph versions such as v2.0.0 is stored in particular branches. You can use the "--branch™ or “-b" option to specify the branch to be
cloned. For example, for 2.0.0, run the following command.

" “bash
$ git clone --branch v2.0.0 https://github.com/vesoft-inc/nebula-common.git

2. Make nebula-common the current working directory.

" bash
$ cd nebula-common

3. Run the following commands to install and enable CMake and GCC.

" “bash
// Install CMake.
$./third-party/install-cmake.sh cmake-install

// Enable CMake
$ source cmake-install/bin/enable-cmake.sh

// Install GCC. Installing GCC to /opt requires root privilege, you can change it to other locations
$ sudo ./third-party/install-gcc.sh --prefix=/opt

// Enable GCC.

- 233/290 - 2021 Vesoft Inc.

5.1.3 Requirements and suggestions for installing Nebula Graph in test environments

$ source /opt/vesoft/toolset/gcc/7.5.0/enable

5.1.3 Requirements and suggestions for installing Nebula Graph in test environments

Hardware requirements for test environments

Item Requirement
CPU architecture x86 64
Number of CPU core 4

Memory 8 GB

Disk 100 GB, SSD

Supported operating systems for test environments

For now, we can only install Nebula Graph in the Linux system. To install Nebula Graph in a test environment, we recommend that
you use any Linux system with kernel version 3.9 or above.

Suggested service architecture for test environments

Process Suggested number
metad (the metadata service process) 1

storaged (the storage service process) 1 or more

graphd (the query engine service process) 1 or more

For example, for a single-machine environment, you can deploy 1 metad, 1 storaged, and 1 graphd processes in the machine.

For a more common environment, such as a cluster of 3 machines (named as A, B, and C), you can deploy Nebula Graph as

follows:
Machine name Number of metad Number of storaged Number of graphd
A 1 1 1
B None 1 1
C None 1 1

5.1.4 Requirements and suggestions for installing Nebula Graph in production environments

Hardware requirements for production environments

Item Requirement

CPU architecture x86 64

Number of CPU core 48

Memory 96 GB

Disk 2 *900 GB, NVMe SSD

Supported operating systems for production environments

For now, we can only install Nebula Graph in the Linux system. To install Nebula Graph in a production environment, we
recommend that you use any Linux system with kernel version 3.9 or above.

-234/290 - 2021 Vesoft Inc.

5.1.4 Requirements and suggestions for installing Nebula Graph in production environments

You can adjust some of the kernel parameters to better accommodate the need for running Nebula Graph. For more information,
see kernel configuration.

Suggested service architecture for production environments

Process Suggested number
metad (the metadata service process) 3

storaged (the storage service process) 3 or more

graphd (the query engine service process) 3 or more

Each metad process automatically creates and maintains a copy of the metadata. Usually, you only need 3 metad processes. The
number of storaged processes does not affect the number of graph space copies.

You can deploy multiple processes on a single machine. For example, on a cluster of 5 machines (named as A, B, C, D, and E), you
can deploy Nebula Graph as follows:

Caution

Deploying a cluster across IDCs is not supported yet.

Machine name Number of metad Number of storaged Number of graphd
A 1 1 1
B 1 1 1
C 1 1 1
D None 1 1
E None 1 1

- 235/290 - 2021 Vesoft Inc.

5.1.5 Capacity requirements for running a Nebula Graph cluster

5.1.5 Capacity requirements for running a Nebula Graph cluster

You can estimate the memory, disk space, and partition number needed for a Nebula Graph cluster of 3 replicas as follows.

Resource Unit How to estimate Description

Disk space Bytes the_sum_of_edge_number_and_vertex_number * -

for a average_bytes_of_attributes * 6 * 120%

cluster

Memory Bytes [the_sum_of_edge_number_and_vertex_number * 15 + write_buffer_size and

for a the_number_of_RocksDB_instances * max_write_buffer_number are RocksDB

cluster (write_buffer_size * max_write_buffer_number) + parameters, for more information, see
rocksdb_block_cache] * 120% MemTable. For details about

rocksdb_block_cache , see Memory
usage in RocksDB.

Number of - the_number_of_disks_in_the_cluster * disk_partition_num_multiplier is an
partitions disk_partition_num_multiplier integer between 2 and 10 (both

for a graph including). It's value depends on the
space disk performance. Use 2 for HDD.

¢ Question 1: Why do we multiply the disk space and memory by 120%?

Answer: The extra 20% is for buffer.

* Question 2: How to get the number of RocksDB instances?

Answer: Each directory in the --data_path item in the etc/nebula-storaged.conf file corresponds to a RocksDB instance. Count
the number of directories to get the RocksDB instance number.
/" Note

You can decrease the memory size occupied by the bloom filter by adding --enable partitioned_index filter=true in etc/nebula-
storaged.conf . But it may decrease the read performance in some random-seek cases.

5.1.6 About storage devices
Nebula Graph is designed and implemented for NVMe SSD. All default parameters are optimized for the SSD devices.

Due to the poor IOPS capability and long random seek latency, HDD is not recommended. You may encounter many problems
when using HDD.

And remote storage devices, such as NAS or SAN, are not recommended/tested as well.

Use local SSD device.

Last update: April 22, 2021

- 236/290 - 2021 Vesoft Inc.

https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache
https://github.com/facebook/rocksdb/wiki/Memory-usage-in-RocksDB#block-cache

5.2 Compile and install Nebula Graph

5.2 Compile and install Nebula Graph

5.2.1 Install Nebula Graph by compiling the source code

Installing Nebula Graph from the source code allows you to customize the compiling and installation settings and test the latest

features.

Prerequisites

* You have prepared the necessary resources described in Prepare resources for compiling, installing, and running Nebula

Graph.
* You can access the Internet from the host you plan to install Nebula Graph.

* The console is not complied or packaged with Nebula Graph server binaries. You can install nebula-console by yourself.

How to install

1. Use Git to clone the source code of Nebula Graph to your host.

 To install the latest developing version, run the following command to download the source code from the master branch.
$ git clone https://github.com/vesoft-inc/nebula-graph.git

 To install a specific release version, use the --branch option to specify the correct branch. For example, to install 2.0.0, run

the following command.
$ git clone --branch v2.0.0 https://github.com/vesoft-inc/nebula-graph.git
2. Make the nebula-graph directory the current working directory.
$ cd nebula-graph
3. Create a build directory and make it the current working directory.
$ mkdir build && cd build

4. Generate the Makefile with CMake.

/" Note

* The installation path is /usr/local/nebula by default. To customize it, add the -DCMAKE_INSTALL_PREFIX=/your/install/path/

CMake variable in the following command.

¢ For more information about CMake variables, see CMake variables.

« If you are installing the latest developing version and has cloned the master branch in step 1, run the following command.
$ cmake -DENABLE_BUILD_STORAGE=on -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release ..

» If you are installing a specific release version and has cloned the corresponding branch in step 1, use the -
DNEBULA_COMMON_REPO_TAG and -DNEBULA STORAGE_REPO_TAG options to specify the correct branches of the nebula-common and
nebula-storage repositories. For example, to install release version 2.0.0, run the following command.

$ cmake -DENABLE_BUILD_STORAGE=on -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release \
-DNEBULA_COMMON_REPO_TAG=v2.0.0 -DNEBULA_STORAGE_REPO_TAG=v2.0.0 ..

5. Compile Nebula Graph.
To speed up the compiling, use the -j option to set a concurrent number N. It should be min(MEM/2, cPu) , where MeM is the

memory size in GB, and cpu is the core number.

- 237/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console
https://github.com/vesoft-inc/nebula-common
https://github.com/vesoft-inc/nebula-storage

5.2.1 Install Nebula Graph by compiling the source code

$ make -j{N} # E.g., make -j4
This step will take about 20 minutes on a VM with four cores of Intel(R) Xeon(R) Platinum 8266M CPU @ 2.30GHz .
6. Install Nebula Graph.

$ sudo make install-all

7. [Optional] Update the source code of the master branch. (It changes frequently.)
1.In the nebula-graph/ directory, you can use git pull upstream master to update the source code.

2.In nebula-graph/modules/common/ and nebula-graph/modules/storage/, run git pull upstream master separately.

3.In nebula-graph/build/, make and make install[-all] again.

CMake variables
Usage of CMake variables:

$ cmake -D<variable>=<value> ...

The following CMake variables can be used at the configure (cmake) stage to adjust the compiling settings.

ENABLE_BUILD_STORAGE

Starting from the 2.0 pre-release, Nebula Graph uses two separated github repositories of compute and storage. The
ENABLE_BUILD_STORAGE variable is set to oFf by default so that the storage service is not installed together with the graph service.

If you are deploying Nebula Graph on a single host for testing, you can set ENABLE_BUILD_STORAGE to ON to download and install the
storage service automatically.

CMAKE_INSTALL_PREFIX

CMAKE_INSTALL_PREFIX specifies the path where the service modules, scripts, configuration files are installed. The default path is 7/
usr/local/nebula .

ENABLE_WERROR

ENABLE_WERROR is oN by default and it makes all warnings into errors. You can set it to ofFf if needed.

ENABLE_TESTING

ENABLE_TESTING is oN by default and unit tests are built with the Nebula Graph services. If you just need the service modules, set it
to oFfF.

ENABLE_ASAN
ENABLE_ASAN is OFF by default and the building of ASan (AddressSanitizer), a memory error detector, is disabled. To enable it, set
ENABLE_ASAN to on. This variable is intended for Nebula Graph developers.

CMAKE_BUILD_TYPE
Nebula Graph supports the following building types:

Debug , the default value of cmake BuILD TYPE, indicates building Nebula Graph with the debug info but not the optimization
options.

Release , indicates building Nebula Graph with the optimization options but not the debug info.
RelwithbebInfo , indicates building Nebula Graph with the optimization options and the debug info.

Minsizerel , indicates building Nebula Graph with the optimization options for controlling the code size but not the debug
info.

- 238/290 - 2021 Vesoft Inc.

5.2.1 Install Nebula Graph by compiling the source code

CMAKE_C_COMPILERICMAKE_CXX_COMPILER

Usually, CMake locates and uses a C/C++ compiler installed in the host automatically. But if your compiler is not installed at the
standard path, or if you want to use a different one, run the command as follows to specify the installation path of the target
compiler:

$ cmake -DCMAKE_C_COMPILER=<path_to_gcc/bin/gce> -DCMAKE_CXX_COMPILER=<path_to_gcc/bin/g++> ..
$ cmake -DCMAKE_C_COMPILER=<path_to_clang/bin/clang> -DCMAKE_CXX_COMPILER=<path_to_clang/bin/clang++> ..

ENABLE_CCACHE
ENABLE_CCACHE is oN by default and ccache is used to speed up the compiling of Nebula Graph.

To disable ccache, set ENABLE _CCACHE to OFF . On some platforms, the ccache installation hooks up or precedes the compiler. In such a
case, you have to set an environment variable export CCACHE_DISABLE=true or add a line disable=true in ~/.ccache/ccache.conf as well.

For more information, see the ccache official documentation.
NEBULA_THIRDPARTY_ROOT

NEBULA_THIRDPARTY_R0OOT specifies the path where the third party software is installed. By default it is /opt/vesoft/third-party .

Last update: May 28, 2021

-239/290 - 2021 Vesoft Inc.

https://ccache.dev/manual/3.7.6.html

5.2.2 Install Nebula Graph with RPM or DEB package

5.2.2 Install Nebula Graph with RPM or DEB package

RPM and DEB are common package formats on Linux systems. This topic shows how to quickly install Nebula Graph with the

RPM or DEB package.

Prerequisites

Prepare the right resources.

/" Note

The console is not complied or packaged with Nebula Graph server binaries. You can install nebula-console by yourself.

Download the package from cloud service

¢ Download the released version.

URLH

//Centos 6
https://o0ss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el6.x86_64.rpm

//Centos 7
https://o0ss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el7.x86_64.rpm

//Centos 8
https://o0ss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.el8.x86_64.rpm

//Ubuntu 1604
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntul604.amd64.deb

//Ubuntu 1804
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntul804.amd64.deb

//Ubuntu 2004
https://oss-cdn.nebula-graph.io/package/<release_version>/nebula-graph-<release_version>.ubuntu2004.amd64.deb

For example, download release package 2.0.0 for centos 7.5

wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.e17.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.e17.x86_64.rpm.sha256sum. txt

download release package 2.0.0 for ubuntu 1804 [{

-240/290 -

2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-console

5.2.2 Install Nebula Graph with RPM or DEB package

wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.ubuntul804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/2.0.0/nebula-graph-2.0.0.ubuntul804.amd64.deb.sha256sum. txt

¢ Download the nightly version.

O Danger

Nightly versions are usually used to test new features. Don't use it for production.

URLH

//Centos 6
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el6.x86_64.rpm

//Centos 7
https://oss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el7.x86_64.rpm

//Centos 8
https://o0ss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.el8.x86_64.rpm

//Ubuntu 1604
https://o0ss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntul604.amd64.deb

//Ubuntu 1804
https://o0ss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntul804.amd64.deb

//Ubuntu 2004
https://o0ss-cdn.nebula-graph.io/package/v2-nightly/<yyyy.mm.dd>/nebula-graph-<yyyy.mm.dd>-nightly.ubuntu2004.amd64.deb

For example, download the centos 7.5 package developed and built in 2621.03.28

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.el7.x86_64.rpm.sha256sum.txt

For example, download the ubuntu 1804 package developed and built in 2021.03.28[{

wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb
wget https://oss-cdn.nebula-graph.io/package/v2-nightly/2021.03.28/nebula-graph-2021.03.28-nightly.ubuntu1804.amd64.deb.sha256sum. txt

Download the package from GitHub

* Download the release version.

-241/290 -

2021 Vesoft Inc.

5.2.2 Install Nebula Graph with RPM or DEB package

+ On the Nebula Graph Releases page, find the required version and click Assets.

Draft a new release

=== Nebula Graph Release v2.0.0-RC1

© v2.0.0-rc1
O jude-zhu released this on 6 Jan
©5713b46
Verified
o New Features
e * Add Integer vertexID support #496 vesoft-inc/nebula-common#351, vesoft-inc/nebula-storage#246, vesoft-inc/nebula-
docs#264

FIND PATH supports to find paths with or without regard to direction #464, and also supports to exclude cycles in paths #461.
SHOW HOSTS graph/meta/storage supports to retrieve the basic information of graphd/metad/storaged hosts. #437 vesoft-
inc/nebula-common#325 vesoft-inc/nebula-storage#223

BALANCE DATA RESET PLAN supports resetting the last failed plan vesoft-inc/nebula-common#342 vesoft-inc/nebula-
storage#232.
* Enhance MATCH clause support, for more information please visit Match doc.

« Add path manipulation support vesoft-inc/nebula-common#306, vesoft-inc/nebula-common#358

Changelog
* Changed the default port numbers of metad , graphd, storaged . #474, vesoft-inc/nebula-storage#239

» Assets 8

Edit

(Pre-release)
— Nebula Graph v2.0.0-beta
2.0.0-bet
© vo Scae:; a jude-zhu released this on 30 Nov 2020 - 1 commit to v2.0.0-beta since this release

Verified

Nebula Graph

- 242/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/releases

+ In the Assets area, click the package to download it.

* Download the nightly version.

O Danger

5.2.2 Install Nebula Graph with RPM or DEB package

Nightly versions are usually used to test new features. Don't use it for production.

+ On the Nebula Graph package page, click the latest package on the top of the package list.

%

%, Nebula Build and Test Workflow

R docker

%o package

%o pull_request

R release

package

package.yaml|

Q_ Filter workflow runs

510 workflow runs

@ package
package #510: Scheduled

@ package
package #509: Scheduled

@ package
package #508: Scheduled

@ package
package #507: Scheduled

@ package
package #506: Scheduled

+ In the Artifacts area, click the package to download it.

Install Nebula Graph

* Use the following syntax to install with an RPM package.

sudo rpm -ivh --prefix=<installation_path> <package_name>

* Use the following syntax to install with a DEB package.

sudo dpkg -i --instdir==<installation_path> <package_name>

f Note

The default installation path is /usr/local/nebula/ .

Event ~

Status ~

Branch ~

£ 12 hours ago
) 43m 35s

B 2 days ago
{5 40m 59s

B 3 days ago
& 41m 39s

B 4 days ago
© 41m 31s

B 5 days ago
& 43m 42s

Actor ~

Last update: April 22, 2021

-243/290 -

2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/actions/workflows/package.yaml

5.3 Deploy Nebula Graph cluster

5.3 Deploy Nebula Graph cluster

This topic describes how to manually deploy a Nebula Graph cluster.

/" Note

For now, Nebula Graph does not have an official deployment tool.

5.3.1 Prerequisites

Prepare hardware for deploying the cluster.

5.3.2 Step 1: Install Nebula Graph

Install Nebula Graph on each machine in the cluster. Available approaches of installation are as follows.

« Install Nebula Graph with RPM or DEB package

¢ Install Nebula Graph by compiling the source code

5.3.3 Step 2: Modify the configurations

To deploy Nebula Graph according to your requirements, you have to modify the configuration files. All the configuration files for
Nebula Graph, including nebula-graphd.conf, nebula-metad.conf, and nebula-storaged.conf, are stored in the etc directory in the
installation path.

You only need to modify the configuration for the corresponding service on the machines. For example, modify nebula-graphd.conf
on the machines where you want to deploy the Graph Service.

For how to prepare the configuration files, see:

* Meta Service configurations
¢ Graph Service configurations

» Storage Service configurations

5.3.4 Step 3: Start the cluster

Start the corresponding service on each machine. The command to start the Nebula Graph services is as follows.

sudo /usr/local/nebula/scripts/nebula.service start <metad|graphd|storaged|all>

/usr/local/nebula is the default installation path for Nebula Graph. Use the actual path if you have customized the path.

For more information about how to start and stop the services, see Manage Nebula Graph services.

5.3.5 Connect to the cluster

Connect to the Graph Service with a Nebula Graph client, such as Nebula Console. For more information, see Connect to Nebula
Graph.

5.3.6 Check the cluster status

After connecting to the Nebula Graph cluster, run sHow HosTs to check the cluster status.

- 244/290 - 2021 Vesoft Inc.

5.3.6 Check the cluster status

Last update: April 22, 2021

- 245/290 - 2021 Vesoft Inc.

5.4 Upgrade Nebula Graph to v2.0.0

5.4 Upgrade Nebula Graph to v2.0.0

This topic describes how to upgrade Nebula Graph to v2.0.0.

5.4.1 Limitations
* Rolling Upgrade is not supported. You must stop the Nebula Graph services before the upgrade.
* There is no upgrade script. You have to manually upgrade each server in the cluster.

* Supported versions:
¢ From Nebula Graph v1.2.0 to Nebula Graph v2.0.0.
¢ From Nebula Graph v2.0.0-RC1 to Nebula Graph 2.0.0.

» This topic does not apply to scenarios where Nebula Graph is deployed with Docker, including Docker Swarm, Docker
Compose, and Kubernetes.

* You must upgrade the old Nebula Graph services on the same machines they are deployed. DO NOT change the IP
addresses, configuration files of the machines, and DO NOT change the cluster topology.

¢ The hard disk space of each machine should be three times as much as the space taken by the original data directories.

* Known issues that could cause data loss are listed on GitHub known issues. The issues are all related to altering schema or
default values.

* To connect to Nebula Graph 2.0.0, you must upgrade all the Nebula Graph clients. The communication protocols of the old
versions and the latest versions are not compatible.

* The upgrade takes about 30 minutes in this test environment.
* DO NOT use soft links to switch the data directories.

* You must have the sudo privileges to complete the steps in this topic.

5.4.2 Installation paths
Old installation path

By default, old versions of Nebula Graph are installed in /usr/local/nebula/, hereinafter referred to as ${nebula-old} . The default
configuration file path is ${nebula-old}/etc/ .

The data of the old Nebula Graph are stored by the Storage Service and the Meta Service. You can find the data paths as follows.

» Storage data path is defined by the --data_path option in the ${nebula-old}/etc/nebula-storaged.conf file. The default path is

data/storage .

* Meta data path is defined by the --data_path option in the ${nebula-old}/etc/nebula-metad.conf file. The default path is data/

meta .

/" Note
The actual paths in your environment may be different from those described in this topic. You can run the Linux command ps -ef |

grep nebula to locate them.

New installation path

${nebula-new} represents the installation path of the new Nebula Graph version. An example for ${nebula-new} is /usr/local/nebula-

new/ .

-246/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula/releases/tag/v1.2.0
https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0-rc1
https://github.com/vesoft-inc/nebula-graph/issues/857

5.4.3 Steps

5.4.3 Steps

1. Stop all client connections. You can run the following commands on each Graph server to turn off the Graph Service and avoid
dirty write.

> ${nebula-old}/scripts/nebula.service stop graphd
[INFO] Stopping nebula-graphd...
[INFO] Done

2. Run the following commands to stop all services of the old version Nebula Graph.

> ${nebula-old}/scripts/nebula.service stop all
[INFO] Stopping nebula-metad...

[INFO] Done

[INFO] Stopping nebula-graphd...

[INFO] Done

[INFO] Stopping nebula-storaged...

[INFO] Done

The Storage Service needs about 1 minute to flush data. Wait 1 minute and then run ps -ef | grep nebula to check and make
sure that all the Nebula Graph services are stopped.

/" Note

If the services are not fully stopped in 20 minutes, stop upgrading and go to the Nebula Graph community for help.

3. Install the new version of Nebula Graph on each machine.

» To install with RPM/DEB packages, run the following command. For detailed steps, see Install Nebula Graph with RPM or
DEB package.

> sudo rpm --force -i --prefix=${nebula-new} ${nebula-package-name.rpm} # for CentOS/RedHat
> sudo dpkg -i --instdir==${nebula-new} ${nebula-package-name.deb} # for Ubuntu

* To install with the source code, follow the substeps. For detailed steps, see Install Nebula Graph by compiling the source code

1. Clone the source code.
> git clone --branch v2.0.0 https://github.com/vesoft-inc/nebula-graph.git
2. Configure CMake.

> cmake -DCMAKE_INSTALL_PREFIX=${nebula-new} -DENABLE_BUILD_STORAGE=on -DENABLE_TESTING=OFF -DCMAKE_BUILD_TYPE=Release -DNEBULA_ COMMON_REPO_TAG=v2.0.0
DNEBULA_STORAGE_REPO_TAG=v2.0.0 ..

4. Copy the configuration files from the old path to the new path.

> cp -rf ${nebula-old}/etc ${nebula-new}/

5. Follow the substeps to prepare the Meta servers (usually 3 of them in a cluster).

/" Note

You must make sure that this step is applied on every Meta server.

a. Locate the old Meta data path and copy the data files to the new path.

> mkdir -p ${nebula-new}/data/meta/
> cp -r ${nebula-old}/data/meta/* ${nebula-new}/data/meta/

b. Modify the new Meta configuration files:

> vim ${nebula-new}/nebula-metad.conf

- 247/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

5.4.3 Steps

[Optional] Add the following parameters in the Meta configuration files if you need them.

e --null type=false : Disables the support for using nuLL as schema properties after the upgrade. The default value is true.
When set to false, you must specify a default value when altering tags or edge types, otherwise, data reading fails.

e --string_index_limit=32: Specifies the index length for string values as 32. The default length is 64.
6. Prepare the Storage configuration files on each Storage server.

« If the old Storage data path is not the default setting --data_path=data/storage , Modify the Storage configuration file and
change the value of --data path asthe new data path.

> vim ${nebula-new}/nebula-storaged.conf

* Create the new Storage data directories.

> mkdir -p ${nebula-new}/data/storage/

/" Note

If the --data_path default value has been modified, create the Storage data directories according to the modification.

7. Start the new Meta Service.

a. Run the following command on each Meta server.

$ sudo ${nebula-new}/scripts/nebula.service start metad
[INFO] Starting nebula-metad...
[INFO] Done

b. Check if every nebula-metad process is started normally.

$ ps -ef |grep nebula-metad

c. Check if there is any error information in the Meta logs in ${nebula-new}/logs . If any nebula-metad process cannot start
normally, stop upgrading, start the Nebula Graph services from the old directories, and take the error logs to the Nebula
Graph community for help.

8. Run the following commands to upgrade the Storage data format.

$ sudo ${nebula-new}/bin/db_upgrader \
--src_db_path=<old_storage_directory_path> \
--dst_db_path=<new_storage_directory_path> \
--upgrade_meta_server=<meta_server_ipl>:<portl>[,<meta_server_ip2>:<port2>,...] \
--upgrade_version=<old_nebula_version> \

The parameters are described as follows.

e --src_db_path: Specifies the absolute path of the OLD Storage data directories. Separate multiple paths with commas,
without spaces.

e --dst_db_path : Specifies the absolute path of the NEW Storage data directories. Separate multiple paths with commas,
without spaces. The paths must correspond to the paths setin --src_db_path one by one.

0 Danger

Don't mix up the preceding two parameters, otherwise, the old data will be damaged during the upgrade.

e --upgrade_meta_server : Specifies the addresses of the new Meta servers that you started in step 7.

e --upgrade_version : If the old Nebula Graph version is v1.2.0, set the parameter value to 1. If the old version is v2.0.0-RC1, set

the value to 2.

0 Danger

Don't set the value to other numbers.

- 248/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/

5.4.3 Steps

Example of upgrading from v1.2.0:

$ sudo /usr/local/nebula_new/bin/db_upgrader \
--src_db_path=/usr/local/nebula/data/storage/datal/, /usr/local/nebula/data/storage/data2/ \
--dst_db_path=/usr/local/nebula_new/data/storage/datal/, /usr/local/nebula_new/data/storage/data2/\
--upgrade_meta_server=192.168.8.14:45500,192.168.8.15:45500,192.168.8.16:45500 \
--upgrade_version=1

Example of upgrading from v2.0.0-RC1:

$ sudo /usr/local/nebula_new/bin/db_upgrader \
--src_db_path=/usr/local/nebula/data/storage/ \
--dst_db_path=/usr/local/nebula_new/data/storage/ \
--upgrade_meta_server=192.168.8.14:9559,192.168.8.15:9559,192.168.8.16:9559 \
--upgrade_version=2

/" Note

Make sure that all the Storage servers have finished the upgrade. If anything goes wrong:
a. Stop upgrading.
b. Stop all the Meta servers.

c. Start the Nebula Graph services from the old directories.

d. Go to the Nebula Graph community for help.

9. Start the new Storage Service on each Storage server.

$ sudo ${nebula-new}/scripts/nebula.service start storaged
$ sudo ${nebula-new}/scripts/nebula.service status storaged

/" Note

If this step goes wrong on any server:
a. Stop upgrading.
b. Stop all the Meta servers and Storage servers.
c. Start the Nebula Graph services from the old directories.

d. Take the logs in ${nebula-new}/logs/ to the Nebula Graph community for help.

10. Start the new Graph Service on each Graph server.
$ sudo ${nebula-new}/scripts/nebula.service start graphd
$ sudo ${nebula-new}/scripts/nebula.service status graphd
g
7/ Note

If this step goes wrong on any server:

1. Stop upgrading. 2. Stop all the Meta servers, Storage servers, and Graph servers. 3. Start the Nebula Graph services from the
old directories. 4. Take the logs in ${nebula-new}/logs/ to the Nebula Graph community for help.

11. Connect to Nebula Graph with the new version (v2.0.0 or later) of Nebula Console. Verify if the Nebula Graph services are
available and if the data can be accessed normally.

The command for connection, including the IP address and port of the Graph Service, is the same as the old one.

The following statements may help in this step.

nebula> SHOW HOSTS;
nebula> SHOW SPACES;
nebula> USE <space_name>
nebula> SHOW PARTS;
nebula> SUBMIT JOB STATS;
nebula> SHOW STATS;

- 249/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/
https://discuss.nebula-graph.io/
https://github.com/vesoft-inc/nebula-console

5.4.4 Upgrade failure and rollback

0 Danger

Don't use Nebula Console versions prior to v2.0.0.

12. Upgrade other Nebula Graph clients.

You must upgrade all other clients to corresponding v2.0.0 versions. The clients include but are not limited to the following ones.
Find the v2.0.0 branch for each client.

* studio

* python

* java

*go

s Cc++

« flink-connector
* spark-util

¢ benchmark

/" Note
e Communication protocols of the v2.0.0 versions are not compatible with that of the historical versions. To upgrade the clients,
you must compile the v2.0.0 source code of the clients or download corresponding binaries.

« Tip for maintenance: The data path after the upgrade is ${nebula-new}/. Modify relative paths for hard disk monitor systems or
log ELK.

5.4.4 Upgrade failure and rollback
If the upgrade fails, stop all Nebula Graph services of the new version, and start the services of the old version.

All Nebula Graph clients in use must be switched to the old version.

5.4.5 Appendix 1: Test Environment
The test environment for this topic is as follows:

* Machine specifications: 32 CPU cores, 62 GB memory, and SSD.
* Data size: 100 GB of Nebula Graph 1.2.0 LDBC test data, with 1 graph space, 24 partitions, and 92 GB of data directory size.

e Concurrent configuration:

Parameter Default value Applied value in the Tests
--max_concurrent 5 5

--max _concurrent parts 10 24

--write batch num 100 100

The upgrade cost 21 minutes in all, including 21 minutes of compaction.

- 250/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-docker-compose
https://github.com/vesoft-inc/nebula-python
https://github.com/vesoft-inc/nebula-java
https://github.com/vesoft-inc/nebula-go
https://github.com/vesoft-inc/nebula-cpp
https://github.com/vesoft-inc/nebula-flink-connector
https://github.com/vesoft-inc/nebula-spark-utils
https://github.com/vesoft-inc/nebula-bench

5.4.6 Appendix 2: Nebula Graph V2.0.0 code address and commit ID

5.4.6 Appendix 2: Nebula Graph V2.0.0 code address and commit ID

Code address Commit ID

Graph Service 7923a45

Storage and Meta Services 761£22b

Common b2512aa
5.4.7 FAQ

Can | write through the client during the upgrade?

A: No. The state of the data written during this process is undefined.

Can | upgrade other old versions except for v1.2.0 or v2.0.0-RC1 to v2.0.0?
A: Upgrading from other old versions is not tested. Theoretically, versions between v1.0.0 and v1.2.0 could adopt the upgrade
approach for v1.2.0. V2 .x nightly versions cannot apply the solutions in this topic.

How to upgrade clients after the server upgrade?

A: See step 12 in this topic.

How to upgrade if a machine has only the Graph Service, but not the Storage Service?

A: Upgrade the Graph Service with the corresponding binary or rpm package.

How to resolve the error permission denied?

A: Try again with the sudo privileges.

Is there any change in gflags?

A: Yes. For more information, see known gflags changes.

What are the differences between deleting data then installing the new version and upgrading according to this topic?
A: The default configurations for v2.x and v1.x are different, including the ports used. The upgrade solution keeps the old
configurations, and the delete-and-install solution uses the new configurations.

Is there a tool or solution for verifying data consistency after the upgrade?

A: No.

Last update: May 12, 2021

-251/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph/releases/tag/v2.0.0
https://github.com/vesoft-inc/nebula-storage/tree/v2.0.0
https://github.com/vesoft-inc/nebula-common/tree/v2.0.0
https://github.com/vesoft-inc/nebula-graph/issues/858

5.5 Uninstall Nebula Graph

5.5 Uninstall Nebula Graph

This topic describes how to uninstall Nebula Graph.

Caution

Before re-installing Nebula Graph on a machine, follow this topic to completely uninstall the old Nebula Graph, in case the remaining

data interferes with the new services.

5.5.1 Prerequisites

You have stopped the Nebula Graph services. For more information, see Manage Nebula Graph services.

5.5.2 Step 1: Delete data files of the Storage and Meta Services

If you have modified the data_path in the configuration files for the Meta Service and Storage Service, the directories where
Nebula Graph stores data may not be in the installation path of Nebula Graph. Check the configuration files to confirm the data

paths, and then manually delete the directories to clear all data.

For a Nebula Graph cluster, delete the data files of all Storage and Meta servers.

Caution

Make sure that you have backed up all important data.

1. Find the data paths in the Storage Service disk settings and Meta Service storage settings. For example:

Disk
Root data path. Split by comma. e.g. --data_path=/diskl/pathil/,/disk2/path2/
One path per Rocksdb instance.
--data_path=/nebula/data/storage

2. Delete the directories found in step 1.

5.5.3 Step 2: Delete the installation directories

The default installation path is /usr/local/nebula. It can be modified while installing Nebula Graph. Delete all installation

directories, including the cluster.id filesin them.

Uninstall Nebula Graph deployed with source code

Find the installation path of Nebula Graph, and delete the directories.

Uninstall Nebula Graph deployed with RPM packages
1. Run the following command to get the Nebula Graph version.
$ rpm -ga | grep "nebula"
The return message is as follows.
nebula-graph-2.0.1-1.x86_64

2. Run the following command to uninstall Nebula Graph.

sudo rpm -e <nebula_version>

-252/290 - 2021 Vesoft Inc.

5.5.3 Step 2: Delete the installation directories

For example:

sudo rpm -e nebula-graph-2.0.1-1.x86_64

3. Delete the installation directories.

Uninstall Nebula Graph deployed with DEB packages
1. Run the following command to get the Nebula Graph version.
$ dpkg -1 | grep "nebula"
The return message is as follows.
ii nebula-graph 2.0.1 amd64 Nebula Package built using CMake
2. Run the following command to uninstall Nebula Graph.
sudo dpkg -r <nebula version>
For example:

sudo dpkg -r nebula-graph

3. Delete the installation directories.

Uninstall Nebula Graph deployed with Docker Compose
1. In the nebula-docker-compose directory, run the following command to stop the Nebula Graph services.

docker-compose down -v

2. Delete the nebula-docker-compose directory.

Last update: May 10, 2021

- 253/290 - 2021 Vesoft Inc.

6. Configurations and logs

6. Configurations and logs

6.1 Configurations

6.1.1 Configurations

This document gives some introduction to configurations in Nebula Graph.

For the path and usage of local configuration files for Nebula Graph services, see:
* Meta configuration
e Graph configuration

» Storage configuration

Get configurations

Most configurations are gflags. You can get all the gflags and the explanations by the following command.

<binary> --help

For example:

./nebula-metad --help
./nebula-graphd --help
./nebula-storaged --help
./nebula-console --help

® B BB

Besides, you can get the values of running flags by curl -ing from the services.

For example:

$ curl 127.0.0.1:19559/flags # From Meta
$ curl 127.0.0.1:19669/flags # From Graph
$ curl 127.0.0.1:19779/flags # From Storage

Modify configurations

We suggest that you change configurations from local configure files. To change configurations from local files, follow these steps:

1. Add --local_config=true to each configuration file. The configuration files are stored in /usr/local/nebula/etc/ by default. If you
have customized your Nebula Graph installation directory, the path to your configuration files is $pwd/nebula/etc/ .
2. Save your modification to the files.

3. Restart the Nebula Graph services.

A caution

Remember to add --local config=true to each configuration file.

To make your modifications take effect, restart all the Nebula Graph services.

Legacy version compatibility

The curl commands and parameters in Nebula Graph v2.x. are different from Nebula Graph v1.x. Those curl commandsin vl.x
are deprecated now.

- 254/290 - 2021 Vesoft Inc.

6.1.1 Configurations

Last update: April 22, 2021

- 255/290 - 2021 Vesoft Inc.

6.1.2 Meta Service configuration

6.1.2 Meta Service configuration
Nebula Graph provides two initial configuration files for the Meta Service: nebula-metad.conf.default and nebula-
metad.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .
How to use the configuration files

The Meta Service gets its configuration from the nebula-metad.conf file. You have to remove the suffix .default or .production from
an initial configuration file for the Meta Service to apply the configuration defined in it.

If you have modified the configuration in the file and want new configuration to take effect, add --local conf=true atthe top of the
file. Otherwise, Nebula Graph reads the cached configuration.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses the default value.

/" Note

The default value of a parameter in Nebula Graph may be different from the predefined value in the .default and .production files.

The predefined parameters in nebula-metad.conf.default and nebula-metad.conf.production are different. And not all parameters are
predefined. This topic uses the parameters in nebula-metad.conf.default .

Nebula Graph provides two initial configuration files for the Meta Service: nebula-metad.conf.default and nebula-
metad.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

Basic configurations

Name Predefine Descriptions
Value
daemonize true When set to true, the process is a daemon process.
pid_file pids/nebula- File to host the process ID.
metad.pid
timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default value is
UTC+00:00: 00 . For the format of the parameter value, see Specifying the Time Zone
with TZ. For example, --timezone_name=CST-8 represents the GMT+8 time zone.

/" Note

» While inserting time-type property values except timestamps, Nebula Graph transforms them to a UTC time according to the time
zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL queries are all
UTC time.

* timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph processes
still uses the default time zone of the host, such as the log printing time.

- 256/290 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

6.1.2 Meta Service configuration

Logging configurations

Name Predefine Descriptions
Value
log_dir logs Directory to the Meta Service log. We recommend that you put logs on a different

hard disk from the data path.

minloglevel 0 Specifies the minimum log level. Available values are o (INFO), 1 (WARNING), 2
(ERROR), and 3 (FATAL). We suggest that you set minloglevel to o for debugging
and 1 for production. When you set it to 4, Nebula Graph does not print any logs.

v 0 Specifies the verbose log level. Available values are 0-4. The larger the value, the
more verbose the log.

logbufsecs 0 Specifies the maximum time to buffer the logs. The configuration is measured in
seconds.
stdout_log file metad- Specifies the filename for the stdout log.
stdout.log
stderr_log_file metad- Specifies the filename for the stderr log.
stderr.log
stderrthreshold 2 Specifies the minimum level to copy the log messages to stderr.

Networking configurations

Name Predefine Descriptions
Value
meta_server_addrs 127.0.0.1:9559 Specifies the IP addresses and ports of all Meta Services. Separate

multiple addresses with commas.
local ip 127.0.0.1 Specifies the local IP for the Meta Service.

port 9559 Specifies RPC daemon listening port. The external port for the Meta
Service is predefined to 9559 . The internal port is predefined to port + 1,
i.e., 9560 . Nebula Graph uses the internal port for multi-replica

interactions.
ws_ip 0.0.0.0 Specifies the IP address for the HTTP service.
ws_http_port 19559 Specifies the port for the HTTP service.
ws_h2_port 19560 Specifies the port for the HTTP2 service.
heartbeat_interval_secs 10 Specifies the default heartbeat interval in seconds. Make sure the

heartbeat_interval_secs values for all services are the same, otherwise
Nebula Graph CANNOT work normally.

/" Note

We recommend that you use the real IP address in your configuration because sometimes 127.0.0.1 can not be parsed correctly.

Storage configurations

Name Predefine Value Descriptions

data_path data/meta (i.e. /usr/local/nebula/data/meta/) Directory for cluster metadata persistence

- 257/290 - 2021 Vesoft Inc.

6.1.2 Meta Service configuration

Misc configurations

Name Predefine Descriptions
Value
default_parts_num 100 Specifies the default partition number when you create a new graph space.
default_replica_factor 1 Specifies the default replica factor number when you create a new graph
space.
RocksDB options
Name Predefine Descriptions
Value
rocksdb_wal_sync true Enable or disable RocksDB WAL synchronization. Available values are true

(enable) and false (disable).

Last update: April 22, 2021

- 258/290 - 2021 Vesoft Inc.

6.1.3 Graph Service configuration

6.1.3 Graph Service configuration

Nebula Graph provides two initial configuration files for the Graph Service: nebula-graphd.conf.default and nebula-
graphd.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

How to use the configuration files

The Graph Service gets its configuration from the nebula-graphd.conf file. You have to remove the suffix .default or .production
from an initial configuration file for the Graph Service to apply the configuration defined in it.

If you have modified the configuration in the file and want new configuration to take effect, add --local conf=true atthe top of the
file. Otherwise, Nebula Graph reads the cached configuration.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses its default value.

/" Note

The default value of a parameter in Nebula Graph may be different from the predefined value in the .default and .production files.

The predefined parameters in nebula-graphd.conf.default and nebula-graphd.conf.production are different. And not all parameters
are predefined. This topic uses the parameters in nebula-graphd.conf.default .

Basic configurations

Name Predefine Descriptions
Value
daemonize true When set to true, the process is a daemon process.
pid_file pids/nebula- File to host the process ID.
graphd.pid
enable_optimizer true When set to true, the optimizer is enabled.
timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial

configuration files. You can manually set it if you need it. The system default value is
UTC+00:00:00 . For the format of the parameter value, see Specifying the Time Zone
with TZ. For example, --timezone_name=CST-8 represents the GMT+8 time zone.

/" Note

* While inserting time-type property values except timestamps, Nebula Graph transforms them to a UTC time according to the time
zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL queries are all
UTC time.

* timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph processes
still uses the default time zone of the host, such as the log printing time.

- 259/290 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Name

log_dir

minloglevel

logbufsecs

redirect_stdout

stdout_log_file

stderr_log_file

stderrthreshold

Predefine
Value

logs

true

graphd-
stdout.log

graphd-
stderr.log

6.1.3 Graph Service configuration

Descriptions

Directory to the Graph Service log. We recommend that you put logs on a different
hard disk from the data_path.

Specifies the minimum log level. Available values are o (INFO), 1 (WARNING), 2
(ERROR), and 3 (FATAL). We suggest that you set minloglevel to o for debugging
and 1 for production. When you set it to 4, Nebula Graph does not print any logs.

Specifies the verbose log level. Available values are 0-4. The larger the value, the
more verbose the log.

Specifies the maximum time to buffer the logs. The configuration is measured in
seconds.

When set to true, stdout and stderr are redirected.

Specifies the filename for the stdout log.

Specifies the filename for the stderr log.

Specifies the minimum level to copy the log messages to stderr.

- 260/290 - 2021 Vesoft Inc.

Networking configurations

Name

meta_server_addrs

local_ip
listen_netdev

port

reuse_port

listen_backlog

client_idle_timeout_secs

session_idle_timeout_secs

num_accept_threads

num_netio_threads

num_worker_threads

ws_ip
ws_http_port
ws_h2_port

heartbeat_interval_secs

storage_client_timeout_ms

/" Note

Predefine
Value

127.0.0.1:9559

127.0.0.1

any

9669

false

1024

0.0.0.0

19669

19670

10

6.1.3 Graph Service configuration

Descriptions

Specifies the IP addresses and ports of all Meta Services. Separate
multiple addresses with commas.

Specifies the local IP for the Graph Service.
Specifies the network device to listen on.

Specifies RPC daemon listening port. The external port for the Graph
Service is 9669 .

When set to false, the SO REUSEPORT is closed.

Specifies the backlog for the listen socket. You must modify this
configuration together with the net.core.somaxconn .

Specifies the time to close an idle connection. This configuration is
measured in seconds.

Specifies the time to expire an idle session. This configuration is
measured in seconds.

Specifies the thread number to accept incoming connections.

Specifies the networking IO threads number. o is the number of CPU

cores.

Specifies the thread number to execute user queries. o is the number of
CPU cores.

Specifies the IP address for the HTTP service.
Specifies the port for the HTTP service.
Specifies the port for the HTTP2 service.

Specifies the default heartbeat interval in seconds. Make sure the
heartbeat_interval_secs values for all services are the same, otherwise
Nebula Graph CANNOT work normally.

Specifies the RPC connection timeout threshold between the Graph
Service and the Storage Service. This parameter is not predefined in the
initial configuration files. You can manually set it if you need it. The
system default value is 60000 ms.

We recommend that you use the real IP address in your configuration because sometimes 127.0.0.1 can not be parsed correctly.

Charset and collate configurations

Name Predefine Value
default_charset utf8
default_collate utf8_bin

Descriptions
Specifies the default charset when you create a new graph space.

Specifies the default collate when you create a new graph space.

- 261/290 - 2021 Vesoft Inc.

6.1.3 Graph Service configuration

Authorization and authentication configurations

Name Predefine Descriptions
Value
enable_authorize false When set to false, the system authentication is not enabled. For more

information, see Authentication.

auth_type password Specifies the login method. Available values are password, ldap, and cloud.
If you have set enable_authorize to true, you can only log in with the root account. For example:
/usr/local/nebula/bin/nebula -u root -p nebula --addr=127.0.0.1 --port=9669

If you have set enable_authorize to false, you can log in with any account and password. For example:

/usr/local/nebula/bin/nebula -u any -p 123 --addr=127.0.0.1 --port=9669

Last update: April 22, 2021

- 262/290 - 2021 Vesoft Inc.

6.1.4 Storage Service configurations

6.1.4 Storage Service configurations

Nebula Graph provides two initial configuration files for the Storage Service: nebula-storaged.conf.default and nebula-
storaged.conf.production . You can use them in different scenarios. The default file path is /usr/local/nebula/etc/ .

/" Note

Raft Listener is different from the Storage Service. For more information, see Raft Listener.

How to use the configuration files

The Storage Service gets its configuration from the nebula-storaged.conf file. You have to remove the suffix .default or .production
from an initial configuration file for the Storage Service to apply the configuration defined in it.

If you have modified the configuration in the file and want the new configuration to take effect, add --local conf=true atthe top of
the file. Otherwise, Nebula Graph reads the cached configuration.

About parameter values

If a parameter is not set in the configuration file, Nebula Graph uses its default value.

/" Note

The default value of a parameter in Nebula Graph may be different from the predefined value in the .default and .production files.

The predefined parameter in nebula-storaged.conf.default and nebula-storaged.conf.production are different. And not all parameters
are predefined. This topic uses the parameters in nebula-storaged.conf.default .

Basic configurations

Name Predefine Descriptions

Value
daemonize true When set to true, the process is a daemon process.
pid_file pids/nebula- File to host the process ID.

storaged.pid

timezone_name - Specifies the Nebula Graph time zone. This parameter is not predefined in the initial
configuration files. You can manually set it if you need it. The system default value is
uTC+00:00:00 . For the format of the parameter value, see Specifying the Time Zone
with TZ. For example, --timezone_name=CST-8 represents the GMT+8 time zone.

/" Note

* While inserting time-type property values except timestamps, Nebula Graph transforms them to a UTC time according to the time
zone specified with the timezone_name parameter in the configuration files. The time-type values returned by nGQL queries are all
UTC time.

* timezone_name is only used to transform the data stored in Nebula Graph. Other time-related data of the Nebula Graph processes
still uses the default time zone of the host, such as the log printing time.

- 263/290 - 2021 Vesoft Inc.

https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html
https://www.gnu.org/software/libc/manual/html_node/TZ-Variable.html

Logging configurations

Name

log_dir

minloglevel

logbufsecs

redirect_stdout

stdout_log_file

stderr_log_file

stderrthreshold

Networking configurations

Name

meta_server_addrs

local_ip

port

ws_ip
ws_http_port
ws_h2_port

heartbeat_interval_secs

/" Note

Predefine
Value

logs

true

storaged-

stdout.log

storaged-

stderr.log

Predefine

Value

127.0.0.1:9559

127.0.0.1

9779

0.0.0.0

19779

19780

10

6.1.4 Storage Service configurations

Descriptions

Directory to the Storage Service log. We recommend that you put logs on a different
hard disk from the data_path.

Specifies the minimum log level. Available values are 0-3. 0, 1, 2, and 3 are INFO,
WARNING , ERROR, and FATAL . We suggest that you set minloglevel to o for debug, 1
for production. When you set it to 4, Nebula Graph does not print any logs.

Specifies the verbose log level. Available values are 0-4. The larger the value, the
more verbose the log.

Specifies the maximum time to buffer the logs. The configuration is measured in
seconds.

When set to true, stdout and stderr are redirected.

Specifies the filename for the stdout log.

Specifies the filename for the stderr log.

Specifies the minimum level to copy the log messages to stderr. Available values are
0-3. 0, 1, 2,and 3 are INFO, WARNING, ERROR, and FATAL .

Descriptions

Specifies the IP addresses and ports of all Meta Services. Separate
multiple addresses with commas.

Specifies the local IP for the Storage Service.

Specifies RPC daemon listening port. The external port for Storage Service
is predefined to 9779 . The internal ports are predefined to port -2, port
-1, and port + 1,1i.e., 9777, 9778, and 9780 . Nebula Graph uses the
internal ports for multi-replica interactions.

Specifies the IP address for the HTTP service.
Specifies the port for the HTTP service.
Specifies the port for the HTTP2 service.

Specifies the default heartbeat interval in seconds. Make sure the
heartbeat_interval_secs values for all services are the same, otherwise
Nebula Graph CANNOT work normally.

We recommend that you use the real IP address in your configuration because sometimes 127.0.0.1 can not be parsed correctly.

- 264/290 - 2021 Vesoft Inc.

6.1.4 Storage Service configurations

Raft configurations
Name Predefine Descriptions
Value
raft_heartbeat_interval_secs 30 Specifies the timeout for the Raft election. The configuration is
measured in seconds.
raft_rpc_timeout_ms 500 Specifies the timeout for the Raft RPC. The configuration is measured
in milliseconds.
wal_ttl 14400 Specifies the recycle RAFT wal time. The configuration is measured in
seconds.
Disk configurations
Name Predefine Value Descriptions
data_path data/storage Specifies the root data path. Separate multiple paths with commas.
rocksdb_batch_size 4096 Specifies the block cache for a batch operation. The configuration is me
rocksdb_block_cache 4 Specifies the block cache for BlockBasedTable. The configuration is mee
megabytes.
engine_type rocksdb Specifies the engine type.
rocksdb_compression 1z4 Specifies the compression algorithm for RocksDB. Available values are
1z4, 1lz4hc, z1lib, bzip2, and zstd.
rocksdb_compression_per_level \ Specifies compression for each level.
enable_rocksdb_statistics false When set to false, RocksDB statistics is disabled.
rocksdb_stats_level kExceptHistogramOrTimers Specifies the stats level for RocksDB. Available values are kExceptHisto
kExceptTimers, kExceptDetailedTimers, kExceptTimeForMutex , and kAll.
enable_rocksdb_prefix_filtering false When set to true, the prefix bloom filter for RocksDB is enabled. Enabl
filter reduces memory usage.
rocksdb_filtering prefix_length 12 Specifies the prefix length for each key. Available values are 12 and 16

RocksDB options

The format of the RocksDB options is {"<option_name>":"<option_value>"} . Multiple options are separated with commas.

Name Predefine Value Descriptions

rocksdb_db_options {3 Specifies the RocksDB options.

rocksdb_column_family_options {"write_buffer_size":"67108864", Specifies the RocksDB column family
"max_write_buffer_number":"4", options.

"max_bytes_for_level base":"268435456"}

rocksdb_block_based_table options {"block_size":"8192"} Specifies the RocksDB block based table
options.

- 265/290 - 2021 Vesoft Inc.

6.1.4 Storage Service configurations

Available rocksdb_db_options and rocksdb_column_family options are listed as follows.
* rocksdb_db_options

max_total wal_size
delete_obsolete_files_period_micros
max_background_jobs
stats_dump_period_sec
compaction_readahead_size
writable file max_buffer_size
bytes_per_sync

wal_bytes_per_sync
delayed_write_rate
avoid_flush_during_shutdown
max_open_files
stats_persist_period_sec
stats_history_buffer_size
strict_bytes_per_sync
enable_rocksdb_prefix_filtering
enable_rocksdb_whole_key filtering
rocksdb_filtering_prefix_length
num_compaction_threads

rate_limit

* rocksdb_column_family options

write_buffer_size
max_write_buffer_number
level@_file_num_compaction_trigger
levelO_slowdown_writes_trigger
levelO_stop_writes_trigger
target_file_size_base
target_file_size multiplier
max_bytes_for_level base
max_bytes_for_level multiplier
disable_auto_compactions

For more information about RocksDB configuration, see RocksDB official documentationf

For super-Large vertices
For super vertex with a large number of edges, currently there are two truncation strategies:

1. Truncate directly. Set the enable reservoir_sampling parameter to false. A certain number of edges specified in the
Max_edge_returned_per_vertex parameter are truncated by default.

2. Truncate with the reservoir sampling algorithm. Based on the algorithm, a certain number of edges specified in the
Max_edge_returned_per_vertex parameter are truncated with equal probability from the total n edges. Equal probability sampling is
useful in some business scenarios. However, the performance is affected compared to direct truncation due to the probability
calculation.

Storage configuration for large dataset

When you have a large dataset (in the RocksDB directory) and your memory is tight, we suggest that you set the
enable_partitioned_index_filter parameter to true.For example, 100 vertices + 100 edges require 300 key-values. Each key takes
10bit in memory. Then you can calculate your own memory usage.

Last update: May 10, 2021

- 266/290 - 2021 Vesoft Inc.

https://rocksdb.org/

6.1.5 Kernel configurations

6.1.5 Kernel configurations

This document gives some introductions to the Kernel configurations in Nebula Graph.

ulimit
ULIMIT -C

ulimit -c limits the size of the core dumps. We recommend that you set it to unlimited . The command is:
ulimit -c unlimited
ULIMIT -N

ulimit -n limits the number of open files. We recommend that you set it to more than 100,000. For example:

ulimit -n 130000

Memory
VM.SWAPPINESS

vm.swappiness is the percentage of the free memory before starting swap. The greater the value, the more likely the swap occurs.
We recommend that you set it to 0. When set to 0, the page cache is removed first. Note that when vm.swappiness is 0, it does not
mean that there is no swap.

VM.MIN_FREE_KBYTES

vm.min_free_kbytes is used to force the Linux VM to keep a minimum number of kilobytes free. If you have a large system memory,
we recommend that you increase this value. For example, if your physical memory 128GB, set it to 5GB. If the value is not big
enough, the system cannot apply for enough continuous physical memory.

VM.MAX_MAP_COUNT

vm.max_map_count limits the maximum number of vma (virtual memory area) for a process. The default value is 65530 . It is enough
for most applications. If your memory application fails because the memory consumption is large, increase the vm.max_map_count
value.

VM.OVERCOMMIT_MEMORY

vm.overcommit_memory contains a flag that enables memory overcommitment. We recommend that you set the default value 0 or 1.
DO NOT set it to 2.

VM.DIRTY_*

These values control the aggressiveness of the dirty page cache for the system. For write-intensive scenarios, you can make
adjustments based on your needs (throughput priority or delay priority). We recommend that you use the system default value.

TRANSPARENT HUGE PAGE

For better delay performance, you must delete the transparent huge pages (THP). The options are /sys/kernel/mm/
transparent_hugepage/enabled and /sys/kernel/mm/transparent_hugepage/defrag . For example:

echo never > /sys/kernel/mm/transparent_hugepage/enabled
echo never > /sys/kernel/mm/transparent_hugepage/defrag
swapoff -a && swapon -a

Networking
NET.IPV4.TCP_SLOW_START AFTER_IDLE

The default value for this parameter is 1. If set, the congestion window is timed out after an idle period. We recommend that you
set it to 0, especially for long fat links (high latency and large bandwidth).

- 267/290 - 2021 Vesoft Inc.

6.1.5 Kernel configurations

NET.CORE.SOMAXCONN

net.core.somaxconn is the maximum number of the backlogged sockets. The default value is 128. For scenarios with a large number
of burst connections, we recommend that you set it to greater than 1024.

NETIPV4.TCP_MAX_SYN_BACKLOG

The maximum number of remembered connection requests. The setting rule for this parameter is the same as that of

net.core.somaxconn .
NET.CORE.NETDEV_MAX_BACKLOG

It determines the maximum number of packets. We recommend that you increase it to greater than 10,000, especially for 10G
network adapters. The default value is 1000 .

NETIPV4.TCP_KEEPALIVE_*

Keep alive parameters for the TCP connections. For applications that use a 4-layer transparent load balancer, if the idle connection
is disconnected unexpectedly, decrease tcp_keepalive time and tcp_keepalive_intvl.

NETIPV4.TCP_RMEM/WMEM

The minimum, default, and maximum size of the TCP socket receive buffer. For long fat links, we recommend that you increase the
default value to bandwidth * RTT.

SCHEDULER

For SSD devices, we recommend that you set /sys/block/DEV_NAME/queue/scheduler to noop or none.

Other parameters
KERNEL.CORE_PATTERN

we recommend that you set it to core and set kernel.core_uses_pid to 1.

Parameter usage guide

SYSCTL

e sysctl conf_name checks the current parameter value.
e sysctl -w conf_name=value modifies the parameter value. And your modification takes effect immediately.

e sysctl -p loads parameter values from related configuration files.
INTRODUCTION TO ULIMIT

ulimit sets the resource threshold for the current shell session. Please note that:

¢ Changes made by the ulimit command are valid only for the current session (and child processes).
e ulimit cannot adjust the (soft) threshold of a resource to a value greater than the current hard value.
e Ordinary users cannot adjust the hard threshold (even by using sudo) through this command.

» To modify on the system level, or adjust the hard threshold, edit the /etc/security/limits.conf file. But this method needs to
re-log in to take effect.

PRLIMIT

prlimit gets and sets process resource limits. You can modify the hard threshold by using it and the sudo command. Together
with the sudo command, the hard threshold can be modified. For example, prlimit --nofile = 130000 --pid = $$ adjusts the
maximum number of open files permitted by the current process to 14000 . And the modification takes effect immediately. Note
that this command is only available in RedHat 7u or later OS versions.

Last update: February 8, 2021

- 268/290 - 2021 Vesoft Inc.

6.2 Log management

6.2 Log management

6.2.1 Logs

Nebula Graph uses glog to print logs, uses gflag to control the severity level of the log, and provides an HTTP interface to
dynamically change the log level at runtime to facilitate tracking.

Log Directory

The default log directory is /usr/local/nebula/logs/ .

/" Note

If you deleted the log directory during runtime, the runtime log would not continue to be printed. However, this operation will not
affect the services. Restart the services to recover the logs.

Parameter Description

TWO MOST COMMONLY USED FLAGS IN GLOG

* minloglevel: The scale of minloglevel is 0-4. The numbers of severity levels INFO(DEBUG), WARNING, ERROR, and FATAL are
0,1, 2, and 3, respectively. Usually specified as 0 for debug, 1 for production. If you set the minloglevel to 4, no logs are
printed.

* v: The scale of v is 0-3. When the value is set to 0, you can further set the severity level of the debug log. The greater the
value is, the more detailed the log is.

CONFIGURATION FILES
The default severity level for the metad, graphd, and storaged logs can be found in the configuration files (usually in /usr/local/
nebula/etc/).

Check and Change the Severity Levels Dynamically

Check all the flag values (log values included) of the current gflags with the following command. Not all flags are listed because
changing some flags can be dangerous. Read the response explanation and the source code before you change these not
documented parameters. To get all the available flags for a process, use this command:

> curl ${ws_ip}:${ws_port}/flags
In the command:

e ws_ip is the IP address for the HTTP service, which can be found in the configuration files above. The default value is
127.0.0.1.

¢ ws_port is the port for the HTTP service, the default values for metad, storaged, and graphd are 19559, 19779, and 19669,
respectively.

/" Note

If you changed the runtime log level, then restart the services, the log level changes to the configuration file specifications. For more
information, see Storage Service configurations.

For example, check the minloglevel for the storaged service:

> curl 127.0.0.1:19559/flags | grep minloglevel

- 269/290 - 2021 Vesoft Inc.

https://github.com/google/glog
https://gflags.github.io/gflags/

6.2.1 Logs

To change the log level for a process, use these commands. For example, you can change the log severity level the the most
detailed.
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":@,"v":3}' "127.0.0.1:19779/flags" # storaged

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":®,"v":3}' "127.0.0.1:19669/flags" # graphd
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":0,"v":3}' "127.0.0.1:19559/flags" # metad

To change the severity of the storage log, replace the port in the preceding command with storage port.

/" Note
Nebula Graph only supports modifying the graph and storage log severity by using the console. And the severity level of meta logs can
only be modified with the curl command.

Close all logs print (FATAL only) with the following command.

$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":3,"v":0}' "127.0.0.1:19779/flags" # storaged
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":3,"v":0}' "127.0.0.1:19669/flags" # graphd
$ curl -X PUT -H "Content-Type: application/json" -d '{"minloglevel":3,"v":0}' "127.0.0.1:19559/flags" # metad

Last update: April 22, 2021

-270/290 - 2021 Vesoft Inc.

7. Monitor and metrics

7. Monitor and metrics

7.1 Query Nebula Graph metrics

Nebula Graph supports querying the monitoring metrics through HTTP ports.

7.1.1 Metrics

Each metric of Nebula Graph consists of three fields: name, type, and time range. The fields are separated by periods, for
example, num_queries.sum.600 . The detailed description is as follows.

Field

Metric
name

Metric
type

Time
range

Example Description

num_queries Indicates the function of the metric.

600

Indicates how the metrics are collected. Supported types are SUM, COUNT, AVG, RATE,
and the P-th sample quantiles such as P75, P95, P99, and P99.9.

The time range in seconds for the metric collection. Supported values are 5, 60, 600, and
3600, representing the last 5 seconds, 1 minute, 10 minutes, and 1 hour.

Different Nebula Graph services (Graph, Storage, or Meta) support different metrics, for more information, see Metric list (TODO:

doc).

7.1.2 Query metrics over HTTP

Syntax

$ curl -G "http://<ip>:<port>/stats?stats=<metric_name_list>[&format=json]"

Parameter
ip

port

metric_name_list

&format=json

/" Note

Description
The IP address of the server. You can find it in the configuration file in the installation directory.

The HTTP port of the server. You can find it in the configuration file in the installation directory. The
default ports are 19559 (Meta), 19669 (Graph), and 19779 (Storage).

The metrics names. Multiple metrics are separated by commas (,).

Optional. Returns the result in the JSON format.

If Nebula Graph is deployed with Docker Compose, run docker-compose ps to check the ports that are mapped from the service ports

inside of the container and then query through them.

Example

* Query a single metric

Query the query number in the last 10 minutes in the Graph Service.

- 271/290 - 2021 Vesoft Inc.

7.1.2 Query metrics over HTTP

$ curl -G "http://192.168.8.40:19669/stats?stats=num_queries.sum.600"
num_queries.sum.600=400

¢ Query multiple metrics

Query the following metrics together: * The average heartbeat latency in the last 1 minute. * The average latency of the
slowest 1% heartbeats, i.e., the P99 heartbeats, in the last 10 minutes.

$ curl -G "http://192.168.8.40:19559/stats?stats=heartbheat latency us.avg.60, heartbeat latency us.p99.600"
heartbeat_latency_us.avg.60=281
heartbeat_latency_us.p99.600=985

* Return a JSON result.

Query the number of new vertices in the Storage Service in the last 10 minutes and return the result in the JSON format.

$ curl -G "http://192.168.8.40:19779/stats?stats=num_add_vertices.sum.600&format=json"
[{"value":1, "name":"num_add_vertices.sum.600"}]

¢ Query all metrics in a service.

If no metric is specified in the query, Nebula Graph returns all metrics in the service.

$ curl -G "http://192.168.8.40:19559/stats"
heartbeat_latency_us.avg.5=304
heartbeat_latency_us.avg.60=308
heartbeat_latency_us.avg.600=299
heartbeat_latency_us.avg.3600=285
heartbeat_latency_us.p75.5=652
heartbeat_latency_us.p75.60=669
heartbeat_latency_us.p75.600=651
heartbeat_latency_us.p75.3600=642
heartbeat_latency_us.p95.5=930
heartbeat_latency_us.p95.60=963
heartbeat_latency_us.p95.600=933
heartbeat_latency_us.p95.3600=929
heartbeat_latency_us.p99.5=986
heartbeat_latency_us.p99.60=1409
heartbeat_latency_us.p99.600=989
heartbeat_latency_us.p99.3600=986
num_heartbeats.rate.5=0
num_heartbeats.rate.60=0
num_heartbeats.rate.600=0
num_heartbeats.rate.3600=0
num_heartbeats.sum.5=2
num_heartbeats.sum.60=40
num_heartheats.sum.600=394
num_heartbeats.sum.3600=2364

Last update: April 22, 2021

-272/290 - 2021 Vesoft Inc.

8. Data security

8. Data security

8.1 Authentication and authorization

8.1.1 Authentication
Nebula Graph replies on local authentication or LDAP authentication to implement access control.

Nebula Graph creates a session when a client connects to it. The session stores information about the connection, including the

user information.

By default, authentication is disabled and Nebula Graph allows connections with any username and password. If the
authentication system is enabled, Nebula Graph checks a session according to the authentication configuration, and decides

whether the session should be allowed or denied.

Local authentication
Local authentication indicates that usernames and passwords are stored locally on the server, with the passwords encrypted.
ENABLE LOCAL AUTHENTICATION

1. In the /usr/local/nebula/etc/nebula-graphd.conf file, set --enable authorize=true and save the modification.

/" Note

/usr/local/nebula/ is the default installation path for Nebula Graph. If you have changed it, use the actual path.

2. Restart the Nebula Graph services. For how to restart, see Manage Nebula Graph services.

/" Note

You can use the username root and password nebula to log into Nebula Graph after enabling local authentication. This account has
the build-in God role. For more information about roles, see Roles and privileges.

LDAP authentication

Lightweight Directory Access Protocol (LDAP), is a lightweight client-server protocol for accessing directories and building a
centralized account management system.

LDAP authentication and local authentication can be enabled at the same time, but LDAP authentication has a higher priority. If
the local authentication server and the LDAP server both have the information of user Amber , Nebula Graph reads from the LDAP

server first.
ENABLE LDAP AUTHENTICATION

The Nebula Graph Enterprise Edition supports LDAP authentication. For how to enable LDAP, see Authenticate with an LDAP
server (TODO: doc).

Last update: April 22, 2021

- 273/290 - 2021 Vesoft Inc.

8.1.2 User management

8.1.2 User management
This topic describes how to manage users and roles.

By default, Nebula Graph allows connections with any username and password. After enabling authentication, only valid users can
connect to Nebula Graph and access the resources according to the user roles.

CREATE USER
The root user with the GOD role can run CREATE USER to create a new user.
¢ Syntax

CREATE USER [IF NOT EXISTS] <user_name> [WITH PASSWORD '<password>'];

* Example

nebula> CREATE USER userl WITH PASSWORD 'nebula';

GRANT ROLE

Users with the GOD role or the ADMIN role can run GRANT ROLE to assign a built-in role in a graph space to a user. For more
information about Nebula Graph built-in roles, see Roles and privileges

/" Note

If the target user is connected to Nebula Graph when running GRANT ROLE, the new role takes effect when the user logs out and logs
in again.

e Syntax
GRANT ROLE <role_type> ON <space_name> TO <user_name>;

* Example

nebula> GRANT ROLE USER ON basketballplayer TO userl;

REVOKE ROLE

Users with the GOD role or the ADMIN role can run REVOKE ROLE to revoke a user's role in a graph space.

/" Note

If the target user is connected to Nebula Graph when running Revoke ROLE, the old role still takes effect until the user logs out.

¢ Syntax

REVOKE ROLE <role_type> ON <space_name> FROM <user_name>;

* Example

nebula> REVOKE ROLE USER ON basketballplayer FROM useril;

- 274/290 - 2021 Vesoft Inc.

8.1.2 User management

CHANGE PASSWORD
With the correct username and password, users can run CHANGE PASSWORD to set a new password for a user.
¢ Syntax
CHANGE PASSWORD <user_name> FROM '<old_password>' TO '<new_password>';
* Example

nebula> CHANGE PASSWORD userl FROM 'nebula' TO 'nebulal23';

ALTER USER

The root user with the GOD role can run ALTER USER to set a new password for a user.
¢ Syntax

ALTER USER <user_name> WITH PASSWORD '<password>';

* Example

nebula> ALTER USER userl WITH PASSWORD 'nebula';

DROP USER

The root user with the GOD role can run DROP USER to remove a user.
\J
7/ Note
Removing a user does not close the user's current session, and the user role still takes effect in the session until the session is closed.

e Syntax
DROP USER [IF EXISTS] <user_name>;

* Example

nebula> DROP USER useril;

SHOW USERS
The root user with the GOD role can run sHow USERs to list all the users.
* Syntax
SHOW USERS;

* Example

nebula> SHOW USERS;

fhmcocooosooo +
| Account |
focosscososs +
| "test1" |
fhmcocooosooo +
| "test2" |
focosscososs +
| "test3" |
fhmcocooosooo +

Last update: April 22, 2021

- 275/290 - 2021 Vesoft Inc.

8.1.3 Roles and privileges

8.1.3 Roles and privileges

A role is a collection of privileges. You can assign a role to a user for access control.

Built-in roles
Nebula Graph does not support custom roles, but it has multiple built-in roles:

* GOD

* GOD is the original role with all privileges not limited to graph spaces. It is similar to root in Linux and administrator in
Windows.

* When the Meta Service is initialized, the one and only GOD role user root is automatically created with the password

nebula .

/" Note

Modify the password for root as soon as possible for security.

¢ The default username root is immutable.

 If authentication is disabled, you can use any username and password to connect to Nebula Graph. This user is regarded
as the GOD role.

« ADMIN
e An ADMIN role can read and write both the Schema and the data in a specific graph space.

* An ADMIN role of a graph space can grant DBA, USER, and GUEST roles in the graph space to other users.

* DBA
* ADBA role can read and write both the Schema and the data in a specific graph space.

* ADBA role of a graph space CANNOT grant roles to other users.

* USER
* AUSER role can read and write data in a specific graph space.

e The Schema information is read-only to the USER roles in a graph space.

* GUEST

* A GUEST role can only read the Schema and the data in a specific graph space.

/" Note

A user can have only one role in a graph space.

-276/290 - 2021 Vesoft Inc.

Role privileges and allowed nGQL

8.1.3 Roles and privileges

The privileges of roles and the nGQL statements that each role can use are listed as follows.

Privilege

Read
space

Write
space

Read
schema

Write
schema

Write user
Write role

Read data

Write data

Show
operations

/" Note

God

Admin

Y

DBA

include the graph spaces that the users have privileges.

User Guest Allowed nGQL

Y Y USE , DESCRIBE SPACE

CREATE SPACE, DROP SPACE, CREATE SNAPSHOT , DROP
SNAPSHOT , BALANCE , ADMIN, CONFIG, INGEST, DOWNLOAD

Y Y DESCRIBE TAG, DESCRIBE EDGE, DESCRIBE TAG INDEX,
DESCRIBE EDGE INDEX

CREATE TAG, ALTER TAG, CREATE EDGE, ALTER EDGE,
DROP TAG, DROP EDGE, CREATE TAG INDEX, CREATE EDGE
INDEX, DROP TAG INDEX, DROP EDGE INDEX

CREATE USER, DROP USER, ALTER USER
GRANT , REVOKE

Y Y GO, SET, PIPE, MATCH, ASSIGNMENT, LOOKUP, YIELD,
ORDER BY, FETCH VERTICES, Find, FETCH EDGES, FIND
PATH, LIMIT, GROUP BY, RETURN

Y BUILD TAG INDEX, BUILD EDGE INDEX, INSERT VERTEX,
UPDATE VERTEX , INSERT EDGE, UPDATE EDGE , DELETE
VERTEX , DELETE EDGES

Y Y SHOW , CHANGE PASSWORD

* The results of sHow operations are limited to the role of a user. For example, all users can run SHow SPACES, but the results only

* Only the GOD role can run SHow USERS and SHOW SNAPSHOTS .

Last update: April 22, 2021

- 2771290 - 2021 Vesoft Inc.

8.2 Backup and restore data with snapshots

8.2 Backup and restore data with snapshots

Nebula Graph supports using snapshots to backup and restore data.

8.2.1 Authentication and snapshots

Nebula Graph authentication is disabled by default. In this case, All users can use the snapshot feature.

If authentication is enabled, only the GOD-role user can use the snapshot function. For more information about roles, see Roles and
privileges.

8.2.2 Precautions

» To prevent data loss, create a snapshot as soon as the system structure changes, for example, after operations such as Abp
HOST, DROP HOST, CREATE SPACE, DROP SPACE, and BALANCE are performed.

* Nebula Graph cannot automatically delete the invalid files created by a failed snapshot task, you have to manually delete
them by using DROP SNAPSHOT .

* Customizing the storage path for the snapshots is not supported for now.

8.2.3 Snapshot form and path

Nebula Graph snapshots are in the form of directories with names like SNAPSHOT 2021 03 09 08 43 12 . The suffix 2021 063 09 _08 43 12

is generated automatically based on the creation time.

When a snapshot is created, snapshot directories will be automatically created in the checkpoints directory on the leader Meta

server and each Storage server.

To fast locate the path where the snapshots are stored, you can use the Linux command find . For example:

/" Note

For how to get the snapshot name, see View snapshots.

8.2.4 Create a snapshot

Run CREATE SNAPSHOT to create a snapshot for all the graph spaces based on the current time for Nebula Graph.

/" Note

Creating a snapshot for a specific graph space is not supported yet.
If the creation fails, delete the snapshot and try again. If it still fails, go to the Nebula Graph community for help.

8.2.5 View snapshots
To view all existing snapshots, run SHow SNAPSHOTS .

nebula> SHOW SNAPSHOTS;
B e e focomomooo focomocosomoooeocas +

| Name | Status | Hosts

- 278/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

8.2.6 Delete a snapshot

B T ommmmmen o +

B T ommmmmen o +

The parameters in the return information are described as follows.

Parameter Description

Name Name of the snapshot directory.

Status Status of the snapshot. vALID indicates that the creation succeeded and InvALID indicates that it failed.
Hosts IP addresses and ports of all Storage servers at the time the snapshot was created.

8.2.6 Delete a snapshot
To delete a snapshot, use the following syntax:

DROP SNAPSHOT <snapshot_name>;

Example:

nebula> SHOW SNAPSHOTS;

dboscomoCosoooooCoooCoooooooooeans fhmcooocooo fhmcocooooocooosoeao +
| Name | Status | Hosts |
droscosscocososocosocasooscasscaos fhococc=ooo fhococococososoosseas +
| "SNAPSHOT_2021_03_09_09_10_52" | "VALID" | "127.0.0.1:9779" |
dboscomoCosoooooCoooCoooooooooeans fhmcooocooo fhmcocooooocooosoeao +

8.2.7 Restore data with a snapshot

1. Find the snapshot directories you want to use for data restoration.

2. Choose an approach to restore the data files:
* Change the data_path in the Meta configuration and Storage configuration to the snapshot path.
* Copy the snapshot directories to other locations, and change the data_path to these locations.

* Copy all the content in the snapshot directories into the directories where the checkpoints directories are located, and cover
the existing files that have duplicate names with them. For example, cover /usr/local/nebula/data/meta/nebula/e/data with /
usr/local/nebula/data/meta/nebula/0/checkpoints/SNAPSHOT 2021 03_09_09_ 10 52/data .

3. Restart Nebula Graph.

8.2.8 Another way to backup and restore data

You can also use Backup&Restore to backup and restore Nebula Graph data. (TODO: coding)

Last update: April 22, 2021

- 279/290 - 2021 Vesoft Inc.

9. Service Tuning

9. Service Tuning

9.1 Compaction

This document gives some information about compaction.

9.1.1 Introduction to compaction
In Nebula Graph, compaction is the most important background process. Compaction has an important effect on performance.

Compaction reads the data that is written on the hard disk, then re-organizes the data structure and the indexes to make the data
easier to read. The read performance can increase by times after compaction. Thus, to get high read performance, trigger
compaction manually when writing a large amount of data into Nebula Graph. Note that compaction leads to long time hard disk
10, we suggest that you do compaction during off-peak hours (for example, early morning).

Nebula Graph has two types of compaction: automatic compaction and full compaction.

9.1.2 Automatic compaction

Automatic compaction is done when the system reads data, writes data, or the system restarts. The automatic compaction is
enabled by default. But once triggered during peak hours, it can cause unexpected 10 occupancy that has an unwanted effect on
the performance. To disable automatic compaction, use this statement:

nebula> UPDATE CONFIGS storage:rocksdb_column_family_options = {disable_auto_compactions = true};

Caution

The command overwrites all rocksdb_column_family options items. Other items besides disable_auto_compactions is overwritten to the
default value. You may have to read all the items before the updates.

9.1.3 Full compaction

Full compaction enables large scale background operations for a graph space such as merging files, deleting the data expired by
TTL. Use these statements to enable full compaction:

nebula> USE <your_graph_space>;
nebula> SUBMIT JOB COMPACT;

The preceding statement returns a job _id. To show the compaction progress, use this statement:

nebula> SHOW JOB <job_id>;

/" Note

Do the full compaction during off-peak hours because full compaction has a lot of IO operations.

- 280/290 - 2021 Vesoft Inc.

9.1.4 Operation suggestions

9.1.4 Operation suggestions
These are some operation suggestions to keep Nebula Graph performing well.

* To avoid unwanted 10 waste during data writing, set disable_auto_compactions to true before large amounts of data writing.
* After data import is done, run SUBMIT JOB COMPACT .

e Run susmIT JoB coMPACT periodically during off-peak hours, for example, early morning.

* Set disable_auto_compactions to false during day time.

» To control the read and write traffic limitation for compactions, set these two parameters in the nebula-storaged.conf
configuration file.

read from the local configuration file and start
--local-config=true
--rate_limit=20 (in MB/s)

9.1.5 FAQ

Q: Can I do full compactions for multiple graph spaces at the same time? A: Yes, you can. But the IO is much larger at this time.

Q: How much time does it take for full compactions? A: When rate_limit is setto 20, you can estimate the full compaction time by
dividing the hard disk usage by the rate_limit.If you do not set the rate limit value, the empirical value is around 50 MB/s.

Q: Can I modify --rate limit dynamically? A: No, you cannot.

Q: Can I stop a full compaction after it starts? A: No you cannot. When you start a full compaction, you have to wait till it is done.
This is the limitation of RocksDB.

Last update: April 22, 2021

- 281/290 - 2021 Vesoft Inc.

9.2 Storage load balance

9.2 Storage load balance

You can use the BALANCE statements to balance the distribution of partitions and Raft leaders, or remove redundant Storage
servers.
9.2.1 Prerequisites
The graph spaces stored in Nebula Graph must have more than one replicas for the system to balance the distribution of partitions
and Raft leaders.
9.2.2 Balance patrtition distribution
BALANCE DATA starts a task to equally distribute the storage partitions in a Nebula Graph cluster. A group of subtasks will be created

and implemented to migrate data and balance the partition distribution.

0 Danger

DON'T stop any machine in the cluster or change its IP address until all the subtasks finish. Otherwise, the follow-up subtasks fail.

Take scaling out Nebula Graph for an example.

After you add new storage hosts into the cluster, no partition is deployed on the new hosts. You can run sHow HosTs to check the
partition distribution.

nebual> SHOW HOSTS;

Fommmmemeeaaas Fommeaa F - B tmmmmemeeeemeeemeecmecceeecmeeeaaaa e +
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
drmocososooosas droscaos focococosas dhmocococoso=ooo fhococscococococccocscosscosooososaoo ffocococococococccocscosas +
| "storaged®" | 9779 | "ONLINE" | 4 | "basketballplayer:4" | "basketballplayer:15" |
Fommmmemeeaaas Fommean F - B tmmmmemeeememeeemeeemecceecemeeeaaaa e +
| "storaged1" | 9779 | "ONLINE" | 8 | "basketballplayer:8" | "basketballplayer:15" |
drmocososooosas droscaos focococosas dhmocococoso=ooo fhococscococococccocscosscosooososaoo ffocococococococccocscosas +
| "storaged2" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:15" |
R e T Femmmmmeaaa R LT L R) +
| "storaged3" | 9779 | "ONLINE" | © | "No valid partition" | "No valid partition" |
drmocososooosas droscaos focococosas dhmocococoso=ooo fhococscococococccocscosscosooososaoo ffocococococococccocscosas +
| "storaged4" | 9779 | "ONLINE" | © | "No valid partition" | "No valid partition" |
Fommmmemeeaaas Fommeaa F - B tmmmm e e memeeemeecmecceeeceeeeaaaa B +
| "Total" | | | 15 | "basketballplayer:15" | "basketballplayer:45" |
drmocososooosas droscaos focococosas dhmocococoso=ooo fhococscococococccocscosscosooososaoo ffocococococococccocscosas +

Got 6 rows (time spent 1002/1780 us)

Run BALANCE DATA to start balancing the storage partitions. If the partitions are already balanced, BALANCE DATA fails.

nebula> BALANCE DATA;

F +
| 1D |
dfoocococacsos +
| 1614237867 |
R +

Got 1 rows (time spent 3783/4533 us)

A BALANCE task ID is returned after running BALANCE DATA. Run BALANCE DATA <balance_id> to check the status of the BaLANCE task.

nebula> BALANCE DATA 1614237867;

Got 23 rows (time spent 916/1528 us)

- 282/290 - 2021 Vesoft Inc.

9.2.3 Stop data balancing

When all the subtasks succeed, the load balancing process finishes. Run sHow HOoSTS again to make sure the partition distribution is
balanced.

/" Note

BALANCE DATA does not balance the leader distribution.

nebula> SHOW HOSTS;

4o - Fececacaaan S B T T L T Ty Fececccccccccccccceceaaan +
| Host | Port | Status | Leader count | Leader distribution | Partition distribution |
drmscosasoso=as dromcaos fhocosocosas drmmcosososo=ooo fhococscococococccocscosscosssosososo frocococococococccacscosas +
| "storaged®" | 9779 | "ONLINE" | 4 | "basketballplayer:4" | "basketballplayer:9" |
[T B - Hececacaaan S B T T L T T ey Fececcccccccccccccccaaaan +
| "storaged1" | 9779 | "ONLINE" | 8 | "basketballplayer:8" | "basketballplayer:9" |
drmscosasoso=as dromcaos fhocosocosas drmmcosososo=ooo fhococscococococccocscosscosssosososo frocococococococccacscosas +
| "storaged2" | 9779 | "ONLINE" | 3 | "basketballplayer:3" | "basketballplayer:9 |
[TR B - Fececacaaan O B T T L T T raepippapeppays Fececccccccccccccccceaaan +
| "storaged3" | 9779 | "ONLINE" | O | "No valid partition" | "basketballplayer:9" |
drmscosasoso=as dromcaos fhocosocosas drmmcosososo=ooo fhococscococococccocscosscosssosososo frocococococococccacscosas +
| "storaged4" | 9779 | "ONLINE" | © | "No valid partition" | "basketballplayer:9 |
dboocooooooosoo dboocaos dhmcomoooooo dbomcomooooosooo fhmcocooosocooocoooooCoEooosooooos oo fhmcocooooomooocoooacoooso0 +
| "Total" | | | 15 | "basketballplayer:15" | "basketballplayer:45" |
drmscosasoso=as dromcaos fhocosocosas drmmcosososo=ooo fhococscococococccocscosscosssosososo frocococococococccacscosas +

Got 6 rows (time spent 849/1420 us)

If any subtask fails, run BALANCE DATA again to restart the balancing. If redoing load balancing does not solve the problem, ask for
help in the Nebula Graph community.
9.2.3 Stop data balancing
To stop a balance task, run BALANCE DATA STOP .
e If no balance task is running, an error is returned.
« If a balance task is running, the task ID is returned.
BALANCE DATA sToP does not stop the running subtasks but cancels all follow-up subtasks. The running subtasks continue.
To check the status of the stopped balance task, run BALANCE DATA <balance id>.
Once all the subtasks are finished or stopped, you can run BALANCE DATA again to balance the partitions again.
« If any subtask of the preceding balance task failed, Nebula Graph restarts the preceding balance task.

 If no subtask of the preceding balance task failed, Nebula Graph starts a new balance task.

9.2.4 Remove storage servers
To remove specific storage servers and scale in the Storage Service, use the BALANCE DATA REMOVE <host_list> syntax.

For example, to remove the following storage servers:

Server name 1P Port
storage3 192.168.0.8 19779
storage4 192.168.0.9 19779

Run the following statement:

BALANCE DATA REMOVE 192.168.0.8:19779,192.168.0.9:19779;

Nebula Graph will start a balance task, migrate the storage partitions in storage3 and storage4, and then remove them from the
cluster.

- 283/290 - 2021 Vesoft Inc.

https://discuss.nebula-graph.io/

9.2.5 Balance leader distribution

/" Note

The removed server's state will change to OFFLINE .

9.2.5 Balance leader distribution

BALANCE DATA only balances the partition distribution. If the raft leader distribution is not balanced, some of the leaders may
overload. To load balance the raft leaders, run BALANCE LEADER .

nebula> BALANCE LEADER;
Execution succeeded (time spent 7576/8657 us)

Run sHow HosTs to check the balance result.

nebula> SHOW HOSTS;

4ocmcmcmcmaa - Fecccccanaan docecmcccccnanaa + Fecccccccccccccccccaaanaan +
| Host | Port | Status | Leader count | | Partition distribution |
drmscosososozas drmscaos fhocosocosos drmmcosososo=ooo + +
| "storaged®" | 9779 | "ONLINE" | 3 | |
4ocmcmcmcmaa - Fecccccanaan docecmcccccnanaa + +
| "storaged1" | 9779 | "ONLINE" | 3 | |
drmscosososozas drmscaos fhocosocosos drmmcosososo=ooo + +
| "storaged2" | 9779 | "ONLINE" | 3 | |
4ocmcmcmcmaa - Fecccccanaan docecmcccccnanaa + +
"storaged3" 9779 "ONLINE" 3
g

+ fhocosocosos drmmcosososo=ooo + +

| | "ONLINE" | 3 | |

+ Hecccccanan + +

| | | |

+ fhocosocosos + +

Last update: May 10, 2021

-284/290 - 2021 Vesoft Inc.

10. Ecosystem

10. Ecosystem

10.1 Nebula Exchange

Nebula Exchange (hereinafter referred to as Exchange) is an Apache Spark™ application for migrating data into Nebula Graph
from distributed systems. Exchange supports the migration of migrating batch data and stream data of different formats.

10.1.1 Use cases
Exchange applies to transforming the following data into vertices and edges in Nebula Graph:

* Stream data stored in Kafka or Pulsar, including Logs, online shopping records, online game player activities, social network
information, financial trading data, and geospatial service data.

» Telemeasuring data recorded by equipment connected to IDCs.

* Batch data stored in relational databases such as MySQL or distributed file systems such as HDFS.

10.1.2 Benefits

* Adaptable. Exchange supports importing data with many different formats and sources into the Nebula Graph for easy data
migration.

¢ Supports SST import. Exchange can transform data from different sources into SST files for importing.

/" Note

SST import is only supported on Linux.

¢ Supports breakpoint continuous transmission. To save time and improve efficiency, Exchange can continue the data
transmission after the transmission is stopped.

/" Note

For now, breakpoint continuous transmission is only supported when importing Neo4j data.

¢ Asynchronous operations. Exchange generates a writing statement and then sends it to the Graph Service for data insertion.

 Flexible. Exchange supports importing data with multiple tags and edge types that originated from different data formats or
sources.

* Supports statistics. Exchange uses Apache Spark™ Accumulators to make statistics for successful and failed insertion
operations.

* Easy to use. Exchange applies the Human-Optimized Config Object Notation (HOCON) format for configuration files. HOCON
is object-oriented and easy to understand and use.

- 285/290 - 2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-spark-utils/tree/v2.0.0/nebula-exchange

10.1.3 Data formats and origins

10.1.3 Data formats and origins
Exchange 2.0 can migrate data with the following formats or origins.

¢ Data stored in HDFS, including{X
e Apache Parquet
* Apache ORC
* JSON
* CSV

e Apache HBase™

* Data warehouse: Hive

¢ Graph databasefiNeo4j

« Relational databasefiMySQL

* Event streaming platformflApache Kafka®

* Message publishing/subscribing platform: Apache Pulsar 2.4.5

Last update: April 28, 2021

- 286/290 - 2021 Vesoft Inc.

11. Contribution

11. Contribution

11.1 How to Contribute

11.1.1 Before you get started

File an issue on the github or forum

You are welcome to contribute any code or files to the project. But first we suggest you raise an issue on the github or on the

forum to start a discussion with the community. Check through the topic for Github.

Sign the Contributor License Agreement (CLA)
What is CLA?
Here is the vesoft inc. Contributor License Agreement.
Click the Sign in with GitHub to agree button to sign the CLA.

If you have any question, send an email to info@vesoft.com.

11.1.2 Step 1: Fork in the github.com

The Nebula Graph project has many repositories. Take the graph engine repository for example:

1. Visit https://github.com/vesoft-inc/nebula-graph
2. Click the Fork button (top right) to establish an online fork.

11.1.3 Step 2: Clone Fork to Local Storage
Define a local working directory:

Define your working directory
working_dir=$HOME/Workspace

Set user to match your Github profile name:

user={your Github profile name}

Create your clone:

mkdir -p $working dir

cd $working_dir

git clone https://github.com/$user/nebula-graph.git
the following is recommended

or: git clone git@github.com:$user/nebula-graph.git

cd $working_dir/nebula
git remote add upstream https://github.com/vesoft-inc/nebula-graph.git
or: git remote add upstream git@github.com:vesoft-inc/nebula-graph.git

Never push to upstream master since you do not have write access.
git remote set-url --push upstream no_push

Confirm that your remotes make sense:

It should look like:

origin git@github.com:$(user)/nebula-graph.git (fetch)
origin git@github.com:$(user)/nebula-graph.git (push)
upstream https://github.com/vesoft-inc/nebula-graph (fetch)
upstream no_push (push)

git remote -v

#
#
#
#
#
#

-287/290 -

2021 Vesoft Inc.

https://github.com/vesoft-inc/nebula-graph
https://discuss.nebula-graph.io/
https://www.apache.org/licenses/contributor-agreements.html
https://cla-assistant.io/vesoft-inc/
https://github.com/vesoft-inc
https://github.com/vesoft-inc/nebula-graph

11.1.4 Step 3: Branch

Define a Pre-Commit Hook
Please link the Nebula Graph pre-commit hook into your .git directory.

This hook checks your commits for formatting, building, doc generation, etc.

cd $working_dir/nebula-graph/.git/hooks
1In -s $working dir/nebula-graph/.linters/cpp/hooks/pre-commit.sh .

Sometimes, pre-commit hook can not be executable. You have to make it executable manually.

cd $working_dir/nebula-graph/.git/hooks
chmod +x pre-commit

11.1.4 Step 3: Branch
Get your local master up to date:

cd $working_dir/nebula-graph
git fetch upstream

git checkout master

git rebase upstream/master

Checkout a new branch from master:

git checkout -b myfeature

/" Note

Because your PR often consists of several commits, which might be squashed while being merged into upstream, we strongly suggest
you open a separate topic branch to make your changes on. After merged, this topic branch could be just abandoned, thus you could
synchronize your master branch with upstream easily with a rebase like above. Otherwise, if you commit your changes directly into

master, maybe you must use a hard reset on the master branch, like:

git fetch upstream

git checkout master

git reset --hard upstream/master
git push --force origin master

11.1.5 Step 4: Develop

Code Style

We adopt cpplint to make sure that the project conforms to Google's coding style guides. The checker will be implemented before

the code is committed.

Unit Tests Required

Please add unit tests for your new features or bug fixes.

Build Your Code with Unit Tests Enable
Please refer to the build source code documentation to compile.

Make sure you have enabled the build of unit tests by setting -DENABLE_TESTING=ON .

Run Tests

In the root folder of nebula-graph , run the following command:

ctest -j$(nproc)

- 288/290 - 2021 Vesoft Inc.

11.1.6 Step 5: Bring Your Branch Update to Date

11.1.6 Step 5: Bring Your Branch Update to Date

While on your myfeature branch.
git fetch upstream
git rebase upstream/master

You need to bring the head branch up to date after other collaborators merge pull requests to the base branch.

11.1.7 Step 6: Commit
Commit your changes.

git commit -a

Likely you'll go back and edit/build/test some more than --amend in a few cycles.

11.1.8 Step 7: Push
When ready to review (or just to establish an offsite backup or your work), push your branch to your fork on github.com:

git push origin myfeature

11.1.9 Step 8: Create a Pull Request

1. Visit your fork at https://github.com/$user/nebula-graph (replace s$user obviously).

2. Click the compare & pull request button next to your myfeature branch.

11.1.10 Step 9: Get a Code Review

Once your pull request has been opened, it will be assigned to at least two reviewers. Those reviewers will do a thorough code
review to make sure that the changes meet the repository's contributing guidelines and other quality standards.

Last update: April 22, 2021

- 289/290 - 2021 Vesoft Inc.

https://docs.nebula-graph.io/2.0.1

https://docs.nebula-graph.io/2.0.1
https://docs.nebula-graph.io/2.0.1
https://docs.nebula-graph.io/2.0.1
https://docs.nebula-graph.io/2.0.1
https://docs.nebula-graph.io/2.0.1
https://docs.nebula-graph.io/2.0.1

	Nebula Graph Database Manual
	1. About
	2. Introduction
	2.1 What is Nebula Graph
	2.1.1 What is a graph database
	2.1.2 Benefits of Nebula Graph
	Open-source
	Outstanding performance
	Developer friendly
	Diversified ecosystem
	OpenCypher-compatible query language
	Easy data modeling and high flexibility
	Reliable access control
	High scalability
	High popularity

	2.1.3 Use cases
	Fraud detection
	Real-time recommendation
	Intelligent question-answer system
	Social networking

	2.2 Data modeling
	2.2.1 Data structures
	2.2.2 Directed property graph
	2.2.3 Graph data modeling suggestions
	Model for performance
	Edges as properties
	Granulated vertices
	Use indexes correctly
	No long string properties on edges

	2.3 Nebula Graph architecture
	2.3.1 Architecture overview
	The Meta Service
	The Graph Service and the Storage Service

	2.3.2 Meta Service
	The architecture of the Meta Service
	Functions of the Meta Service
	MANAGES USER ACCOUNTS
	MANAGES PARTITIONS
	MANAGES GRAPH SPACES
	MANAGES SCHEMA INFORMATION
	MANAGES TTL-BASED DATA EVICTION
	MANAGES JOBS

	2.3.3 Graph Service
	2.3.4 Storage Service

	3. Quick start
	3.1 FAQ
	3.1.1 About manual updates
	3.1.2 About forward and backward compatibility
	3.1.3 About openCypher compatibility
	3.1.4 About Data Model
	3.1.5 About executions
	3.1.6 About operation and maintenance
	3.1.7 About connections

	3.2 Quick start workflow
	3.3 Deploy Nebula Graph with Docker Compose
	3.3.1 Reading guide
	3.3.2 Prerequisites
	3.3.3 How to deploy
	3.3.4 Check the Nebula Graph service status and port
	3.3.5 Check the service data and logs
	3.3.6 Stop the Nebula Graph services
	3.3.7 Other ways to install Nebula Graph
	3.3.8 FAQ
	How to update the docker images of Nebula Graph services
	ERROR: toomanyrequests when docker-compose pull
	How to update the Nebula Console client
	How to upgrade Nebula Graph services
	Why can't I connect to Nebula Graph through port 3699 after updating the nebula-docker-compose repository? (Nebula Graph 2.0.0-RC)
	Why can't I access the data after updating the nebula-docker-compose repository? (Jan 4, 2021)
	Why can't I access the data after updating the nebula-docker-compose repository? (Jan 27, 2021)
	Where are the data stored when Nebula Graph is deployed with Docker Compose

	3.4 Manage Nebula Graph services
	3.4.1 Syntax
	3.4.2 Start Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.4.3 Stop Nebula Graph
	In non-container environment
	In docker container (deployed with docker-compose)

	3.4.4 Check the service status
	In non-container environment
	In docker container (deployed with docker-compose)

	3.5 Connect to Nebula Graph
	3.5.1 Nebula Graph clients
	3.5.2 Use Nebula Console to connect to Nebula Graph
	Prerequisites
	Steps

	3.5.3 Nebula Console export mode
	3.5.4 Disconnect Nebula Console from Nebula Graph
	3.5.5 FAQ
	How can I install Nebula Console from the source code

	3.6 Nebula Graph CRUD
	3.6.1 Graph space and Nebula Graph schema
	3.6.2 Check the machine status in the Nebula Graph cluster
	Asynchronous implementation of creation and alteration

	3.6.3 Create and use a graph space
	nGQL syntax
	Examples

	3.6.4 Create tags and edge types
	nGQL syntax
	Examples

	3.6.5 Insert vertices and edges
	nGQL syntax
	Examples

	3.6.6 Read data
	nGQL syntax
	Examples of GO
	Example of FETCH

	3.6.7 Update vertices and edges
	nGQL syntax
	Examples

	3.6.8 Delete vertices and edges
	nGQL syntax
	Examples

	3.6.9 About indexes
	Must-read for using index
	nGQL syntax
	Examples
	Examples of LOOKUP and MATCH (index-based)

	3.7 Useful links
	3.7.1 API Clients by Nebula Graph
	3.7.2 Graph tools
	3.7.3 Big Data and other Systems support
	3.7.4 Benchmark, test, and Backup tools
	3.7.5 Misc

	4. nGQL guide
	4.1 nGQL overview
	4.1.1 Nebula Graph Query Language (nGQL)
	What is nGQL
	What can nGQL do
	Example Data
	Placeholder Identifiers and Values

	4.1.2 Patterns
	Patterns for vertices
	Patterns for related vertices
	Patterns for tags
	Patterns for properties
	Patterns for edges
	Variable-length pattern
	Assigning to path variables

	4.2 Data types
	4.2.1 Numeric types
	Integer
	Double-precision floating-point

	4.2.2 Boolean
	4.2.3 String
	OpenCypher Compatibility

	4.2.4 Date and time types
	OpenCypher Compatibility
	DATE
	TIME
	DATETIME
	TIMESTAMP
	Examples

	4.2.5 NULL
	Logical operations with NULL
	OpenCypher compatibility
	COMPARISONS WITH NULL
	OPERATIONS AND EXPRESSION WITH NULL

	Examples

	4.2.6 Lists
	Examples
	OpenCypher compatibility

	4.2.7 Sets
	OpenCypher compatibility

	4.2.8 Maps
	Literal maps
	OpenCypher compatibility

	4.2.9 Type Conversion/Type coercions
	Legacy version compatibility
	Type coercions functions
	Examples

	4.3 Variables and composite queries
	4.3.1 Composite queries (clause structure)
	OpenCypher compatibility
	Composite queries are not transactional queries (as in SQL/Cypher)
	Examples

	4.3.2 User-defined variables
	OpenCypher variables
	nGQL extensions
	Example

	4.3.3 Property reference
	Property reference for vertex
	FOR SOURCE VERTEX
	FOR DESTINATION VERTEX

	Property reference for edge
	FOR PROPERTY
	FOR BUILT-IN PROPERTIES

	Examples

	4.4 Operators
	4.4.1 Comparison operators
	4.4.2 Boolean operators
	Legacy version compatibility

	4.4.3 Pipe operator
	OpenCypher compatibility
	Syntax
	Examples

	4.4.4 Reference operators
	OpenCypher compatibility
	Reference operator List
	Examples

	4.4.5 Set operations
	OpenCypher compatibility
	Syntax
	UNION, UNION DISTINCT, and UNION ALL
	EXAMPLE

	INTERSECT
	MINUS
	Precedence of the SET Operations and Pipe

	4.4.6 String operators
	Examples

	4.4.7 List operators
	Examples

	4.4.8 Operator precedence
	Examples
	OpenCypher compatibility

	4.5 Functions and expressions
	4.5.1 Built-in math functions
	4.5.2 Built-in string functions
	Explanations for the return of substr() and substring()

	4.5.3 Built-in date and time functions
	Examples
	OpenCypher compatibility

	4.5.4 Schema functions
	Examples

	4.5.5 CASE expressions
	The simple form of CASE expressions
	SYNTAX
	EXAMPLES

	The generic form of CASE expressions
	SYNTAX
	EXAMPLES

	Differences between the simple form and the generic form

	4.5.6 List functions
	Examples

	4.5.7 The count() function
	Syntax
	EXAMPLES

	count(NULL)

	4.5.8 collect()
	Examples

	4.5.9 reduce() function
	OpenCypher Compatibility
	Syntax
	Example

	4.5.10 Hash
	Legacy version compatibility
	Hash a number
	Hash a string
	Hash a list
	Hash a boolean
	Hash NULL
	Hash an expression

	4.5.11 Predicate functions
	OpenCypher compatibility
	Syntax
	Examples

	4.5.12 User-defined functions
	OpenCypher compatibility

	4.6 General queries statements
	4.6.1 MATCH
	Syntax
	The workflow of MATCH
	Use patterns in MATCH statements
	MATCH A VERTEX
	MATCH ON TAG
	MATCH ON VERTEX PROPERTY
	MATCH ON VID
	MATCH CONNECTED VERTICES
	MATCH PATHS
	MATCH EDGES
	MATCH ON EDGE TYPES AND PROPERTIES
	MATCH ON MULTIPLE EDGE TYPES
	MATCH MULTIPLE EDGES
	MATCH FIXED-LENGTH PATHS
	MATCH VARIABLE-LENGTH PATHS
	MATCH VARIABLE-LENGTH PATHS WITH MULTIPLE EDGE TYPES

	Common retrieving operations
	RETRIEVE VERTEX OR EDGE INFORMATION
	RETRIEVE VIDS
	RETRIEVE TAGS
	RETRIEVE A SINGLE PROPERTY ON A VERTEX OR AN EDGE
	RETRIEVE ALL PROPERTIES ON A VERTEX OR AN EDGE
	RETRIEVE EDGE TYPES
	RETRIEVE PATHS
	RETRIEVE VERTICES IN A PATH
	RETRIEVE EDGES IN A PATH
	RETRIEVE PATH LENGTH

	4.6.2 LOOKUP
	OpenCypher compatibility
	Prerequisites
	Syntax
	Limitations of using WHERE in LOOKUP
	Retrieve Vertices
	Retrieve Edges
	List vertices or edges with a tag or an edge type
	Count the numbers of vertices or edges

	4.6.3 GO
	OpenCypher compatibility
	Syntax
	Examples

	4.6.4 FETCH
	OpenCypher Compatibility
	Fetch vertex properties
	SYNTAX
	FETCH VERTEX PROPERTIES BY ONE TAG
	FETCH SPECIFIC PROPERTIES OF A VERTEX
	FETCH PROPERTIES OF MULTIPLE VERTICES
	FETCH VERTEX PROPERTIES BY MULTIPLE TAGS
	FETCH VERTEX PROPERTIES BY ALL TAGS

	Fetch edge properties
	SYNTAX
	FETCH ALL PROPERTIES OF AN EDGE
	FETCH SPECIFIC PROPERTIES OF AN EDGE
	FETCH PROPERTIES OF MULTIPLE EDGES

	Fetch properties based on edge rank
	Use FETCH in composite queries

	4.6.5 UNWIND
	Syntax
	Split a list
	Return a list with distinct items
	EXAMPLE 1

	Example 2

	4.6.6 SHOW
	SHOW CHARSET
	SYNTAX
	EXAMPLE

	SHOW COLLATION
	SYNTAX
	EXAMPLE

	SHOW CREATE SPACE
	SYNTAX
	EXAMPLE

	SHOW CREATE TAG/EDGE
	SYNTAX
	EXAMPLE

	SHOW HOSTS
	SYNTAX
	EXAMPLE

	SHOW INDEX STATUS
	SYNTAX
	EXAMPLE
	RELATED TOPICS

	SHOW INDEXES
	SYNTAX
	EXAMPLE

	SHOW PARTS
	SYNTAX
	EXAMPLES

	SHOW ROLES
	SYNTAX
	EXAMPLE

	SHOW SNAPSHOTS
	ROLE REQUIREMENT
	SYNTAX
	EXAMPLE

	SHOW SPACES
	SYNTAX
	EXAMPLE

	SHOW STATS
	PREREQUISITES
	SYNTAX
	EXAMPLE

	SHOW TAGS/EDGES
	SYNTAX
	EXAMPLES

	SHOW USERS
	ROLE REQUIREMENT
	SYNTAX
	EXAMPLE

	4.7 Clauses and options
	4.7.1 GROUP BY
	OpenCypher Compatibility
	Syntax
	Examples
	Group and calculate with functions

	4.7.2 LIMIT AND SKIP
	nGQL-extension syntax
	EXAMPLES

	OpenCypher Syntax
	EXAMPLES
	SKIP-SYNTAX

	4.7.3 ORDER BY
	nGQL-extension Syntax
	EXAMPLES

	OpenCypher Syntax
	EXAMPLES

	Order by NULL values

	4.7.4 RETURN
	OpenCypher compatibility
	NGQL compatibility
	Return vertices
	Return edges
	Return properties
	Return all elements
	Rename a field
	Return a non-existing property
	Return expression results
	Return unique fields

	4.7.5 TTL
	OpenCypher Compatibility
	Precautions
	Data expiration and deletion
	VERTEX PROPERTY EXPIRATION
	EDGE PROPERTY EXPIRATION
	DATA DELETION

	TTL options
	Use TTL options
	SET A TIMEOUT IF A TAG OR AN EDGE TYPE EXISTS
	SET A TIMEOUT WHEN CREATING A TAG OR AN EDGE TYPE

	Remove a timeout

	4.7.6 WHERE
	OpenCypher compatibility
	Basic usage
	DEFINE CONDITIONS WITH BOOLEAN OPERATORS
	FILTER ON PROPERTIES
	FILTER ON DYNAMICALLY-CALCULATED PROPERTY
	FILTER ON THE EXISTENCE OF A PROPERTY
	FILTER ON EDGE RANK

	Filter on strings
	MATCH THE BEGINNING OF A STRING
	MATCH THE ENDING OF A STRING
	MATCH ANY PART OF A STRING
	NEGATIVE STRING MATCHING

	Filter on lists
	MATCH VALUES IN A LIST
	MATCH VALUES NOT IN A LIST

	4.7.7 YIELD
	OpenCypher Compatibility
	YIELD clauses
	SYNTAX
	USE A YIELD CLAUSE IN A STATEMENT

	YIELD Statements
	SYNTAX
	USE A YIELD STATEMENT IN A COMPOSITE QUERY
	USE A STANDALONE YIELD STATEMENT

	4.7.8 WITH
	OpenCypher compatibility
	Combine statements and form a composite query
	EXAMPLE 1
	EXAMPLE 2

	Filter aggregated queries
	Process the output before using collect() on it
	Use with RETURN

	4.8 Space statements
	4.8.1 CREATE SPACE
	IF NOT EXISTS
	Graph space name
	Customized graph space options
	Example
	Implementation of the operation
	Check partition distribution

	4.8.2 USE
	4.8.3 SHOW SPACES
	4.8.4 DESCRIBE SPACE
	Example

	4.8.5 DROP SPACE

	4.9 Tag statements
	4.9.1 CREATE TAG
	OpenCypher compatibility
	Syntax
	Tag name
	PROPERTY NAMES AND DATA TYPES
	TIME-TO-LIVE (TTL)
	EXAMPLES

	Implementation of the operation

	4.9.2 DROP TAG
	Tag name
	Example

	4.9.3 ALTER TAG
	Tag name
	Example
	Implementation of the operation

	4.9.4 SHOW TAGS
	Examples

	4.9.5 DESCRIBE TAG
	Example

	4.10 Edge type statements
	4.10.1 CREATE EDGE
	OpenCypher compatibility
	Syntax
	Edge type name
	PROPERTY NAMES AND DATA TYPES
	TIME-TO-LIVE (TTL)
	EXAMPLES

	Implementation of the operation

	4.10.2 DROP EDGE
	Edge type name
	Example

	4.10.3 ALTER EDGE
	Edge type name
	Example
	Implementation of the operation

	4.10.4 SHOW EDGES
	Examples

	4.10.5 DESCRIBE EDGE
	Example

	4.11 Vertex statements
	4.11.1 INSERT VERTEX
	Syntax
	Examples

	4.11.2 DELETE VERTEX
	Examples

	4.11.3 UPDATE VERTEX
	Syntax
	Example

	4.11.4 UPSERT VERTEX
	Syntax
	Insert a vertex if it does not exist
	Update a vertex if it exists

	4.12 Edge statements
	4.12.1 INSERT EDGE
	Syntax
	Examples

	4.12.2 DELETE EDGE
	Examples

	4.12.3 UPDATE EDGE
	Syntax
	Example

	4.12.4 UPSERT EDGE
	Syntax
	Insert an edge if it does not exist
	Update an edge if it exists

	4.13 Native index statements
	4.13.1 CREATE INDEX
	Prerequisites
	Must-read for using index
	Syntax
	Implementation of the operation
	Create tag/edge type indexes
	Create single-property indexes
	Create composite property indexes
	Using index

	4.13.2 Show INDEXES
	Example

	4.13.3 SHOW CREATE INDEX
	Syntax
	Examples

	4.13.4 DESCRIBE INDEX
	Example

	4.13.5 REBUILD INDEX
	Example
	Legacy version compatibility

	4.13.6 SHOW INDEX STATUS
	Example

	4.13.7 DROP INDEX
	Example

	4.14 Full-text index statements
	4.14.1 Index overview
	Native indexes
	OPERATIONS ON NATIVE INDEXES

	Full-text indexes
	OPERATIONS ON FULL-TEXT INDEXES

	Null values
	Range queries

	4.14.2 Full-text index restrictions
	4.14.3 Deploy full-text index
	Before you start
	Deploy Elasticsearch cluster
	Sign in to the text search clients
	Show text search clients
	Sign out to the text search clients

	4.14.4 Deploy Raft Listener for Nebula Storage service
	Prerequisites
	Precautions
	Step 1: Prepare the configuration file for the Listeners
	Step 2: Start the Listeners
	Step 3: Add Listeners to Nebula Graph
	Show Listeners
	Remove Listeners
	What to do next

	4.14.5 Full-text search
	Before you start
	Natural language full-text search
	Examples

	4.15 Subgraph and path
	4.15.1 GET SUBGRAPH
	Syntax
	Examples

	4.15.2 FIND PATH
	Limitations
	Examples

	4.16 Query tuning statements
	4.16.1 EXPLAIN and PROFILE
	Execution Plan
	Syntax
	Output formats
	Format "row"
	Format "dot"

	4.17 Operation and maintenance statements
	4.17.1 BALANCE syntax
	4.17.2 Job manager and the JOB statements
	SUBMIT JOB COMPACT
	SUBMIT JOB FLUSH
	SUBMIT JOB STATS
	SHOW JOB
	JOB STATUS

	SHOW JOBS
	STOP JOB
	RECOVER JOB

	FAQ
	HOW TO TROUBLESHOOT JOB PROBLEMS

	4.18 Appendix
	4.18.1 Comments
	Legacy version compatibility
	Examples
	OpenCypher Compatibility

	4.18.2 Identifer Case Sensitivity
	Identifiers are Case-Sensitive
	Keywords and Reserved Words are Case-Insensitive

	4.18.3 Keywords and Reserved Words
	Reserved Words
	Non-Reserved Keywords

	4.18.4 Vertex identifier and partition ID
	VID
	Partition ID

	5. Deployment and installation
	5.1 Prepare resources for compiling, installing, and running Nebula Graph
	5.1.1 Reading guide
	5.1.2 Requirements for compiling the Nebula Graph source code
	Hardware requirements for compiling Nebula Graph
	Supported operating systems for compiling Nebula Graph
	Software requirements for compiling Nebula Graph
	Prepare software for compiling Nebula Graph

	5.1.3 Requirements and suggestions for installing Nebula Graph in test environments
	Hardware requirements for test environments
	Supported operating systems for test environments
	Suggested service architecture for test environments

	5.1.4 Requirements and suggestions for installing Nebula Graph in production environments
	Hardware requirements for production environments
	Supported operating systems for production environments
	Suggested service architecture for production environments

	5.1.5 Capacity requirements for running a Nebula Graph cluster
	5.1.6 About storage devices

	5.2 Compile and install Nebula Graph
	5.2.1 Install Nebula Graph by compiling the source code
	Prerequisites
	How to install
	CMake variables
	ENABLE_BUILD_STORAGE
	CMAKE_INSTALL_PREFIX
	ENABLE_WERROR
	ENABLE_TESTING
	ENABLE_ASAN
	CMAKE_BUILD_TYPE
	CMAKE_C_COMPILER/CMAKE_CXX_COMPILER
	ENABLE_CCACHE
	NEBULA_THIRDPARTY_ROOT

	5.2.2 Install Nebula Graph with RPM or DEB package
	Prerequisites
	Download the package from cloud service
	Download the package from GitHub
	Install Nebula Graph

	5.3 Deploy Nebula Graph cluster
	5.3.1 Prerequisites
	5.3.2 Step 1: Install Nebula Graph
	5.3.3 Step 2: Modify the configurations
	5.3.4 Step 3: Start the cluster
	5.3.5 Connect to the cluster
	5.3.6 Check the cluster status

	5.4 Upgrade Nebula Graph to v2.0.0
	5.4.1 Limitations
	5.4.2 Installation paths
	Old installation path
	New installation path

	5.4.3 Steps
	5.4.4 Upgrade failure and rollback
	5.4.5 Appendix 1: Test Environment
	5.4.6 Appendix 2: Nebula Graph V2.0.0 code address and commit ID
	5.4.7 FAQ
	Can I write through the client during the upgrade?
	Can I upgrade other old versions except for v1.2.0 or v2.0.0-RC1 to v2.0.0?
	How to upgrade clients after the server upgrade?
	How to upgrade if a machine has only the Graph Service, but not the Storage Service?
	How to resolve the error Permission denied?
	Is there any change in gflags?
	What are the differences between deleting data then installing the new version and upgrading according to this topic?
	Is there a tool or solution for verifying data consistency after the upgrade?

	5.5 Uninstall Nebula Graph
	5.5.1 Prerequisites
	5.5.2 Step 1: Delete data files of the Storage and Meta Services
	5.5.3 Step 2: Delete the installation directories
	Uninstall Nebula Graph deployed with source code
	Uninstall Nebula Graph deployed with RPM packages
	Uninstall Nebula Graph deployed with DEB packages
	Uninstall Nebula Graph deployed with Docker Compose

	6. Configurations and logs
	6.1 Configurations
	6.1.1 Configurations
	Get configurations
	Modify configurations
	Legacy version compatibility

	6.1.2 Meta Service configuration
	How to use the configuration files
	About parameter values
	Basic configurations
	Logging configurations
	Networking configurations
	Storage configurations
	Misc configurations
	RocksDB options

	6.1.3 Graph Service configuration
	How to use the configuration files
	About parameter values
	Basic configurations
	Logging configurations
	Networking configurations
	Charset and collate configurations
	Authorization and authentication configurations

	6.1.4 Storage Service configurations
	How to use the configuration files
	About parameter values
	Basic configurations
	Logging configurations
	Networking configurations
	Raft configurations
	Disk configurations
	RocksDB options
	For super-Large vertices
	Storage configuration for large dataset

	6.1.5 Kernel configurations
	ulimit
	ULIMIT -C
	ULIMIT -N

	Memory
	VM.SWAPPINESS
	VM.MIN_FREE_KBYTES
	VM.MAX_MAP_COUNT
	VM.OVERCOMMIT_MEMORY
	VM.DIRTY_*
	TRANSPARENT HUGE PAGE

	Networking
	NET.IPV4.TCP_SLOW_START_AFTER_IDLE
	NET.CORE.SOMAXCONN
	NET.IPV4.TCP_MAX_SYN_BACKLOG
	NET.CORE.NETDEV_MAX_BACKLOG
	NET.IPV4.TCP_KEEPALIVE_*
	NET.IPV4.TCP_RMEM/WMEM
	SCHEDULER

	Other parameters
	KERNEL.CORE_PATTERN

	Parameter usage guide
	SYSCTL
	INTRODUCTION TO ULIMIT
	PRLIMIT

	6.2 Log management
	6.2.1 Logs
	Log Directory
	Parameter Description
	TWO MOST COMMONLY USED FLAGS IN GLOG
	CONFIGURATION FILES

	Check and Change the Severity Levels Dynamically

	7. Monitor and metrics
	7.1 Query Nebula Graph metrics
	7.1.1 Metrics
	7.1.2 Query metrics over HTTP
	Syntax
	Example

	8. Data security
	8.1 Authentication and authorization
	8.1.1 Authentication
	Local authentication
	ENABLE LOCAL AUTHENTICATION

	LDAP authentication
	ENABLE LDAP AUTHENTICATION

	8.1.2 User management
	CREATE USER
	GRANT ROLE
	REVOKE ROLE
	CHANGE PASSWORD
	ALTER USER
	DROP USER
	SHOW USERS

	8.1.3 Roles and privileges
	Built-in roles
	Role privileges and allowed nGQL

	8.2 Backup and restore data with snapshots
	8.2.1 Authentication and snapshots
	8.2.2 Precautions
	8.2.3 Snapshot form and path
	8.2.4 Create a snapshot
	8.2.5 View snapshots
	8.2.6 Delete a snapshot
	8.2.7 Restore data with a snapshot
	8.2.8 Another way to backup and restore data

	9. Service Tuning
	9.1 Compaction
	9.1.1 Introduction to compaction
	9.1.2 Automatic compaction
	9.1.3 Full compaction
	9.1.4 Operation suggestions
	9.1.5 FAQ

	9.2 Storage load balance
	9.2.1 Prerequisites
	9.2.2 Balance partition distribution
	9.2.3 Stop data balancing
	9.2.4 Remove storage servers
	9.2.5 Balance leader distribution

	10. Ecosystem
	10.1 Nebula Exchange
	10.1.1 Use cases
	10.1.2 Benefits
	10.1.3 Data formats and origins

	11. Contribution
	11.1 How to Contribute
	11.1.1 Before you get started
	File an issue on the github or forum
	Sign the Contributor License Agreement (CLA)

	11.1.2 Step 1: Fork in the github.com
	11.1.3 Step 2: Clone Fork to Local Storage
	Define a Pre-Commit Hook

	11.1.4 Step 3: Branch
	11.1.5 Step 4: Develop
	Code Style
	Unit Tests Required
	Build Your Code with Unit Tests Enable
	Run Tests

	11.1.6 Step 5: Bring Your Branch Update to Date
	11.1.7 Step 6: Commit
	11.1.8 Step 7: Push
	11.1.9 Step 8: Create a Pull Request
	11.1.10 Step 9: Get a Code Review

